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ABSTRACT
This paper introduces the Beethoven Piano Sonata Dataset (BPSD), a multi-version
dataset focusing on the first movements of Beethoven’s 32 piano sonatas. Recog-
nized as pivotal works in classical music, Beethoven’s piano sonatas have profoundly
shapedWestern classicalmusic, holding a significant place in cultural history. The BPSD
includes sheetmusic in differentmachine-readable formats and audio recordings from
11 performances, with 4 of them being in the public domain and freely accessible for
research purposes. A key feature of BPSD is its coherence, ensuring alignment of all ver-
sions on a unifiedmusical timeline and enforcing consistent structures through careful
editing of both score and audio representations. The focus andmainmotivation for the
design choices made in BPSD are on the technical and computational level. In partic-
ular, BPSD facilitates the assessment of algorithmic approaches in tasks like harmony
analysis, structure analysis, music transcription, beat and downbeat estimation, and
score following. The dataset’s coherence makes it an ideal platform for systematically
training and evaluating deep learning methods, shedding light on their robustness
and uncovering data biases across different data splits using cross-version strategies
for evaluation. To ease applicability for computational approaches, the BPSD is based
on various simplifications that may be disputable from a musicological perspective.
Rather than providing novel musicological annotations, themain conceptual contribu-
tion of BPSD with its measure annotations is to provide a framework for transferring
existing annotations from the symbolic to the audio domain. We hope that, as such,
BPSD is also useful for the systematic analysis and exploration of Beethoven’s piano
sonatas, providing insights into their influence on the development of harmony and
structure in Western classical music. Beyond research applications, the dataset also
holds educational potential, aiding in the preparation and presentation of Beethoven’s
work to a broader audience through interactive multimedia experiences. This paper
delivers a comprehensive overview of the BPSD, highlighting its potential for compu-
tational musicology and outlining future research directions.
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1 INTRODUCTION

The rise of digital technology has brought about signif-
icant developments in computer science, recently with
a remarkable success of data-driven methods utilizing
deep learning (DL) techniques. This progress has rein-
forced the importance of comprehensive, systematic,
and reliable datasets. In the field of Music Information
Retrieval (MIR), carefully curated datasets have become
indispensable resources, playing a crucial role in advanc-
ing tasks such as harmony analysis (Pauwels et al., 2019;
Weiß et al., 2020b), beat and downbeat estimation (Böck
et al., 2019), structure analysis (Nieto et al., 2020), and
music transcription (Benetos et al., 2019). From a techni-
cal perspective, high-quality andwell-controlled datasets
are essential for evaluating and understanding DL meth-
ods, providing insights into their robustness, generaliza-
tion capabilities, and uncovering potential data biases.
For an illustrative study in this direction, particularly for
the task of local key estimation, we refer the reader to
(Weiß et al., 2020b). Beyond the development and eval-
uation of analysis methods, such datasets enable musi-
cological corpus studies, which allow for systematic anal-
yses and explorations across entire corpora, thus going
beyond individual pieces while contributing to an objec-
tive methodology for musicological research (Mauch
et al., 2015; Nakamura and Kaneko, 2019; Serra, 2014).

As a novel resource for such endeavors, we introduce
the Beethoven Piano Sonata Dataset (BPSD), a multi-
version corpus focusing on the first movements of Lud-
wig van Beethoven’s 32 piano sonatas.¹ Theseworks rank
among the most popular pieces in the classical music
repertoire, holding a special place inWestern cultural his-
tory (Cooper, 2017) and being performed and adapted
innumerable times. Beethoven’s piano sonatas expand,
advance, and further develop the traditional sonata form
(Hepokoski and Darcy, 2006), explore innovative har-
monic progressions (Damschroder, 2016), and showcase
an expressive range and dramatic intensity that elevated
the genre and heavily influenced later composers (Tovey,
1931). Our BPSD contributes valuable resources on awork
cycle of highmusicological relevance, collecting, unifying,
and providing a rich set of musical data and annotations.
Regarding the primary material (raw data), the BPSD
includes diverse representations of the sonata move-
ments across variousmodalities. This encompasses sheet
music in different machine-readable formats and audio
recordings from 11 performances, with 4 of them being
in the public domain (in the EU) and freely accessible for
research purposes (see Figure 1 for an overview). Beyond
the raw data, our dataset comprises secondary material
in the form of carefully curated and linked annotations,
encompassing measures, beats, note events, global and
local keys, absolute and relative chords, and structural
elements. Starting with annotations specified on a musi-
cal timeline (given in measures) based on sheet music,

we employed semi-automated approaches that lever-
age music synchronization techniques to transfer these
annotations to the physical timeline of the recordings
(given in seconds). As a result, BPSD includes version-
specific annotations for both the sheet music and the
11 audio recordings, forming a systematic and com-
plete three-dimensional data tensor, as illustrated in
Figure 1.

Regarding its practical applicability in a computational
context, a key feature of the BPSD is its coherence, evi-
dent not only in the various annotations provided for
all versions but also in its unifying approach to musi-
cal timeline and structures. Note that depending on the
representation and performance, versions of the same
piece of music may exhibit different structures, result-
ing in significant temporal inconsistencies. For example,
in sheet music, repeats are notated using repeat signs,
possibly with alternative first and second endings. While
the enumeration ofmeasures involves assigning a unique
number to each measure in sequential order, this order
is violated when there are repeats, complicating mat-
ters from an algorithmic perspective. Furthermore, dif-
ferent performances may add or omit (e.g., playing the
exposition of a sonata form only once) repetitions. Even
worse, particularly in older live recordings, there may be
severe playing errors, introducing and leaving out several
measures.

To address these issues, we ensure temporal coher-
ence in the BPSD by selecting a reference version for all
movements and carefully adjusting musical timelines. In
particular, we unfold repetitions in musical scores, enu-
merate measures contiguously, and edit audio record-
ings by suitably copying or deleting certain parts or
sections. This process results in all versions adhering
to the same musical timeline, each measure having a
unique identifier, and alignments becoming well-defined
without gaps across versions. This uniformity greatly
enhances the usability of the BPSD for computational
approaches, cross-version evaluation, visualization, navi-
gation, and other applications.

