

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 5: Chord Recognition

- 5.1 Basic Theory of Harmony
- 5.2 Template-Based Chord Recognition
- 5.3 HMM-Based Chord Recognition
- 5.4 Further Notes

In Chapter 5, we consider the problem of analyzing harmonic properties of a piece of music by determining a descriptive progression of chords from a given audio recording. We take this opportunity to first discuss some basic theory of harmony including concepts such as intervals, chords, and scales. Then, motivated by the automated chord recognition scenario, we introduce template-based matching procedures and hidden Markov models—a concept of central importance for the analysis of temporal patterns in time-dependent data streams including speech, gestures, and music.

Recall: Chroma Features

- Human perception of pitch is periodic
- Two components: tone height (octave) and chroma (pitch class)

Chromatic circle

Shepard's helix of pitch

Harmony Analysis: Overview

- Western music (and most other music): Different aspects of harmony
- Referring to different time scales

Movement level				Global key detection		
Segment level						Local key detection
Chord level	C	G ⁷	Am	Chords		Chord recognition
Note level						Music transcription

Christof Weiß: Computational Methods for Tonality-Based Style Analysis of Classical Music Audio Recordings, PhD thesis, Ilmenau University of Technology, 2017

Chord Recognition

Chord Recognition

Chord Recognition: Basics

- Chord: Group of three or more **pitch classes** (sound simultaneously)
- Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...
- Chord classes: major, minor, diminished, augmented
- Here: focus on major and minor triads

Chord Recognition: Basics

- Chord: Group of three or more pitch classes (sound simultaneously)
- Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...
- Chord classes: major, minor, diminished, augmented
- Here: focus on major and minor triads

Chord Recognition: Basics

- Chord: Group of three or more pitch classes (sound simultaneously)
- Chord types: triads (3 pitch classes), seventh chords (4 pitch classes)...
- Chord classes: major, minor, diminished, augmented
- Here: focus on major and minor triads

■ Enharmonic equivalence: 12 root notes → 24 major/minor triads

Chord Recognition: Basics

Chords appear in different forms:

Inversions

Different voicings

Harmonic figuration: Broken chords (arpeggio)

- Melodic figuration: Different melody note (suspension, passing tone, ...)
- Further: Additional notes, incomplete chords

Chord Recognition: Basics

Templates: Major Triads

Markov Chains

- Probabilistic model for sequential data
- Markov property: Next state only depends on current state (transition model – time-invariant, no "memory")
- Consist of:
- Set of states
- State transition probabilities
- Initial state probabilities

Markov Chains

Notation:

Hidden Markov Model

Markov Chains

- Application examples:
 - Compute probability of a sequence using given a model (evaluation)
 - Compare two sequences using a given model
 - Evaluate a sequence with two different models (classification)

- States as hidden variables
- Consist of:
 - Set of states (hidden)
 - State transition probabilities
 - Initial state probabilities

Hidden Markov Models

- States as hidden variables
- Consist of: Set of states (hidden)
 - State transition probabilities
 - Initial state probabilities Observations (visible)

Hidden Markov Models

- States as hidden variables
- Consist of:
 - Set of states (hidden) State transition probabilities
 - Initial state probabilities
 - Observations (visible)
 - Emission probabilities

Markov Chains

- Analogon: the student's life Set of states (hidden)
 - State transition probabilities
 - Initial state probabilities

Hidden Markov Models

Hidden Markov Models

- Analogon: the student's life
- Consists of:
 - Set of states (hidden)
 - Initial state probabilities
- Observations (visible)
- Emission probabilities

Hidden Markov Models

Only observation sequence is visible!

- Different algorithmic problems:
- Evaluation problem
 - Given: observation sequence and model
 - · Find: fitness (how well the model matches the sequence)
- Uncovering problem:
 - *Given:* observation sequence and model
 - *Find:* optimal hidden state sequence
- Estimation problem ("training" the HMM):
- Given: observation sequence
- Find: model parameters
- Baum-Welch algorithm (Expectation-Maximization)

Uncovering problem

- Given: observation sequence $0 = (o_1, \dots, o_N)$ of length $N \in \mathbb{N}$ and HMM θ (model parameters)
- Find: optimal hidden state sequence $S^* = (s_1^*, ..., s_N^*)$
- Corresponds to chord estimation task!

Uncovering problem

- *Given:* observation sequence $0 = (o_1, ..., o_N)$ of length $N \in \mathbb{N}$ and HMM θ (model parameters)
- Find: optimal hidden state sequence S* = (s₁^{*}, ..., s_N^{*})
- Corresponds to chord estimation task!

Uncovering problem

- Optimal hidden state sequence?
 - "Best explains" given observation sequence 0
 - Maximizes probability P[0,S | Θ]

 $Prob^* = \max_{S} P[O, S \mid \Theta]$

$$S^* = \operatorname{argmax}_{\Theta} P[O, S \mid \Theta]$$

- Straight-forward computation (naive approach):
 - Compute probability for each possible sequence *S*
 - Number of possible sequences of length N (I = number of states):

 $\underbrace{I \cdot I \cdot \dots \cdot I}_{N \text{ factors}} = I^N$

computationally infeasible!

