Book: Fundamentals of Music Processing

Workshop HfM Karlsruhe

Music Information Retrieval

Audio Features

Christof Weiß, Frank Zalkow, Meinard Müller
International Audio Laboratories Erlangen
christof.weiss@audiolabs-erlangen.de
frank.zalkow@audiolabs-erlangen.de
meinard.mueller@audiolabs-erlangen.de
 Fraunhofer

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015

Accompanying website:
www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015
Accompanying website:
www.music-processing.de

Chapter 2: Fourier Analysis of Signals
2.1 The Fourier Transform in a Nutshell
2.2 Signals and Signal Spaces
2.3 Fourier Transform

Discrete Fourier Transform (DFT)
Short-Time Fourier Transform (STFT)
Further Notes
Important technical terminology is covered in Chapter 2. In particular, we approach the Fourier transform-which is perhaps the most fundamental tool in signal processing-from various perspectives. For the reader who is more interested in the musical aspects of the book, Section 2.1 provides a summary of the most important facts on the Fourier transform. In particular, the notion of a spectrogram, which yields a time-frequency representation of an audio signal, is introduced. The remainder of the chapter treats the Fourier transform in greater mathematical depth and also includes the fast Fourier transform (FFT)-an algorithm of great beauty and high practical relevance.

Book: Fundamentals of Music Processing

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
483 p., 249 illus., hardcover
ISBN: 978-3-319-21944-8
Springer, 2015
Accompanying website:
www.music-processing.de

Chapter 3: Music Synchronization

3.1	Audio Features
3.2	Dynamic Time Warping
3.3	Applications
3.4	Further Notes

As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is alignment technique known as dynamic time warping (DTW), a concept that is
applicable for the analysis of general time series. For its efficient computation, applicable for the analysis of general time series. For its efficient computation,
we discuss an algorithm based on dynamic programming-a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems.

Fourier Transform

Idea: Decompose a given signal into a superposition of sinusoids (elementary signals).
$f=s_{1}+s_{2}+s_{3}$

Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:
$s_{(A, \omega, \varphi)}(t)=A \cdot \sin (2 \pi(\omega t-\varphi))$

Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:
$f=s_{1}+s_{2}+s_{3}$

Fourier Transform
Example: C4 played by piano

Fourier Transform

Example: C 4 played by trumpet

Fourier Transform

Example: C4 played by violine

Fourier Transform
Example: Speech "Bonn"

Fourier Transform
Example: C-major scale (piano)

Fourier Transform

Example: Chirp signal

$|\hat{f}|$

Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Fourier Transform
Example: Piano tone (C4, 261.6 Hz)

Analysis using sinusoid with 262 Hz

\rightarrow high correlation
\rightarrow large Fourier coefficient

Fourier Transform
Example: Piano tone (C4, 261.6 Hz)

Analysis using sinusoid with 400 Hz

\rightarrow low correlation
\rightarrow small Fourier coefficient

Fourier Transform

Role of phase

Fourier Transform

Role of phase
Analysis with sinusoid having frequency 262 Hz and phase $\varphi=0.05$

Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi=0.45$

Fourier Transform

Role of phase
Analysis with sinusoid having frequency 262 Hz and phase $\varphi=0.24$

Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi=0.6$

Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters
$s_{(A, \omega, \varphi)}(t)=A \cdot \sin (2 \pi(\omega t-\varphi))$
$\omega=$ frequency
$A=$ amplitude
$\varphi=$ phase

Complex formulation of sinusoids:

Polar coordinates: $c=|c| \cdot \exp (2 \pi i \varphi)$
$e_{(c, \omega)}(t)=c \cdot \exp (2 \pi i \omega t)=c \cdot(\cos (2 \pi \omega t)+i \cdot \sin (2 \pi \omega t))$
$\omega=$ frequency
$A=$ amplitude $=|c|$
$\varphi=$ phase $\quad=\arg (c)$