The remaining sections of this paper are organized
as follows. In Section 2, we discuss related work with
a particular focus on other resources conceptually or
thematically associated with the BPSD. Section 3 out-
lines the overall organization of the BPSD and intro-
duces its primary musical material. Section 4 presents
an enhanced music synchronization approach used as
our central method for aligning different versions and
transferring annotations between them. Section 5 delves
into the annotations and their main properties. Fur-
thermore, Section 6 explores the potential of the BPSD
by discussing three concrete application scenarios, and
Section 7 concludes the paper by suggesting possible
research directions. The dataset is accessible through
a version-controlled repository on the Zenodo platform,
and its DOI is 10.5281/zenodo.10847702.²
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Figure 1 Schematic overview of the BPSD. For the first movements of all 32 piano sonatas, the dataset comprises raw data in different
representations (versions) such as score images, symbolic score representations, and audio recordings of different performances. For
the different versions, we provide time-aligned annotations of measure positions, beats, global and local keys, chords, and structural
elements. The score and the four audio versions indicated in dark blue are in the public domain (EU).

2 RELATED DATASETS AND RESOURCES

The MIR community has provided a diverse range of
research datasets, which constitute an important basis
for advancing music-related computational research.
Specifically, in the realm of data-driven methods,
datasets play a crucial role as an essential component
for training and evaluating DL models in MIR research.
The Real World Computing (RWC) music database (Goto,
2004) stands out as one of the first larger music datasets
designed specifically for research purposes. It encom-
passes various genres, including popular, jazz, and classi-
cal music, providing both audio recordings and symbolic
Musical Instrument Digital Interface (MIDI) represen-
tations synchronized through the production processes
or the application of alignment techniques. More recent
examples include the multitrack dataset MedleyDB (Bit-
tner et al., 2014) designed for source separation and
other MIR applications and the Erkomaishvili dataset
(Rosenzweig et al., 2020) suitable for ethnomusicolog-
ical research, both featuring high-quality annotations.
In his thoughtful essay, Serra (2014) makes a distinc-
tion between unstructured yet annotated datasets (or
test corpora) and curated research corpora, identifying
five essential criteria (purpose, coverage, completeness,
quality, reusability) for a research corpus. The BPSD,
along with several others mentioned in this article, can
be considered a research corpus based on these criteria.
For a comprehensive overview of diverse publicly acces-
sible datasets in the field of MIR, we refer to (Bittner
et al., 2019).³

In the subsequent discussion, we focus on datasets
revolving around piano music, many of which are specif-
ically tailored to automatic music transcription (AMT),
see, e.g., (Benetos et al., 2019). These datasets pro-
vide audio recordings of musical pieces along with cor-
responding symbolic encodings that are synchronized
with the recordings. Examples include the MIDI Aligned
Piano Sounds (MAPS) (Emiya et al., 2010), Saarland Music
Data (SMD) (Müller et al., 2011), and Maestro datasets
(Hawthorne et al., 2019). Hybrid acoustic-digital player
pianos (with MIDI interfaces) or software synthesizers
are utilized for these datasets to achieve precise align-
ments between symbolic and audio representations. The
Aligned Scores and Performances (ASAP) dataset is a
comprehensive resource that comprises digital musi-
cal scores aligned with MIDI and audio performances
(Foscarin et al., 2020). Peter et al. (2023) made further
refinements to ASAP, incorporating note-wise alignments
between scores and performances. MusicNet (Thickstun
et al., 2017) is another important dataset comprising
chamber music audio recordings (mostly involving the
piano) with aligned MIDI information. Finally, we want to
mention the Piano Concerto Dataset (PCD) (Özer et al.,
2023), which features excerpts of separate piano and
orchestra tracks, making it a valuable resource not only
for AMT and but also for source separation.

While the BPSD includes piano music, it differs from
the previously mentioned piano datasets in two signifi-
cant ways. Firstly, it focuses on a specific corpus of musi-
cal relevance. Secondly, it includes sheet music in various
machine-readable formats, along with several carefully
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aligned performances of the same musical works. This
characteristic defines it as what we refer to as a multi-
version dataset.

Similar multi-version datasets, based on other reper-
toires, have influenced the design and structure of the
BPSD. One notable example is the Schubert Winterreise
Dataset (SWD), a multimodal collection featuring vari-
ous representations and annotations of Franz Schubert’s
song cycle Winterreise (Weiß et al., 2021a). The SWD
comprises sheetmusic in differentmachine-readable for-
mats, audio recordings of nine performances, and anno-
tations such as musical keys, chords, or structural parts.
This dataset enables a systematic study of Schubert’s
musical language and style in Winterreise, also allowing
for comparisons of annotations across different anno-
tators and hierarchy levels. Similarly, the Wagner Ring
Dataset (WRD) constitutes a multi-modal and multi-
version resource focused on the extensive opera cycle
Der Ring des Nibelungen by Richard Wagner (Weiß et al.,
2023). It includes 16 recorded performances of the com-
plete Ring cycle, with annotations aligned to a symbolic
score representation based on a public-domain piano
reduction. The dataset also comprises annotations on
measures, key and time signatures, scenes, and singing
voice regions.

In all three datasets (SWD, WRD, and our BPSD),
a combination of manual work and semi-automated
approaches has been employed for creating and trans-
ferring annotations between different versions, bridging
the symbolic and audio domains. As detailed in Section 6,
the multi-version property of datasets creates numer-
ous research opportunities by utilizing the diverse infor-
mation sources provided through sheet music and the
various performances, reflecting a range of different
perspectives on the same musical work. This not only
facilitates the study of performance aspects (Lerch et al.,
2020) but also enables the investigation of algorithmic
approaches for various tasks, including automatic music
transcription (Benetos et al., 2019), optical music recog-
nition (Calvo-Zaragoza et al., 2020), music synchroniza-
tion (Müller et al., 2021), cross-modal retrieval (Müller
et al., 2019), chord recognition (Pauwels et al., 2019),
structure analysis (Nieto et al., 2020), and pattern discov-
ery (Meredith, 2016), just to name a few.

We conclude this section by discussing resources
specifically related to our Beethoven scenario, focusing
on the first movements of his piano sonatas. In (Chen
and Su, 2018), the authors introduce the Beethoven Piano
Sonata with Function Harmony (BPS-FH) dataset, which
contains expert annotations on chords and harmonic
functions for the sonata movements, referring to a sym-
bolic encoding. These annotations include chord symbols
andvarious interrelatedchordfunctions,suchas localkeys
and modulations, chord inversions, secondary chords,
and chord quality. Continuing this work, the BPS-Motif
dataset described in (Hsiao et al., 2023) offers note-level

annotations of motives (characteristic parts of melodic
themes) and their occurrences in the sonatamovements.
These annotations are well-suited for tasks such as motif
retrieval and repeated pattern discovery. Finally, wewant
to mention the work presented in (Jiang and Müller,
2013), which introduces automated methods for analyz-
ingmusic recordings in sonata form. This approach is eval-
uated using audio recordings of the Beethoven corpus,
incorporating structure annotations following Tovey’s
analysis of the Beethoven sonatas (Tovey, 1931). Some
of these annotations also serve as the foundation for the
annotations provided by the BPSD,which have undergone
careful revision, extension, and transfer to all versions.

