

Workshop HfM Karlsruhe

Music Information Retrieval

Audio Features

Christof Weiß, Frank Zalkow, Meinard Müller

International Audio Laboratories Erlangen

christof.weiss@audiolabs-erlangen.de frank.zalkow@audiolabs-erlangen.de meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 2: Fourier Analysis of Signals

- 2.1 The Fourier Transform in a Nutshell
- 2.2 Signals and Signal Spaces2.3 Fourier Transform
- 2.4 Discrete Fourier Transform (DFT)
- 2.5 Short-Time Fourier Transform (STFT)
- 2.6 Further Notes

Chapter 3: Music Synchronization

- 3.1 Audio Features
- 3.2 Dynamic Time Warping
- 3.3 Applications
- 3.4 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems.

Idea: Decompose a given signal into a superposition of sinusoids (elementary signals).

Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:

Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:

Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:

Fourier Transform

Example: Superposition of two sinusoids

Fourier Transform

Example: C4 played by piano

Example: C4 played by trumpet

Fourier Transform

Example: C4 played by violine

Fourier Transform

Example: C4 played by flute

Fourier Transform

Example: Speech "Bonn"

Fourier Transform

Example: Speech "Zürich"

Fourier Transform

Example: C-major scale (piano)

Fourier Transform Example: Chirp signal $f = \begin{pmatrix} 1.5 & 0.5 & 0.5 & 0.5 & 0.8 & 1 & 1.2 & 1.4 & 1.5 & 1.8 & 2 \\ 0.05 & 0.05 & 0.05 & 0.08 & 0.8 & 0.8 & 0.8 & 1.2 & 1.4 & 1.5 & 1.8 & 2 \\ 0.05 & 0.05$

Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Analysis using sinusoid with 262 Hz

- → high correlation
- → large Fourier coefficient

Fourier Transform

Example: Piano tone (C4, 261.6 Hz)

Fourier Transform

→ small Fourier coefficient

Role of phase

→ low correlation

Analysis using sinusoid with 523 Hz

- $\rightarrow \text{high correlation}$
- → large Fourier coefficient

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase φ = 0.05

Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase φ = 0.24

Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.45$

Fourier Transform

Role of phase

Analysis with sinusoid having frequency 262 Hz and phase $\varphi = 0.6$

Fourier Transform

Each sinusoid has a physical meaning and can be described by three parameters:

$$s_{(A, \omega, \varphi)}(t) = A \cdot \sin(2\pi(\omega t - \varphi))$$

 $\omega = \text{frequency}$

A = amplitude

 $\varphi={\rm phase}$

Complex formulation of sinusoids:

 $e_{(C,\omega)}(t) = \mathbf{c} \cdot \exp(2\pi i\omega t) = \mathbf{c} \cdot (\cos(2\pi\omega t) + i \cdot \sin(2\pi\omega t))$

 $\omega = \text{frequency}$

A = amplitude = |c|

= arg(<u>c</u>) φ = phase

Fourier Transform

Signal

$$f: \mathbb{R} \to \mathbb{R}$$

Fourier representation

$$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$$

Fourier transform
$$c_{\omega} = \hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$$

Signal $f: \mathbb{R} \to \mathbb{R}$

Fourier representation $f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$

Fourier transform $c_{\pmb{\omega}} = \hat{f}(\pmb{\omega}) = \int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \pmb{\omega} t) dt$

- Tells which frequencies occur, but does not tell when the frequencies occur.
- Frequency information is averaged over the entire time interval.
- Time information is hidden in the phase

Fourier Transform

Short Time Fourier Transform

Idea (Dennis Gabor, 1946):

- Consider only a small section of the signal for the spectral analysis
 - \rightarrow recovery of time information
- Short Time Fourier Transform (STFT)
- Section is determined by pointwise multiplication of the signal with a localizing window function

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Short Time Fourier Transform

Window functions

→ Trade off between smoothing and "ringing"

Short Time Fourier Transform

Definition

- Signal $f: \mathbb{R} \to \mathbb{R}$
- Window function $g:\mathbb{R} \to \mathbb{R}$ ($g \in L^2(\mathbb{R})$, $\|g\|_2 \neq 0$)

• STFT
$$\widetilde{f}_g(t,\omega) = \int_{u \in \mathbb{R}} f(u)\overline{g}(u-t) \exp(-2\pi i\omega u) du = \langle f|g_{t,\omega} \rangle$$

with
$$g_{t,\omega}(u) = \exp(2\pi i\omega(u-t))g(u-t)$$
 for $u \in \mathbb{R}$

Short Time Fourier Transform

Intuition:

- $g_{t,\omega}$ is "musical note" of frequency ω centered at time t
- Inner product $\langle f|g_{t,\omega}\rangle$ measures the correlation between the musical note $g_{t,\omega}$ and the signal f

Short Time Fourier Transform

Discrete STFT

$$\mathcal{X}(m,k) := \sum_{n=0}^{N-1} x(n+mH)w(n) \exp(-2\pi i k n/N)$$

 $x: \mathbb{Z} \to \mathbb{R}$ DT-signal

 $w:[0:N-1] \to \mathbb{R}$ Window function of length $N \in \mathbb{N}$

 $H\in\mathbb{N}$ Hop size

K=N/2 Index corresponding to Nyquist frequency

 $\mathcal{X}(m,k) \qquad \qquad \text{Fourier coefficient for frequency} \\ \text{index } k \in [0:K] \text{ and time frame } m \in \mathbb{Z}$

Short Time Fourier Transform

Discrete STFT

$$\mathcal{X}(m,k) := \sum_{n=0}^{N-1} x(n+mH)w(n)\exp(-2\pi ikn/N)$$

Physical time position associated with $\mathcal{X}(m,k)$:

$$T_{\mathrm{coef}}(m) := rac{m \cdot H}{F_{\mathrm{S}}} \hspace{0.5cm} ext{(seconds)} \hspace{1.5cm} H = \mathrm{Hop \ size} \ F_{\mathrm{S}} = \mathrm{Sampling \ rate}$$

Physical frequency associated with $\mathcal{X}(m,k)$:

$$F_{\mathrm{coef}}(k) := rac{k \cdot F_{\mathrm{S}}}{N}$$
 (Hertz)

Short Time Fourier Transform

Discrete STFT

Parameters N = 64 H = 8 $F_s = 32 \text{ Hz}$

Computational world

Physical world

Time-Frequency Representation

Spectrogram

Time-Frequency Representation

Spectrogram

Time-Frequency Representation

Chirp signal and STFT with Hann window of length 50 ms

Time-Frequency Representation

Chirp signal and STFT with box window of length 50 ms

Time-Frequency Representation

Time-Frequency Localization

 Size of window constitutes a trade-off between time resolution and frequency resolution:

Large window: poor time resolution

good frequency resolution

Small window: good time resolution

poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary precision.

Time-Frequency Representation

Signal and STFT with Hann window of length 20 ms

Time-Frequency Representation

Signal and STFT with Hann window of length 100 ms

Audio Features

Example: C-major scale (piano)

Spectrogram

Audio Features

Example: Chromatic scale

Audio Features

Example: Chromatic scale

Audio Features

Model assumption: Equal-tempered scale

 $\bullet \ \ \mathsf{MIDI} \ \mathsf{pitches:} \qquad p \in [1:128]$

• Piano notes: p = 21 (A0) to p = 108 (C8)

• Concert pitch: $p = 69 \text{ (A4)} \triangleq 440 \text{ Hz}$

- Center frequency: $F_{\mathrm{pitch}}(p) = 2^{(p-69)/12} \cdot 440 \; \mathrm{Hz}$

→ Logarithmic frequency distribution Octave: doubling of frequency

Audio Features

Idea: Binning of Fourier coefficients

Divide up the frequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Audio Features Time-frequency representation Windowing in the frequency domain Windowing in the time domain

Audio Features Example: Chromatic scale Log-frequency spectrogram C8: 4186 Hz C7: 2093 Hz C4: 262 Hz C3: 131 Hz C3: 131 Hz C3: 131 Hz C4: 262 Hz C5: 523 Hz C6: 1046 Hz C6: 1046 Hz C7: 2093 Hz C8: 4186 Hz C9: 1046 Hz C9: 104

Audio Features

Frequency ranges for pitch-based log-frequency spectrogram

Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
	p	$F_{\mathrm{pitch}}(p)$	$F_{\rm pitch}(p-0.5)$	$F_{\text{pitch}}(p+0.5)$	
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
B3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

Audio Features

Chroma features

Chromatic circle

Shepard's helix of pitch

Audio Features

Chroma features

- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in color if they differ by an octave (same pitch class).
- Separation of pitch into two components: tone height (octave number) and chroma / pitch class.
- Chroma: 12 pitch classes of the equal-tempered scale. For example:

Chroma C $\, \widehat{=} \, \left\{ \ldots \; , \; \mathrm{C0} \; , \; \mathrm{C1} \; , \; \mathrm{C2} \; , \; \mathrm{C3} \; , \; \ldots \right\}$

- Computation: pitch features → chroma features
 Add up all pitches belonging to the same pitch class
- Result: 12-dimensional chroma vector.