Fourier Transform

Signal
Fourier representation
$f: \mathbb{R} \rightarrow \mathbb{R}$
$f(t)=\int_{\omega \in \mathbb{R}} c_{\omega} \exp (2 \pi i \omega t) d \omega$
Fourier transform $\quad c_{\omega}=\hat{f}(\omega)=\int_{t \in \mathbb{R}} f(t) \exp (-2 \pi i \omega t) d t$

Fourier Transform

Signal $\quad f: \mathbb{R} \rightarrow \mathbb{R}$
Fourier representation $\quad f(t)=\int_{\omega \in \mathbb{R}} c_{\omega} \exp (2 \pi i \omega t) d \omega$
Fourier transform $\quad c_{\omega}=\hat{f}(\omega)=\int_{t \in \mathbb{R}} f(t) \exp (-2 \pi i \omega t) d t$

- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Window functions

\rightarrow Trade off between smoothing and "ringing"

Short Time Fourier Transform

Definition
" Signal $\quad f: \mathbb{R} \rightarrow \mathbb{R}$

- Window function $g: \mathbb{R} \rightarrow \mathbb{R} \quad\left(g \in L^{2}(\mathbb{R}),\|g\|_{2} \neq 0\right)$
- STFT $\quad \tilde{f}_{g}(t, \omega)=\int_{u \in \mathbb{R}} f(u) \bar{g}(u-t) \exp (-2 \pi i \omega u) d u=\left\langle f \mid g_{t, \omega}\right\rangle$
with $\quad g_{t, \omega}(u)=\exp (2 \pi i \omega(u-t)) g(u-t)$ for $u \in \mathbb{R}$

Short Time Fourier Transform

Intuition:

- $g_{t, \omega}$ is "musical note" of frequency ω centered at time t
- Inner product $\left\langle f \mid g_{t, \omega}\right\rangle$ measures the correlation between the musical note $g_{t, \omega}$ and the signal f

Short Time Fourier Transform

Discrete STFT

$$
\begin{array}{ll}
\mathcal{X}(m, k):=\sum_{n=0}^{N-1} x(n+m H) w(n) \exp (-2 \pi i k n / N) \\
x: \mathbb{Z} \rightarrow \mathbb{R} & \\
w:[0: N-1] \rightarrow \mathbb{R} & \text { DT-signal } \\
H \in \mathbb{N} & \text { Window function of length } N \in \mathbb{N} \\
K=N / 2 & \text { Hop size } \\
\mathcal{X}(m, k) & \text { Index corresponding to Nyquist frequency } \\
\text { Fourier coefficient for frequency }
\end{array}
$$

Short Time Fourier Transform

Discrete STFT

$$
\mathcal{X}(m, k):=\sum_{n=0}^{N-1} x(n+m H) w(n) \exp (-2 \pi i k n / N)
$$

Physical time position associated with $\mathcal{X}(m, k)$:

$$
T_{\mathrm{coef}}(m):=\frac{m \cdot H}{F_{\mathrm{s}}} \quad \text { (seconds) } \quad \begin{aligned}
& H=\text { Hop size } \\
& F_{\mathrm{s}}=\text { Sampling rate }
\end{aligned}
$$

Physical frequency associated with $\mathcal{X}(m, k)$:

$$
F_{\text {coef }}(k):=\frac{k \cdot F_{\mathrm{s}}}{N} \quad(\text { Hertz })
$$

Short Time Fourier Transform

Parameters
$N=64$
$H=8$
$F_{\mathrm{s}}=32 \mathrm{~Hz}$

Computational world

Physical world

Time-Frequency Representation

Spectrogram

t

Time-Frequency Representation

Spectrogram

t

Time-Frequency Representation
Chirp signal and STFT with box window of length 50 ms

Time-Frequency Representation

Signal and STFT with Hann window of length 20 ms

Time-Frequency Representation

Signal and STFT with Hann window of length 100 ms

Audio Features

Example: C-major scale (piano)