Beyond the piano sonatas, Neuwirth et al. (2018)
released a symbolic dataset of Beethoven’s string quar-
tets including all movements as symbolic scores together
with harmony and phrase annotations. This dataset built
the basis for a detailed statistical analysis of harmony
(Moss et al., 2019). Furthermore, there is a plenty of other
corpora on piano music such as Mozart’s piano sonatas
(Hentschel et al., 2021), as well as specific corpora on
harmony (Gotham et al. 2023b; Hentschel et al., 2023)
or structure (Gotham and Ireland, 2019), which con-
tain numerous piano works including Beethoven’s piano
sonatas. All of these datasets focus on symbolic scores
and expert-level annotations while not including audio
recordings or multiple versions. Additional related work
on datasets and applications is discussed in subsequent
sections of this article.

3 DATA ORGANIZATION AND PRIMARY
MUSICAL MATERIAL

In this section,we provide an overviewof the overall orga-
nization of the BPSD. In particular, we outline the global
structure, introduce folder and filename conventions, dis-
cuss timeline conventions, describe the primary material
(score and audio data), and summarize structural modi-
fications for ensuring coherence.

3.1 FOLDER STRUCTURE
The BPSD is organized into four folders: 0_RawData,
1_Audio, 2_Annotations, and 3_Scripts. The
folder 0_RawData contains the raw audio files, directly
extracted from the respective CDs without undergoing
any structural modifications. Additionally, this folder
includes sheet music representations in various formats.
When necessary, editing operations are applied (see
Section 3.6), and the modified audio files are stored in
the folder 1_Audio, where every version of a sonata
adheres to a consistent structure. All annotations (see
Section 5) are gathered in the folder 2_Annotations.
The subdirectories within this folder are named to
indicate the type of annotation. Folders with the pre-
fix ann_score_ contain annotations with a musical
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timeline (given in measures) as specified by the score.
The alignment of these annotations with individual audio
versions results in annotations with a physical timeline
(given in seconds), which are then stored in folders with
the prefix ann_audio_. The directory 3_Scripts con-
tains all Python scripts used in creating the dataset. For
a detailed folder structure overview of the BPSD, please
refer to Table 1.

3.2 FILENAMING CONVENTION
We encode score-based data using filenames in the
format Beethoven_workID.ext, where workID indi-
cates the work by opus and movement number, and
ext signifies the type of annotation file. For example,
the local key annotations based on a musical timeline
for the first movement of Op. 53 (Waldstein Sonata)
is stored at 2_Annotations/ann_score_localkey/
with the filename Beethoven_Op053-01.csv. For
performance-related data, we append the performance
ID to the filename. For example, an audio record-
ing of the same sonata played by Wilhelm Kempff
in 1964 is stored in 1_Audio/ with the filename
Beethoven_Op053-01_WK64.wav.

3.3 MUSICAL AND PHYSICAL TIMELINES
The concept of ‘time’ in music can generally be
approached in two ways. There is the concept of musical
time, specified by the composer in terms ofmeasures and
beats, which remains independent of the performance’s
individual tempo shaping. In contrast, the events in a per-
formed version of the piece can be defined in physical
time, measured in seconds.

For the BPSD, we adopt the following convention for
encoding time positions on the musical timeline. We uti-
lize a decimal representation with the integer measure
position before the decimal point and three digits after
the decimal point to encode relative positions within a
measure. As an example, in a 3/4 time signature, we
encode the position of the start of the third beat in mea-
sure 137 as 137.666. Physical time is consistently rep-
resented in seconds with a precision of three decimal
places.

3.4 SCORE DATA
We offer score data in various formats, starting with
a scanned version of the 1952 edition by Henle,
which was chosen being in the public domain acces-
sible at IMSLP (stored at score_pdf_scan). Using
this version as a basis, we create sheet music for
each movement using the music notation software
‘Sibelius’ (score_sibelius_repetitions), adher-
ing to the measure numbering of the original score.
Additionally, we unfold the notated repetitions in
Sibelius to achieve a continuous measure count
(score_sibelius_unfolded). Both the original

and unfolded versions are then exported as MusicXML
and PDF files, stored at score_xml_repetitions,
score_xml_unfolded, score_pdf_repetitions,
and score_pdf_unfolded, respectively.

To enable playback of the symbolic scores in synthe-
sizers, we export the unfolded sonatas in the MIDI for-
mat (score_MIDI). To eliminate the need for a MIDI or
MusicXML parser and ensure the preservation of mea-
sure numbering, we also export all individual notes of a
sonata in .csv files (in ann_score_note). These files
contain the start and end of a note event specified on a
musical timeline, theMIDI pitch number, the current time
signature, and accents or playing styles like staccato or
sforzato.

3.5 AUDIO RECORDINGS
The BPSD comprises 11 complete performances of the
first movements of Beethoven’s 32 piano sonatas. Four
of these performances (AS35, FG58, FJ62, WK64) are
in the public domain in the EU4 and are included with
the dataset, while the remaining seven performances are
commercially available. The recordings by Jank are avail-
able at IMSLP5, while all other recordings are uniquely
identified using their European Article Number (EAN). We
provide additional metadata such as MusicBrainz IDs,
when available. An overview of all audio versions in the
BPSD is presented in Table 2. To ensure consistency, we
convert all audio files to mono WAV format with a sam-
pling rate of 22050 Hz.

3.6 STRUCTURAL MODIFICATIONS
In the original recordings forming the basis of the
BPSD, we identified structural differences that resulted in
notable inconsistencies in the musical timelines. These
differences include the absence of repetitions in the
exposition, additional repetitions of the development and
recapitulation, and discrepancies in the number of mea-
sures played due to performance errors.

