
1214 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Source Separation of Piano Concertos Using
Musically Motivated Augmentation Techniques

Yigitcan Özer and Meinard Müller , Fellow, IEEE

Abstract—In this work, we address the novel and rarely con-
sidered source separation task of decomposing piano concerto
recordings into separate piano and orchestral tracks. Being a genre
written for a pianist typically accompanied by an ensemble or
orchestra, piano concertos often involve an intricate interplay of the
piano and the entire orchestra, leading to high spectro–temporal
correlations between the constituent instruments. Moreover, in the
case of piano concertos, the lack of multi-track data for training
constitutes another challenge in view of data-driven source sepa-
ration approaches. As a basis for our work, we adapt existing deep
learning (DL) techniques, mainly used for the separation of popular
music recordings. In particular, we investigate spectrogram- and
waveform-based approaches as well as hybrid models operating in
both spectrogram and waveform domains. As a main contribution,
we introduce a musically motivated data augmentation approach
for training based on artificially generated samples. Furthermore,
we systematically investigate the effects of various augmentation
techniques for DL-based models. For our experiments, we use
a recently published, open-source dataset of multi-track piano
concerto recordings. Our main findings demonstrate that the best
source separation performance is achieved by a hybrid model when
combining all augmentation techniques.

Index Terms—Audio source separation, piano concerto,
orchestral music, music processing, music information retrieval.

I. INTRODUCTION

THE piano concerto is a genre of great importance in West-
ern classical music. This genre is generally composed for

pianists, accompanied by an ensemble or orchestra, to demon-
strate their virtuosity. A piano concerto typically consists of
multiple movements, with the piano playing the primary role
and the orchestra taking over the accompaniment [1]. Piano
concertos have been written by numerous composers spanning
various periods, starting from the Baroque era and persisting
until today. This enduring and widely embraced form of classical
music continues to fascinate audiences worldwide.

Although practicing and playing piano concertos is a main
activity of pianists in their career, only first-class pianists get
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Fig. 1. Excerpt from Tchaikovsky’s Piano Concerto No. 1 in B Flat Minor,
Op. 23, 1st Movement. Our goal is to decompose piano concertos into the piano
(red) and orchestral (blue) tracks using data-driven music source separation
(MSS) techniques.

the opportunity to perform alongside an orchestra. Motivated
by the need for orchestral accompaniments of amateur or semi-
professional pianists, we consider the novel task of separating
piano concertos building on our previous work [2], which we
substantially extend in this paper, particularly through the adap-
tation of four deep learning (DL) models. For an illustration of
the task, see Fig. 1.

Music source separation (MSS) aims at separating individual
musical sound sources from a recording that contains multiple
instruments or voices. Generally, a musical source may refer
to singing, an instrument, or an entire group of instruments
such as an ensemble or orchestra. The practical importance of
separating these individual sources from a sound mixture can be
seen in diverse applications, such as creating karaoke systems,
aiding in music production, facilitating music transcription, and
supporting music analysis. However, MSS poses a significant
challenge due to strong spectro–temporal correlations between
different sound signals within a music recording [3]. In this
context, deep neural networks (DNNs) have led to substantial
improvements in separating and isolating musical sources, see,
e.g., [4], [5], [6], [7], [8], [9], [10], [11], [12].
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Supervised deep learning models addressing the MSS task
typically require a large dataset that consists of multi-track
recordings containing the individual stems of the various mu-
sical sources. Because of the availability of such multi-track
recordings for popular music, most MSS models focus on the
separation of at least four stems including vocals, drums, base,
and other [13], [14], [15]. Furthermore, there has been growing
interest in the separation of individual sound sources within
classical music recordings [16], [17], [18], [19], which is also
the main focus of our research. In the case of separating piano
concertos, distinct timbral characteristics of the piano (e.g.,
clear onsets) may help a separation model in distinguishing
piano from orchestral instruments such as strings, woodwinds,
and brass. However, the source separation algorithms face a
challenge when dealing with the strong spectro–temporal corre-
lations among different instruments in piano concertos.

In contrast to popular music production, where individual
instruments are often recorded in isolation, the direct interaction
between musicians is an essential aspect of performing classical
music. As a result, there are hardly multi-track recordings avail-
able for classical music [20], [21], [22], [23], [24], [25], [26]. In
case multi-track recordings are unavailable, random mixing can
be used to artificially generate and augment training data [10],
[27]. Following this strategy, we used artificial training material
in a previous work [2] by randomly mixing sections selected
from the solo piano repertoire (e.g., piano sonatas, etudes, etc.)
and orchestral pieces without piano (e.g., symphonies) to train an
MSS model based on Spleeter [5]. As a main contribution of this
paper, we extend our previous work and adapt four MSS models,
each possessing distinct characteristics. As a second main con-
tribution, we propose a musically motivated data augmentation
method for training, inspired by the harmonic, rhythmic, and
structural elements found in piano concertos.