Uncovering problem

- *Given:* observation sequence $0 = (o_1, ..., o_N)$ of length $N \in \mathbb{N}$ and HMM θ (model parameters)
- Find: optimal hidden state sequence $S^* = (s_1^*, ..., s_N^*)$
- Corresponds to chord estimation task!

Hidden state sequence $S^* = (s_1^*, s_2^*, s_3^*, s_4^*, s_5^*, s_6^*)$

Viterbi Algorithm

- Based on dynamic programming (similar to DTW)
- Idea: Recursive computation from sub-problems
- Use truncated versions of observation sequence

 $O(1:n) \coloneqq (o_1, \dots, o_n), \text{ length } n \in [1:N]$

 Define D(i, n) as the highest probability along a single state sequence (s₁,...,s_n) that ends in state s_n = α_i

 $\mathbf{D}(i,n) = \max_{(S_1,\dots,S_n)} P[O(1:n), (S_1,\dots,S_{n-1},S_n = \alpha_i) \mid \Theta]$

. Then, our solution is the state sequence yielding

 $Prob^* = \max_{i \in [1:I]} \mathbf{D}(i, N)$

Viterbi Algorithm

- D: matrix of size I × N
- Recursive computation of D(i, n) along the column index n
- Recursion:
- $n \in [2:N]$

Truncated observation sequence: 0(1:n) = (o₁,..., o_n)

• Last observation: $o_n = \beta_{k_n}$

 $\mathbf{D}(i,n) = b_{ik_n} \cdot a_{j^*i} \cdot P[O(1:n-1), (s_1, \dots, s_{n-1} = \alpha_{j^*}) \mid \Theta]$ for $i \in [1:I]$

must be maximal!

 $\mathbf{D}(i,n) = b_{ik_n} \cdot a_{j^*i} \cdot \mathbf{D}(j^*,n-1)$ must be maximal (best index j^*)

 $\mathbf{D}(i,n) = b_{ik_n} \cdot \max_{i \in [1,1]} \left(a_{ji} \cdot \mathbf{D}(j,n-1) \right)$

Viterbi Algorithm

• **D** given – find optimal state sequence $S^* = (s_1^*, ..., s_N^*) \coloneqq (\alpha_{i_1}, ..., \alpha_{i_N})$

- Backtracking procedure (reverse order)
- Further elements:
 - n = N 1, N 2, ..., 1

$$i_n = \underset{j \in [1:I]}{\operatorname{argmax}} \left(a_{ji_{n+1}} \cdot \mathbf{D}(j,n) \right)$$

Viterbi Algorithm

• **D** given – find optimal state sequence $S^* = (s_1^*, \dots, s_N^*) := (\alpha_{i_1}, \dots, \alpha_{i_N})$

- Backtracking procedure (reverse order)
- Last element:
 - n = N
 - Optimal state: α_{i_N}

$$i_N = \operatorname*{argmax}_{j \in [1:I]} \mathbf{D}(j, N)$$

Viterbi Algorithm

- **D** given find optimal state sequence $S^* = (s_1^*, ..., s_N^*) \coloneqq (\alpha_{i_1}, ..., \alpha_{i_N})$
- Backtracking procedure (reverse order)
- Further elements:

•
$$n = N - 1, N - 2, ..., 1$$

$$i_n = \operatorname*{argmax}_{j \in [1:l]} \left(a_{ji_{n+1}} \cdot \mathbf{D}(j,n) \right)$$

• Simplification of backtracking: Keep track of maximizing index *j* in

(

$$\mathbf{D}(i,n) = b_{ik_n} \cdot \max_{j \in [1:l]} \left(a_{ji} \cdot \mathbf{D}(j,n-1) \right)$$

• Define $(l \times (N-1))$ matrix **E**:

$$\mathbf{E}(i, n-1) = \operatorname*{argmax}_{j \in [1:l]} \left(a_{ji} \cdot \mathbf{D}(j, n-1) \right)$$

Viterbi Algorithm: Example

Initial state probabilities

C $\alpha_1 \alpha_2 \alpha_3$

0.6 0.2 0.2

 c_i

HMM: Application to Chord Recognition

- Parameters: Transition probabilities
- Estimated from data

HMM: Application to Chord Recognition

- Parameters: Transition probabilities
- Uniform, diagonal-enhanced transition matrix (only smoothing)

HMM: Application to Chord Recognition

- Parameters: Transition probabilities
- Estimated from data

HMM: Application to Chord Recognition

- Parameters: Transition probabilities
- Transposition-invariant

HMM: Application to Chord Recognition

Evaluation on all Beatles songs

Tuning inconsistency