Audio Features

Chroma features

Audio Features

Chroma features

Chroma C

Audio Features

Chroma features

Chroma C#

Audio Features

Chroma features

Chroma D

Audio Features

Chroma features

Audio Features

Chroma features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization x → x/||x|| makes features invariant to changes in dynamics
- Further denoising and smoothing
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

Audio Features

Logarithmic compression

For a positive constant $\gamma \in \mathbb{R}_{>0}$ the logarithmic compression

$$\Gamma_{\gamma}:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$$

is defined by

$$\Gamma_{\gamma}(v) := \log(1 + \gamma \cdot v)$$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\varGamma_{\gamma}(v)$

Audio Features

Logarithmic compression

For a positive constant $\ \gamma \in \mathbb{R}_{>0}$ the logarithmic compression

$$\Gamma_{\gamma}:\mathbb{R}_{>0} o\mathbb{R}_{>0}$$

is defined by

$$\Gamma_{\gamma}(v) := \log(1 + \gamma \cdot v)$$

A value $v \in \mathbb{R}_{>0}$ is replaced by a compressed value $\varGamma_{\gamma}(v)$

The higher $\, \gamma \in \mathbb{R}_{>0} \,$ the stronger the compression

Audio Features

Logarithmic compression

A value $\ v \in \mathbb{R}_{>0} \$ is replaced by a compressed value $\ \varGamma_{\gamma}(v)$

The higher $\gamma \in \mathbb{R}_{>0}$ the stronger the compression

Audio Features

Normalization

Replace a vector by the normalized vector

using a suitable norm $\|\cdot\|$

Example:

Chroma vector $\ x \in \mathbb{R}^{12}$

Euclidean norm

$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Audio Features

Normalization

Replace a vector by the normalized vector

$$x/\|x\|$$

using a suitable norm $\|\cdot\|$

Example: Chroma vector $\ x \in \mathbb{R}^{12}$ Euclidean norm

$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Audio Features

Normalization

Replace a vector by the normalized vector

$$x/\|x\|$$

using a suitable norm $\|\cdot\|$

Example:

Chroma vector $\ x \in \mathbb{R}^{12}$

Euclidean norm

$$||x|| := \left(\sum_{i=0}^{11} |x(i)|^2\right)^{1/2}$$

Audio Features

Chroma features (normalized)

Audio Features

Chroma features

Audio Features

- There are many ways to implement chroma features
- Properties may differ significantly
- Appropriateness depends on respective application

- http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/
- MATLAB implementations for various chroma variants

Additional Material

Inner Product

$$\langle x|y\rangle := \sum_{n=0}^{N-1} x(n)\overline{y(n)} \qquad \text{for} \quad x,y \in \mathbb{C}^N$$

for
$$x, y \in \mathbb{C}^{\Lambda}$$

Length of a vector

Angle between two vectors

Orthogonality of two vectors

$$||x|| := \sqrt{\langle x|x\rangle}$$
 $\cos(\varphi) = \frac{|\langle x|y\rangle|}{||x|| \cdot ||y||}$

$$\langle x|y\rangle = 0$$

Inner Product

Measuring the similarity of two functions

- → Area positive and negative
- → Integral small
- \rightarrow Similarity low

Discretization

Inner Product

 $\int_{t\in\mathbb{R}} f(t) \cdot g(t) dt$

 $\to \text{Integral large}$

 $\rightarrow \text{Similarity high}$

Measuring the similarity of two functions

 \rightarrow Area mostly positive and large

g

Discretization

Sampling

Discretization

Sampling

Discretization

Quantization

Discretization

Quantization

Discretization

Sampling

 $f \colon \mathbb{R} \to \mathbb{R}$

CT-signal

T > 0

Sampling period

 $x(n) := f(n \cdot T)$

Equidistant sampling, $n \in \mathbb{Z}$

 $x: \mathbb{Z} \to \mathbb{R}$

DT-signal

x(n)

Sample taken at time $t = n \cdot T$

 $F_s := 1/T$

Sampling rate

Discretization

Aliasing

Original signal

Discretization

Aliasing

Original signal

Sampled signal using a sampling rate of 12 Hz

Discretization

Aliasing

Original signal

Sampled signal using a sampling rate of 12 Hz

Reconstructed signal

Discretization

Aliasing

Original signal

Sampled signal using a sampling rate of 6 Hz

Reconstructed signal

Discretization

Aliasing

Original signal

Sampled signal using a sampling rate of 3 Hz

Reconstructed signal

Discretization

Integrals and Riemann sums

CT-signal f

Discretization

Integrals and Riemann sums

CT-signal f Integral (total area)

