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Abstract—This paper proposes the application of dynamic
few-shot learning for automatic drum transcription (ADT). The
contributions of this work are threefold. First, we adapt dynamic
few-shot learning to improve the classification of superimposed
events. Secondly, we introduce a novel method for generating
training data for ADT. Thirdly, we demonstrate how our model
can be applied in real-time without strongly deteriorating the
classification performance. We evaluate transcription perfor-
mance in the presence of melodic instruments for 10 drum classes
on three publicly available test datasets and achieve state-of-the-
art performance. We show that new drum classes can be learned
and performance for known classes can be improved by providing
some examples of that respective class during test time.

Index Terms—music information retrieval, automatic drum
transcription, few-shot learning, real-time processing

I. INTRODUCTION

Humans learn new tasks given a small number of examples,
e.g., identifying a person based on only one provided image.
Machine learning implements this ability by means of few-
shot learning (FSL) which enables models to learn from
only a few examples per class, and generalize effectively to
new, unseen classes [1]. Embedding learning maps inputs to
lower-dimensional latent representations, where similar inputs
are mapped close together and dissimilar inputs are mapped
farther apart [1]. Prototype learning [2] aims to represent
each class by a prototype, serving as a representative point
in the feature space, facilitating efficient classification, which
is regarded as robust when dealing with out-of-distribution
samples [3]. These techniques are complementary in the
following ways. Embedding learning represents data in a
compact manner which is beneficial for prototype learning and
FSL. Prototype learning enables classification by defining class
prototypes.

In this paper, we investigate FSL using prototypes and em-
bedding techniques for automatic drum transcription (ADT), a
subfield of automatic music transcription in the area of music
information retrieval (MIR) [4]. ADT aims at detecting and
classifying drum sounds in audio signals [5]. In this work, we
focus on the transcription for 10 drum classes in the presence
of melodic instruments such as guitar, piano, and singing. We
use FSL to extend pre-trained ADT models to novel classes
and to fine-tune them with examples for which classification
performance is low.
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Possible applications are the area of the Internet of Musical
Things (IoMusT) [6] which is a subfield of the Internet of
Sound [7]. A Musical Thing is “a computing device capable
of sensing, acquiring, processing, or actuating, and exchanging
data serving a musical purpose” [6, p. 61995]. ADT helps
to create such devices assisting in music production, music
education or for creating visualizations of music in streaming
or live performance applications. To allow synchronization in
live performances, a low delay is needed which, according to
[6], should not exceed 60ms. The authors of [7] emphasize
the need of real-time capable MIR techniques as most research
projects focus on offline algorithms that are not applicable in
many IoMusT scenarios. In applications were the drum sounds
of a single drum kit need to be transcribed, FSL is useful to
adapt to the present drum sounds. Such an application can be
an e-learning software program which transcribes the drum
sounds a student produces in real-time and identifies errors by
comparing the transcription to a given score.

II. RELATED WORKS

Combinations of prototypical learning, embedding learning
and FSL are applied for sound event detection (SED) in [8],
[9], [10] and [11] and for ADT in [12]. In [13] and [14], the
authors apply prototypical learning and embedding learning
without using FSL for SED.

Distance-based prototypical approaches have been found to
perform poorly for superimposed sounds [14], which poses a
challenge for ADT since drum sets are played such that one or
more instruments are active at the same time. The authors of
[14] propose to classify superimposed sound events by training
a neural network to approximate the latent representation of
the input as superposition of pre-trained prototypes, without
using FSL. The downside of this approach is that the super-
position network needs to be retrained when classes used for
inference are altered.

In [12], a negative class prototype is created at inference
time from the input signal by selecting signal portions without
drum sounds. Then, for each target class, the algorithm per-
forms a classification between respective target and negative
class which allows for a classification of superimposed drum
sounds. This is not possible for real-time applications with low
delay.

We use dynamic FSL proposed for image classification
in [15], which combines prototype learning and embedding



learning. Unlike most other FSL methods, it only uses FSL
for novel classes by means of a dedicated generator for novel
class prototypes. The prototypes of classes present in initial
training, referred to as base classes, are learned end-to-end
without FSL. This has the advantage that base classes do
not need to be learned again during test time as the model
does not “forget” anything it learned during initial training.
Dynamic FSL is applied to SED in [9] and [10]. The authors
of [9] compare embedding networks with a larger number of
trainable parameters in comparison to the four-layer embed-
ding network proposed in [15]. While larger models achieve
higher base-class performance, the novel-class performance
decreases. In [10], the authors propose to use a larger 14-
layer convolutional embedding network with a global temporal
pooling layer and apply a binary cross-entropy loss instead
of the proposed categorical cross-entropy loss to allow the
occurrence of multiple classes simultaneously, similar as in
this paper.

