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ABSTRACT

Automatic piano transcription (APT) transforms piano
recordings into symbolic note events. In recent years,
APT has relied on supervised deep learning, which de-
mands a large amount of labeled data that is often lim-
ited. This paper introduces a semi-supervised approach to
APT, leveraging unlabeled data with techniques originally
introduced in computer vision (CV): pseudo-labeling, con-
sistency regularization, and distribution matching. The
idea of pseudo-labeling is to use the current model for
producing artificial labels for unlabeled data, and consis-
tency regularization makes the model’s predictions for un-
labeled data robust to augmentations. Finally, distribution
matching ensures that the pseudo-labels follow the same
marginal distribution as the reference labels, adding an
extra layer of robustness. Our method, tested on three
piano datasets, shows improvements over purely super-
vised methods and performs comparably to existing semi-
supervised approaches. Conceptually, this work illustrates
that semi-supervised learning techniques from CV can be
effectively transferred to the music domain, considerably
reducing the dependence on large annotated datasets.

1. INTRODUCTION

Automatic music transcription (AMT) converts poly-
phonic music recordings into symbolic representations that
encode which notes are played [1, 2]. The AMT out-
put may be a MIDI-like transcription, containing for ev-
ery note event information about the instrument, onset
time, duration, and velocity. AMT is considered as one
of the fundamental problems in music information re-
trieval (MIR) because its symbolic output can be used for
subsequent tasks such as music synchronization, structure
analysis, or cover song detection [3]. AMT is challenging
since multiple instruments may be active at the same time,
due to possible polyphonic activity per instrument, and be-
cause sound events may have overlapping harmonics [2].

Early approaches to AMT rely, e. g., on non-negative
matrix factorization [4, 5], while most recent approaches
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use deep learning-based models [6–13]. The limiting fac-
tor in training neural networks for AMT, however, is the
scarcity of labeled data. Creating such datasets typically
requires manual labeling of each note present in a record-
ing, which can be time-consuming, or relies on music syn-
chronization techniques to align score information with
recordings [11, 14]. The latter approach, however, may re-
sult in inaccurate labels due to issues such as playing errors
or synchronization inaccuracies. Alternatively, one can
create datasets with highly precise labels by utilizing in-
struments that allow automated playback or recording note
activity. For instance, several piano datasets were auto-
matically created using a Disklavier, which can synthesize
MIDI files or log key activity during performance [15–17].
Since these piano datasets exist, many works [6–9, 12]
focus on the special case of automatic piano transcrip-
tion (APT). Still, it was observed that APT methods cannot
generalize well across datasets due to overfitting [18].

In this work, we aim to improve model generalization
of APT in scenarios with little labeled data by using semi-
supervised learning (SSL), where the idea is to leverage
unlabeled data during training. Unlabeled data can be ob-
tained in large amounts as it does not depend on a labeling
process. SSL has seen limited application in AMT, with
Cheuk et al. [19] among the few to investigate this path.
However, we argue that its full potential remains to be real-
ized, especially when considering the significant achieve-
ments of SSL in computer vision (CV) [20, 21]. As our
main contribution, we adapt techniques originally intro-
duced in CV [22,23] to APT. More specifically, our method
makes use of pseudo-labeling, consistency regularization,
and distribution matching as outlined in the following.

In our approach, we use the extended Onsets and
Frames model [7, 16], which jointly predicts onsets, off-
sets, frame activity, and velocities. The raw model outputs
for onsets, offsets, and frames are each a piano roll-like
representation that can be interpreted as probabilities per
time–pitch bin. Initially, we pre-train this model in a super-
vised fashion using the available labeled data. Thereafter,
the model is used to produce binary pseudo-labels for un-
labeled data. Only sufficiently confident predictions are
converted into pseudo-labels, i. e., those below the lower
threshold are set to zero and those above the upper thresh-
old are set to one, while the remaining predictions are con-
sidered as unreliable. Next, the model makes predictions
for an augmented version of the same recording, where
augmentation involves frequency masking [24] and addi-



tion of noise to the data. The predictions made for the aug-
mented data are then used in combination with the pseudo-
labels derived from the clean data to compute an additional
unsupervised loss. Using an augmented version instead
of a clean one encourages the model to produce consis-
tent predictions under these kinds of augmentations and
is thus called consistency regularization. As a third tech-
nique, we apply distribution matching, which ensures that
the pseudo-labels follow the same marginal distribution as
the reference labels, preventing the model from collapsing.
To achieve this goal, we use an undersampling strategy.
For reproducibility, we will provide our code 1 .