While concepts such as ‘MeasureMaps’ (Gotham et al.,
2023a) have been introduced for transferring symbolic
annotations between editions with different structures,
we choose to apply structural modifications directly at
the audio level. This approach ensures that audio and
annotations are inherently coherent at every step of
the processing pipeline and can be immediately used
in data-driven approaches without the need for ad-hoc
modifications.

To this end, we designated the performances by Daniel
Barenboim (DB84) as the reference version for all move-
ments to ensure temporal coherence in the BPSD. It is
noteworthy that Friedrich Gulda follows the same per-
formance structure convention in both FG58 and FG67.
Barenboim generally adheres to the notated score and
closely follows themodel often referred to as sonata form
(“Sonatenhauptsatzform”), beginning with an exposition
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Folder name Content

- 0_RawData Raw audio and symbolic data

| - audio_ripped Audio files as ripped from the CD

| - WK64

| ...

| - FG67

| - score_pdf_scan Scanned score from IMSLP

| - score_pdf_repetitions Symbolic score in PDF format with repeat signs

| - score_pdf_unfolded Symbolic score in PDF format with unfolded repetitions

| - score_sibelius_repetitions Symbolic score in Sibelius format with repeat signs

| - score_sibelius_unfolded Symbolic score in Sibelius format with unfolded repetitions

| - score_xml_repetitions Symbolic score in MusicXML format with repeat signs

| - score_xml_unfolded Symbolic score in MusicXML format with unfolded repetitions

| - score_midi MIDI export of the symbolic score

- 1_Audio Audio files with coherent structure

- 2_Annotations Annotations with musical and physical timelines

| - ann_score_note Note events with start and end given in musical time

| - ann_score_chord Harmony annotations given in musical time

| - ann_score_localkey Local key annotations given in musical time

| - ann_score_globalkey Global key annotations

| - ann_score_structureFine Fine structure annotations given in musical time

| - ann_score_structureCoarse Coarse structure annotations given in musical time

| - ann_audio_note Note events with start and end given in physical time

| - ann_audio_midi Note events in physical time in MIDI format

| - ann_audio_beat Beat annotations given in physical time

| - ann_audio_measure Measure annotations given in physical time

| - ann_audio_startEnd Start and end of audio recordings (for removing silence/applause) given in physical time

| - ann_audio_syncInfo Alignment tuples for converting between musical and physical timeline

| - ann_audio_modifications Annotations for structural modifications of recordings

| - ann_audio_chord Harmony annotations given in physical time

| - ann_audio_localkey Local key annotations given in physical time

| - ann_audio_structureFine Fine structure annotations given in physical time

| - ann_audio_structureCoarse Coarse structure annotations given in physical time

- 3_Scripts Python scripts to convert raw data into the structured format

Table 1Overviewof the folder structure of the BPSD. Score-based folders contain files named in the formatBeethoven_workID.ext,
while audio-based folders contain files in the format Beethoven_workID_performerID.ext.
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ID Performer Year Label EAN Code Orig. Dur. Final Dur.

WK64 Wilhelm Kempff 1964 Deutsche Grammophon 028944796629 03:18:26 03:45:31

FJ62 Fritz Jank 1962 Instituto Piano Brasileiro available at IMSLP 03:35:13 03:41:26

FG58 Friedrich Gulda 1958 Decca 028948514519 03:34:00 03:34:00

AS35 Artur Schnabel 1935 Warner Classics 0190295975050 03:31:03 03:33:35

MC22 Muriel Chemin 2022 Odradek 855317003615 04:08:22 04:05:11

MB97 Malcolm Bilson et al. 1997 Claves 7619931970721 03:52:23 03:46:08

AB96 Alfred Brendel 1996 Philips 028941257529 03:54:34 03:52:28

JJ90 Jeno Jando 1990 NAXOS 730099150224 03:41:06 03:39:14

DB84 Daniel Barenboim 1984 Deutsche Grammophon 028941375926,
028941376626

03:58:37 03:58:37

VA81 Vladimir Ashkenazy 1981 London Records 028944370621 03:48:16 03:46:27

FG67 Friedrich Gulda 1967 Amadeo 028947687610 03:25:02 03:25:02

Total 40:47:08 41:07:45

Table 2 Overview of audio recordings in the BPSD. The upper four performances with identifiers WK64, FG58, FJ62, and AS35 are in the
public domain and freely accessible within the BPSD. All remaining recordings are commercially available and can be identified using
the EAN code. Durations are presented in the format hh:mm:ss.

and its repetition, followed by a development, and con-
cluding with a recapitulation. Only when explicit devia-
tions from this form are notated in the sheet music, such
as repeat signs for the recapitulation and development
parts with alternative first and second endings and/or a
closing coda, does Barenboim precisely follow the struc-
ture notated in the score. An overview of the reference
structure for all sonatas underlying our dataset is pro-
vided in the last column of Table 3. For a more detailed
discussion of the sonata form, see Section 5.3 and
(Hepokoski and Darcy, 2006; Neuwirth, 2021).

Using DB84 as a reference, we edited the other per-
formances to precisely follow the same structure. For
this purpose, we applied three types of modifications: cut
(removing a part completely), copy (duplicating a part
and inserting it at a different time position), and insert
silence (introducing silence in exceptional cases for short
periods when a copy operation was not possible due to
missing audio material for alternative endings). Anno-
tations for these modifications are provided in separate
CSV files for each recording that requires adjustment,
available in ann_audio_modifications. All edit oper-
ations are automatically applied using a Python script.
The finalized audio recordings are stored in the folder
1_Audio.

As a result, the editing process guarantees coher-
ence across all versions, adhering to the same musi-
cal timeline with a unique identifier for each measure,
thus establishing well-defined alignments without gaps.