As another extension of [2], instead of using artificially
generated test data, we evaluate our models using the Piano
Concerto Dataset (PCD) [28], which provides a wide range of
piano concerto recordings played by five performers in four dif-
ferent acoustic environments. For the evaluation of our models’
performance, we use the widely-used Signal to Distortion Ratio
(SDR) [29] and also the 2f-score [30], which is a perceptu-
ally motivated quality measure yielding better results in source
separation tasks [31]. Finally, we conduct listening tests based
on the Multiple Stimulus with Hidden Reference and Anchors
(MUSHRA) framework [32] to assess the subjective perceptual
separation quality. For the reproducibility of the results, we
provide the open-source code and pretrained models as well
as all test data used in our experiments and listening test in our
GitHub repository.1

The remainder of our article is organized as follows. Section II
discusses the relevant work on source separation. We then revisit
in Section III the architecture and characteristics of four different
networks, which we adapt for our application scenario. In Sec-
tion IV, we introduce our musically motivated data augmenta-
tion approaches. Then, in Section V, we describe the experimen-
tal settings and our design choices and report on the quantitative

1[Online]. Available: https://github.com/yiitozer/pc-separation

empirical results, including a subjective evaluation. Finally,
in Section VI, we conclude with prospects on future work.

II. RELATED WORK

The models used in this paper build upon DL approaches for
general MSS models. Early works on MSS depend on the time–
frequency (TF) representations, predicting a spectrogram for
each individual musical source of a given recording. Based on the
magnitude spectrogram of an input mixture (in our application,
an existing piano concerto recording), most spectrogram-based
neural network approaches estimate the magnitude spectrogram
of the constituent musical sound sources [4], [5], [6]. Binary
masking, soft masking, or multichannel Wiener filtering are then
typically used to reconstruct the separated audio signals [33].
Besides using the magnitude spectrogram, recent approaches
also use the real and imaginary parts or include the phase of the
complex-valued spectrogram [34], [35], [36], [37]. For example,
Choi et al. [38] report on the enhancement of separation perfor-
mance with an ablation study conducted with spectrogram-based
U-Net models through the usage of the real and imaginary parts.
Note that this approach, denoted as Complex as Channels (CaC),
allows for directly taking the inverse STFT (iSTFT) from the
learned representations, eliminating the necessity for further
phase estimation methods such as Griffin-Lim [39] or Phase
Gradient Heap Integration (PGHI) [40].

A second class of MSS models directly operates in the wave-
form domain [7], [8]. Waveform-based models receive the raw
waveform of an input mixture and then predict the waveforms
of the individual separated sources. Generally, these models
implicitly perform some kind of TF analysis using convolution
in their first layers [41]. Avoiding the computation of an STFT,
waveform-based approaches do not require the explicit choice of
a window size parameter. Moreover, operating in the waveform
domain eliminates the need for an additional phase reconstruc-
tion, which is often required in spectrogram-based models.

The third class of MSS models apply hybrid techniques, which
intuitively combine the complementary information provided
by waveform- and spectrogram-based models [9], [10], [11],
[42]. Hybrid approaches incorporate both spectral and temporal
branches, merging the latent representations through addition or
shared layers to leverage the advantages offered by each domain.

III. ADAPTATION OF SOURCE SEPARATION MODELS

In this section, we first introduce the basic notation in Section
III-A, which we use throughout this article. Then, we revisit the
architecture and characteristics of four different models, which
we adapt for our source separation task of piano concertos (see
also Fig. 2). In particular, we first explore the spectrogram-based
models Open-Unmix (UMX), and Spleeter (SPL) in Sections III-B
and III-C, respectively. Then, we investigate the waveform-
based model Demucs (DMC) in Section III-D. Finally, we describe
in Section III-E the hybrid model HDemucs (HDMC), which
operates both in spectrogram and waveform domains.

It is important to note that all the separation approaches are
applied to stereo input waveforms or spectrograms, and the
resulting output signals also comprise two channels. However,

https://github.com/yiitozer/pc-separation
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Fig. 2. Overview of source separate models, which we adapt for separating piano concertos. Note that while only the monaural case is illustrated, all models
are designed to work with stereo signals. (a) Spectrogram-based Open-Unmix (UMX) [4]. (b) Spectrogram-based Spleeter (SPL) [5]. (c) Waveform-based Demucs
(DMC) [8]. (d) Hybrid model HDemucs (HDMC) [9]. Spectral branches are shown in orange and temporal in gray. Dashed lines denote the skip connections of the
U-Net-based network architectures.

for the sake of simplicity and clarity, we chose to formulate the
signal model for the monaural case.

A. Basic Notation

Given a real-valued, discrete, time-domain signalx : Z → R,
we employ the Short-Time Fourier Transform (STFT)
as follows: At time frame m ∈ [0 : M − 1] and spectral
bin k ∈ [0 : K], we compute the complex-valued STFT
coefficient X (m, k) using a suitable window function
w : [0 : N − 1] → R of even length N ∈ N as

X (m, k) :=
N−1∑

n=0

x(n+mH)w(n) exp(−2πikn/N), (1)

where H ∈ N denotes the hop size. The number of frequency
bins2 is the frequency index corresponding to the Nyquist fre-
quency K = N/2. The number of spectral frames M ∈ N is
determined by the number of discrete signal samples. From
the complex-valued spectrogram X ∈ CM×K , we derive the
magnitude spectrogram Y ∈ RM×K

≥0 by Y(m, k) = |X (m, k)|.
In our source separation approaches, under the assumption of

an instantaneous linear mixing model [43], we represent the mix-
ture signalxm : Z → R as a linear combination of waveforms of
the estimated source signals xm :=

∑
s∈S xs, where S denotes

the set of target sources. In our setting, we have S = {p, o},
where p denotes the piano and o the orchestra source.

