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ABSTRACT

Music source separation (MSS) aims at decomposing a
music recording into its constituent sources, such as a lead
instrument and the accompaniment. Despite the difficul-
ties in MSS due to the high correlation of musical sources
in time and frequency, deep neural networks (DNN5s) have
led to substantial improvements to accomplish this task.
For training supervised machine learning models such as
DNN:g, isolated sources are required. In the case of popu-
lar music, one can exploit open-source datasets which in-
volve multitrack recordings of vocals, bass, and drums. For
western classical music, however, isolated sources are gen-
erally not available. In this article, we consider the case
of piano concertos, which is a genre composed for a pi-
anist typically accompanied by an orchestra. The lack of
multitrack recordings makes training supervised machine
learning models for the separation of piano and orchestra
challenging. To overcome this problem, we generate arti-
ficial training material by randomly mixing sections of the
solo piano repertoire (e.g., piano sonatas) and orchestral
pieces without piano (e.g., symphonies) to train state-of-
the-art DNN models for MSS. As our main contribution,
we propose a test-time adaptation (TTA) procedure, which
exploits random mixtures of the piano-only and orchestra-
only parts in the test data to further improve the separation
quality.

1. INTRODUCTION

Music source separation (MSS) is a central task in mu-
sic information retrieval, which seeks to recover individ-
ual musical sources in audio recordings. In general, a
musical source can refer to singing, an instrument, or an
entire group of instruments providing an accompaniment.
Since musical signals often exhibit non-stationary spectro—
temporal properties and may be highly correlated in time
and frequency, MSS proves to be a challenging task in mu-
sic processing [1]. In the last years, deep neural networks
(DNNG5) have led to substantial improvements in separating
musical sources [2-11]. Despite their effectiveness, one
disadvantage of data-driven deep models is their need for
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a large training dataset, which in the case of MSS consists
of multitrack recordings with (isolated) individual sources
or stems. Most of the open-source datasets with isolated
stems are limited to popular music, e.g., MUSDBI18 [12].
However, for western classical music, professionally pro-
duced multitrack recordings are quite rare [13, 14].

In this article, we consider the separation of piano con-
certos, which are a genre of central importance in west-
ern classical music. From the Baroque era onward, nu-
merous composers have written piano concertos, which are
compositions highlighting the virtuosity of pianists. As an
example, Figure 1 shows an excerpt from the first move-
ment of Piano Concerto in D minor (KV 466) by Wolf-
gang Amadeus Mozart. In addition to the large number
of compositions, there also are many prominent historical
recordings of piano concertos in classical music archives.
In this context, separation of piano and orchestra can en-
able applications such as editing and upmixing historical
and modern piano concerto recordings.

As the piano is the lead instrument and the orchestra
takes over the accompaniment, separation of piano con-
certos can be regarded as a lead instrument and accom-
paniment separation task [15—17]. The piano has distinct
timbral characteristics, e.g., clear onsets, which intuitively
may help a separation model in distinguishing it from or-
chestral instruments such as strings, woodwinds, and brass.
Nevertheless, the high spectro—temporal correlations be-
tween the piano and orchestral parts in concertos constitute
a challenging problem.

In this paper, we adapt the spectral-based Spleeter
model [5] to address the separation of piano and orchestra
in piano concertos. Spleeter has achieved impressive re-
sults for the separation of four stems (vocals, drums, base,
and others) in the SiSEC challenge [18]. Building upon its
standard architecture, which is an encoder—decoder con-
volutional neural network (CNN), we train our baseline
model using a proprietary dataset.

