In the SMART project, we developed robust and efficient methods that allow marker-free tracking of complex human movements in video data. The project was funded by the German Research Foundation. On this website, we summarize the project's main outcomes and provide links to project-related publications.
Data-Driven Stabilization of Marker-Free Video-Based Motion Capture Systems
In this project, we developed robust and efficient methods that allow marker-free tracking of complex human movements in video data. Here, the tracking was supported and stabilized by including previous knowledge about specific motion aspects and using temporal coherence through comparison with previously learned motion patterns. One focus of the SMART project was exploring compact and flexible motion representation, generating prior knowledge from 3D motion data using statistical learning methods, integrating a priori knowledge in motion tracking, and developing efficient retrieval and classification techniques for multimodal motion data. Furthermore, we investigated feedback mechanisms between the tracked movement sequences and the knowledge database to enrich the prior knowledge. In this way, the introduction of movement dynamics for image analysis could be used in a top-down strategy, and conversely, the a priori knowledge of the databases could be tightened in a bottom-up process.
Datengestützte Stabilisierung markerfreier videobasierter Motion-Capture-Systeme
In diesem Projekt wurden robuste und effiziente Verfahren, die ein markerfreies Tracking komplexer menschlicher Bewegungen in Videodaten erlauben, entwickelt. Hierbei wurde das Tracking durch Einbeziehen von Vorwissen über geeignete Bewegungsaspekte und unter Ausnutzung zeitlicher Kohärenz durch Abgleich mit zuvor gelernten Bewegungsmustern unterstützt und stabilisiert. Schwerpunkte des SMART-Projekts war die Erforschung kompakter und fexibler Repräsentationsformen von Bewegungen, die Generierung von Vorwissen aus 3D-Bewegungsdaten mittels statistischer Lernverfahren, die Integration von A-priori-Wissen beim Bewegungstracking, sowie die Entwicklung effizienter Retrieval- und Klassifikationstechniken für multimodale Bewegungsdaten. Weiterhin wurden zur Anreicherung des Vorwissens Rückkopplungsmechanismen zwischen den getrackten Bewegungssequenzen und der Wissensdatenbank erforscht. Auf diese Weise konnte in einer Top-Down Strategie das Einbringen von Bewegungsdynamik zur Bildanalyse verwendet und umgekehrt in einem Bottom-Up Prozess das A-priori-Wissen der Datenbanken verschärft werden.
The following publications reflect the main scientific contributions of the work carried out in the SMART project.
@inproceedings{BaakHMPRS10_EvaluatingTrackingInertial_ECCV-HMW, author = {Andreas Baak and Thomas Helten and Meinard M{\"u}ller and Gerard Pons-Moll and Bodo Rosenhahn and Hans-Peter Seidel}, title = {Analyzing and Evaluating Markerless Motion Tracking Using Inertial Sensors}, booktitle = {Proceedings of the 3nd International Workshop on Human Motion. In Conjunction with ECCV}, series = {Lecture Notes of Computer Science (LNCS)}, volume = {6553}, pages = {137--150}, publisher = {Springer}, month = sep, year = {2010}, address = {Hersonissos, Crete}, url-pdf = {2010_BaakHMPRS_EvaluatingTrackingInertial_ECCV-HMW.pdf} }
@inproceedings{BaakMBST11_DepthCamera_ICCV, author = {Andreas Baak and Meinard M{\"u}ller and Gaurav Bharaj and Hans-Peter Seidel and Christian Theobalt}, title = {A Data-Driven Approach for Real-Time Full Body Pose Reconstruction from a Depth Camera}, booktitle = {Proceedings of the International Conference on Computer Vision ({ICCV})}, year = {2011}, pages = {1092--1099}, ee = {http://dx.doi.org/10.1109/ICCV.2011.6126356}, address = {Barcelona, Spain}, url-pdf = {2011_BaakMuellerBharajSeidelTheobalt_DataDrivenDepthTracking_ICCV.pdf}, }