 $\int_{t\in\mathbb{R}} |f(t)| dt$

Discretization

Integrals and Riemann sums

 $\int_{t\in\mathbb{R}} f(t) dt$

DT-signals (obtained by 1-sampling) x

Discretization

Integrals and Riemann sums

 $\int_{t\in\mathbb{R}} |f(t)| dt \approx \sum_{n\in\mathbb{Z}} x(n)$

DT-signals (obtained by 1-sampling) $\ensuremath{\mathcal{X}}$

Riemann sum (total area) → Approximation of integral

Discretization

Integrals and Riemann sums

First CT-signal and DT-signal

Second CT-signal and DT-signal

Product of CT-signals and DT-signals

Discretization

Integrals and Riemann sums

First CT-signal and DT-signal

Second CT-signal and DT-signal

Product of CT-signals and DT-signals

Integral $\,pprox\,$ Riemann sum

$$\int_{t \in \mathbb{R}} f(t) \overline{g(t)} dt \approx \sum_{n \in \mathbb{Z}} x(n) \overline{y(n)}$$

Exponential Function

Polar coordinate representation of a complex number

Exponential Function

Real and imaginary part (Euler's formula)

$$\exp(i\gamma) = \cos(\gamma) + i\sin(\gamma)$$

Exponential Function

Complex conjugate number

$$\overline{\exp(i\gamma)} = \exp(-i\gamma)$$

Exponential Function

Additivity property

 $|\exp(i\gamma)| = 1$

$$\exp(i(\gamma_1 + \gamma_2)) = \exp(i\gamma_1)\exp(i\gamma_2)$$

Chirp signal with $\lambda = 0.003$

$$f(t) := \begin{cases} \sin(\lambda \cdot \pi t^2), & \text{for } t \ge 0 \\ 0, & \text{for } t < 0 \end{cases}$$

Fourier Transform

Chirp signal with $\lambda = 0.004$

$$f(t) := \begin{cases} \sin(\lambda \cdot \pi t^2), & \text{for } t \ge 0 \\ 0, & \text{for } t < 0 \end{cases}$$

Fourier Transform

DFT approximation of Fourier transform

Fourier Transform

DFT approximation of Fourier transform

Fast Fourier Transform

Signal Spaces and Fourier Transforms

Signal space	$L^2(\mathbb{R})$	$L^2([0,1))$	$\ell^2(\mathbb{Z})$
Inner product	$\langle f g\rangle = \int_{t \in \mathbb{R}} f(t)\overline{g(t)}dt$	$\langle f g\rangle = \int_{t\in[0,1)} f(t)\overline{g(t)}dt$	$\langle x y\rangle = \sum_{n\in\mathbb{Z}} x(n)\overline{y(n)}$
Norm	$ f _2 = \sqrt{\langle f f\rangle}$	$ f _2 = \sqrt{\langle f f\rangle}$	$ x _2 = \sqrt{\langle x x\rangle}$
Definition	$L^2(\mathbb{R}) :=$ $\{f : \mathbb{R} \to \mathbb{C} \mid f _2 < \infty\}$	$\begin{split} L^2([0,1)) := \\ \{f : [0,1) \to \mathbb{C} \mid \ f\ _2 < \infty \} \end{split}$	$\ell^2(\mathbb{Z}) :=$ $\{f : \mathbb{Z} \to \mathbb{C} \mid x _2 < \infty\}$
Elementary frequency function	$\mathbb{R} \to \mathbb{C}$ $t \mapsto \exp(2\pi i \omega t)$	$[0,1) \rightarrow \mathbb{C}$ $t \mapsto \exp(2\pi i k t)$	$\mathbb{Z} \to \mathbb{C}$ $n \mapsto \exp(2\pi i \omega n)$
Frequency parameter	$\omega \in \mathbb{R}$	$k \in \mathbb{Z}$	$\omega \in [0,1)$
Fourier representation	$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} \exp(2\pi i \omega t) d\omega$	$f(t) = \sum_{k \in \mathbb{Z}} c_k \exp(2\pi i k t)$	$x(n) = \int_{\omega \in [0,1)} c_{\omega} \exp(2\pi i \omega n) d\omega$
Fourier transform	$\hat{f}: \mathbb{R} \to \mathbb{C}$ $\hat{f}(\omega) = c_{\omega} =$ $\int_{t \in \mathbb{R}} f(t) \exp(-2\pi i \omega t) dt$	$\hat{f}: \mathbb{Z} \to \mathbb{C}$ $\hat{f}(k) = c_k = \int_{t \in [0,1]} f(t) \exp(-2\pi i k t) dt$	$\hat{x}:[0,1) \to \mathbb{C}$ $\hat{x}(\omega) = c_{\omega} = \sum_{n \in \mathbb{Z}} x(n) \exp(-2\pi i \omega n)$