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 Fraunhofer Institute for 
Integrated Circuits IIS 

 Largest Fraunhofer
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≈ 1000 members
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 One of Germany’s 
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≈ 40,000 students

 Strong Technical 
Faculty



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

International Audio Laboratories Erlangen

5

Audio



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

International Audio Laboratories Erlangen

6

Audio

Audio Coding

Music Processing
Psychoacoustics

3D Audio

Internet of Things
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Source Separation

 Decomposition of audio stream into different sound sources

 Central task in digital signal processing

 “Cocktail party effect”
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Source Separation

 Decomposition of audio stream into different sound sources

 Central task in digital signal processing

 “Cocktail party effect”

 Several input signals

 Sources are assumed to be statistically independent
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Source Separation (Music)

 Main melody, accompaniment, drum track

 Instrumental voices

 Individual note events

 Only mono or stereo

 Sources are often highly dependent

Time

Time
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Original recording
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DL
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SP

DL
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Source Separation (Singing Voice)

DL-Based Source Separation
Stöter, Uhlich Luitkus, Mitsufuji: Open-
Unmix – A Reference Implementation for 
Music Source Separation. JOSS, 2019. 

 Reference: Best possible result
 SP: Traditional signal processing
 DL: Deep Learning
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Musical 
Information

Audio
Signal

Time

Exploit musical score to support 
decomposition process

Prior Knowledge
Ewert, Pardo, Müller, Plumbley: 
Score-Informed Source Separation 
for Musical Audio Recordings.
IEEE SPM 31(3), 2014.
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Score-Informed Source Separation
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Ewert, Pardo, Müller, Plumbley: 
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Score-Informed Source Separation
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for Musical Audio Recordings.
IEEE SPM 31(3), 2014.
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition

Time (seconds)
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Score-Informed Audio Decomposition

Time (seconds)

=
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition
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Score-Informed Audio Decomposition
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Nonnegative Matrix Factorization (NMF)
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Nonnegative Matrix Factorization (NMF)

Templates:     Pitch + Timbre

Activations:  Onset time + Duration

“How does it sound”

“When does it sound”

Templates ActivationsMagnitude Spectrogram

R

R
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W H

≥ 0

≥ 0K≈K V

≥ 0

N
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Nonnegative Matrix Factorization (NMF)

K

N R

R

N

W HV

Dimensionality reduction
 K, N typically much larger than R (maximal rank)
 Example: N = 1000, K = 500, R = 20

K x N = 500,000,      K x R = 10,000,      R x N = 20,000

≥ 0 ≥ 0

≥ 0≈ K
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Nonnegative Matrix Factorization (NMF)

Nonnegativity:
 Prevents mutual cancellation of template vectors 
 Encourages semantically meaningful decomposition
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≥ 0≈ K
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Optimization problem:

Given                         and rank parameter  R minimize

with respect to                        and                       .   

NMF Optimization

Optimization not easy:
 Nonnegativity constraints
 Nonconvexity when jointly optimizing W and H

Strategy: Iteratively optimize W and H via gradient descent
29
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables Summand that does 
not depend on 
must be zero
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

Apply chain rule 
from calculus

33
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

Rearrange 
summands
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

Introduce 
transposed 
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NMF Optimization
Computation of gradient with respect to H (fixed W)

Variables

36



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

NMF Optimization
Gradient descent

Initialization
Iteration for 

with suitable learning rate
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NMF Optimization
Gradient descent

Initialization
Iteration for 

with suitable learning rate

Issues:
 How to do the initialization?
 How to choose the learning rate?
 How to ensure nonnegativity?

38
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NMF Optimization
Gradient descent

Initialization
Iteration for 

Issues:
 How to do the initialization?
 How to choose the learning rate?
 How to ensure nonnegativity?