The contributions of this work are further adaptations of
the dynamic FSL approach to enhance classification of super-
imposed drum sounds. We propose to modify the classifier
and learn a negative class prototype together with learning
base class prototypes. Thereby, unlike in [12], no negative
class needs to be sampled at inference time. In contrast
to [14], our approach is not limited to matching training
and inference classes. As another contribution, we propose a
novel method for generating training data including recordings
of instruments played by musicians instead of solely using
audio files rendered from MIDI files without the downside of
time extensive manual labeling effort. Finally, we apply the
trained model in real-time still achieving high classification
performance.

III. METHOD

Fig. 1 shows an overview of our proposed method.
Input to the model are elements of a dataset
D =

{
(x1, y1), ..., (xN , yN )

}
with samples xi and class

labels yi ∈ {1, ...,K} with N being the number of samples
and K the number of classes. We use an embedding network
F (·|θ) with learnable parameters θ to compute a latent
representation zi = F (xi|θ) ∈ Rd. Dbase serves for learning
base class prototypes Wbase from latent representation zbase.
Similarly, we use Dnovel to learn novel class prototypes
Wnovel from latent representation znovel and Dtest to compute
latent representation ztest for testing the trained model. The
classifier C(z|Wbase ∪Wnovel) computes classification scores
for base classes and novel classes. The classification scores
are derived from the similarities between latent representation
z and prototypes of base classes Wbase = {wk ∈ Rd}Kbase

k=1

and novel classes Wnovel = {w′
m ∈ Rd}Knovel

m=1 . Wbase are
learned in the first training stage without using FSL. The few-
shot prototype generator G(Z ′,Wbase|θ) computes Wnovel by
using Wbase and latent representations Z ′ of few novel class
examples. G(·, ·|θ) is trained in the second training stage as
described in Section III-D.
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Fig. 1. System overview with embedding network F (·), classifier C(·), loss
function, generator for novel class prototypes G(·), base class prototypes
Wbase and novel classes prototypes Wnovel. Dashed lines are losses.

A. Pre-Processing

Input to the embedding network are mel spectra with 96
frequency bands and an upper cutoff frequency of 16 kHz
computed using a 1024-point short-time Fourier transform
(STFT) with hop length of 512 samples from single channel
audio signals sampled at 48 kHz. The embedding network
computes latent representations for blocks of input data, where
the number of frames per block is a hyperparameter. The hop
length is half a frame. In Section IV-A2, we compare two
setting with block length of eight and 21 frames.

B. Embedding Network

The embedding network uses five convolutional layers fol-
lowed by two dense layers. Each convolutional layer applies
2D convolution with a 3x3 kernel, instance normalization,
exponential linear unit (ELU) activation and 2x1 max pooling.
Following [15], we excluded the ELU activation in the final
convolutional layer. This adjustment permits negative values in
the embedding space and has demonstrated enhanced classifi-
cation performance for novel classes. The outputs are summed
up over the time dimension and flattened. The dense layers
reduce the dimensionality of the embedding to 384.

C. Classifier

The classifier computes the cosine similarity s(z, wk) be-
tween latent representation z and class prototypes wk of the
k-th class according to

s(z, wk) = τ · cos(z, wk) = τ · z · wk

∥z∥∥wk∥
(1)

with τ being a trainable scalar value.
We propose to extend the classifier from [15] by learning a

single negative class prototype wneg which represents the ab-
sence of drum sounds. This enables an independent estimation
of the probability of each class and allows high probabilities
of several classes simultaneously.

To this aim, we compute a similarity matrix of size K×2
M =

[
s(z, wk) s(z, wneg)

]
1≤k≤K

for a K-way classification



TABLE I
USED DATASET

Usage Num. Tracks Dur. [h] Content Annotation

SLAKH Train 1710 118.3 MIDI Automatic
STAR Train 1200 80.7 Rec.+MIDI Automatic
MDB Test 23 0.37 Recordings Manual
ENST Test 64 1.0 Rec.+MIDI Manual
RBMA Test 30 1.9 Recordings Manual

problem with s(z, wk) being the similarity of latent represen-
tation and k-th class prototype and s(z, wneg) the similarity
between latent representation and the negative class prototype.
Then, we compute the classification score for the k-th class
by applying the softmax function to s(z, wk) and s(z, wneg).