2Due to the real-valued nature of signal x, its spectrum exhibits Hermitian
symmetry. Therefore, we eliminate the frequency bins in the upper half of the
frequency spectrum.

B. Open-Unmix (UMX)

Given the magnitude spectrogram Ym of an input mixture,
UMX [4] learns a soft spectral maskMs of a target musical source
s ∈ S. The estimated magnitude spectrogram of a target source
Ŷs is computed as:

Ŷs = Ym �Ms, (2)

where � denotes the Hadamard product (pointwise multiplica-
tion). For the reconstruction of the waveform of the estimated
source signals, the input phase is used. In particular Multi-
channel Wiener Filtering is applied to minimize the total mean
squared error (MSE) across all channels [33].

The core architecture of UMX is a three-layer bidirectional long
short-term memory (BLSTM) [44] as described in [45] (see Fig.
2(a)). Throughout our experiments, we remain consistent with
the original implementation and employ the MSE loss:

LMSE = ||Ys − Ŷs||22, (3)

where Ys denotes the ground-truth magnitude spectro-
gram of a target source. For an investigation of vari-
ous loss functions used with the UMX network, we refer
to [46].

As indicated in Table I, UMX is the model with fewest pa-
rameters among different approaches. However, in the original
UMX approach, an independent training run is needed for each
target source s ∈ S. This is also the method we follow in our
experiments. For a multi-target variant of UMX, we refer to [47].
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TABLE I
LIST OF ADAPTED MODELS

C. Spleeter (SPL)

Being a spectrogram-based model, SPL [5] also aims at ap-
proximating the magnitude spectrogramYs of a target source s ∈
S. Its architecture is based on the U-Net [48], which is widely-
used model in MIR research to address the MSS task [7],
[8], [11], [38], [49], [50]. Following this trend, we adapt the
SPL implementation to predict the magnitude spectrograms of
the constituent piano and orchestral parts in a piano concerto.

In our experiments, we use the same configuration as the
U-Net model described in [6], which consists of 12-layer con-
volutional networks—six layers for encoder and six layers for
the decoder (see Fig. 2(b)). The skip connections account for the
recovery of fine-grained details in the reconstructed representa-
tions. Note that SPL involves a separate U-Net for each source,
which do not share weights. As shown in Table I, the size of the
model is 74.98 MB when having two sources. Each additional
source adds parameters equivalent to 37.49 MB. The final layer
of each U-Net model is a sigmoid activation function, yielding
a soft mask Ms for each target source, which contains values
between 0 and 1. The estimated magnitude spectrogram Ŷs is
then computed as in (2). Then, the estimated waveform of the
target source x̂s is reconstructed with Wiener Filtering [51].

For the loss function, we use the �1-norm between the magni-
tude spectrograms of the masked input mixture Ŷs and ground-
truth target source Ys:

Lspec
1 =

1

|S|
∑

s∈S
||Ys − Ŷs||1. (4)

For further details about the network architecture, we refer to [5],
[6].

D. Demucs (DMC)

DMC [8] is a U-Net-based model which operates in the wave-
form domain. Given the raw waveform of an input mixture, it
outputs an estimated waveform for each source without requiring
any further postprocessing step to recover the phase information.
Similar to other U-Net-based MSS models in the literature, it
contains a convolutional encoder–decoder network with skip
connections (see Fig. 2(c)). The rationale behind incorporating
skip connections in this context is to provide direct access to the
phase of the input mixture and transmitting it to the estimated
sources. For temporal long-range dependencies, two BLSTM
layers are included in the bottleneck. Note that the number of
parameters within DMC’s encoder and decoder layers is larger
than other U-Net-based models used in our experiments. As
depicted in Table I, DMC has the most parameters among the four
models.

DMC is trained with an �1-norm in time domain:

Ltime
1 =

1

|S|
∑

s∈S
||xs − x̂s||1, (5)

where xs represents the ground-truth target source in the time
domain, and x̂s the estimated time-domain signal. For a detailed
account of the DMC model, we refer to [8].

E. Hybrid Demucs (HDMC)

HDMC [9] is an extension of DMC with an additional spectral
branch. As illustrated in Fig. 2(d), its architecture contains a dual
structure composed of U-Net-based networks with shared layers
(Encoder6, Decoder6). Here, the spectral layers are denoted with
the prefix ‘Z’ (shown in orange) and the temporal layers with
the prefix ‘T’ (shown in gray), following the original notation
in [9].

The spectral input (Fig. 2(d), left) is the complex-valued
STFTXm of an input mixture xm. Following the CaC approach
by Choi et al. [38], the real part Re(Xm) and the imaginary part
Im(Xm) of the input mixture are encoded by different channels
of the spectral branch. The convolutional kernels are applied
along the frequency dimension, leading to a one-dimensional
representation as the output of the 5th encoder layer (ZEncoder5)
of the spectral branch of the network.