When training deep MSS models, generating random
mixes of solo instrument recordings may improve the sep-
aration quality [4, 19]. Random mixing for data generation
and augmentation has opened up new paths for separating
instrument mixtures, for which multitrack recordings are
not available. For example, Chiu et al. [20] created their
own synthetic dataset comprising classical violin and pop
piano solo recordings, which serve as training material of
an MSS model for the separation of piano and violin duos.
Inspired by the recent advances in deep learning and data
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Figure 1: An excerpt from the first movement of the Piano Concerto in D minor (KV466) by Wolfgang Amadeus Mozart.
Our goal is to estimate the magnitude spectrograms of the piano part (red) and orchestral part (blue).

augmentation, we generate in our setting an artificial train-
ing dataset through randomly mixing samples from the
solo piano repertoire (e.g., piano sonatas, mazurkas, etc.)
and orchestral pieces without piano (e.g., symphonies) to
simulate piano concertos.

Whereas one can improve the performance of data-
based models using artificially generated data, a supervised
machine learning model necessitates a representative train-
ing set to ensure its robustness during the testing phase. In
the case of MSS, many recordings have specific acoustic
properties (e.g., historical recordings) that are not reflected
in training datasets, thus leading to a poor separation per-
formance. To overcome this issue, one can exploit the oc-
curence of repeating patterns in the same recording [21],
use bootstrapping to improve separation results [22, 23],
or adapt a pre-trained model to one specific target mix-
ture [24, 25]. In this work, our approach is based on the
latter strategy. To this end, we first train on our artificial
dataset and then finetune the model at the testing stage.
As our main contribution, we propose a test-time adapta-
tion (TTA) method similar to [26], where we exploit that
a piano concerto typically has relatively long piano-only
and orchestra-only passages. Generating random mixes
of these sections, we adapt the separation model at the
test time individually for each piano concerto in our test
dataset. Our systematic experiments highlight the ben-
efits of TTA trained with the spectrogram-domain MSS
model Spleeter [5]. To evaluate the performance of our
models, we use the widely-used Signal to Distortion Ratio
(SDR) [27], and the 2f-model [28], which is an objective
quality measure. Furthermore, we conduct Multiple Stim-
ulus with Hidden Reference and Anchors (MUSHRA) lis-
tening tests [29] to assess the perceptual separation quality.

494

The remainder of the paper is organized as follows. In
Section 2, we describe our MSS approach, explore the
recent state-of-the-art spectrogram-domain DNN model
Spleeter to address the MSS task and describe our experi-
mental setting. In Section 3, we introduce the TTA proce-
dure to improve the separation quality of piano concertos
and present our dataset. In Section 4, we report on the
quantitative empirical results, including a subjective evalu-
ation. Finally, we conclude in Section 5 with prospects on
future work.

2. MUSIC SOURCE SEPARATION APPROACH

Recent DNN approaches for MSS can be divided into
two categories: waveform-domain architectures [6,7] and
spectrogram-domain approaches [2-5]. In this paper, our
focus is the latter type of models, which learn to approx-
imate the magnitude spectrogram of a target source. To
reconstruct the separated audio signals, spectrogram-based
models typically use binary masking, soft masking or mul-
tichannel Wiener filtering [30].

In particular, we adapt the Spleeter model [5] for sep-
arating piano concertos. Its default setting is based on
a U-Net [31], which has recently been a widely-used ar-
chitecture in the MIR community to address the MSS
task [2, 6, 25, 32, 33]. Following this trend of research,
we adapt a U-Net model to predict the magnitude spec-
trograms of the constituent piano and orchestral parts in
a piano concerto. In the following, we revisit the U-Net
architecture in Section 2.1 and present our experimental
setting in Section 2.2.
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2.1 U-Net Model

The U-Net model is composed of a convolutional encoder-
decoder architecture with skip connections, which account
for the resurrection of fine-grained details in the recon-
structed representation. Following the default setting of
the U-Net model in [2], we use a 12-layer network (6 lay-
ers for the encoder and 6 for the decoder). Each encoder
layer uses a strided 2D convolution with a kernel size of
5 x b and a stride size of 2, preceded by a leaky rectified
linear unit (ReLU) activation function, and batch normal-
ization. The decoder is composed of strided deconvolution
layers with a kernel size of 5 x 5 and a stride size of 2, as
in the encoder. The decoder uses ReLU as the activation
function, different from the encoder. To avoid overfitting,
we use here dropout with a probability of 0.5 in the first
three layers of the decoder. The final layer of the network
is a sigmoid activation function, yielding a soft mask for
each target source, which contains values between 0 and 1.
As the loss function, we use ¢!-norm between masked in-
put mixture and target spectrograms. For further details
about network architecture, we refer to [2, 5].