D. Few-Shot Prototype Generator

The few-shot prototype generator computes a novel class
prototype w′ = G(Z ′,Wbase|θ) given latent representations
Z ′ = {z′i}N

′

i=1 of N ′ input examples and Wbase by using
two components: The average of the embeddings of the
input examples, referred to as w′

avg, and an attention-based
prototype component w′

att [15]. The novel class prototype w′

is computed from both components according to

w′ = ϕavg ⊙ w′
avg + ϕatt ⊙ w′

att (2)

where ⊙ is the element-wise product, and ϕavg and ϕatt

learnable weight vectors.
The attention-based prototype component w′

att is obtained
according to

w′
att =

1

N ′

N ′∑
i=1

Kbase∑
b=1

Att(ϕq · z′i, kb) · wb (3)

where Kbase is the number of base class prototypes, Att() an
attention kernel consisting of cosine similarity function and
softmax operation, ϕq a learnable weight matrix, kb learnable
keys, wb the l2-normalized base class prototypes and z′i the
l2-normalized latent representations of the input examples.
This approach has similarities to the attention mechanism
in sequence-to-sequence models, where at each time step an
attention score to all other positions of the input sequence
is computed [16]. Here, the base class prototypes correspond
to the time sequence. For every input example, we compute
similarities to all base class prototypes and use this information
for creating the novel class prototype. The learnable keys kb,
one per base class prototype, enable the model to learn how
relevant each base class prototype is given a certain input.

The attention-based prototype component w′
att offers sev-

eral benefits instead of only using w′
avg. In case N ′ is very low,

its average does not yield a robust class representation. Also,
unlike w′

avg, w′
att makes use of information gained during

the training of base class prototypes by exploiting similarities
between novel class examples and base class prototypes.

E. Datasets

For both training and inference, we organize the drum
sounds across all datasets using the following 10 categories:
bass drum, snare drum, hi-hat (including closed and pedal
hi-hat sounds), open hi-hat, tom, ride cymbals, cymbals,
short percussion, tambourine and bell. The category ‘short
percussion’ is used for unvoiced sounds with fast attack, such
as sticks, side stick, clave, rim shots, or claps. The category
‘cymbals’ includes cymbal drum sounds that are not ride
cymbal drum sounds.

1) Publicly Available Datasets Used in the Experiments:
We use Slakh2100 (SLAKH) [17] for training, and MDB Drums
(MDB) [18], ENST Drums (ENST) [19] and RBMA13 (RBMA)
[20] for testing. Table I shows the datasets used in the experi-
ments and lists usage, the extent of data, source of annotation
and whether they consist of recordings of instruments played
by musicians and/or audio files rendered from MIDI files.
For STAR, the drums are rendered from MIDI files, while for
ENST a part of the backing tracks includes audio composed
of rendered MIDI files. We solely use signals with melodic
instruments such as guitar, piano, and singing for training and
testing. We exclude the tracks from RBMA which do not contain
drum sounds.

The drawbacks of SLAKH are the absence of vocals and the
fact that all instruments are synthesized from MIDI files, which
is not the case for the data to be expected at test time. In
machine learning, similar distributions of training and test data
are desirable. This motivates the investigation of other ways
to generate ADT training data.

2) Separate-Tracks-Annotate-Resynthesize Drums (STAR):
We propose a new dataset created by separation of audio
tracks, annotation and re-synthesis of drum tracks referred to
as STAR. It contains drum sounds synthesized from MIDI files
and recordings of melodic instruments played by musicians
and singing. To create the STAR dataset the input data must be
present as two stems, i.e., the drum stem containing the drum
recordings and the non-drum stem containing the recordings
of all other instruments and singing. Stems are obtained by
processing stereo recordings with the hybrid demucs source
separation algorithm which achieves highest performance on
drum separation among all compared algorithms in [21]. The
signals in MUSDB18 [22] are already provided as instrument
stems and no source separation needs to be applied. We create
reference annotations by analyzing the drum stems with a 18
class CRNN ADT model [23]. We re-synthesize the drum
stems using the reference annotations and 15 professional-