Spectrogram

Audio Features

Example: Chromatic scale

Spectrogram

Audio Features

Example: Chromatic scale

Spectrogram

Audio Features

Model assumption: Equal-tempered scale

- MIDI pitches: $\quad p \in[1: 128]$
- Piano notes: $\quad p=21$ (A0) to $p=108$ (C8)
- Concert pitch: $\quad p=69(\mathrm{~A} 4) \hat{=} 440 \mathrm{~Hz}$
- Center frequency: $F_{\text {pitch }}(p)=2^{(p-69) / 12} \cdot 440 \mathrm{~Hz}$
\rightarrow Logarithmic frequency distribution
Octave: doubling of frequency

Audio Features

Idea: Binning of Fourier coefficients

Divide up the frequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Audio Features

Time-frequency representation

Windowing in the time domain

Log-Frequency Spectrogram
Pooling procedure for discrete STFT

Audio Features

Example: Chromatic scale
[|IIIIII|II||IIID||IIIIIII||II|IIII]
Spectrogram

Audio Features

Example: Chromatic scale

Spectrogram

Audio Features

Example: Chromatic scale

Log-frequency spectrogram

Audio Features

Frequency ranges for pitch-based log-frequency spectrogram

Note	MIDI pitch p	Center $[\mathrm{Hz}]$ frequency $F_{\text {pitch }}(p)$	Left $[\mathrm{Hz}]$ boundary $F_{\text {pitch }}(p-0.5)$	Right $[\mathrm{Hz}]$ boundary $F_{\text {pitch }}(p+0.5)$	Width $[\mathrm{Hz}]$
A3	57	220.0	213.7	226.4	12.7
A\#3	58	233.1	226.4	239.9	13.5
B3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C\#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D\#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F\#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G\#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

Audio Features

Chroma features

Chromatic circle
Shepard's helix of pitch

Audio Features

Chroma features

- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave (same pitch class).
- Separation of pitch into two components: tone height (octave number) and chroma / pitch class.
- Chroma : 12 pitch classes of the equal-tempered scale. For example:
Chroma C $\widehat{=} \ldots, \mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \ldots\}$
- Computation: pitch features \rightarrow chroma features Add up all pitches belonging to the same pitch class
- Result: 12-dimensional chroma vector.

Audio Features
Chroma features

Audio Features

Chroma features

Audio Features

Chroma features

Chroma C\#

Audio Features

Chroma features

[^0]
Audio Features

Example: Chromatic scale

|П II III IIIIIII IIIDIIIIII II IIIII|IIII
Log-frequency spectrogram

Audio Features

Example: Chromatic scale
[|III III IIIII|II IIIDI IIIII III II|IIIII III|
Log-frequency spectrogram

Chroma C

Audio Features

Example: Chromatic scale

|IIII III II| |II|II |III|| III |II III II |II| |II |II|

Chromagram

Audio Features

Chroma features

Audio Features

Chroma features

Audio Features

Logarithmic compression

For a positive constant $\gamma \in \mathbb{R}_{>0}$ the logarithmic compression

$$
\Gamma_{\gamma}: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}
$$

is defined by

$$
\Gamma_{\gamma}(v):=\log (1+\gamma \cdot v)
$$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\Gamma_{\gamma}(v)$

Audio Features

Chroma features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization $x \rightarrow x /\|x\|$ makes features invariant to changes in dynamics
- Further denoising and smoothing
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Audio Features

Logarithmic compression
For a positive constant $\gamma \in \mathbb{R}_{>0}$ the logarithmic compression

$$
\Gamma_{\gamma}: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}
$$

is defined by

$$
\Gamma_{\gamma}(v):=\log (1+\gamma \cdot v)
$$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\Gamma_{\gamma}(v)$