Choose adaptive 
learning rate:
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NMF Optimization
Gradient descent

Initialization
Iteration for 

Issues:
 How to do the initialization?
 How to choose the learning rate?
 How to ensure nonnegativity?

 Update rule 
become 
multiplicative

 Nonnegative 
values stay 
nonnegative

Choose adaptive 
learning rate:
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NMF Optimization NMF Algorithm
Lee, Seung: Algorithms for Non-Negative 
Matrix Factorization.  Proc. NIPS, 2000.
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NMF-based Spectrogram Decomposition
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NMF-based Spectrogram Decomposition
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Random initialization →  No semantic meaning
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Constrained NMF: Templates
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Constrained NMF: Templates
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Template constraint for p=55 
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Constrained NMF: Templates
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Zero-valued entries remain zero-valued entries!
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Constrained NMF: Templates
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Pitch templates misused to represent onsets
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Constrained NMF: Double Constraints
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Constrained NMF: Double Constraints
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Template constraint for p=55 Activation constraints for p=55
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Constrained NMF: Double Constraints
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from a synchronized score
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Constrained NMF: Double Constraints

Significant gain in structure, but onsets are missing
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Constrained NMF: Onset Templates
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Score-Informed Audio Decompostion

1. Split activation matrix
Application: Separating left and right hands for piano

𝐻𝐻୐

𝐻ୖ
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Score-Informed Audio Decompostion

1. Split activation matrix
Application: Separating left and right hands for piano

𝐻୐

𝐻ୖ
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Score-Informed Audio Decompostion

1. Split activation matrix
2. Model spectrogram for left/right

Application: Separating left and right hands for piano

𝐻୐

𝐻ୖ

𝑊𝐻୐

𝑊𝐻ୖ
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Score-Informed Audio Decompostion

1. Split activation matrix
2. Model spectrogram for left/right
3. Separation masks for left/right

Application: Separating left and right hands for piano

𝐻୐
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𝑊𝐻୐

𝑊𝐻ୖ

𝑀୐

𝑀ୖ
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Score-Informed Audio Decompostion

1. Split activation matrix
2. Model spectrogram for left/right
3. Separation masks for left/right
4. Estimated spectrograms

for left/right

Application: Separating left and right hands for piano

𝐻୐

𝐻ୖ

𝑊𝐻୐

𝑊𝐻ୖ

𝑀୐

𝑀ୖ

𝑀୐𝑋

𝑀ୖ𝑋
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

Score-Informed Constraints
Ewert, Müller: Using Score-Informed Constraints for 
NMF-based Source Separation. Proc. ICASSP, 2012.
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Score-Informed Audio Decompostion
Application: Separating left and right hands for piano

Chopin, Waltz Op. 64, No. 1

Original

Left/right hand

Right hand

Left hand

Further results available at
http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/

Score-Informed Constraints
Ewert, Müller: Using Score-Informed Constraints for 
NMF-based Source Separation. Proc. ICASSP, 2012.
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Conclusions (NMF)

 NMF used for spectrogram decomposition

 Multiplicative update rules make it easy to constrain NMF 
model via zero initialization

 Exploiting score information to guide separation process
(requires score–audio synchronization)

 Application: Separation of arbitrary note groups from given
audio recording
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Autoencoder

CodeEncoder ℰ Decoder 𝒟

 Specific type of neural network

 Encoder: Compress input 𝑋 into a low-dimensional code 

 Decoder: Reconstruct output 𝑋෠ from code

Input 𝑋 Output 𝑋෠
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Autoencoder

CodeEncoder ℰ Decoder 𝒟

 Specific type of neural network

 Encoder: Compress input 𝑋 into a low-dimensional code 

 Decoder: Reconstruct output 𝑋෠ from code

 Goal: Learn parameters for encoder and decoder such that output is 
close to input with respect to some loss function:

Input 𝑋 Output 𝑋෠
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NMF and Autoencoder (AE)