grade virtual drum kits, similar to the ones used in SLAKH.
This procedure enables annotations to be obtained without
manual labeling effort and guarantees perfect alignment of
annotation and audio. The re-synthesized drum stems and
the original non-drum stems are loudness normalized to the
same target level using BS.1770-4 [24] and mixed. In our
opinion, loudness normalization of the stems is an easy and
reliable way to obtain mixtures where the loudness levels are
on average similar to commercial mixes. We peak normalize
the stems after mixing to avoid clipping. The mixes and the
re-synthesized drum stems are processed with multiband com-
pression to mimic properties of commercial music recordings.

We exclude 12 items from MUSDB18 which are also
present in the test dataset MDB. The remaining 138 items of
MUSDB18 are used for validation and testing, while source-
separated tracks of 1062 commercial stereo recordings of
different genres serve as training data. This results in a dataset
with 1200 items with reference annotations and a total length
of 80.7 h. We use 1062 tracks for training, 125 for validation
and 13 for testing.

Other recent approaches of creating ADT training data are
E-GMD [25], ADTOF [26] [27], and A2MD [28]. The authors
of E-GMD recorded the performances of drummers using an
electronic drum kit. This results in MIDI as well as audio
files created using different samples from the electronic drum
kit. Additionally, velocity information is provided. E-GMD
supports seven drum classes but does not contain melodic
instruments and is targeted towards drum-only transcription.
Consequently, we did not use E-GMD in this paper. ADTOF
relies on crowdsourced manual annotations which were post-
processed to improve temporal alignment and reduce errors.
The authors of A2MD use audio-to-MIDI alignment with an
additional data inspection step to automatically create anno-
tations. Both datasets do not make use of virtual instruments.
However, ADTOF supports only five and A2MD only three
classes. Therefore, we did not include them in the comparisons
for this paper.

In contrast to STAR, the approaches used in ADTOF and
A2MD carry the risk of introducing annotation errors. In STAR,
the original drum recording is not included in the final mix.
Therefore, annotation errors and inaccurate timing introduced
by the ADT algorithm used for creating the annotations
are also reflected in the synthesized drum stem and do not
lead to incorrect annotations. Another advantage of our STAR
approach is that it allows for training with a high number of
classes. The number of classes is only limited by the supported
classes of the ADT algorithm used for creating the reference
annotations, in this case to 18. In contrast, increasing the
class vocabulary of ADTOF or A2MD would require additional
labeling effort. Furthermore, STAR allows to choose recordings
such that they are representative with regards to expected
inference data without any restrictions.

F. Training

Training is done in two stages. In both stages the loss is
the binary cross-entropy between probabilities obtained by the

classifier and reference annotations. We create soft labels by
applying label smoothing [29] in the form of adding (to the
negative target labels) or subtracting (from the positive target
labels) a value drawn from a normal distribution which is
scaled by a factor tuned as hyperparameter. Additionally, we
use target widening by labeling not only the frame with the
drum sound as a positive target with a weight of 1, but also
the two adjacent frames of the drum noise with lower weights
of 0.6 and 0.3, similar to [30]. We apply data augmentation to
the mel spectra in the form of random gain offsets and spectral
and temporal masking as described in [31]. Additionally, we
balance the number of blocks with and without drum onsets
in the training and validation split. To account for imbalanced
number of drum sounds of different classes, class weights
are computed and applied to the loss such that the loss
of a frame containing a rare drum class sound has greater
influence than the loss of a frame containing frequent drum
class sounds. The class weights are inverse proportional to the
class frequency and are clipped to avoid very high weights,
which can cause non converging training. The negative class
weight is a hyperparameter and tuned such that precision and
recall are balanced during training.

1) First Training Stage: The first stage optimizes the
parameters of the embedding network and trains base class
prototypes and the negative class prototype by minimizing the
binary cross-entropy loss. We use the Adam [32] optimizer
and start at learning rate of 0.0003 which is halved every four
epochs. Similar to [10], we use a binary cross-entropy loss
instead of the categorical cross-entropy loss proposed in [15].