2.2 Experimental Setting

In our experiments, we use mono recordings, which are
sampled at 22.05 kHz. We generate the magnitude spec-
trograms using a Hann window size of 2048 and hop size
of 512. In a first step, we train our models using an artifi-
cial dataset which contains 20-second random chunks from
the mixtures of solo piano recordings (e.g., piano sonatas)
and orchestral pieces without piano (e.g., symphonies) by
16 different composers from different periods. The total
duration of our randomly generated proprietary dataset is
circa 45 hours. We regard this model as our pre-trained
model, which we denote as PT.

We train all our models on a single NVIDIA GeForce
1080 Ti GPU, using a batch size of 8, and a learning rate
of le—4 with ADAM optimizer. To improve the separation
quality of real piano concerto recordings, we finetune the
model with TTA, which we describe in the next section.

3. TEST-TIME ADAPTATION

Supervised deep learning models addressing the MSS task
typically require a large dataset that consists of isolated
recordings. As a data augmentation method, one can use
random mixes to provide training material for an MSS
model in the case isolated stems are missing [19, 20].
While this approach cannot simulate the harmonic and
rhythmic relationships between various instruments in a
real recording, it helps the model to distinguish timbral
characteristics of the concurrent musical sources. How-
ever, the acoustic properties of recordings (including re-
verberation, and background noise) play an essential role
when upmixing and separating different musical tracks.
For instance, in the case of poor recording conditions, (e.g.,
historical recordings) the properties of the test data may
not be reflected well in the training set, thus resulting in
a poor separation quality. Finetuning a pre-trained MSS

model in the testing phase using a few samples drawn from
the test data (also called test-time adaptation (TTA) [26])
can improve the separation quality by capturing the spe-
cific acoustic features found in a music recording.

From this perspective, separation of piano concertos is
a particularly suitable scenario for applying TTA thanks
to their compositional form. Depending on the period in
which the work was composed, these compositions of-
ten comprise long piano-only (e.g., in the cadenza) and
orchestra-only parts (e.g., in the exposition, also called
opening riternello). Using these sections, one can cre-
ate artificial mixes which come from the audio material of
the given test item. As a result, the mixes share the same
recording conditions as the test data.

To investigate this approach, we consider seven piano
concerto recordings (see Figure 2a). The selected move-
ments of these piano concertos have a long cadenza, which
contains only the piano (see Figure 2b). Note that, with
the exception of BrahOp015, these musical pieces also
comprise a long exposition in which only the orches-
tra plays. For our experiments, we annotate the piano-
only and orchestra-only sections, which are publicly avail-
able.! Exploiting the structural characteristics of piano
concertos, we create random mixes of piano-only and
orchestra-only sections, which serve as further training
data for model adaptation for each piano concerto individ-
ually. In the next section, we investigate the improvement
of qualitative and subjective separation quality via TTA.

4. EVALUATION

In this section, we report on the separation results acquired
by our pre-trained model PT and the finetuned models TTA.
In Section 4.1 we describe our test dataset. We discuss the
quantitative empirical results in Section 4.2 and present the
subjective evaluation in Section 4.3.

4.1 Test Dataset

For the evaluation of our models, we generate 30-second
random mixes of piano-only and orchestra-only parts sam-
pled from the annotated piano concertos (see Figure 2b).
These are different from the artificial training set, which
we use for the pre-trained model, as they share harmonic
and acoustic properties originating from the same record-
ing. Note that we ensure that the samples used for training
do not overlap with the test mixtures which we use for the
evaluation purposes.