≈ = 𝑉෠𝑉 𝑊 𝐻

𝑉 ൎ 𝑊𝐻 implies   𝑊ା𝑉 ൎ 𝐻 with pseudoinverse  𝑊ା

NMF

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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NMF and Autoencoder (AE)

≈ = 𝑉෠

𝑉෠

Encoder ℰ Decoder 𝒟

𝑉

𝑉

𝑊 𝐻

𝑊ℰ 𝐻 𝑊𝒟

Code

𝑉 ൎ 𝑊𝐻 implies   𝑊ା𝑉 ൎ 𝐻 with pseudoinverse  𝑊ା

NMF

AE

1. Layer: 𝐻 ൌ 𝑊ℰ 
 𝑉

2. Layer: 𝑉෠ ൌ 𝑊𝒟 𝐻

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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NMF and Autoencoder (AE)

≈ = 𝑉෠

𝑉෠

Encoder ℰ Decoder 𝒟

𝑉

𝑉

𝑊 𝐻

𝑊ℰ 𝐻 𝑊𝒟

Code

𝑉 ൎ 𝑊𝐻 implies   𝑊ା𝑉 ൎ 𝐻 with pseudoinverse  𝑊ା

NMF

AE

1. Layer: 𝐻 ൌ 𝑊ℰ 
 𝑉

2. Layer: 𝑉෠ ൌ 𝑊𝒟 𝐻 Fully connected network

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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NMF and Autoencoder (AE)

≈ = 𝑉෠

𝑉෠

Encoder ℰ Decoder 𝒟

𝑉

𝑉

𝑊 𝐻

𝑊ℰ 𝐻 𝑊𝒟

Code

𝑉 ൎ 𝑊𝐻 implies   𝑊ା𝑉 ൎ 𝐻 with pseudoinverse  𝑊ା

NMF

AE

1. Layer: 𝐻 ൌ 𝑊ℰ 
 𝑉

2. Layer: 𝑉෠ ൌ 𝑊𝒟 𝐻
NMF: Learn 𝐻 and  𝑊
AE:    Learn 𝑊ℰ and 𝑊𝒟

Nonnegative Autoencoder
Smaragdis, Venkataramani: A Neural 
Network Alternative to Non-Negative 
Audio Models, Proc. ICASSP 2017.
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Nonnegative Autoencoder (NAE)

𝑉෠𝑉 𝑊ℰ 𝐻 𝑊𝒟

1. Layer: 𝐻 ൌ 𝑊ℰ 
 𝑉

2. Layer: 𝑉෠ ൌ 𝑊𝒟 𝐻

 How can one adjust the AE to simulate NMF?
 How can one achieve nonnegativity?
 How can one incorporate musical knowledge?
 …
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Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 ൌ 𝑊ℰ 
 𝑉

2. Layer: 𝑉෠ ൌ 𝑊𝒟 𝐻

 Loss function: same as in NMF

ℒ 𝑉,𝑉෠ ൌ 𝑉 െ 𝑉෠ ଶ

𝑉෠𝑉 𝑊ℰ 𝐻 𝑊𝒟
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Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 ൌ max ሺ𝑊ℰ 
 𝑉, 0ሻ

2. Layer: 𝑉෠ ൌ max ሺ𝑊𝒟 𝐻, 0ሻ

 Loss function: same as in NMF

 Activation function (ReLU) makes 𝐻 and 𝑉෠   nonnegative

ℒ 𝑉,𝑉෠ ൌ 𝑉 െ 𝑉෠ ଶ

𝑉෠𝑉 𝑊ℰ 𝐻 𝑊𝒟
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Nonnegative Autoencoder (NAE)