The rest of this paper is structured as follows: In Sec-
tion 2, we give an overview of related work on AMT,
SSL, and distribution matching in the context of pseudo-
labeling. In Section 3, we describe all steps of the proposed
approach. Section 4 describes our experimental setup as
well as the experimental results. We conclude the paper in
Section 5 with possible future research directions.

2. BACKGROUND AND RELATED WORK

2.1 Automatic Music Transcription

Most research on AMT is based on supervised learning.
Sigtia et al. [6] proposed the the first end-to-end approach
to APT. Hawthorne et al. [7] emphasized the importance of
explicitly predicting onsets alongside frame activity, later
extending their model in [16] to include explicit prediction
of offsets. In [8], onset and offset estimation is formulated
as a regression problem, which yields note predictions with
improved temporal resolution. The attention-based Trans-
former architecture is used for APT [9, 12, 25] and multi-
instrument AMT [10]. In [13], the Perceiver architecture is
employed for multi-instrument AMT. Recently, AMT has
been formulated as a conditional generative task: In [26], a
diffusion model is trained to generate realistic piano rolls,
being conditioned on the corresponding spectrograms.

Weakly supervised methods are proposed in [11], where
unaligned pairs of scores and recordings are used for train-
ing, and in [27], where cross-version targets are used to
replace pitch labels. Cheuk et al. [19] propose a semi-
supervised approach to AMT, utilizing unlabeled data via
virtual adversarial training (VAT). VAT [28] perturbs input
data to induce substantial changes in the model’s predic-
tions and then encourages the model to produce consis-
tent predictions under these perturbations. In [29], a fully
self-supervised method is proposed for frame-level tran-
scription. Their method encourages the concentration of
energy around fundamental frequency candidates, invari-
ance to timbral transformations, and equivariance to input
translations in both time and frequency.

2.2 Semi-Supervised Learning

In SSL, the idea is to jointly learn from labeled and un-
labeled data, and SSL is thus located between supervised
and unsupervised learning [30,31]. The objective is to train
a model that performs better than a reference model only

1 https://github.com/groupmm/onsets_frames_semisup

trained on the labeled data using supervised learning. SSL
has been successfully used in combination with deep learn-
ing, e. g., in CV [20, 21], for text classification [32], and
also in MIR [33, 34]. For an overview of deep learning-
based SSL methods, we refer to [20, 35]. Two important
SSL paradigms relevant to this paper are pseudo-labeling
and consistency regularization.

Pseudo-labeling, introduced in [36], uses the current
classification model to produce artificial labels for unla-
beled data. Continuing training with pseudo-labeled data
encourages the model to make confident predictions for
that data, effectively pushing decision boundaries away
from the data points [35]. Maman and Bermano [11] al-
ready combined pseudo-labeling and weak supervision for
AMT, but the pseudo-labels were updated only at the be-
ginning of every expectation maximization iteration rather
than being calculated on-the-fly as in [36].

Consistency regularization methods [37, 38] encourage
that the model’s predictions do not change if augmenta-
tions (e. g., random translation and addition of noise in the
case of image classification [37, 38]) are applied to the un-
labeled input data. In [37], this is achieved by adding a
consistency loss term which penalizes disagreement in the
predictions made for two augmented versions of the data.

The image classification method FixMatch [22] com-
bines both pseudo-labeling and consistency regularization
by using the current model to produce artificial labels given
a weakly augmented input (e. g., horizontally flipped) to
supervise the predictions made for a strongly augmented
input (e. g., Cutout [39], where a randomly selected rect-
angular region is masked). In [40, 41], FixMatch proved
to be effective for audio classification as well, where
weak and strong augmentations were applied to spectro-
grams. FixMatch was also adapted to pixel-wise classifica-
tion problems such as semantic image segmentation [42],
which is similar to AMT from a technical point of view.