The temporal branch (Fig. 2(d), right) receives the raw wave-
form xm, similar to DMC. The output of the 5th temporal encoder
layer (TEncoder5) is of the same size as the output of ZEn-
coder5. The learned spectral and temporal representations are
then summed and used as the input to the 6th encoder layer.
The output of the 6th encoder layer serves as an input both for
spectral and temporal decoders. To account for the long-range
temporal context, the 5th and 6th layers of the encoder involve
local attention and BLSTM layers.

As output, the spectral decoder produces a complex-valued
spectrogram, which is inverted with iSTFT to generate the
waveform x̂Z

s . Furthermore, the temporal branch directly outputs
a waveform x̂T

s . The outputs from both branches are summed to
compute the estimated waveform of the target source:

x̂s = x̂Z
s + x̂T

s . (6)

Similar to DMC, we use the �1-norm as the loss function
of HDMC, as in (5). For further details about the network archi-
tecture, we refer to [9].

IV. MUSICALLY MOTIVATED DATA AUGMENTATION

In this section, we present our strategy to create and augment
data for training our MSS models. In particular, we propose
four data augmentation techniques as illustrated in Fig. 3. In the
following, we delve deeper into our proposed methods, inspired
by the harmonic, rhythmic, and structural elements found in
piano concertos.

A. Random Mixing

Supervised deep learning models designed for MSS typically
rely on large datasets containing recordings of isolated stems.



1218 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Fig. 3. Musically-motivated data augmentation strategies. (a) Random mixing
recordings from the solo piano repertoire (e.g., piano sonatas) and orchestral
recordings without piano (e.g., symphonies). (b) Harmonic adaption of the
orchestral recordings to the piano tracks using optimal pitch shift. (c) Creating
additional training material by aligning recordings of Beethoven symphonies
with their Liszt piano transcriptions. (d) Silence masking to replicate the silent
passages in the piano or orchestral part.

Since such multi-track recordings are not available in the case of
piano concertos, we create a dataset as in our previous work [2]
through random mixes of piano-only recordings (e.g., piano
sonatas) and recordings of orchestral music without piano (e.g.,
symphonies), see Fig. 3(a) for an illustration. While this method
does not reflect the harmonic and rhythmic interaction among
different instruments found in most real recordings, it helps the
MSS model identify the timbral characteristics of concurrent
musical sources. However, this approach may correspond to
passages in piano concertos which are atonal and do not follow
a homorhythmic texture.

Our training data combines open-source datasets and publicly
accessible orchestral recordings from the International Music
Score Library Project (IMSLP).3 As for the piano recordings, we
first use MAESTRO [52], which involves 198.7 hours of piano

3[Online]. Available: https://imslp.org/

performances recorded on Yamaha Disklaviers. To account for
other room acoustic conditions and inclusion of different pianos,
we further incorporate the ATEPP [53] dataset, which contains
approximately 1000 hours of piano recordings performed by
49 pianists, spanning 1580 movements by 25 composers. Due
to their large size, we create subsets randomly selecting piano
recordings from the two datasets. The subset derived from the
MAESTRO dataset amounts to approximately 6 hours, while
we incorporate 24 hours of piano recordings from the ATEPP
dataset.

For orchestral recordings, we use symphonies and ensem-
bles selected from four open-source datasets. First, we use
the Phenicx Anechoic dataset [22], which consists of clean
multi-track recordings of four orchestral excerpts by different
composers. Second, we consider Bach10 [54], which comprises
multi-track recordings of ten chamber music pieces where each
work comprises four parts (SATB) played by violin, clarinet,
saxophone, and bassoon. Third, we use the OrchSet dataset [55],
which contains 64 audio excerpts from orchestral works in-
terpreted by symphonic orchestras, mostly from the romantic
period, as well as classical and 20th century pieces. Fourth, we
select a subset of 19 classical music recordings without piano
selected from the Real World Computing (RWC) dataset [56].
Furthermore, we also use public-domain symphonies and con-
certos from IMSLP for training. Given that string instruments
usually dominate in orchestral compositions, we also include
concertos of woodwind and brass instruments, in particular solo
sections of these underrepresented instruments to obtain a more
diverse dataset. In summary, this selection helps to balance
the training dataset, in particular adding excerpts that involve
non-string instruments.

To create our dataset, we first extract 30-second chunks from
piano and orchestral recordings. To account for a high variety,
we ensure that the chunks selected from a piano recording are
mixed with chunks from various orchestral recordings, and vice
versa. During the training phase, we also use gains to create a
range of volume ratios, which reflects that the piano’s sound
intensity may substantially change relative to the orchestral
track. The total duration of our dataset involving randomly
generated mixture recordings is approximately 30 hours.

B. Harmonic Adaptation

Piano concertos are composed specifically to show an interac-
tion between the piano and orchestra. In these compositions, the
piano is closely intertwined into the orchestral accompaniment,
often sharing melodic, rhythmic, and harmonic elements. Due
to the intricate interaction between the piano and orchestra,
it is not possible to simulate real music recordings simply by
superimposing signals extracted from different sources.

While random mixing can help the MSS methods to learn
timbral characteristics of the concurrent sources to some extent,
it generates harmonically implausible combinations, which may
only loosely mimic real music recordings. Given that the major-
ity of piano concertos in the Western classical music repertoire
are mostly tonal, the musical elements occurring simultaneously
exhibit strong harmonic relationships [43]. In this context, to

https://imslp.org/
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obtain more realistic mixtures, we incorporate harmonic adap-
tation into our training process as a further stage of our musically
motivated data augmentation procedure.