1. Layer: 𝐻 ൌ max ሺ𝑊ℰ 
 𝑉, 0ሻ

2. Layer: 𝑉෠ ൌ max ሺ𝑊𝒟 𝐻, 0ሻ

 Loss function: same as in NMF

 Activation function (ReLU) makes 𝐻 and 𝑉෠   nonnegative
 Projected gradient descent can be used to 

keep 𝑊𝒟  
(and 𝑊ℰ 

) nonnegative

ℒ 𝑉,𝑉෠ ൌ 𝑉 െ 𝑉෠ ଶ

𝑉෠𝑉 𝑊ℰ 𝐻 𝑊𝒟

𝑊𝒟 ⟵ max 𝑊𝒟 െ 𝛾
 

𝜕ℒ
𝜕𝑊𝒟 

, 0
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Musical Constraints

 Template constraints: Project certain entries in  𝑊𝒟  
to zero values (using projected gradient decent)

𝑉෠𝑉 𝑊ℰ 𝐻 𝑊𝒟

𝐻 ൌ max 𝑊ℰ 
 𝑉, 0

𝑉෠ ൌ max ሺ𝑊𝒟 𝐻, 0ሻ
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Musical Constraints

 Template constraints: Project certain entries in  𝑊𝒟  
to zero values (using projected gradient decent)

 Activation constraints: Use structured dropout by
applying pointwise multiplication with binary mask 𝑀ு

𝑉෠𝑉 𝑊ℰ 𝐻 𝑊𝒟

𝐻′ ൌ 𝐻 ⊙  𝑀ு
𝑉෠  ൌ max ሺ𝑊𝒟 𝐻′, 0ሻ

𝑀ு

Ewert, Sandler: Structured Dropout for Weak Label and 
Multi-Instance Learning and Its Application to Score-
Informed Source Separation. Proc. ICASSP, 2017.
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NAE with Multiplicative Update Rules

 Multiplicative update rules in NMF:
 Preserve nonnegativity
 Lead to fast convergence

 Question: Can one introduce multiplicative update rules to
train network weights for NAE?

 Use in additive gradient descent

a suitable (adaptive) learning rate      .
73
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NAE with Multiplicative Update Rules

 Encoder:

 Structured Dropout:

 Decoder:

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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NAE with Multiplicative Update Rules

 Encoder:

 Structured Dropout:

 Decoder:

Similar idea and 
computation as for NMF.

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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Approximation Loss

Lo
ss

Lo
ss

Iterations

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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Approximation Loss

Runtime (seconds)

Lo
ss

NMF vs. NAE
Özer, Hansen, Zunner, Müller: Investigating 
Nonnegative Autoencoders for Efficient Audio 
Decomposition. Proc. EUSIPCO, 2022.
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Conclusions (NAE)

 Simulation of NMF:
 Decoder corresponds to NMF templates
 Encoder learns a kind of pseudo-inverse 
 Code corresponds to NMF activations

 Nonnegativity can be achieved via
 activation function (ReLU)
 projected gradient descent
 multiplicative update rules

 Musical knowledge can be integrated via
 removing network weights (template constraints)
 structured dropout (activation constraints)
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Outlook

 More complex networks 
 Deeper networks (more layers)
 Different layer types (CNN, RNN, …) and activation functions
 Modification of loss function and regularization terms

 Understanding encoder – decoder relationship
 Nonnegativity
 Pseudo-inverse

 Update rules
 Constraints and convergence issues
 Adaptive learning rates and projected gradient descent 
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Score-Informed Audio Decomposition
Audio mosaicing (style transfer)

Source signal: BeesTarget signal: Beatles–Let it be

Mosaic signal: Let it Bee

80

Audio Mosaicing
Driedger, Prätzlich, Müller:  Let 
It Bee – Towards NMF-Inspired 
Audio Mosaicing. ISMIR, 2015.
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Score-Informed Audio Decomposition
Informed Drum-Sound Decomposition

Remix:

81

Drum Decomposition
Dittmar, Müller: Reverse Engineering the Amen Break 
– Score-Informed Separation and Restoration Applied 
to Drum Recordings. IEEE/ACM TASLP 24(9), 2016.
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Score-Informed Audio Decomposition
Major challenge: Reconstructed sound events often have artifacts

82

Approaches:

 Resynthesize certain sound components

 Differentiable Digital Signal Processing (DDSP) 
combines classical DSP and deep learning 

 Generative adversarial networks may help to
reduce the artifacts

DDSP
Engel et al.: DDSP: 
Differentiable Digital Signal 
Processing. ICLR, 2020.
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 Yigitcan Özer
 PhD student in engineering
 Pianist

83

Source Separation (Piano Concerto)
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Only Piano!