Additionally, we ensured that the unfolded musical
scores (Section 3.4) also adhere to the same timeline con-
ventions. Finally, we note that all annotations are exclu-
sively specified for the modified music recordings and
unfolded scores.6

4 MUSIC SYNCHRONIZATION

Thanks to a coherent musical timeline across all ver-
sions of a movement, we can utilize standard music
synchronization techniques to temporally align all score
and audio representations. This approach enables us to
initially specify annotations based on a shared musi-
cal timeline and subsequently transform this timeline to
alignwith the physical timelines of specific performances.
In this section, we summarize the music synchronization
techniques used for creating the BPSD. While adhering to
the standard high-resolution synchronization approach
provided by the Sync Toolbox (Müller et al., 2021), we
introduce a variant that further improves temporal accu-
racy by incorporating recent music transcription tech-
niques (Section 4.1). Furthermore, we present experi-
ments assessing the synchronization accuracy (Section
4.2) and subsequently detail the procedure for aligning
musical and physical timelines by transferring measure
and score-related information between versions (Section
4.3). For a detailed description of the transcription and
synchronization approachwe refer to (Zeitler et al., 2024).
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No. Work ID Name Key Mean Dur. Min. Dur. Max. Dur Meas. Structure

01 Op002No1-01 F:min 03:47 03:22 (AS35) 04:33 (WK64) 200 E-E-D-R

02 Op002No2-01 A:maj 07:04 06:23 (FG67) 07:45 (MC22) 452 E-E-D-R

03 Op002No3-01 C:maj 10:15 09:47 (FG58) 11:25 (MC22) 347 E-E-D-R-C

04 Op007-01 Grand Sonata Eb:maj 08:17 07:27 (AS35) 08:58 (MC22) 497 E-E-D-R-C

05 Op010No1-01 C:min 05:33 04:41 (AS35) 06:13 (MC22) 388 E-E-D-R

06 Op010No2-01 F:maj 05:38 05:03 (FG67) 06:14 (VA81) 268 E-E-D-R

07 Op010No3-01 D:maj 06:59 06:26 (FJ62) 07:53 (JJ90) 467 E-E-D-R-C

08 Op013-01 Pathétique C:min 08:56 08:06 (FG58) 09:57 (MC22) 431 I-E-E-D-R-C

09 Op014No1-01 E:maj 06:35 05:31 (VA81) 07:25 (AB96) 222 E-E-D-R-C

10 Op014No2-01 G:maj 07:06 05:49 (AS35) 07:56 (AB96) 263 E-E-D-R-C

11 Op022-01 Bb:maj 07:26 06:43 (AS35) 08:36 (MC22) 267 E-E-D-R

12 Op026-01 Funeral March Ab:maj 08:01 06:51 (FG67) 10:02 (AS35) 219 T-V1-V2-V3-V4-V5

13 Op027No1-01 Son. q. u. fant. Eb:maj 05:12 04:36 (AB96) 05:42 (FG58) 106 An-Al-T1

14 Op027No2-01 Moonlight C#:min 06:01 04:58 (AS35) 07:28 (FG58) 69 P1-P2-P3-C

15 Op028-01 Pastoral D:maj 09:58 08:58 (FJ62) 11:39 (MC22) 622 E-E-D-R-C

16 Op031No1-01 G:maj 06:23 05:44 (FG58) 07:19 (MC22) 435 E-E-D-R-C

17 Op031No2-01 Tempest D:min 08:27 06:49 (FG58) 09:52 (MC22) 320 E-E-D-R-C

18 Op031No3-01 The Hunt Eb:maj 08:29 07:53 (FG67) 09:07 (MB97) 341 E-E-D-R-C

19 Op049No1-01 Easy Sonata G:min 04:35 03:41 (JJ90) 05:17 (MB97) 143 E-E-D-R-C

20 Op049No2-01 Easy Sonata G:maj 04:37 04:19 (FJ62) 05:10 (MC22) 174 E-E-D-R

21 Op053-01 Waldstein C:maj 10:38 09:25 (FG67) 11:36 (MC22) 387 E-E-D-R-C

22 Op054-01 F:maj 05:38 04:58 (AS35) 06:13 (MC22) 154 M1-Tr1-M2-Tr2-M3-C

23 Op057-01 Appassionata F:min 09:35 07:35 (FG67) 10:39 (DB84) 262 E-D-R-C

24 Op078-01 A Thérèse F#:maj 07:04 06:20 (FG58) 08:18 (MC22) 206 I-E-E-D-R-D-R

25 Op079-01 Cuckoo G:maj 04:40 03:58 (AS35) 05:12 (MC22) 372 E-E-D-R-D-R-C

26 Op081a-01 Les adieux Eb:maj 07:04 06:00 (FG67) 07:50 (DB84) 308 I-E-E-D-R-C

27 Op090-01 E:min 05:35 04:34 (FG67) 06:19 (MB97) 245 E-D-R-C

28 Op101-01 A:maj 04:00 03:35 (WK64) 04:29 (DB84) 102 E-D-R-C

29 Op106-01 Hammer-
klavier

Bb:maj 11:06 08:54 (AS35) 13:04 (DB84) 530 E-E-D-R-C

30 Op109-01 E:maj 03:46 03:14 (WK64) 04:19 (DB84) 99 E-D-R-C

31 Op110-01 Ab:maj 06:33 06:00 (FJ62) 07:33 (DB84) 116 E-D-R-C

32 Op111-01 C:min 09:05 08:20 (AS35) 10:04 (VA81) 209 I-E-E-D-R-C

Table 3 Overview of the first movements of Beethoven’s 32 Piano Sonatas. The table displays information including the work ID, trivial
name (if applicable), global key, mean, minimum, andmaximum duration of available recordings (see Table 2), number of measures, and
the coarse structure. All durations are presented in the format mm:ss.
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4.1 SYNCHRONIZATION APPROACH
Music synchronization refers to a procedure that tem-
porally aligns different versions of the same underlying
piece of music (Müller, 2021). Depending on the ver-
sions, there are various variants, including score-audio
synchronization for aligning a score representation with
an audio recording and audio-audio synchronization for
aligning two audio versions. In our scenario, we employ a
synchronization procedure provided by the Sync Toolbox
(Müller et al., 2021), which is based on a multi-scale and
multi-resolution variant of dynamic time warping (DTW)
(Prätzlich et al., 2016). The synchronization pipeline uti-
lizes framewise chroma representations (capturing har-
monic and melodic properties) as input features and
incorporates additional onset activations (capturing note
beginnings) for refinement, see also (Özer et al., 2022).

In the case of score data, chroma and onset infor-
mation can be directly extracted from the symbolic
representation and encoded in the form of a piano-roll
representation. As for audio data, one may use signal
processing techniques for extracting chroma and onset
features (Müller and Ewert, 2011). As an alternative,
we convert the audio recordings into piano-roll repre-
sentations by applying state-of-the-art music transcrip-
tion techniques based on DL. In particular, we use a
model based on the Onsets and Frames architecture
proposed by Hawthorne et al. (2018). Following Maman
and Bermano (2022), we further improve this model by
including a fine-tuning step on unaligned pairs of audio
and score representations from the BPSD. This results
in highly accurate transcription results, particularly for
pianomusic, which can be integrated in the previous syn-
chronization pipeline to improve the alignment results.