There are several approaches in the literature, which consider
using the chroma features to assess the similarity between dif-
ferent sources in the context of random mixing [27], [57], [58],
and apply pitch shifting to create more harmonically plausible
mixtures [9]. Inspired by this approach, we first compute the
chroma features of the piano and orchestral recordings and
apply pitch shifting to the orchestral recordings, taking the
corresponding piano track as a reference. Fig. 3(b) depicts
an example of this strategy, where the harmonics of the or-
chestral recording are dominated by D�, whereas the piano
recording’s harmonic content is primarily in A�. After optimal
pitch shifting, we obtain a more harmonically plausible random
mixture.

C. Unison Mixing

While separating music signals, it is generally assumed that
the harmonics and transients of different signals only partially
overlap. However, if the constituent sources of a musical mix-
ture play the same notes simultaneously (i.e., in unison), the
different sources highly overlap both in time and frequency,
leading to a significant challenge for MSS algorithms [59].
This phenomenon can also be understood within the context
of multiple-voice monody or monophony, which represents the
most challenging musical textures for separation, given that
parallel voices follow the exact same melody [43]. Various piano
concertos involve passages, in which piano and orchestra play in
unison. For example, this happens in the Bach Piano Concerto in
F minor, BWV 1056 and Schumann Piano Concerto in A minor,
Op.54 (see, e.g., the excerpts with PCD ID 000, 005, 071, and
073 in the test dataset [28]4).

To better separate unison mixtures of orchestral instruments,
Stöter et al. [60] proposed a method to exploit instrument-
specific modulation structures for source separation. It turns out
that this approach is particularly suitable for strings and brass
instruments. For simulating unison passages in piano concerto
recordings, we consider generating unison data with alignment
techniques. To this end, we exploit that many orchestral works
were transcribed to piano throughout the music history. An
iconic example is the renowned piano transcriptions by Franz
Liszt for Beethoven’s symphonies. For these piano-reduced
versions, one can find multiple recordings by famous pianists
such as Glenn Gould. To create highly overlapping piano–
orchestra mixtures, we synchronize public-domain recordings of
Beethoven symphonies with recordings of their piano-reduced
versions (see Fig. 3(c)).

For the alignment of orchestra and piano versions, we use Dy-
namic Time Warping (DTW), which is a well-known technique
for music synchronization [61], [62]. Conventional methods
typically use chroma features as the input representation to the
alignment algorithm [63], [64]. Despite its robustness for music

4[Online]. Available: https://www.audiolabs-erlangen.de/resources/MIR/
PCD

synchronization in view of harmonic and melodic information,
using only chroma features does not ensure a high temporal
synchronization accuracy. Since we aim to simulate unison
recordings, in which the piano and orchestral tracks play the
same notes simultaneously, a high temporal accuracy is required.

To increase the temporal alignment accuracy, Ewert and
Müller [65] introduced a combined synchronization approach,
which integrates additional onset-related information besides
chroma features. The inclusion of onset-based information re-
sults in a grid-like structure in the DTW cost matrix, which
guides the alignment through activation cues that highlight note
onsets. Inspired by this combined synchronization approach, we
follow the alignment method in [66]. This method incorporates
beat, downbeat, and onset activation functions computed using
the open-source madmom library [67]5, alongside chroma fea-
tures, to compute the alignment path. To create a training set
of unison recordings, we generate the alignment paths for each
pair of the symphony recordings and recordings of their piano
transcriptions using the open-source Sync Toolbox [68], which
provides an efficient implementation of DTW [69].

To generate orchestral tracks, which are synchronous with
the piano recordings, we then employ Time-Scale Modification
(TSM). Using the alignment path acquired from DTW as an
input for the TSM algorithm, we speed up or slow down the
orchestral track without affecting the frequency content. For
TSM, we use the approach by Driedger et al. [70], which
combines harmonic–percussive source separation (HPSS) and
classical TSM algorithms, such as phase vocoder [71], and
WSOLA [72]. The duration of this additional dataset of unison
mixtures is approximately 22 hours.

D. Silence Masking

Depending on the compositional style, piano concertos may
involve long sections where the piano and orchestra do not play
together. In particular, in the concertos written in the Classical
period, the piano and orchestra often follow a conversational
style, such as in Beethoven’s Piano Concerto No. 4 in G Major,
Op. 58 [73], (see, e.g., the excerpts with the PCD ID 025 and
026 in the test dataset [28]). Moreover, piano concertos often
comprise long piano-only (e.g., in the cadenza) and orchestra-
only parts (e.g., in the exposition, also called opening ritor-
nello). Our previous work [2] exploits this property of the piano
concertos for further finetuning the MSS model at test time, a
strategy called test-time adaptation [74]. Several works in the
literature apply activity-based approaches as a prior to enhance
audio source separation, e.g., [75], [76]. Inspired by this strategy,
we randomly mask out passages either in the piano or in the
orchestral track (but never simultaneously), see Fig. 3(d) for an
illustration.