The higher $\gamma \in \mathbb{R}_{>0}$ the stronger the compression

Audio Features
Logarithmic compression

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\Gamma_{\gamma}(v)$

The higher $\gamma \in \mathbb{R}_{>0}$ the stronger the compression

Audio Features

Normalization

Replace a vector
by the normalized vector

$$
x /\|x\|
$$

using a suitable norm $\|\cdot\|$

Example:
Chroma vector $x \in \mathbb{R}^{12}$
Euclidean norm

$$
\|x\|:=\left(\sum_{i=0}^{11}|x(i)|^{2}\right)^{1 / 2}
$$

Audio Features

Normalization

Example: C4 played by piano $>$

Replace a vector by the normalized vector
$x /\|x\|$
using a suitable norm $\|\cdot\|$

Example:
Chroma vector $x \in \mathbb{R}^{12}$
Euclidean norm

$$
\|x\|:=\left(\sum_{i=0}^{11}|x(i)|^{2}\right)^{1 / 2}
$$

Normalized chromagram

Audio Features

Normalization

Example: C4 played by piano \quad -

Replace a vector
by the normalized vector
$x /\|x\|$
using a suitable norm $\|\cdot\|$

Example:
Chroma vector $x \in \mathbb{R}^{12}$
Euclidean norm

$$
\|x\|:=\left(\sum_{i=0}^{11}|x(i)|^{2}\right)^{1 / 2}
$$

Audio Features

Chroma features (normalized)

Scherbakov
Karajan \circ

Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

Chroma Toolbox: Pitch, Chroma, CENS, CRP
リIV!

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants

Audio Features
Chroma features

Additional Material

Inner Product

$\langle x \mid y\rangle:=\sum_{n=0}^{N-1} x(n) \overline{y(n)} \quad$ for $\quad x, y \in \mathbb{C}^{N}$

Length of a vector
$\|x\|:=\sqrt{\langle x \mid x\rangle}$
Angle between two vectors
$\cos (\varphi)=\frac{|\langle x \mid y\rangle|}{\|x\| \cdot\|y\|}$

Orthogonality of

 two vectors$\langle x \mid y\rangle=0$

Inner Product

Measuring the similarity of two functions

\rightarrow Area mostly positive and large
\rightarrow Integral large
\rightarrow Similarity high

Inner Product

Measuring the similarity of two functions

\rightarrow Area positive and negative
\rightarrow Integral small
\rightarrow Similarity Iow

Discretization

Discretization

Sampling

Discretization

Sampling

Discretization

Quantization

Discretization

Quantization

Discretization

Sampling

$f: \mathbb{R} \rightarrow \mathbb{R}$	CT-signal
$T>0$	Sampling period
$x(n):=f(n \cdot T)$	Equidistant sampling, $n \in \mathbb{Z}$
$x: \mathbb{Z} \rightarrow \mathbb{R}$	DT-signal
$x(n)$	Sample taken at time $t=n \cdot T$
$F_{\mathrm{S}}:=1 / T$	Sampling rate

Discretization

Aliasing

Original signal

Discretization

Aliasing

Original signal

Sampled signal using a sampling rate of 12 Hz

Discretization

Aliasing

Original signal

Sampled signal using a sampling rate of 12 Hz
Reconstructed signal

Discretization

Aliasing

Original signal
Sampled signal using a sampling rate of 6 Hz
Reconstructed signal

Discretization

Aliasing

Original signal
Sampled signal using a sampling rate of 3 Hz
Reconstructed signal

Discretization

Integrals and Riemann sums

CT-signal f Integral (total area)

$$
\int_{t \in \mathbb{R}} f(t) d t
$$

Discretization

Integrals and Riemann sums

CT-signal f
Integral (total area)
$\int_{t \in \mathbb{R}} f(t) d t$
DT-signals (obtained by 1 -sampling) x

Discretization

Integrals and Riemann sums

CT-signal f
Integral (total area)

$$
\int_{t \in \mathbb{R}} f(t) d t \approx \sum_{n \in \mathbb{Z}} x(n)
$$

DT-signals (obtained by 1 -sampling) x
Riemann sum (total area) \rightarrow Approximation of integral