4.2 SYNCHRONIZATION ACCURACY
We now assess the accuracy of our synchronization
pipeline. Since reference alignments for the BPSD are
unavailable, we employ heuristics similar to (Prätzlich and
Müller, 2016). To achieve this, we calculate measure esti-
mates for all audio versions in two different ways. In
the first case, we manually annotate the measure posi-
tions for all WK64 recordings (see also Section 5.1) and
then apply audio-audio synchronization to transfer these
annotations to all other audio versions. In the second
case, we apply score-audio synchronization to align the
symbolic score with all audio versions. As all note events
in the symbolic score are associated with a position on
the musical timeline (see Section 3.3), we directly obtain
estimates of measure positions for the audio versions as
long as there is a note onset on the measure’s first beat.
If this is not the case, we linearly interpolate between the
two neighboring note events to estimate the measure
position.

In our heuristics, we assume that the synchroniza-
tion accuracy is high if the audio-audio estimates closely

match the score-audio estimates for all measure posi-
tions. Although, strictly speaking, this is only a necessary
condition and not a sufficient one, these heuristics serve
as a reliable indicator of accuracy. For each pair (audio-
audio, audio-score) of measure estimates, we calculate
the absolute error. In Table 4, we present the mean,
median, and 95% confidence interval for these errors on
the basis of all audio versions in the BPSD. For example,
we obtain an overall mean error of 25 ms and a median
error of 17 ms. Considering only measure estimates that
align with note onsets, these numbers slightly improve
to 18 ms and 16 ms, respectively. Recall that the mea-
sure positions for WK64 were annotated manually (see
also Section 5.1). Thus, the absolute errors reported for
WK64 provide an indicator of the performance of audio-
score synchronization alone (along with inaccuracies in
the manual annotation process that, for more complex
music, can reach a level of up to 100 ms (Weiß et al.,
2016)). While yielding slightly better results, the errors on
WK64 remain in the sameorder ofmagnitude as the other
results.

Overall, we may conclude that the synchronization
yields accurate alignment results with errors in the order
of 20 to 30 ms (assuming that it behaves in a similar
fashion within measure positions). The 95% confidence
interval of about 40 to 50 ms provides a more generous
estimate of the accuracy, which needs to be taken into
account when working with automatically transferred
annotations (see Section 5).

4.3 ALIGNING MUSICAL AND PHYSICAL
TIMELINES
Using the music synchronization method described
before, we now describe the process of aligning themusi-
cal and physical timelines across all performances. In
the context of Western classical music, audio-audio syn-
chronization often proves to be more robust than score-
audio synchronization. This is attributed to the fact that
input features are computed from data within the same
domain in the audio-audio case.

Motivated by this and following (Weiß et al., 2021a,
2023), we adopt amulti-step approach to align themusi-
cal and physical timelines. In the initial step, audio-audio
synchronization is applied to transfer measure annota-
tions from the WK64 recordings to all other recordings.
To mitigate boundary artifacts resulting from silence or
applause at the beginning or end of a recording, weman-
ually annotated the start and end points of each record-
ing (ann_audio_startEnd). These time positions serve
as anchor points in the synchronization approach (see
(Prätzlich et al., 2016) for an explanation of the anchor
point concept).

In the second step, using the transferred measure
positions as anchor points, we apply score-audio synchro-
nization. This maps all note onsets and offsets from the
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All Measures Measures With Note Onset

Version Mean Median 95% Conf. Mean Median 95% Conf.

WK64 20 13 40 14 11 40

FJ62 25 19 60 19 18 45

FG58 23 16 41 17 14 40

AS35 25 15 54 18 13 40

MC22 27 20 63 21 20 60

MB97 30 20 60 20 20 47

AB96 28 18 46 18 17 40

JJ90 24 17 43 16 16 40

DB84 29 19 60 19 18 54

VA81 24 17 56 17 16 41

FG67 25 9 40 17 8 40

All 25 17 53 18 16 40

Table 4 Accuracy of synchronization approaches. The table presents absolute errors betweenmeasure estimates obtained fromaudio-
audio synchronization (based on manually annotated measure positions for WK64) and score-audio synchronization. Mean, median,
and the 95% confidence interval for all measures (left side) and for only those measures with a note onset (right side) are reported. All
values are given in milliseconds.

musical timeline to the physical timeline, providing a rep-
resentation of all symbolic note events precisely aligned
with an audio version (available in ann_audio_note
as a list of note events and in ann_audio_midi as a
playable MIDI file for each track).

In the third step, the aligned note events serve as
the basis for mapping musical time to physical time.
Recall from Section 3.3 that each note onset of the
score is encoded by a real-valued position on a continu-
ous measure axis, while the aligned position in an audio
version is a real-valued number encoding physical time
in seconds. This information is stored as tuples ‘(musi-
cal time, physical time)’ on a discretized time grid in
ann_audio_syncInfo and is utilized for every trans-
fer from a score-based version to an audio-based version
or vice versa. We use linear interpolation between note
events to obtain a continuous mapping between posi-
tions on the musical timeline and a physical timeline.

It is crucial to emphasize that our approach trans-
fers note information from the score, aligning the musi-
cal timeline of the score with the physical timeline of the
performance. Consequently, the annotations are not tai-
lored to individual deviations within each performance,
especially playing errors. Additionally, our synchroniza-
tion approach is not designed to handle arpeggios or trills,
which are treated as simultaneous events. Hence, our
note annotations should be regarded not as a direct tran-
scription of the audio recording but as a temporal adap-
tation of the score information.

5 ANNOTATIONS

In this section, we provide an overview of the annota-
tions included in the BPSD. These annotations covermea-
sure and beat positions, harmonic segments (local key
and chord), and structural elements (on a coarse and fine
level). For each movement, the annotations are available
with respect to the musical timeline (for the score ver-
sion) and with respect to performance-specific physical
timelines (for all audio versions). For an overview,we refer
to Figure 2.