V. EVALUATION

In this section, we describe our systematic experiments and
report on the separation results acquired by the four MSS
models using various musically motivated data augmentation

5[Online]. Available: https://github.com/CPJKU/madmom

https://www.audiolabs-erlangen.de/resources/MIR/PCD
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approaches. First, we outline our experimental settings in
Section V-A. Then, in Section V-B, we provide a brief descrip-
tion of our test dataset [28]. We discuss the quantitative empirical
results in Section V-C and present the results of our listening
tests in Section V-D. Finally, we elaborate in more detail on the
impact of transfer learning and unison mixing in Section V-E.

A. Experimental Setting

In our experimental setup, we use stereo recordings, which
are sampled at 44.1 kHz. For the spectrogram-based and hybrid
models, we apply an STFT using a Hanning window of length
N = 4096 and hop size ofH = 1024, consistent with the default
settings in [4], [5], [8], [9]. ForUMX, we use two different settings,
where we train one model with 6-second random chunks (in [4],
default setting) and another model with 20-second random
chunks. The random chunks used for training the other models
have a duration of 20 seconds, as in the default setting of SPL.
We use the default learning rates given in the original implemen-
tations, ADAM optimizer, and early stopping with patience 20
(indicating the number of epochs with no improvement in the
validation loss before terminating the training). All models are
trained using a single NVIDIA GeForce RTX 3090 GPU.

We apply a four-stage learning process for each model. Each
subsequent stage utilizes transfer learning by initializing the
model with weights that were pre-trained during the prior stage,
and then proceeds to further train all of these weights. For
an in-depth discussion on the effects of this transfer learning
approach, please refer to Section V-E. We initially train our
models starting with random initialization, using the artificial
dataset generated through random mixes with various gains, as
detailed in Section IV-A. We denote the first training stage as
R. After reaching convergence in this training stage, we apply
pitch shifting with an optimal chroma index to the orchestral
recordings (see Section IV-B). We call this stage R_H. In the third
stage, we incorporate the synchronized Beethoven symphony
recordings and their transcriptions for solo piano to simulate
unison passages within piano concertos (see Section IV-C). This
stage is denoted as R_H_HU. The fourth and final stage called
R_H_HU_HUS introduces the random silent parts into the two
sources (see Section IV-D). To account for a fair comparison, we
ensure that all DL-based models receive identical training data
samples in the same order and using the same randomization
parameters (e.g., volume ratio, starting point of a chunk or
silence mask).

Given that the first level learns easier aspects of the task and
that the difficulty level gradually increases in the subsequent
stages due to the rise in overlapping harmonics and onsets, this
approach can be thought of as curriculum learning [77], which
exploits, particularly in the first three stages, previously learned
concepts to ease the learning of new abstractions.

B. Piano Concerto Dataset (PCD)

For assessing the quantitative and subjective evaluation of
our experiments, we use the dry recordings without artificial
reverberation from PCD [28] as our test dataset, which contains
81 excerpts with separate piano and orchestral tracks, performed

by five pianists. These excerpts are carefully selected from piano
concertos written by 10 different composers, spanning from the
Baroque to the Post-Romantic era. The excerpts represent a
variety of harmonic and structural characteristics of piano con-
certos from different periods. Additionally, the dataset embraces
a wide range of acoustic characteristics ranging from a small and
relatively dry domestic room, small recital halls, to a spacious
concert hall environment. Moreover, each excerpt has a duration
of 12 seconds, which is recommended as the maximum duration
for MUSHRA listening tests [32].

C. Quantitative Evaluation

To get a first impression of the model performances, we use the
SDR [29] as our quantitative evaluation metric for the separation
task. Table II shows the mean SDR values (averaged over all
test samples) with corresponding variances of the four mod-
els (where UMX06 denotes the UMX model trained on 6-second
chunks and UMX20 denotes the UMX model trained on 20-second
chunks).

At first, we focus on the SDR results obtained for the
separation of the piano. After the first training stage R,
HDMC achieves the highest average SDR value 8.67, followed
by the spectrogram-based models UMX20 yielding 8.45, and
SPL with a result of 7.93. Among the four models, DMC results
in the lowest SDR value of 7.47, after the stage R.

The SDR results for separating the orchestral track follow a
similar trend, although the values, in general, are significantly
lower. For the orchestra, HDMC yields the highest average SDR
value of 3.86 after the first training stage R, again followed by the
spectrogram-based models UMX20 yielding 3.65, and SPL with a
result of 3.32. Among the four models, DMC results in the lowest
average SDR value after stage R, 2.68.

Next, we investigate the effect of different training strategies.
In general, the SDR-based results demonstrate that incorporating
data augmentation approaches improves the separation perfor-
mance of the hybrid model HDMC. The largest performance boost
for HDMC occurs after the second stage R_H (a rise from 8.67 to
9.30 for the piano, 3.86 to 4.53 for the orchestra), where we
apply harmonic adaptation to the orchestral recordings in the
training dataset. Similarly, we observe a general improvement
by each stage for the models except for UMX.

Interestingly, UMXmodel’s performance improves with a large
margin, when using 20-second chunks instead of 6-second
chunks. For example, after the R stage, the SDR value of UMX20
is 8.45 compared to 7.74 for UMX06. Whereas the SDR values
of UMX06 are steadily lower than the SPL model, employing
longer chunks results in significantly higher values, causing
the UMX20 to outperform the other spectrogram-based model
SPL in our experiments. Furthermore, neither the performance
of UMX06 nor of the UMX20 model improves with the data aug-
mentation procedures. We hypothesize that the fewer parameters
hinder the UMX model from learning more complex tasks (see
also Table I).

