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Music Structure Analysis

 Stanzas of a folk song

 Intro, verse, chorus, bridge, outro sections of a pop song

 Exposition, development, recapitulation, coda of a sonata

 Musical form ABACADA … of a rondo

General goal: Divide an audio recording into temporal 
segments corresponding to musical parts and group these 
segments into musically meaningful categories.

Examples:

Music Structure Analysis

 Homogeneity:

 Novelty:

 Repetition:  

General goal: Divide an audio recording into temporal 
segments corresponding to musical parts and group these 
segments into musically meaningful categories.

Challenge: There are many different principles for creating 
relationships that form the basis for the musical structure.

Consistency in tempo, instrumentation, key, …

Sudden changes, surprising elements …

Repeating themes, motives, rhythmic patterns,… 

Music Structure Analysis

Novelty Homogeneity Repetition

Overview

 Introduction

 Feature Representations

 Self-Similarity Matrices

 Audio Thumbnailing

 Novelty-based Segmentation

 Converting Path to Block Structures

Thanks:

 Clausen, Ewert, 
Kurth, Grohganz, …

 Dannenberg, Goto
 Grosche, Jiang
 Paulus, Klapuri
 Peeters, Kaiser, …
 Serra, Gómez, …
 Smith, Fujinaga, …
 Wiering, …
 Wand, Sunkel, 

Jansen
 …
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Feature Representation

General goal: Convert an audio recording into a mid-level 
representation that captures certain musical properties 
while supressing other properties.

 Timbre / Instrumentation

 Tempo / Rhythm

 Pitch / Harmony
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Feature Representation
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Overview

 Introduction

 Feature Representations

 Self-Similarity Matrices

 Audio Thumbnailing

 Novelty-based Segmentation

 Converting Path to Block Structures

Self-Similarity Matrix (SSM)

General idea: Compare each element of the feature
sequence with each other element of the feature sequence
based on a suitable similarity measure.

→  Quadratic self-similarity matrix
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Self-Similarity Matrix (SSM)
Example:  Brahms Hungarian Dance No. 5 (Ormandy)

Idealized SSM

Blocks:    Homogeneity

Paths:      Repetition

Corners: Novelty

SSM Enhancement

 Feature smoothing
 Coarsening
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 Diagonal smoothing
 Multiple filtering
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Path Enhancement

 Diagonal smoothing
 Multiple filtering
 Thresholding (relative)
 Scaling & penalty

SSM Enhancement
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Further Processing

 Path extraction
 Pairwise relations
 Grouping (transitivity)
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SSM Enhancement
Example:  Zager & Evans “In The Year 2525”
Missing relations because of transposed sections

SSM Enhancement
Example:  Zager & Evans “In The Year 2525”
Idea: Cyclic shift of one of the chroma sequences

One semitone up



SSM Enhancement
Example:  Zager & Evans “In The Year 2525”
Idea: Cyclic shift of one of the chroma sequences

Two semitones up

SSM Enhancement
Example:  Zager & Evans “In The Year 2525”
Idea: Overlay Transposition-invariant SSM&  Maximize

SSM Enhancement
Example:  Zager & Evans “In The Year 2525”
Note: Order of enhancement steps important! 

Maximization Smoothing & Maximization

Similarity Matrix Toolbox

Meinard Müller, Nanzhu Jiang, Harald Grohganz
SM Toolbox: MATLAB Implementations for Computing and
Enhancing Similarity Matrices

http://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox/

Overview

 Introduction

 Feature Representations

 Self-Similarity Matrices

 Audio Thumbnailing

 Novelty-based Segmentation

 Converting Path to Block Structures

Thanks:

 Jiang, Grosche
 Peeters
 Cooper, Foote
 Goto
 Levy, Sandler
 Mauch
 Sapp

Audio Thumbnailing

A1 A2 A3B1 B2 B3 B4C

Example:  Brahms Hungarian Dance No. 5 (Ormandy)

General goal: Determine the most representative section
(“Thumbnail”) of a given music recording. 

V1 V2 V3 V4 V5 V6 V7 V8 OBI

Example:  Zager & Evans “In The Year 2525”

Thumbnail is often assumed to be the most repetitive segment



Audio Thumbnailing

Two steps
 Paths of poor quality (fragmented, gaps)
 Block-like structures
 Curved paths

1. Path extraction

2. Grouping  Noisy relations
(missing, distorted, overlapping) 

 Transitivity computation difficult

Both steps are problematic!

Main idea: Do both, path extraction and grouping, jointly

 One optimization scheme for both steps
 Stabilizing effect
 Efficient

Audio Thumbnailing

Main idea: Do both path extraction and grouping jointly

 For each audio segment we define a fitness value

 This fitness value expresses “how well” the segment
explains the entire audio recording

 The segment with the highest fitness value is
considered to be the thumbnail

 As main technical concept we introduce the notion of a 
path family
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Enhanced SSM

Fitness Measure

 Consider a fixed segment

Path over segment
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Path over segment

 Consider a fixed segment

 Path over segment
 Induced segment
 Score is high

 A second path over segment
 Induced segment
 Score is not so high

 A third path over segment
 Induced segment
 Score is very low

Fitness Measure

Path family

 Consider a fixed segment

 A path family over a segment
is a family of paths such that
the induced segments do 
not overlap.
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This is not a path family!