5.1 MEASURE AND BEAT ANNOTATIONS
As already mentioned in Section 4, we manually anno-
tated measure positions for WK64, which serves as our
reference version for measure annotations. The reasons
for selecting WK64 as a reference include its availability
in the public domain, its high audio quality, and Kempff’s
choice of a relatively slow tempo, which simplifies the
manual annotation process. In this process, a musi-
cally trained listener annotated all WK64 recordings using
the Sonic Visualiser software (Cannam et al., 2010). To
ensure high quality, these annotations were processed
with a sonification tool and cross-checked by an inde-
pendent and experienced audio annotator. The experi-
ments in Section 4.2 suggest that the annotation accu-
racy is within the order of or better than the synchro-
nization accuracy of 20 to 30 ms, which is better than
obtained for complex orchestral music in (Gadermaier
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Figure 2 Overview of various annotations in the BPSD illustrated using the first measures of the Sonata Op. 14, No. 2 in G Major.
Measure positions are marked with red ticks, while beat positions are indicated by red dashed lines.

andWidmer, 2019;Weiß et al., 2016). Themeasure anno-
tations for the other audio versions were then obtained
using audio-audio synchronization techniques and stored
in ann_audio_measure.

To derive beat annotations for the score, we initially
generated a list of all beats in a movement by divid-
ing each measure by the number of beats specified in
the time signature. Subsequently, utilizing the alignment
of musical and physical timelines (see Section 4.3), we
transferred the beat positions to the physical timelines of
the audio versions, storing them in ann_audio_beat.

5.2 HARMONY ANNOTATIONS
The BPSD includes diverse harmony-related annotations
in the form of absolute and relative chord, local key, and
global key annotations. For the chord annotations, we
started with the score-based annotations provided by
the BPS-FH dataset (Chen and Su, 2018). We adjusted
the original timelines, initially specified on a quarter
note grid, to our measure-based musical timelines,

represented by real-valued measure counts. Addi-
tionally, we made structural modifications to ensure
coherence with the reference musical timeline when
necessary. Finally, these annotation were transferred to
the audio versions using the alignment information. As a
first type of chord annotations, we include the high-level
chord labels from the original BPS-FH dataset consisting
of chord functions (as scale degrees in Roman numeral
notation) relative to the local key. To facilitate the usage
of BPSD for tasks like audio-based chord estimation, we
additionally opt for a more pragmatic encoding.7 There-
fore, we choose to provide absolute chord information
(root notes specified as pitch classes) in the encoding
scheme proposed by Harte et al. (2005). Enhancing the
applicability of chord annotations for various tasks, we
represent chords at different levels of detail. This includes
shorthand notation (e.g., C:7/E), extended form (e.g.,
C:(3,5,b7)/E), major/minor with inversion (e.g., C:maj/E),
major/minor (e.g., C:maj), and a numerical identifier of
the latter (e.g., 1). Chord annotations with the start and
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end of each chord in musical and physical time are pro-
vided in ann_score_chord and ann_audio_chord,
respectively.

In a similar manner, we include the local key anno-
tations from the BPS-FH dataset (Chen and Su, 2018),
adapting and transferring them accordingly for the audio
representations. The local key annotations, along with
their start and end times in both musical and physical
timelines, are accessible in ann_score_localkey and
ann_audio_localkey, respectively.

Finally, for the global key annotations, we deviate from
our convention of having one annotation file per move-
ment and performance. Instead, we provide a single
table in ann_score_globalkey, containing the global
keys of the first movements of all 32 piano sonatas.

5.3 STRUCTURE ANNOTATIONS
As a last type of annotation, we include structural infor-
mation, primarily intended for the purposes of overview
and navigation. Strictly following the analysis by Tovey
(1931), we include structural boundaries in two levels of
granularity. In particular, we provide boundary annota-
tions for the coarse structure (such as Exposition, Devel-
opment, Recapitulation, etc.) and fine sub-structures
based on thematic material used (such as First Group,
Second Group, Transition phases, etc.), as visualized in
Figure 2 and described in the following section.

The sonata form is a prominent structural con-
cept in Western classical music and can be catego-
rized into five types (Hepokoski and Darcy, 2006).
In Beethoven’s piano sonatas, the type 3 sonata
(‘Sonatenhauptsatzform’) is predominantly used, usu-
ally containing a (repeated) exposition, a develop-
ment, and a recapitulation part, occasionally starting
with an introduction and concluding with a coda.
Following the analysis by Tovey (1931), we provide
this coarse structural information in relation to the
musical timelines in ann_score_structureCoarse
and the performance-specific physical timelines in
ann_audio_structureCoarse.

In addition to the overarching sonata form structure,
one often encounters specific substructures within the
exposition and recapitulation. Typically, the exposition
introduces the primary thematic material of the move-
ment through two tonally contrasting subject groups.
The first subject group is usually in the global key (home
key) of the movement, while the second subject group
is in the dominant key (for sonatas in major) or the rel-
ative key (for sonatas in minor). These subject groups
are commonly linked by a modulating transition, and
the exposition frequently concludes with an additional
closing theme or codetta. The recapitulation mirrors the
subparts of the exposition but incorporates a significantly
different local key progression. Also, it often includes

prolonged sections, introduces new material, and incor-
porates local modulations.

Consistent with the analysis by Tovey (1931), we
offer structure annotations on a more detailed level
in ann_score_structureFine for the score and in
ann_audio_structureFine for the audio recordings.
Comparable annotations were employed in the study
by Jiang and Müller (2013) to assess a computational
approach for analyzing music recordings in sonata form.

While we are aware of the limitations of Tovey’s analy-
sis, assuming a rather outdated view on sonata form, the
great level of detail and descriptiveness (‘bar-by-bar’) is
an advantageous property in our case since it allows for
deriving clear marks of reference that facilitate naviga-
tion and overview.

We suggest a careful interpretation of structure anno-
tations, as they often capture tendencies rather than
strict rules. In practice, numerous exceptions and mod-
ifications to the sonata form exist, and the utility of
the sonata form as an oversimplifying model is a sub-
ject of debate among many researchers, as discussed in
(Kleinertz, 2016; Neuwirth, 2021).

6 APPLICATION SCENARIOS

In this section, we outline several use cases to highlight
the research potential of the BPSD in fields such as MIR
and computational musicology. Some of these studies
draw upon prior research that utilized similar datasets.

6.1 LEARNING PITCH-CLASS REPRESENTATIONS
Pitch-class or chroma representations extracted from
audio recordings play a fundamental role in various MIR
tasks. Traditional chroma features, computed using sig-
nal processing methods, are often impaired by timbral
properties like overtones or vibrato, resulting in an only
rough correspondence to the pitch classes indicated by
a musical score. To overcome this, Weiß et al. (2021b)
employed a DL approach for learning transcription-like
pitch-class representations using synchronized score-
audio pairs from classical music. Providing aligned train-
ing pairs, the BPSD proves to be a valuable resource for
training such DL-based models. An example of an audio-
based pitch-class representation learned with a CNN-
based model and trained exclusively on the BPSD is illus-
trated in Figure 3.