@inproceedings{BaakRMS09_StabilizedTracking_ICCV, author = {Andreas Baak and Bodo Rosenhahn and Meinard M{\"u}ller and Hans-Peter Seidel}, title = {Stabilizing Motion Tracking Using Retrieved Motion Priors}, booktitle = {Proceedings of the International Conference on Computer Vision ({ICCV})}, month = sep, year = {2009}, address = {Kyoto, Japan}, pages = {1428--1435}, isbn = {978-1-4244-4419-9}, url-pdf = {2009_BaakRosenhahnMuellerSeidel_StabilizedMotionTracking_ICCV.pdf}, }
@article{CremersK11_MultiviewConvex_PAMI, author = {Daniel Cremers and Kalin Kolev}, title = {Multiview Stereo and Silhouette Consistency via Convex Functionals over Convex Domains}, journal = {{IEEE} Transactions on Pattern Analysis and Machine Intelligence}, volume = {33}, number = {6}, pages = {1161--1174}, year = {2011}, url-details = {https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5567114} }
@inproceedings{MuellerDR08_EvolutionaryApproach_DAGM, author = {Meinard M{\"u}ller and Bastian Demuth and Bodo Rosenhahn}, title = {An Evolutionary Approach for Learning Motion Class Patterns}, booktitle = {Proceedings of the Annual Symposium of the German Association for Pattern Recognition ({DAGM})}, address = {Munich, Germany}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, volume = {5096}, isbn = {978-3-540-69320-8}, month = jun, year = {2008}, pages = {365--374}, url-pdf = {2008_MuellerDemuthRosenhahn_EvolutionaryMotionPattern_DAGM.pdf}, url-details = {http://resources.mpi-inf.mpg.de/HDM05/} }
@inproceedings{PonsBaHeMuSeRo10_MultisensorFusion_CVPR, author = {Gerard Pons-Moll and Andreas Baak and Thomas Helten and Meinard M{\"u}ller and Hans-Peter Seidel and Bodo Rosenhahn}, title = {Multisensor-Fusion for 3D Full-Body Human Motion Capture}, booktitle = {IEEE Conference on Computer Vision and Pattern Recognition ({CVPR})}, year = {2010}, address = {San Francisco, California, USA}, month = jun, pages = {663--670 }, url-pdf = {2010_PonsBaakHeltenMuellerSeidelRosenhahn_MultisensorFusionMocap_CVPR.pdf} }
@inproceedings{PonsBGMSR11_OutdoorHumanMotion_ICCV, author = {Gerard Pons-Moll and Andreas Baak and J\"urgen Gall and Laura Leal-Taixe and Meinard M{\"u}ller and Hans-Peter Seidel and Bodo Rosenhahn}, title = {Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling}, booktitle = {Proceedings of the International Conference on Computer Vision ({ICCV})}, year = {2011}, pages = {1243--1250}, ee = {http://dx.doi.org/10.1109/ICCV.2011.6126375}, address = {Barcelona, Spain}, url-pdf = {2011_PonsBaakGallTaxieMuellerSeidelRosenhahn_OutdoorHumanMocap_ICCV.pdf}, }
@inproceedings{ZhangSCL12, author = {Licong Zhang and J{\"{u}}rgen Sturm and Daniel Cremers and Dongheui Lee}, title = {Real-time human motion tracking using multiple depth cameras}, booktitle = {Intelligent Robots and Systems ({IROS})}, pages = {2389--2395}, publisher = {{IEEE}}, year = {2012}, doi = {10.1109/IROS.2012.6385968}, url-details = {https://ieeexplore.ieee.org/document/6385968} }
@phdthesis{Baak12_TrackRecMotion_PhD, author = {Andreas Baak}, year = {2012}, title = {Retrieval-based Approaches for Tracking and Reconstructing Human Motions}, school = {Universit{\"a}t des Saarlandes}, url-details = {https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26465}, url-pdf = {2012_BaakAndreas_HumanMotionTracking_Thesis-PhD.pdf} }
@phdthesis{Pons14_PoseEstimation_PhD, author = {Gerard Pons Moll}, year = {2014}, title = {Human Pose Estimation from Video and Inertial Sensors}, school = {Gottfried Wilhelm Leibniz Universität Hannover}, url-details = {https://ps.is.mpg.de/publications/pons-moll_dissertation}, url-pdf = {2014_Pons_PoseEstimation_Thesis-PhD.pdf} }