4.2 Quantitative Evaluation

To get a first impression of the performance of the models
PT and TTA, we use the SDR [27] as our quantitative eval-
uation metric for the separation. Table 1 provides a com-
parison of the resulting SDR values between a baseline for
the SDR values (denoted as BL), which we compute us-
ing the test mixture as the target signal and ground-truth
sources as the reference, pre-trained PT, and finetuned TTA

!https://www.audiolabs-erlangen.de/resources/MIR/2022-PianoSep/
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Composer | Full Name Performer | Work ID Year | M. | Dur. (T) | Dur. (E) | Dur. (C)
Beethoven | Piano Concerto No.1 in C major, Op.15 Schnabel | BeetOp015 1932 | 1 1020 170 277
Beethoven | Piano Concerto No.4 in G major, Op.58 Gulda Beet0p058 1960 | 1 1116 159 197
Brahms Piano Concerto No.1 in D minor, Op.15 Arrau Brah0Op015 1958 | 3 728 N/A 65
Haydn Piano Concerto No.11 in D major, Hob. XVIII:11 | Gulda HaydnHob018 | 1962 | 1 486 83 52
Mozart Piano Concerto No.20 in D minor, KV. 466 Renzi MozKV466 N/A 1 862 129 161
Mozart Piano Concerto No.21 in C major, KV. 467 N/A MozKV467 1962 | 1 833 136 76
Mozart Piano Concerto No.27 in B—flat major, KV. 595 Casadesus | MozKV595 1963 | 1 778 128 88

D) 5823 805 916

(a) The table shows the composer, full name of the work, performer, identifier, recording year, movement (M.), duration (Dur.) in seconds

of total recording (T), exposition (E), and cadenza (C).
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(b) Annotation of the piano concertos in our dataset into the piano (red), orchestral (blue) parts. To finetune the pre-trained model
with the test-time adaptation (TTA) approach, we generate random mixtures of the piano-only (e.g., in the Cadenza, denoted as C) and

orchestra-only (e.g. in the Exposition, denoted as E) sections.

Figure 2: Overview of the piano concertos in our test dataset.

after 100 iterations. One can observe that PT leads to a sub-
stantial improvement in SDR values compared to BL over
the whole dataset, both for the piano and orchestra. It is
interesting to observe that PT improves the SDR value of
Beet0p015 for the separation of piano from 4.48 to 4.60,
which is a relatively low improvement compared to other
piano concertos in the dataset. Note that BeetOp015 is a
historical recording (see Figure 2a for the recording year
of the piano concertos), whose inadequate recording con-
ditions may not be well represented in the random mixes
used for the training of the PT, thus leading to a relatively
poor separation performance.

Now, we focus on the comparison between PT and TTA.
In general, the SDR-based results demonstrate that TTA
enhances the separation of PT across all the piano concer-
tos, for both the piano and the orchestra. For example, in
the case of BeetOp015, PT yields an SDR value of 4.60
for the separated piano. After finetuning with TTA for 100
iterations, this improves to 8.95. For the separated orches-
tra of Beet0p015, TTA also improves the SDR from 0.09
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to 3.67. In the case of better quantitative separation results
by PT, e.g., MozKV595, we observe that the improvement
via TTA is relatively lower. Here, the SDR values improve
from 12.74 to 13.00 for the piano and from 5.25 to 5.58 for
the orchestra. Furthermore, our analysis reveals that the
SDR value for the separated orchestra is generally lower
than piano for both PT and TTA over the whole test dataset,
except for MozKV467. An informal inspection states that
the TTA leads to a significant improvement in the sep-
aration performance for historical recordings, which are
not well-reflected in the training dataset of the pre-trained
model PT.