2.3 Distribution Matching

It is well-known that training classification models on
class-imbalanced data is challenging because the models
tend to be biased towards the majority classes [43]. Biased
model predictions which do not follow a similar distribu-
tion as the reference labels are problematic for pseudo-
labeling because the model may suffer from confirmation
bias [44], where wrong predictions are reinforced. To
avoid that problem, several approaches were proposed to
match the class distribution of pseudo-labels with that of
reference labels. Berthelot et al. [23] rescale the predicted
class probabilities for unlabeled data in such a way that
their marginal distribution is close to the marginal distri-
bution of reference labels. Kim et al. [45] refine pseudo-
labels by solving a convex optimization problem that aims
to minimize the distance between pseudo-label distribution
and reference label distribution while trying to preserve
most information in the pseudo-labels. While Maman and
Bermano [11] do not explicitly perform distribution match-
ing for AMT, they set asymmetric thresholds for selecting
pseudo-labels, increasing the impact of the minority class.
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Figure 1: Detailed overview of our semi-supervised approach. The Onsets and Frames transcription model (O&F) [7,16] is
trained using both a supervised (upper branch) and an unsupervised loss (lower branches). Our method uses a clean version
of unlabeled data to produce predictions, which, after thresholding (φ), are considered as pseudo-labels. Distribution
matching (∆) ensures that pseudo-labels and reference labels are similarly distributed. The pseudo-labels are used to
supervise predictions made for an augmented (A) version of the same data. The “interrupted” connection to the predictions
made for the clean unlabeled input indicates that gradients are not backpropagated in this branch. For a better overview, we
only show predictions, labels, and pseudo-labels for frame activity. Red color is used to represent NaN entries.

3. METHOD

In this section, we describe our proposed semi-supervised
approach for learning APT. We first describe in Section 3.1
how the transcription model is trained in a supervised fash-
ion. In Section 3.2, we explain how pseudo-labeling and
consistency regularization can be used for semi-supervised
training, and in Section 3.3, we explain the additional step
of matching the pseudo-label distribution with the refer-
ence label distribution.

3.1 Supervised APT Baseline

We use the modified Onsets and Frames model [7, 16] and
train our supervised APT baseline models similar to the
original methodology. This model takes as input a log mel-
scaled spectrogram with F frequency bins and T frames,
and outputs onset, offset, frame activity, and velocity es-
timates. In this work, we focus on the involved classi-
fication problems and ignore velocity estimation for sim-
plicity. Velocity estimation can be omitted without further
consequences, as it is performed by an independent part
of the model. We briefly explain how supervised learning
is done using labeled data. The model outputs matrices
PL

on,P
L
off,P

L
fr ∈ [0, 1]P×T for onset, offset, and frame ac-

tivity, respectively. In this notation, P denotes the number
of MIDI pitches considered, and the entries of the matrices
represent probabilities of activities for all time–pitch bins.
For instance, PL

on(p, t) denotes the predicted probability of
an onset with pitch p in frame t. The reference MIDI an-
notations with continuous-time note events are temporally
quantized to match the input frame rate and converted into
binary labels IL

on, I
L
off, I

L
fr ∈ {0, 1}P×T , indicating bin-wise

activities as described in [7, 16]. The supervised loss com-
prises three terms,

Ls = λL
onLL

on + λL
offLL

off + λL
frLL

fr, (1)

with the frame activity loss

LL
fr =

1

PT

P∑
p=1

T∑
t=1

ℓBCE(I
L
fr(p, t),P

L
fr(p, t)), (2)

where ℓBCE denotes the binary cross entropy function and
λL

on, λ
L
off, λ

L
fr ∈ [0, 1] are suitable loss weights. Onset and

offset loss terms are defined analogously. Note that, in con-
trast to [7], we leave out the weighting of individual frames
within the frame activity loss in Equation (2) for simplicity.

3.2 Pseudo-Labeling and Consistency Regularization

We now describe how our approach leverages unlabeled
data, which is illustrated in Figure 1. Our method is mainly
inspired by FixMatch [22], with the difference that we do
not apply weak augmentations to produce pseudo-labels.
Instead, we produce pseudo-labels using the unmodified,
clean data, which has been found to yield nearly the same
results in audio classification [40].