2) Second Training Stage: The second stage trains the
prototype generator as proposed in [15] while still updating
the base class prototypes, with the embedding network being
frozen. In every batch we randomly pick one base class
which is used to train the novel class prototype generator
and therefore treated as novel class even though it is already
known to the embedding network. We sample five examples
of the simulated novel class from the training dataset. The
examples are embedded and fed to the prototype generator to
generate a novel class prototype. The attention-based prototype
component is inferred without the use of the corresponding
base class prototype. The classifier then uses the newly-created
prototype to classify the current batch.

G. Real-Time Inference

For real-time inference, we set a requirement of a maximum
transcription delay of 60ms as suggested in [6] to allow
synchronization in live applications. This limits the possible
lookahead and consequently the block length as we train the
model to detect a drum sound onset when it is located in
the center of the current block. Due to target widening, see
Section III-F, the classification score of the classifier already
rises before the drum sound reaches the center of the current
block. The hop length is half a frame, corresponding to
10.7ms. During the evaluation, we also account for the delay
of one frame caused by the STFT. In real-time conditions, we
observed the best performance using a block length of eight



frames, corresponding to 85.3ms. For most of the detected
drum sounds this results in a transcription delay of three to
five frames, corresponding to 32.1 to 53.5ms.

In a scenario without real-time restrictions, the model ben-
efits from more temporal context in terms of a higher block
length, which is shown in the performance comparison in
Section IV-A. We also tried using higher block lengths without
increased lookahead by training the model to detect a drum
sound onset when it is located earlier than in the center of the
current block. This provides more temporal context from past
frames, but did not increase performance.

Based on the classification scores computed by the classifier,
a drum sound onset is detected if

pk,n > α (4)
pk,n − f(pk,n, τs) > αatk (5)

nk − nact,k > τo. (6)

In (4), a threshold α is applied to pk,n which denotes the
probability of the k-th class being active in the n-th frame.
Equation (5) evaluates if pk,n is in an attack phase by using
a recursive averaging f(·) with time constant τs. It applies
a second threshold αatk to reduce false positives if pk,n
exceeds α but is not rising, meaning that there is no future
peak. Unlike the identification of local maxima, this does not
cause additional delay. Equation (6) avoids detecting the same
drum sound multiple times within τo frames. This is done by
evaluating the number of frames between current frame nk

and the frame nact,k where the k-th class was last active.
Parameters α, αatk, τs and τo are tuned manually on the test

split of the training dataset separately for classification with
base and novel class prototypes.

IV. RESULTS AND DISCUSSION

To assess the classification accuracy, we compare the po-
sitions of reference onsets and estimated drum sound onsets
using mir eval [33], allowing a tolerance of ± 30ms. In real-
time scenarios, where predicting future events is not possible,
we allow a tolerance of 60ms starting from the reference
annotation, resulting in an equal total tolerance window length.

In our evaluation, we utilize global and instrument-wise
micro F-measures calculated by summing up all true positives,
false positives, and false negatives over all tracks instead of
computing a mean by averaging F-measures per track. This
approach helps avoid bias in cases where some tracks do
not contain all drum classes or where the onset count varies
significantly among the test tracks.

A. Performance Using Base Class Prototypes

1) SLAKH and STAR: We compare two models trained with
the proposed STAR and SLAKH to address the question whether
STAR leads to a higher performance due to more realistic
training data. To avoid a performance bias due to different
amount of data, the number of SLAKH items is reduced
such that the number of tracks in train and validation set
matches the size of STAR. For both trainings we use the same
hyperparameter setting and a block length of eight frames.

TABLE II
F-MEASURE COMPARISON OF MODEL TRAINED WITH SLAKH AND STAR

AND TESTED ON MDB

Class SLAKH STAR

All 0.50 0.62

Kick drum 0.68 0.75
Snare drum 0.59 0.66
Hi-hat 0.66 0.72
Open hi-hat 0.14 0.14
Tom 0.12 0.23
Cymbals 0.05 0.14
Ride cymbals 0.10 0.17
Short Percussion 0.07 0.27
Tambourine 0.00 0.07
Bell 0.00 0.00

TABLE III
F-MEASURE COMPARISON OF PROPOSED ALGORITHM WITH SOTA FROM

[23] AND ABLATIONS

Model MDB ENST RBMA

SOTA-CRNN 0.65 0.70 0.52
SOTA-CNN 0.63 0.61 0.53
Proto-BL8-RT 0.65 0.56 0.42
Dense-BL8-RT 0.64 0.51 0.36
Proto-BL8-OFF 0.67 0.66 0.47
Dense-BL8-OFF 0.67 0.65 0.43
Proto-BL21-OFF 0.69 0.66 0.51
Dense-BL21-OFF 0.70 0.67 0.51

Ablations:
NoICPC-Proto-BL8-RT 0.58 0.48 0.36
NoNegC-Proto-BL8-RT 0.57 0.48 0.35

Table II shows the performance of the two models for 10
transcribed classes on MDB. We observe a global F-measure
improvement of 0.12 and enhancements in nearly all classes
when training with STAR.