In our next experiment, we investigate the performance
of the finetuned models TTA per iteration. Figure 3 illus-
trates the evolution of the SDR values for each piano con-
certo in our test dataset. The overall convergence behav-
ior exhibits a general trend of improvement of SDR values
through TTA over PT for the separation of the piano and
the orchestra. In particular, the SDR values for the sep-
aration of BeetOp015 depict a rapid improvement within
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Figure 3: Evolution of SDR values based on our test dataset, applying TTA on the pre-trained model PT.

Piano Orchestra

Work ID BL  PT TTA BL PT TTA
Beet0p015 4.48 4.60 8.95 —4.36 0.09 3.67
Beet0p058 1.62 6.13 7.83 —1.58 2.23 5.75
Brah0Op015 4.75 7.31 9.02 —4.60 0.09 3.67
HaydnHob018 10.99 1447 15.34 | —10.93 1.97 3.18
MozKV466 5.01 7.44 9.93 —-5.06 —-0.23 3.76
MozKV467 —0.72 5.45 6.28 0.73 6.52 7.26
MozKV595 6.64 12.74 13.00 —6.89 5.25 5.58

[0} 4.67 8.31 10.05 —4.67 2.27  4.70

Table 1: Comparison of the SDR (dB) values between the
baseline BL, and the separated sources by the pre-trained
model PT and the finetuned model TTA after 100 iterations.
The average SDR values are denoted with ¢.

the first 10 iterations. For the other piano concertos, the
improvement of SDR values generally accelerates after the
10th iteration. After the 100th iteration, the separation
performance remains steady for most of the piano con-
certos. Furthermore, after the 100th iteration, the SDR
values constantly increase in the case of BeetOp015 and
MozKV467 for both piano and orchestra.

Although SDR is widely used as a quantitative evalua-
tion metric for MSS, it is well known that it may not be
suitable for determining the perceptual sound quality of
separated musical sources [34]. The work by Torcoli et
al. [35] provides a comparison of objective quality mea-
sures in the source separation domain. Their analysis indi-
cates that a quantitative evaluation using the metric called
2f-model exhibits the best correlation with ground-truth
data based on the subjective ratings from MUSHRA lis-
tening tests. For a detailed account of the 2f-model, we
refer to [28]. Note that the 2f-model values range from 0
to 100 following MUSHRA rating scores (see Section 4.3).
Table 2 provides the resulting 2f-model values for the sep-
arated sources by PT and TTA using 100 iterations. In gen-
eral, one can observe here a similar trend as for the SDR.

Piano Orchestra
BL PT TTA BL PT TTA
Beet0Op015 21.60 21.50 28.39 | 15.51 25.85 29.52
Beet0Op058 22.08 27.13 36.19 | 27.02 38.65 38.68
BrahOp015 24.01 30.79 36.43 | 22.63 35.36 33.20
HaydnHob018 | 19.27 34.57 38.31 | 27.10 41.19 40.35

Work ID

MozKV466 19.25 32.30 39.49 | 26.07 35.62 40.18
MozKV467 15.61 28.80 31.52 | 28.43 40.26 41.21
MozKV595 14.88 27.82 31.52 | 18.08 30.36 31.49

9} 19.53  28.99 34.55 | 23.55 35.33 36.38

Table 2: Comparison of the 2f-model values between the
baseline BL, and the separated sources using the pre-trained
model PT and finetuned model TTA after 100 iterations.
The average 2f-model values are denoted with ¢.

PT mostly reveals better 2f-model scores than the baseline
BL, except for the piano separation of BeetOp015, which
presumably suffers from its poor recording conditions that
are not well-represented in the artificial training set.

As for the SDR-based results, 2f-model values increase
via TTA after 100 iterations for both the piano and the or-
chestra. For example, in the case of Beet0p015, PT yields
a 2f-model value of 21.50 for the separated piano, improv-
ing to 28.39 after applying TTA. Interestingly, the sepa-
ration of the orchestral part yields better results than the
piano according to 2f-model values. This is opposed to the
evaluation based on the SDR, where the separation results
are significantly better in the case of piano separation (see
Table 1).