To obtain pseudo-labels for unlabeled data, we first
compute the current model’s predictions, PU

on,P
U
off,P

U
fr ∈

[0, 1]P×T , given the clean version of the log mel-scaled
spectrogram as input. For converting soft probabilities into
binary pseudo-labels, we define a thresholding function

φ(x, τlo, τup) =


1, if x ≥ τup,

NaN, if τlo < x < τup,

0, if x ≤ τlo,

(3)

where τlo and τup denote lower and upper threshold, re-
spectively. We obtain the pseudo-labels ĨU

on, Ĩ
U
off, and ĨU

fr by
elementwise application of the thresholding function to the
model predictions, i. e.,

ĨU
fr(p, t) = φ(PU

fr(p, t), τlo, τup) (4)
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Figure 2: Examples of the representations involved in our
semi-supervised method. Red color is used to represent
NaN entries.

for p ∈ [1 : P ], t ∈ [1 : T ], and similarly for onsets and
offsets. We use thresholds τlo = 0.05 and τup = 0.95 based
on our observations in preliminary experiments, and we
perform an ablation of this choice in Section 4. For illus-
tration purposes, we refer to Figure 2, showing examples
of clean model input, corresponding predictions PU

fr , and
pseudo-labels ĨU

fr in Figures 2a, 2c, and 2e, respectively,
where NaN entries are represented by red color.

To perform consistency regularization, the pseudo-
labels are used to supervise predictions made for an aug-
mented version of the input. As in [40], we apply aug-
mentations to the spectrograms. We opt for a simple aug-
mentation pipeline which first applies frequency masking
as described in [24], setting a randomly selected contigu-
ous frequency band of up to 30 bins to the mean value
of the spectrogram, and afterwards adds Gaussian noise
with a standard deviation of 0.01 to the entire spectro-
gram. This choice of augmentation is inspired by the
use of Cutout [39] in FixMatch [22] and the proposal
of SpecAugment [24] as similar technique for spectro-
grams. We decided against temporal masking because
this may completely remove information from the spec-
trogram regarding short events such as onsets. An exam-
ple of such an augmented spectrogram is shown in Fig-
ure 2b. We denote the augmentation pipeline by A, and
the model’s predictions for the augmented input are de-
noted by P

A(U)
on ,P

A(U)
off ,P

A(U)
fr ∈ [0, 1]P×T , respectively.

An example of such predictions is shown in Figure 2d. Fi-
nally, the unsupervised loss is given by

Lu = λU
onLU

on + λU
offLU

off + λU
frLU

fr , (5)

with the frame activity loss for unlabeled data,

LU
fr =

1

PT

∑
(p,t)∈[1:P ]×[1:T ] :

ĨU
fr(p,t)̸=NaN

ℓBCE(Ĩ
U
fr(p, t),P

A(U)
fr (p, t)).

(6)
Onset and offset loss for unlabeled data are defined analo-
gously. Only those time–pitch bins contribute to the loss,
where the pseudo-labels have a value different from NaN.
The loss is normalized by the total number of time–pitch
bins for reducing the impact of the unsupervised loss if
only a few predictions are confident. As for the supervised
loss, we use suitable loss weights λU

on, λ
U
off, λ

U
fr ∈ [0, 1].

Note that the gradient of Lu is not computed with respect to
the predictions made for the clean version of the unlabeled
input, which the “interrupted” connection in Figure 1 indi-
cates. The overall loss function is obtained as the weighted
sum of the supervised and the unsupervised loss,

L = (1− λu)Ls + λuLu, (7)

where λu ∈ [0, 1] controls the relative weighting of both
terms. Following [7], we weight the individual terms in
the supervised loss equally, i. e., λL

on = λL
off = λL

fr = 1.
However, preliminary experiments suggested that better
results may be achieved if the unsupervised offset loss is
not used. Hence, our default setting is λU

on = λU
fr = 1 and

λU
off = 0. The overall weight of the unsupervised loss is set

to λu = 0.05. We explore the impact of these hyperparam-
eter choices through ablation studies in Section 4.

3.3 Distribution Matching

The classification problems involved in training transcrip-
tion models are heavily imbalanced because the labels typ-
ically have only a few non-zero entries. For example, the
training set of the MAPS dataset [15] has labels, where
only about 0.3% of all entries are ones for both onsets and
offsets, and about 3.4% of all entries are ones for frame
activity. Hence, the transcription model may be biased to-
wards predicting zeros. To avoid model collapse, we apply
distribution matching to the pseudo-labels.