While SDR is commonly used as a quantitative evalu-
ation metric for MSS, it is widely accepted that SDR is
not suitable for determining the perceptual sound quality of
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TABLE II
MEAN SDR VALUES AND VARIANCES OF DIFFERENT MODELS TRAINED WITH VARIOUS DATA AUGMENTATION METHODS

TABLE III
MEAN 2F-SCORE VALUES AND VARIANCES OF DIFFERENT MODELS TRAINED WITH VARIOUS DATA AUGMENTATION METHODS

separated musical sources [78]. In particular, the analysis con-
ducted by Torcoli et al. [31] for the source separation task
reveals that the 2f-score metric demonstrates the strongest cor-
relation with ground-truth data based on subjective ratings from
MUSHRA listening tests. For a more detailed account on the 2f-
score, we refer to [30]. Note that the 2f-score values lie in a range
from 0 to 100 following the MUSHRA framework (also see
Section V-D). Table III presents a comparison of the various
models trained with different strategies, based on the 2f-score
results. In general, one can observe a similar trend as for the SDR.
For both, the piano and orchestra, HDMC yields the highest aver-
age 2f-score values after each training stage, followed by UMX20,
SPL,UMX06, andDMC. Furthermore, we observe a general trend of
performance improvement within the first three training stages
for SPL, DMC, and HDMC. Interestingly, the 2f-score suggests that
the best results are achieved with the HDMC model after the third
training stage R_H_HU, which introduces the unison mixing as a
data augmentation strategy (see Section IV-C). Applying silence
masking slightly worsens the resulting 2f-scores for HDMC.

D. Subjective Evaluation

In this section, we describe the experimental setup for our
subjective listening tests to evaluate the perceived quality of sep-
aration. For our experiments, we used the MUSHRA framework
following the ITU-R BS.1534-3 recommendation [32]. The
MUSHRA methodology employs a double-blind multi-stimulus
test approach, including a hidden reference and a lower anchor
signal. Participants rate the stimuli on a scale of 0 to 100,
involving five categories: Bad (0-20), Poor (20-40), Fair (40-60),
Good (60-80), and Excellent (80-100).

A total of 26 participants were involved in our listening tests
(23 experienced listeners and 3 inexperienced listeners). To
ensure the reliability of the results, the MUSHRA methodology
recommends a post-screening of the participants stating that
participants should be excluded from the listening test if they
assign the hidden reference to a score lower than 90 for more

than 15% of the test items. Following these criteria, none of the
participants was excluded after post-screening.

To assess the subjective quality of separated source signals,
we conducted two listening tests. In our first listening test,
we asked the participants to rate the overall audio quality of
waveforms of separated piano source obtained by the four MSS
models (UMX20, SPL, DMC, HDMC). The participants gave their
ratings with respect to a reference signal, which is a clean
piano-only excerpt. Similarly, our second listening test evaluated
the overall quality of the separated orchestral tracks following
the same procedure as in the first listening test. Each of the
two listening tests contains 12 test items selected from PCD.
With these test items, we cover excerpts of piano concertos
composed by 10 composers, spanning from the Baroque to the
Post-Romantic era, played by different performers in different
acoustic environments. This selection introduces a multitude
of challenges for the MSS algorithms, due to the variations in
orchestration, compositional style, performance technique, and
acoustical characteristics of the recording environments.

For the subjective evaluation of each test item, we generated
six signals (also called conditions). The first signal is the hidden
reference, i.e., a replication of the ground-truth source signal.
The second condition is a lower anchor. As in [79], we created
this lower anchor by low-pass filtering the test mixtures with a
3.5kHz cut-off frequency and by adding musical noise. The other
four signals involve estimated piano or orchestral sources sepa-
rated by UMX20, SPL, DMC, and HDMC. For our listening tests, we
used the models trained with the learning strategy R_H_HU_HUS,
which involves all the data augmentation approaches described
in Section IV. For an overview of the test items used for the
listening test, please refer to our demo webpage.6

Fig. 4 provides an overview of the results from our listening
tests. First, one can observe that the participants rated the refer-
ence signal with an average MUSHRA rating score of 100, the

6[Online]. Available: https://www.audiolabs-erlangen.de/resources/MIR/
2024-TASLP-PianoConcertoSeparation/

https://www.audiolabs-erlangen.de/resources/MIR/2024-TASLP-PianoConcertoSeparation/
https://www.audiolabs-erlangen.de/resources/MIR/2024-TASLP-PianoConcertoSeparation/
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Fig. 4. Results of our listening tests based on the MUSHRA framework for the (a) piano and (b) orchestral tracks. The listening test employs models that all
incorporate the complete data augmentation approach (R_H_HU_HUS). The colored markers indicate the average rating scores enclosed by 95% confidence intervals
(shown as the vertical lines).

lower anchor was rated significantly below the other conditions.
The general trend of the performances by UMX20, SPL, DMC,
and HDMC support our quantitative analysis results, inferring that
the hybrid model HDMC outperforms other models by a large
margin. Spectrogram-based models UMX20 and SPL yield similar
scores, whereas the waveform-based DMC has the lowest ratings
among the four MSS models. In general, the piano separation is
rated better than the orchestral part, which is consistent with the
quantitative results based on SDR and 2f-score.