 Consider a fixed segment

 A path family over a segment
is a family of paths such that
the induced segments do 
not overlap.

Fitness Measure

Path family

This is a path family!

 Consider a fixed segment

 A path family over a segment
is a family of paths such that
the induced segments do 
not overlap.

(Even though not a good one)

Fitness Measure

Optimal path family

 Consider a fixed segment

Fitness Measure

Optimal path family

 Consider a fixed segment

 Consider over the segment
the optimal path family,
i.e., the path family having
maximal overall score.

 Call this value:
Score(segment)

Note: This optimal path family can be computed
using dynamic programming.



Fitness Measure

Optimal path family

 Consider a fixed segment

 Consider over the segment
the optimal path family,
i.e., the path family having
maximal overall score.

 Call this value:
Score(segment)

 Furthermore consider the
amount covered by the
induced segments. 

 Call this value:
Coverage(segment) 

Fitness Measure
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 Consider a fixed segment

P := 
R := 

Score(segment)
Coverage(segment)
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Fitness

 Consider a fixed segment

 Self-explanation are trivial!

 Subtract length of segment

 Normalization

P := 
R := 

Score(segment)
Coverage(segment)

- length(segment)
- length(segment)

]1,0[
]1,0[

Normalize(                                                                )  

Fitness Measure

Fitness

 Consider a fixed segment

F := 2 • P • R / (P + R)
Fitness(segment)

Normalize(                                                                )  
Normalize(                                                                )

P := 
R := 

Score(segment)
Coverage(segment)

- length(segment)
- length(segment)

]1,0[
]1,0[
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Note: Self-explanations are ignored →  fitness is zero
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Fitness Scape Plot

Thumbnail := segment having the highest fitness
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Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Example: Brahms Hungarian Dance No. 5 (Ormandy)

Coloring according
to clustering result
(grouping)
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 Novelty-based Segmentation

 Converting Path to Block Structures

Thanks:

 Foote
 Serra, Grosche, Arcos
 Goto
 Tzanetakis, Cook

Novelty-based Segmentation

 Find instances where musical
changes occur.

 Find transition between
subsequent musical parts. 

General goals: Idea (Foote):

Use checkerboard-like kernel
function to detect corner points
on main diagonal of SSM.
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Idea (Foote):

Use checkerboard-like kernel
function to detect corner points
on main diagonal of SSM.

Novelty function using

Novelty function using

Novelty-based Segmentation

Idea:
 Find instances where

structural changes occur.

 Combine global and local
aspects within a unifying
framework

Structure features

Novelty-based Segmentation

 Enhanced SSM

Structure features
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 Time-lag SSM
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Novelty-based Segmentation
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Novelty-based Segmentation

Structure-based
novelty function

Example:  Chopin Mazurka Op. 24, No. 1

SSM

Time-lag 
SSM

Overview

 Introduction

 Feature Representations

 Self-Similarity Matrices

 Audio Thumbnailing

 Novelty-based Segmentation

 Converting Path to Block Structures

Thanks:

 Grohganz, Clausen
 Kaiser
 Peeters
 Dubnov, Apel
 Serra, Grosche, Arcos

Converting Path to Block Structures
Motivation

 Perform joint analysis using repetitive as well as
homogeneous aspects

 Make homogeneity-based methods applicable
to repetition-based analysis

Converting Path to Block Structures
Motivation

Homogeneity

SSM

SSM

Repetition

NMF

≈

NMF

≈

Clustering

Clustering

Converting Path to Block Structures

 Enhanced SSM

Procedure

Converting Path to Block Structures

 Enhanced SSM
 Thresholding & 

image processing

Procedure
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 Thresholding & 

image processing
 Eigenvalue 
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 Clustering & smoothing
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Converting Path to Block Structures

 Enhanced SSM
 Thresholding & 

image processing
 Eigenvalue 

decomposition
 Weigthing
 Clustering & smoothing
 Columns as features
 SSM from

these features

Procedure

Final matrix show
paths as blocks
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Conclusions

Temporal and 
Hierarchical Context

Representations

Segmentation 
Principles

Musical 
Aspects

Structure 
Analysis 

Homogeneity
NoveltyRepetition

Timbre
TempoHarmony

Audio
MIDIScore

Conclusions Conclusions

 Combined Approaches

 Hierarchical Approaches

 Evaluation

 Explaining Structure

 MIREX
 SALAMI-Project

 Smith, Chew
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Evaluation & Annotation
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Coffee Break

Book Project
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