In this paper, we employ a simple method to match the
marginal pseudo-label distribution per mini-batch with that
of the reference labels. The marginal distribution of the
reference labels is estimated by counting zeros and ones
across all training examples. These counting operations are
denoted by Γ0 and Γ1. The following distribution match-
ing method, explained using frame activity as an example,
is similarly applied to onsets and offsets.

During training, we count the numbers of zeros and
ones for every mini-batch of pseudo-labels, and will likely
obtain a ratio Γ1(Ĩ

U
fr)/Γ0(Ĩ

U
fr) that differs from the desired

ratio Γ1(I
L
fr)/Γ0(I

L
fr). The objective of the distribution

matching operator, denoted by ∆, is to ensure that the ra-
tio of zeros and ones is identical for reference labels and
pseudo-labels, i. e.,

Γ1(I
L
fr)

Γ0(IL
fr)

=
Γ1(∆(ĨU

fr))

Γ0(∆(ĨU
fr))

. (8)



MAPS MAESTRO SMD

Thresholds Note Frame Note Frame Note Frame

τon τfr P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Full
RV 0.50 0.50 80.9 70.6 75.1 85.9 72.0 77.9 - - - - - - - - - - - -
OF 0.44 0.57 84.4 77.8 80.8 81.5 61.3 69.4 88.5 80.9 84.2 85.4 43.5 55.8 92.7 82.9 87.3 66.0 61.7 63.1
OF-SS4 0.35 0.34 84.7 79.6 81.9 78.3 67.5 72.0 93.3 82.7 87.5 84.5 53.2 63.5 94.7 85.5 89.7 63.1 69.0 65.2

Small
RV 0.50 0.50 86.2 57.1 68.2 90.0 43.9 58.2 - - - - - - - - - - - -
OF 0.34 0.01 79.3 62.1 69.1 68.7 53.5 59.3 84.3 61.0 69.7 79.0 36.8 48.0 81.0 67.7 73.0 58.4 47.1 51.1
OF-SS4 0.05 0.01 78.2 75.9 76.7 62.3 69.9 65.0 93.8 78.4 85.0 73.6 56.3 61.8 93.6 80.2 85.9 52.3 68.1 58.2

One-Shot
RV 0.50 0.50 77.2 51.1 60.7 86.1 31.4 45.0 - - - - - - - - - - - -
OF 0.02 0.01 66.5 56.0 60.2 67.4 35.3 45.2 76.5 50.9 59.9 76.7 23.3 34.0 69.0 57.9 62.1 56.3 32.3 39.8
OF-SS4 0.03 0.01 66.2 68.0 66.6 49.8 35.0 40.0 73.6 70.2 71.3 57.4 26.1 33.8 72.6 71.5 71.4 40.3 32.4 34.9

MB 0.50 0.50 88.2 86.5 87.3 84.4 76.7 79.6 92.6 87.2 89.7 77.4 76.1 76.0 - - - - - -

Table 1: Performance metrics in percentages evaluated on the test sets of MAPS (ENSTDkAm and ENSTDkCl) and
MAESTRO, and on the entire SMD dataset. Performance metrics are calculated per piece and then averaged over all pieces
in the respective sets. As for the transcription models, RV is ReconVAT [19], OF is Onsets and Frames [16], OF-SS4 is our
proposed semi-supervised method, and MB stands for Maman and Bermano [11]. Decision thresholds of OF and OF-SS4
are tuned using the group SptkBGAm of the MAPS dataset. F1 scores are highlighted in red for better readability.

To define ∆, we use undersampling as it is frequently
used for class-imbalanced learning [46]. The distribution
matching works as follows:

1. Determine whether the ratio Γ1(Ĩ
U
fr)/Γ0(Ĩ

U
fr) is

smaller or larger than the ratio Γ1(I
L
on)/Γ0(I

L
on), i. e.,

whether there is an excess of zeros or ones, respec-
tively, among the pseudo-labels.

2. Randomly select the required number of excess ze-
ros or ones and convert them to NaN entries to ob-
tain the desired ratio.

Distribution matching reduces the number of available
pseudo-labels but ensures that the pseudo-labels within a
mini-batch follow the same marginal distribution as the
reference labels. An example of distribution-matched
pseudo-labels is shown in Figure 2f.

