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ABSTRACT

Deep learning has significantly advanced music source
separation (MSS), aiming to decompose music recordings
into individual tracks corresponding to singing or specific
instruments. Typically, results are evaluated using quanti-
tative measures like signal-to-distortion ratio (SDR) com-
puted for entire excerpts or songs. As the main con-
tribution of this article, we introduce a novel evaluation
approach that decomposes an audio track into musically
meaningful sound events and applies the evaluation metric
based on these units. In a case study, we apply this strategy
to the challenging task of separating piano concerto record-
ings into piano and orchestra tracks. To assess piano sep-
aration quality, we use a score-informed nonnegative ma-
trix factorization approach to decompose the reference and
separate piano tracks into notewise sound events. In our
experiments assessing various MSS systems, we demon-
strate that our notewise evaluation, which takes into ac-
count factors such as pitch range and musical complexity,
enhances the comprehension of both the results of source
separation and the intricacies within the underlying music.

1. INTRODUCTION

Music source separation (MSS) is a key task in Music In-
formation Retrieval (MIR), involving the separation of a
musical mixture into individual components like vocals,
instruments, and other sound elements [1]. Deep learning
techniques have significantly advanced MSS, especially in
scenarios with sufficient training data. In particular, this
progress is evident in popular music separation, making
use of the existence of multitrack recordings inherent in
the production process [2–5]. In scenarios with limited
training data, systems are often trained using artificially
generated mixes through synthesis techniques [6,7] or data
augmentation approaches [8,9]. An example of such a sce-
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Figure 1: Illustration of the proposed evaluation method
for music source separation (MSS), considering signal-
to-distortion ratio (SDR) values based on notewise sound
events rather than entire recordings.

nario, also addressed in this paper, is presented in [10],
where the goal is to separate piano concertos into piano
and orchestra tracks.

Extensive efforts have been devoted to evaluating and
understanding existing MSS systems. Specifically, in the
realm of popular music, evaluation campaigns like the Sig-
nal Separation Evaluation Campaign (SiSEC) [11] and the
Music Demixing Challenge (MDX) [12] have significantly
contributed to the comparison of current systems. In these
campaigns, along with evaluations in most approaches de-
scribed in the literature, one typically relies on quantita-
tive evaluation measures such as the signal-to-distortion
ratio (SDR) [13]. These measures are computed and aggre-
gated over audio excerpts or even entire recordings, offer-
ing ease of computation and convenience for comparison.
However, it is well recognized that such measures provide
limited insights into the effectiveness of source separation
methods [14, 15]. On the other hand, designing perceptu-
ally or musically more relevant measures is challenging,
and performing listening tests is often cumbersome and in-
feasible.

In this paper, we introduce a novel evaluation method-
ology aimed at attaining a more nuanced understanding
of separation quality. This involves comparing a refer-
ence signal with a separated signal, utilizing an evaluation



metric based on musically meaningful sound units instead
of the entire excerpt. To achieve this, we employ score-
informed nonnegative matrix factorization (NMF) [16] to
decompose signals into notewise sound events. Then, we
calculate SDR values for individual units before aggregat-
ing this information in various ways (see Figure 1). This
methodology draws conceptual parallels to the evaluation
of tasks where automatic speech recognition (ASR) is used
as a downstream task. For example, Chen et al. [17] com-
puted word-level and utterance-level metrics to evaluate
the quality of the speech separation system.

In a case study, we apply this methodology to the intri-
cate task of separating piano concerto recordings into pi-
ano and orchestra tracks. Besides utilizing the Piano Con-
certo Dataset (PCD) [18], which comprises piano concerto
excerpts performed by five pianists in four distinct acoustic
settings, we generated piano scores for all the excerpts. We
then employed music synchronization techniques [19, 20]
to align these scores with all recorded excerpts. As an ad-
ditional contribution to this paper, we release these anno-
tations, thereby adding a score-based layer to the PCD col-
lection.