2) Comparison with State of the Art: We compare our
algorithms with the offline CNN and CRNN models for
eight-classes from [23] which are published as an ensemble
of networks on an accompanying website in five different
versions. To the best of our knowledge, they still represent
state of the art (SOTA) in the eight-class scenario. Two models
are trained on synthetic datasets consisting of rendered MIDI
files. The remaining three models are trained on MDB, ENST
and RBMA which are used as test datasets in this paper. The
used madmom framework averages the activation functions
of all available models. We exclude the one model trained
on the test dataset for which performance is being evaluated,
and, apply the remaining models with the default peak-picking
parameters. For the comparison we reduce our 10 classes to
eight to use the same drum classes as those in [23].

The CRNN model from [23] uses a bi-directional RNN
architecture, trained on sequences of 4 s length and is therefore
not real-time capable. The CNN model was trained with a tem-
poral context of 250ms and would cause higher delays than
the targeted 60ms in this paper if applied in real time. Table
III shows the results of SOTA and our proposed algorithm in
several variants which are encoded in the model’s name on



the three used test datasets MDB, ENST and RBMA. Furthermore,
Table III shows two ablations discussed below. First, we
investigate the question of how the use of prototypes affects
the performance by training a model which does not use the
prototype-based classifier introduced in Section III-C. Instead,
we add a dense layer with eight outputs to the embedding
network F (·|θ) followed by a sigmoid function and interpret
the output of the dense layer as class probabilities. This variant
is referred to as Dense in Table III in contrast to Proto which
uses prototypes.

We also assess the question if more temporal context
improves the performance by increasing the block length from
eight frames (BL8) to 21 frames (BL21) which results in non-
real-time capable models marked with OFF. We also evaluate
the real-time capable models (RT) under offline conditions.
This includes the use of an offline peak picking which identi-
fies local maxima by evaluating probabilities of future frames
instead of using Equation (5) and the compensation of the
introduced delay.

Table III shows that the performance of our prototype-based
real-time algorithm (Proto-BL8-RT) is the same as SOTA-CRNN
on MDB with F-measure of 0.65 and lower performance on
ENST and RBMA. We did not use any virtual electronic drum
kits for creating the STAR training dataset which may lead
to the low performance on RBMA which focuses on electronic
music. The detection delay averaged over all instruments and
tracks on MDB is 42.8ms and lies withing the goal of 60ms,
see Section III-G.

Using a dense layer for classification instead of prototypes
leads to similar performance in most scenarios. Only the BL8

models are less efficient on ENST and RBMA when using the
additional dense layer instead of prototypes.

In a scenario without real-time restrictions, the algorithm
without prototypes and block length of 21 frames (Dense-
BL21-OFF) outperforms the other variants of our algorithm
with F-measure of 0.70 on MDB. This version also achieves
better results than SOTA-CNN on MDB and ENST and outperforms
SOTA-CRNN on MDB. We would like to stress that our models
use a similar embedding network architecture to SOTA-CNN and
are, unlike SOTA-CRNN, not able to learn rhythm patterns and
repetitive structures outside of the used block length.

The increase in performance when evaluating the BL8

models under offline conditions depends on the test data. We
observe a minor performance improvement on MDB and higher
performance improvements on ENST and RBMA.

3) Ablation Study: We assess the performance of models
trained without our proposed modifications in an ablation
study: First, we remove the independent class probability com-
putation (NoICPC) as described in Section III-C and therefore
limit the ability to detect superimposed drum sounds. In this
case, the softmax function is applied to all classes, including
the negative class, meaning that the probabilities of all classes
sum up to 1. In Table III this version leads to an F-measure
decrease on all datasets.