4. EXPERIMENTS

4.1 Implementation Details

For our experiments, we use an open-source Pytorch im-
plementation 2 of Onsets and Frames [7, 16]. Input repre-
sentation and model architecture are unchanged compared
to [7]. However, we do not ensure that input segments do
not start in the middle of a note as it is done in [7]. We use a
batch size of 8 each for labeled and unlabeled data and av-
erage losses across batches. We train our models using the
Adam optimizer [47] with an initial learning rate of 6e−5
and multiply the learning rate by a factor of 0.98 every 5k
iterations. Also, we apply gradient clipping with norm 3.
All audio recordings were downsampled to 16 kHz.

4.2 Datasets

We train and evaluate our models on three piano datasets:
MAPS [15], MAESTRO V3.0.0 [16], and SMD [17].

2 https://github.com/jongwook/onsets-and-frames

MAPS [15] contains isolated notes, chords, and com-
plete piano pieces, but we only make use of the complete
pieces. This dataset contains nine groups with 30 record-
ings each, where seven of the groups contain synthesized
recordings, and the remaining two groups (ENSTDkAm and
ENSTDkCl) contain real recordings which were automat-
ically generated from MIDI files using a Disklavier. Fol-
lowing previous work [6, 7, 19], we use the groups with
synthetic data as training data, and the real recordings as
test data, and we remove the pieces from the training data
which are also contained in the test data. This yields train-
ing and test sets of 139 and 60 recordings, respectively.

MAESTRO [16] and SMD [17] provide recordings to-
gether with the corresponding MIDI annotations automati-
cally captured by a Disklavier. Both MAESTRO and SMD
contain actual recordings of live performances, from the
International Piano-e-Competition and played by music
students, respectively. MAESTRO comprises 1276 perfor-
mances, with the official data split assigning 962, 137, and
177 performances to the training, validation, and test set,
respectively, and SMD comprises 50 performances.

4.3 Evaluation and Threshold Tuning

During inference, a decoding step is performed to obtain
estimated note events from the network outputs [7, 16].
Two thresholds, τon and τfr, are applied to binarize onset
and frame activity predictions. A note event is only recog-
nized if an onset was detected, and the length of the note
is determined based on the frame activity prediction. The
offset prediction is not explicitly used during decoding.

Following existing literature, we evaluate model perfor-
mance using note-based and frame-based metrics includ-
ing precision (P), recall (R), and F1 score. Note-based met-
rics are computed using the mir_eval library [48], where a
predicted note is considered as correct if its pitch matches
that of a reference note and the onset is within ±50ms of
that reference note’s onset.



Instead of using fixed thresholds τon and τfr, we tune
these thresholds using a labeled validation set [27,49]. We
first determine an optimum τon via grid search so as to
maximize the note F1 score, which does not depend on τfr.
Since the frame-based metrics are computed based on the
decoded note events, the frame F1 score is affected by both
τon and τfr. We fix the previously found τon and determine
the τfr that maximizes the frame F1 score.

4.4 Experimental Scenarios

To compare with [19], we adopt their three experimen-
tal scenarios which differ in the choice of the labeled
data. The first scenario (Full) uses the full MAPS train-
ing set, the second scenario (Small) uses only the group
AkPnBcht of the MAPS training set, which contains
23 non-overlapping piano pieces, and the third scenario
(One-Shot) uses only a single recording (chp_op31 from
AkPnBcht) as labeled data. Note that for One-Shot, the
batch size for labeled data needs to be reduced to 1. In all
scenarios, the MAESTRO training set is used as unlabeled
data. We use the group SptkBGAm of the MAPS train-
ing set as validation data—which overlaps with the labeled
training data in the Full scenario.

In all scenarios, we start training the transcription model
from scratch following the training strategy described in
Section 3.1 for 50k iterations, using only the labeled data
and supervised learning. After that pre-training stage, we
train for another 50k iterations using our proposed semi-
supervised method as described in Section 3.2. We refer
to this model as OF-SS4. For a fair supervised baseline
in each scenario, we also continue training the pre-trained
model for another 50k iterations on only the labeled data,
which we will refer to as OF.