Where is the
orchestra?

 Yigitcan Özer
 PhD student in engineering
 Pianist

84

Source Separation (Piano Concerto)



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

85

Source Separation (Piano Concerto)



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

86

Source Separation (Piano Concerto)



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

87

Source Separation (Piano Concerto)



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

88

Source Separation (Piano Concerto)

Piano Source 
Separation
Özer, Müller: Source 
Separation of Piano 
Concertos with Test-Time 
Adaptation, ISMIR, 2022.
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Fundamentals of Music Processing (FMP)

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
Springer, 2015

Accompanying website: 
www.music-processing.de
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Fundamentals of Music Processing (FMP)

Accompanying website: 
www.music-processing.de

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
Springer, 2015

2nd edition
Meinard Müller
Fundamentals of Music Processing
Using Python and Jupyter Notebooks
Springer, 2021
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Fundamentals of Music Processing (FMP)

Accompanying website: 
www.music-processing.de

Meinard Müller
Fundamentals of Music Processing
Audio, Analysis, Algorithms, Applications
Springer, 2015

2nd edition
Meinard Müller
Fundamentals of Music Processing
Using Python and Jupyter Notebooks
Springer, 2021

91



Nonnegative Autoencoders with 
Applications to Music Audio Decomposing

© AudioLabs, 2023
Meinard Müller

FMP Notebooks: Education & Research

https://www.audiolabs-erlangen.de/FMP
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Resources (Group Meinard Müller)

 FMP Notebooks: 

https://www.audiolabs-erlangen.de/FMP

 libfmp: 

https://github.com/meinardmueller/libfmp

 synctoolbox: 

https://github.com/meinardmueller/synctoolbox

 libtsm: 

https://github.com/meinardmueller/libtsm

 Preparation Course Python (PCP) Notebooks: 

https://www.audiolabs-erlangen.de/resources/MIR/PCP/PCP.html

https://github.com/meinardmueller/PCP
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Resources

94

 librosa: 

https://librosa.org/

 madmom: 

https://github.com/CPJKU/madmom

 Essentia Python tutorial: 

https://essentia.upf.edu/essentia_python_tutorial.html

 mirdata: 

https://github.com/mir-dataset-loaders/mirdata

 open-unmix: 

https://github.com/sigsep/open-unmix-pytorch

 Open Source Tools & Data for Music Source Separation:

https://source-separation.github.io/tutorial/landing.html
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 Meinard Müller: Fundamentals of Music Processing – Using Python and Jupyter Notebooks. 

2nd Edition, Springer, 2021.
https://www.springer.com/gp/book/9783030698072

 Meinard Müller and Frank Zalkow: libfmp: A Python Package for Fundamentals of Music Processing. 
Journal of Open Source Software (JOSS), 6(63): 1–5, 2021.
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 Meinard Müller: An Educational Guide Through the FMP Notebooks for Teaching and Learning 
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 Meinard Müller and Frank Zalkow: FMP Notebooks: Educational Material for Teaching and Learning 
Fundamentals of Music Processing. Proc. International Society for Music Information Retrieval 
Conference (ISMIR): 573–580, 2019.
https://zenodo.org/record/3527872#.YOhEQOgzaUk

 Meinard Müller, Brian McFee, and Katherine Kinnaird: Interactive Learning of Signal Processing 
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