As another central feature of BPSD, its coherent struc-
ture enables the exploration of different systematic
training-test splits, including the cross-work split (across
movements) and the cross-version split (across perfor-
mances). Introduced in (Weiß et al., 2020b), such an
approachwas applied to study the generalization proper-
ties of data-drivenmethods for local key estimation using
the Schubert Winterreise Dataset (Weiß et al., 2021a).
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Figure 3 Synchronized score-audio training pair for learning pitch-class representations using a frame-wise loss function.

Figure 4 Visualization of a time-diatonic representation derived from the WK64 recording of the first movement of the Piano Sonata
Op. 14 No 2 in G Major. The local-key reference annotations are indicated by the overlaid red rectangles.

6.2 LOCAL KEY ANALYSIS
The aforementioned study leads us directly to our next
use case, where we consider the task of estimating local
keys-a task that can be seen as conducting harmony
analysis on a mid-level time scale. Instead of explic-
itly extracting and numerically evaluating such informa-
tion, it is often insightful to visualize harmonic structures
and leave the final interpretation to a music expert. One
such approach is described and applied to Beethoven’s
sonatas in (Weiß et al., 2020a), where relevant pitch con-
tent with respect to the 12 diatonic scales is extracted
from an audio recording and visualized in the form of a
time-diatonic representation.

Figure 4 shows such a visualization of a time-diatonic
representation derived from a WK64 recording of the
Piano Sonata Op. 14 No 2 in G Major. Note that the visu-
alization is organized along the recording’s physical time-
line. The reference annotations for local keys, indicated by
overlaid red rectangles, assist in evaluating the estima-
tion results. The automatically computed time-diatonic
representation offers a clear overview of the general har-
monic progression, emphasizing the typical key structure
of the sonata form.

The figure also demonstrates that the inclusion of
additional information, such as the start times of musi-
cal form sections or the position of measures, can further
enrich the visualization. Such annotations are particularly
helpful when using audio-based visualizations in combi-
nation with musical scores for scrutinizing and gaining a
deeper understanding of the phenomena revealed by the
visualizations.

6.3 CHORD RECOGNITION
In our third use case, we consider the task of chord recog-
nition, which can be seen as a detailed analysis of har-
mony (Pauwels et al., 2019). In the early cross-version
study by Konz et al. (2013), the authors showed that
chord recognition results can be stabilized by simultane-
ously performing this task for several audio recordings
and then merging the results using a fusion approach
(e.g., majority voting).

The BPSD proves ideal for such a cross-version study,
encompassing scores and multiple recordings for all
movements. Figure 5 illustrates this methodology, show-
casing chord recognition results for all 11 performances
of the initial measures of the Piano Sonata Op. 31 No. 1
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Figure 5 Cross-version chord recognition for the initial measures of the Piano Sonata Op. 31 No. 1 in G major. The results are presented
for all 11 performances, alongside the majority vote and the reference annotations.

in G major, alongside the majority vote and reference
annotations. In this example, leveraging the improved
pitch-class representations outlined in Section 6.1, we
employed a simple template-based chord recognition
approach, simplifying to the 24 major and minor tri-
ads. Furthermore, we transformed the performance-
dependent physical timelines of the chord recognition
results into a unified musical timeline based on align-
ment annotations. Finally, we consolidated the results
via majority voting, resulting in increased stability and
improvement compared to individual recognition out-
comes.

7 CONCLUSIONS

This paper presented the carefully curated and annotated
multi-version BPSD, centered on the first movements of
Beethoven’s piano sonatas. We provided a comprehen-
sive overview of the data, addressing our methodolo-
gies for curation, processing, correction, and annotation.
The dataset includes symbolic scores in various formats
and over 40 hours of audio data from 11 performances,
with 4 being in the public domain accessible for research
purposes. Secondary materials encompass alignments,
measure and beat positions, chord and local keys, and
structure annotations for all versions.

We estimate that the creation of the BPSD required
more than 2,000 hours in total, involving tasks such
as symbolic score creation (ca. 500 hours), annotation
creation and adjustment (ca. 500 hours), programming
(ca. 500 hours), and further processing and refinement
(ca. 500 hours), excluding the actual research work with
the data.

A key feature is the dataset’s coherence, achieved by
enforcing unified musical time for all versions and ensur-
ing annotation consistency. Leveraging this coherency
(admittedly sometimes achieved through simplification
and musicologically debatable assumptions), the BPSD
is designed to be technically convenient and can be
readily utilized for training and testing machine learning
approaches. This includes the investigation of data-driven
approaches for chord recognition, local key estimation,
measure and beat tracking, structure analysis, andmusic
transcription to evaluate their capabilities for generaliza-
tion across works, versions, and modalities.

Building upon previous studies, we highlighted various
research opportunities provided by the dataset. Specifi-
cally, we hope that the BPSD will foster further engage-
ment in the musicological discourse on Beethoven’s
piano sonatas and their performances by offering a
framework that allows for the easy transfer ofmusicolog-
ical annotations, typically defined on a musical timeline,
to a multitude of audio recordings. In this context, we
believe that the development of interactive software and
visualization applications holds significant potential for
interdisciplinary research and educational applications.
In conclusion, we aspire for the BPSD to be a valuable
resource and a source of inspiration, offering compelling
research opportunities in the fields of music information
retrieval, computational musicology, and digital human-
ities at large.
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NOTES

1. This selection follows the convention of most editions and CD compi-
lations to not include the early sonatas WoO 47 (Kurfürstensonaten),
which have been subject to a computational study by Klauk et al. 2021.

2. https://doi.org/10.5281/zenodo.10847702

3. https://mirdata.readthedocs.io/en/latest/

4. Please note that these recordings might not be in the public domain in
other countries outside the EU and Switzerland.

5. https://imslp.org/wiki/Category:Jank,_Fritz

6. We are aware that such modifications are unusual from an editor’s
perspective or for performance analysis. However, regarding the BPSD
mainly as a resource for studying algorithmic approaches to MIR and
computational musicology, we value the structural consistency across
versions as favorable. Please note that original audio files are still
accessible in the folder0_RawData and the scripts provided alongwith
the data ensure reproducibility and bridge the link back to the original
data

7. See, for instance, the mir-eval library (https://github.com/craffel/mir_e
val).
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