Discretization

Integrals and Riemann sums

First CT-signal and DT-signal

Second CT-signal and DT-signal

Product of CT-signals and DT-signals

Discretization

Integrals and Riemann sums

First CT-signal and DT-signal

Second CT-signa and DT-signal

Product of CT-signals and DT-signals

Integral \approx Riemann sum $\int_{t \in \mathbb{R}} f(t) \overline{g(t)} d t \approx \sum_{n \in \mathbb{Z}} x(n) \overline{y(n)}$

Exponential Function

Real and imaginary part (Euler's formula)
$\exp (i \gamma)=\cos (\gamma)+i \sin (\gamma)$
$|\exp (i \gamma)|=1$
$\exp (i \gamma)=\exp (i(\gamma+2 \pi))$

Exponential Function

Complex conjugate number
$\overline{\exp (i \gamma)}=\exp (-i \gamma)$

Exponential Function

Additivity property
$\exp \left(i\left(\gamma_{1}+\gamma_{2}\right)\right)=\exp \left(i \gamma_{1}\right) \exp \left(i \gamma_{2}\right)$

Fourier Transform

Chirp signal with $\lambda=0.003$

$$
f(t):= \begin{cases}\sin \left(\lambda \cdot \pi t^{2}\right), & \text { for } t \geq 0 \\ 0, & \text { for } t<0\end{cases}
$$

Fourier Transform

Chirp signal with $\lambda=0.004$
$f(t):= \begin{cases}\sin \left(\lambda \cdot \pi t^{2}\right), & \text { for } t \geq 0 \\ 0, & \text { for } t<0\end{cases}$

Fourier Transform

DFT approximation of Fourier transform

Fast Fourier Transform

```
```

Algorithm: FFT

```
```

Algorithm: FFT
Input: The length N=2L}\mathrm{ with N being a power of two
Input: The length N=2L}\mathrm{ with N being a power of two
The vector (x(0),···,x(N-1)\mp@subsup{)}{}{\top}\in\mp@subsup{\mathbb{C}}{}{N}
The vector (x(0),···,x(N-1)\mp@subsup{)}{}{\top}\in\mp@subsup{\mathbb{C}}{}{N}
Output: The vector (X(0),···,X(N-1))}\mp@subsup{}{}{\top}=\mp@subsup{\textrm{DFT}}{N}{}\cdot(x(0),···,x(N-1)\mp@subsup{)}{}{\top
Output: The vector (X(0),···,X(N-1))}\mp@subsup{}{}{\top}=\mp@subsup{\textrm{DFT}}{N}{}\cdot(x(0),···,x(N-1)\mp@subsup{)}{}{\top
Procedure: Let (X(0),···,X(N-1))=FFT(N,x(0),···,x(N-1)) denote the general form
Procedure: Let (X(0),···,X(N-1))=FFT(N,x(0),···,x(N-1)) denote the general form
of the FFT algorithm.
of the FFT algorithm.
If }N=1\mathrm{ then
If }N=1\mathrm{ then
X(0)=x(0).
X(0)=x(0).
Otherwise compute recursively:
Otherwise compute recursively:
(A(0),···,A(N/2-1))=FFT(N/2,x(0),x(2),x(4)···,x(N-2)),
(A(0),···,A(N/2-1))=FFT(N/2,x(0),x(2),x(4)···,x(N-2)),
(A(0),···,A(N/2-1))=FFT(N/2,x(0),x(2),x(4)···,x(N-2)),
(A(0),···,A(N/2-1))=FFT(N/2,x(0),x(2),x(4)···,x(N-2)),
C(k)=\mp@subsup{\omega}{N}{k}\cdotB(k) for k [[0:N/2-1],
C(k)=\mp@subsup{\omega}{N}{k}\cdotB(k) for k [[0:N/2-1],
X(k)=A(k)+C(k) for }k\in[0:N/2-1]
X(k)=A(k)+C(k) for }k\in[0:N/2-1]
X(N/2+k)=A(k)-C(k) for }k\in[0:N/2-1]

```
```

 X(N/2+k)=A(k)-C(k) for }k\in[0:N/2-1]
    ```
```


[^0]: Chroma D