4.3 Subjective Evaluation

In this section, we describe the experimental setting for
our subjective evaluation to assess the perceived separa-
tion quality. We carried out two listening tests using the
MUSHRA methodology following the ITU-R BS.1534-3
recommendation [36]. It is a double-blind multi-stimulus
test method with a hidden reference and an additional
lower anchor signal. The rating scores range from 0 to
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Figure 4: Results of our subjective evaluation based on MUSHRA listening tests for the piano (left) and orchestra (right).
The colored markers indicate the average rating scores enclosed by 95% confidence intervals (indicated by the vertical

lines).

100, involving five categories: Bad (0-20), Poor (20-40),
Fair (40-60), Good (60-80), and Excellent (80-100).

In total, 34 participants were involved in our lis-
tening tests (31 experienced listeners and 3 inexperi-
enced listeners). The MUSHRA methodology suggests a
post-screening of the participants stating that participants
should be excluded from the listening test if they give the
hidden reference a score lower than 90 for more than 15%
of the test items. Concerning our tests, one of the partici-
pants was excluded after post-screening.

Each of the two listening tests contains seven test items.
For each test item, we generated four different signals with
a duration of 12 seconds (maximum allowed signal dura-
tion for MUSHRA listening tests), which are excerpts from
the test mixtures that we use for our quantitative evalua-
tion. In our first listening test, we asked the participants to
rate the overall audio quality for each of the four signals
(also called conditions) with respect to a reference signal,
which is a clean piano-only section. Similar to [37], we
created the lower anchor signals by low-pass filtering the
test mixtures to a 3.5 kHz cut-off frequency and by adding
musical noise, i.e., randomly setting 20% of the remaining
time/frequency coefficients to zero. The other two signals
involve separated piano parts by PT and TTA. Similarly,
our second listening test evaluates the overall quality of the
separated orchestral parts following the same procedure as
the first listening test.

Figure 4 summarizes the results from our listening tests.
First, one can observe that the participants rated the ref-
erence signal with an average MUSHRA rating score of
99 and the lower anchor is significantly below the condi-
tions PT and TTA. Remarkably, the general trend of the
performances by PT and TTA support our quantitative anal-
yses, inferring that the TTA procedure generally improves
the separation of both the piano and orchestra. When ob-
serving the rating score of the piano concertos individually,
one can observe that the rating of the historical recording
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Beet0p015 is significantly lower than other items for PT.
Intuitively, this is due to its poor recording conditions. Af-
ter applying TTA, the average rating score of BeetOp015
improves from 33 to 59 for the piano and from 43 to 58 for
the orchestra. Furthermore, the orchestra separation led to
a lower MUSHRA score in the case of MozKV595, both
for PT and TTA. One reason may be the audible clipping
artifacts in the reference signal and hidden separated or-
chestra, which a subset of the participants noted during the
listening test.

As a final remark, the subjective results demonstrate
that the average separation quality of the orchestra is better
than for the piano, which is in favor of the results based
on the 2f-model (see Table 2). This again illustrates that
quantitative and subjective evaluations need to be carefully
interpreted.

S. CONCLUSION

In this paper, we investigated the separation of piano and
orchestra in piano concertos. We trained our model using
a U-Net architecture based on the Spleeter implementation
with random mixes of solo piano and orchestral recordings,
which we regarded as our baseline pre-trained model. As
the main contribution, we proposed a TTA procedure to en-
hance the separation quality using the random mixes cre-
ated from the samples found in the test data. We showed
that TTA substantially improved the quantitative and sub-
jective evaluation results, both for the piano and orchestra.
For the future, we aim to explore musically plausible data
augmentation methods that simulate more realistic mix-
tures. To further improve the separation quality, avenues
of research may be to integrate a transcription model as
proposed by [38] or to incorporate phase information into
the network by using, e.g., a complex U-Net [39]. More-
over, we intend to further investigate objective evaluation
measures for the source separation of piano concertos.
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