Upon observing the rating scores of the piano concertos indi-
vidually, it is noticeable that there are substantial differences in
the ratings across the various test items (most of the participants
also noted the variation in perceived separation quality between
different works). This trend in separation performance remains
consistent across different test items, with the hybrid model
HDMC consistently achieving the highest scores. It is important
to remark that the test items are diverse regarding several as-
pects. For example, Bach and Schum involve unison passages,
yielding a high overlap both in time and frequency domains.
In particular, unison passages constitute a big challenge for the
spectrogram-domain approaches (see Bach). Furthermore, the
excerpts Rach and Tchai involve loud piano passages and a
complex orchestration consisting of a diverse and high number
of instruments (see the orchestrations in PCD).

E. Further Experiments

In this section, we investigate the effect of transfer learning
and unison mixing in more detail to gain a deeper understand-
ing how different training methodologies influence the MSS

models’ performance. Instead of training with random mixes
(R) and then continuing with harmonic adaptation (R_H), we
now train all models from scratch using only the harmonically
adapted training dataset, a process referred to as H in the follow-
ing.

Table IV presents the mean SDR values with corresponding
variances of the different models for the three training strategies,
R, H, and R_H. The results indicate that for the simpler models,
UMX06 and UMX20, using H directly yields a minor improvement
compared to R. For SPL, using H even slightly worsens the
separation performance, and, for DMC, it surprisingly results in
a decay of SDR scores of more than 1 dB for both piano and
orchestra. Furthermore, in case of R_H, we observe a positive
impact of the transfer-learning-based strategy for SPL, DMC, and
HDMC, compared to training with harmonically adapted dataset
from scratch (H).

Next, we explore the effect of unison mixing as a data aug-
mentation strategy. In particular, we investigate whether the
improvements through unison mixing reported in Section V-C
can be attributed to the mixing process itself or the inclusion
of additional training material involving Beethoven symphony
recordings and their piano transcriptions underlying the mixing
process. To this end, we generate a new dataset, called R�, by
randomly mixing excerpts from the original orchestral versions
with completely unrelated (in particular unaligned) excerpts
from piano transcriptions. We combine R� with the random
mixes from R, yielding the dataset RR�, which is then employed
to train different models from scratch. Additionally, we also train
different models using the training material created with unison
mixing (i.e., synchronized Beethoven symphony recordings and
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TABLE IV
MEAN SDR VALUES AND VARIANCES OF DIFFERENT MODELS TRAINED WITH VARIOUS DATA AUGMENTATION METHODS

TABLE V
MEAN SDR VALUES AND VARIANCES OF DIFFERENT MODELS TRAINED WITH VARIOUS DATA AUGMENTATION METHODS

their solo piano transcriptions), merged with the mixes from H

– harmonically-adapted random mixes from R – from scratch.
We refer to this training procedure as HU. Note that this training
dataset is identical to the one used in the last training stage
of R_H_HU, which employs transfer learning by initializing the
model weights from its prior stage R_H, as described in Section
V-A.

Mean SDR scores and their variances for the various mod-
els, evaluated across the three training strategies RR�, HU, and
R_H_HU, are presented in Table V. For piano separation, HU re-
sults in lower SDR scores for the spectrogram-based models
UMX06,UMX20 andSPL compared toRR�. This observation can be
attributed to the difficulty in distinguishing unison sound sources
when using only magnitude spectrograms for the separation
task. In contrast, waveform-based DMC and HDMC, which also
considers audio waveforms as input, benefit from unison mixing.
For orchestra, when comparing RR� and HU, similar observations
can also be made. Confirming the results in Table II, the training
procedure based on transfer learning, R_H_HU yields a better
separation performance for DMC, and HDMC, compared to HU.
Notably, for HDMC, HU results in a mean SDR score of 9.14 and
with R_H_HU, it improves to 9.41 for piano separation. Similarly,
for separating orchestra, it improves from 4.33 to 4.61 with
transfer learning.

In summary, these final experiments show that our data aug-
mentations including unison mixing in combination with trans-
fer learning are beneficial for our best-performing model HDMC.
However, this approach does not appear to yield similar im-
provements for smaller models, e.g., UMX06 and UMX20.

VI. CONCLUSION

In this work, we addressed the rarely-considered task of de-
composing piano concerto recordings into separate piano and or-
chestral tracks. We identified the challenges associated with this
task, including the intricate interplay and high spectro–temporal
correlations between the constituent instruments, as well as the
lack of multi-track training data for piano concertos. To address

the challenge, we adapted four DL-based methods of different
characteristics and conducted systematic experiments to ex-
plore spectrogram-, waveform-based as well as hybrid source
separation models. We introduced a musically motivated data
augmentation approach, inspired by the harmonic, rhythmic, and
structural elements found in piano concertos. The key finding is
that the best source separation performance was accomplished
by the hybrid model trained with a full suite of augmentation
techniques. In future work, we would like to investigate and
improve the interpretability of the hybrid models by analyzing
the outputs of the individual time and spectral branches. Fur-
thermore, we aim at incorporating score information to further
enhance the separation performance.
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