In a second step, we additionally remove the negative class
prototype (NoNegC) and perform the softmax function over all

Fig. 2. Class probabilities when transcribing kick drum, snare drum and hi-
hat with (solid, black) and without (dotted, red) independent class probability
computation and negative class.

drum classes. This barely affects performance in comparison to
the previous step as it can be seen in Table III. However, the
removal of the negative class prototype leads to probability
curves with higher noise floor as shown in Fig. 2 as the
classifier cannot assign probabilities close to 0 to all classes
simultaneously if no drum sound occurs.

B. Performance Using Novel Class Prototypes

Here we evaluate the two novel class prototype scenarios:
Learning new classes and fine-tuning of existing classes with
sound examples for which performance with base class pro-
totypes is low.

1) Learning New Classes: To evaluate classification perfor-
mance for new classes, we identify all drum classes from the
three test datasets not present in the training data which are
snare drum brush sounds in MDB and shaker sounds in RBMA.
For each of the two novel classes, we sample five examples
to generate a novel class prototype by using the few-shot
prototype generator G(·, ·|θ), and we use this prototype for
classification. This is done separately for all tracks containing
the novel classes. We obtain F-measure values of 0.41 for
snare drum brush sounds and 0.21 for shaker sounds. This is
a performance in a similar range to using base class proto-
types for classes other than the three main drum instrument
classes, kick drum, snare drum, and hi-hat, see Table II. This
shows that novel classes can be successfully learned from few
examples.

2) Fine-Tuning of Existing Classes: We asses the fine-
tuning scenario on RBMA as the tracks of this dataset partly
use acoustic (track ID 1, 5, 9, 15, 17, 19 and 23) and partly
electronic drum sets (all other tracks). We did not use any
electronic drum set for the creation of the training dataset STAR
and therefore we expect a lower performance on electronic
drum sounds (EDrum) in comparison to acoustic drum sounds
(ADrum) when using base class prototypes (PrBase). The first
two columns of Table IV show that this is the case for most
classes. For kick drum, we can, e.g., see a F-measure decrease
from 0.67 to 0.41.

To investigate if performance for electronic drum sets can be
increased by using novel class prototypes (PrNov) instead of
base class prototypes, we randomly sample five drum sounds



TABLE IV
F-MEASURE PERFORMANCE WHEN USING NOVEL CLASS PROTOTYPES

(PrNov) OR BASE CLASS PROTOTYPES (PrBase) ON KNOWN CLASSES FOR
SIGNALS CONTAINING ELECTRIC DRUM SOUNDS (EDrum) AND ACOUSTIC

DRUM SOUNDS (ADrum).

ADrum EDrum

Class PrBase PrBase PrNov

Kick drum 0.67 0.41 0.56
Snare drum 0.50 0.38 0.35
Ride cymbals 0.00 0.06 0.19
Cymbals 0.21 0.02 0.10
Tom 0.37 0.09 0.28
Hi-hat 0.44 0.50 0.18
Open hi-hat 0.16 0.01 0.33
Short perc. 0.57 0.30 0.24
Tambourine 0.00 0.06 0.28
Bell 0.05 0.00 0.10

of every class of each track to create novel class prototypes
and use them for transcription. The last column of Table
IV shows that for most classes (highlighted in bold) the
performance on electronic drum sets increases compared to
the use of base class prototypes. For kick drum, we can, e.g.,
see an F-measure increase from 0.41 to 0.56. This is useful
for application scenarios where manual tuning is applied to
improve performance for dedicated tracks.

We observe a different trend for the drum class hi-hat, where
novel class prototypes strongly lower the performance and the
base class prototype achieves a slightly higher performance on
electronic hi-hat sounds than on acoustic hi-hat sounds. This
indicates that electronic hi-hat sounds are similar enough to
acoustic hi-hat sounds to be well detected with the base class
prototypes.

V. CONCLUSION

We showed that dynamic few-shot learning can be success-
fully applied to ADT in real time. We achieved a performance
that is competitive to SOTA offline algorithms and can learn
new classes and fine-tune our model at inference time by
providing few examples. We also proposed how realistic
training data including recordings of instruments played by
musicians can be generated and that this improves transcrip-
tion performance compared to completely relying on MIDI-
synthesized audio.

In future works, we plan to create a version of STAR relying
on copyright-free music to be able to make the proposed
dataset available to the research community. Furthermore,
we hope to improve the transcription performance of models
trained with STAR on electronic music by additionally using
virtual electronic drum kits during the dataset generation.
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