4.5 Main Results

The main results of our experiments are provided in Ta-
ble 1, where the models of all scenarios are evaluated
on the test sets of MAPS and MAESTRO, and also on
the independent SMD dataset. First, we can observe that
OF-SS4 achieves better F1 scores than OF almost in all
scenarios and across all datasets, with the frame F1 score
in the One-Shot scenario being the exception. Most no-
tably, OF-SS4 achieves a note F1 score of 85.0 on the
MAESTRO test set in the scenario Small, which slightly
exceeds the note F1 score 84.2 of OF in the scenario Full.
This shows that our semi-supervised approach is indeed
effective, reducing the number of labeled performances
by more than 80% for achieving comparable performance
in this case. We further note that the optimum decision
thresholds of OF and OF-SS4 are extremely low for the
scenarios Small and One-Shot, indicating that threshold
tuning is an important step if labeled training data is scarce.

For ReconVAT (RV) [19], we report for every sce-
nario the performance of their semi-supervised method that
achieved the highest note F1 score. Still, we observe that
OF-SS4 achieves higher note F1 scores than RV in all sce-
narios, e. g., 76.7 for OF-SS4 compared to 68.2 for RV in
the scenario Small. Regarding the frame F1 score, no clear

τlo τup A ∆ λU
off λu N-F1 F-F1

OF - - - - - - 73.0 51.1
OF-SS1 0.05 0.95 - - 0.0 0.05 0.1 3.0
OF-SS2 0.05 0.95 - ✓ 0.0 0.05 82.4 9.4
OF-SS3 0.05 0.95 ✓ - 0.0 0.05 82.7 57.6
OF-SS4 0.05 0.95 ✓ ✓ 0.0 0.05 85.9 58.2
OF-SS5 0.25 0.75 ✓ ✓ 0.0 0.05 74.6 51.6
OF-SS6 0.05 0.95 ✓ ✓ 1.0 0.05 85.6 56.3
OF-SS7 0.05 0.95 ✓ ✓ 0.0 0.01 72.8 51.5

Table 2: Results of an ablation study performed in
the scenario Small, evaluated on the independent SMD
dataset [17]. N-F1 and F-F1 are note F1 score and frame
F1 score in percentage, respectively.

trend can be observed, with OF-SS4 achieving a higher
value for Small, but lower values for Full and One-Shot.

As another reference, we include the weakly-supervised
method by Maman and Bermano (MB) [11], which also re-
lies on the Onsets and Frames transcription model [7, 16]
but benefits from training on much more data and across
various instrumentations. Our method does not reach the
performance of MB in any scenario, but the performance
gap is reasonably small given the difference in amount of
training data, e. g., a note F1 score of 85.0 for OF-SS4 in
scenario Small compared to 89.7 for MB on MAESTRO.

4.6 Ablation Study

We perform an ablation study to evaluate the efficacy of
the individual components of our semi-supervised method.
The results of this study are shown in Table 2. The
method OF-SS1 performs pseudo-labeling without con-
sistency regularization and distribution matching, where
the performance metrics indicate potential model collapse.
Better results are achieved when additionally using either
distribution matching (OF-SS2) or consistency regulariza-
tion (OF-SS3), achieving already better note F1 scores
than the supervised baseline OF. The performance is fur-
ther improved by combining both techniques, which re-
sults in our proposed method OF-SS4. The remaining ab-
lations change the hyperparameter setting of our method,
where less restrictive thresholds for selecting pseudo-
labels (OF-SS5), calculating the unsupervised loss also
for offsets (OF-SS6), or a reduced overall weight of the
unsupervised loss (OF-SS7) yield worse results.

5. CONCLUSION

In this paper, we successfully transferred SSL techniques
from CV to the MIR domain. More specifically, we ap-
plied pseudo-labeling, consistency regularization, and dis-
tribution matching for the task of APT, enabling the option
to leverage unlabeled data during training. Thereby, the
dependence on large annotated datasets is considerably re-
duced. For instance, using our semi-supervised approach,
we observed reductions in the required amount of labeled
data by up to 80% for achieving similar performance as a
purely supervised baseline.

In future work, we plan to investigate other augmenta-
tion strategies, e. g., musically meaningful augmentations
as in [18], to perform consistency regularization, and the
extension of the method to the multi-instrument setting.
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