In systematic experiments, we apply our evaluation
methodology to effectively compare several academic and
commercial source separation systems. Our approach un-
covers general trends and yields insights into how separa-
tion quality is affected by factors like pitch range and mu-
sical complexity. In particular, it allows users to explore
evaluations in-depth by pinpointing complex passages and
challenging sound units where source separation systems
tend to fail. Along these lines, we provide qualitative dis-
cussions that deepen insights into the behavior of source
separation systems and the complexity of the underlying
music.

The remainder of the paper is organized as follows.
In Section 2, we review relevant literature on source sep-
aration and introduce the MSS models used for separating
piano concertos. Subsequently, in Section 3, we elaborate
on the score-based extension of PCD and outline our evalu-
ation approach, covering NMF-based audio decomposition
and notewise SDR-based metrics. In Section 4, we provide
details on the experimental settings and report our empiri-
cal findings. Finally, in Section 5, we conclude and discuss
potential directions for future work.

2. MUSIC SOURCE SEPARATION

As mentioned earlier, the decomposition of music record-
ings into individual sound components has garnered signif-
icant attention in academia and industry in recent years [1–
5,21–23]. While there is a multitude of approaches and ar-
chitectures proposed in the literature, one can broadly dis-
tinguish between spectral-based, waveform-based, and hy-
brid models. Spectral-based models, such as Open-Unmix
(UMX) [2] or Spleeter (SPL) [3], estimate the magnitude
spectrograms of target musical sources given the magni-
tude spectrogram of an input mixture. Techniques like bi-
nary masking, soft masking, or multichannel Wiener filter-
ing are then employed to reconstruct the separated audio

Model ID Domain Size (MB) TS (Hours)

UMX Spectrogram 34 52
SPL Spectrogram 75 52
DMC Waveform 510 52
HDMC Hybrid 319 52
AudioShake Hybrid N/A 500+

Table 1: MSS models considered in our experiments. TS
denotes the size (in hours) of the training set used.

signals [24,25]. Waveform-based models, such as Demucs
(DMC) [21], process the raw waveform of an input mix-
ture and predict the waveforms of the individual separated
sources. Hybrid models integrate complementary informa-
tion from waveform- and spectrogram-based models, en-
compassing both spectral and temporal branches. In these
architectures, latent representations are combined through
the addition of shared layers to leverage the advantages of-
fered by both domains [4, 26, 27]. Examples include the
hybrid Demucs model (HDMC) introduced in [4] and a sys-
tem (AudioShake) provided by the company AudioShake.

In this paper, we consider the challenging source sepa-
ration scenario of decomposing piano concerto recordings
into distinct piano and orchestral tracks. Piano concertos
involve an intricate interplay between the piano and the
entire orchestra, resulting in high spectro–temporal corre-
lations among the constituent instruments. Additionally,
the absence of multitrack data for training poses an extra
challenge for data-driven source separation approaches. To
overcome the lack of training data, the approach in [28]
proposes generating artificial training data by superimpos-
ing randomly chosen audio patches from the solo piano
repertoire (e. g., piano sonatas and etudes) and orchestral
pieces without piano (e. g., symphonies). The training
procedure and comparison of four different models men-
tioned above are described in [28], including the use of
further data augmentation techniques. In our experiments,
we employ four pre-trained models from the study [28],
shown in Table 1. Additionally, we utilize the commer-
cial system AudioShake, trained with over 500 hours of
multitrack music recordings spanning various genres, with
a focus on popular music. It is important to note that
the AudioShake system has not been specifically adapted
to the piano concerto scenario but is trained on mixtures
where the vocal stem is usually dominant.

Finally, we want to emphasize that the implementation
details and the reproducibility of the various MSS systems
are not the main focus of this paper. Instead, these MSS
systems and the piano concerto scenario serve as a frame-
work for illustrating our evaluation methodology, as we
will further discuss in Section 4.

3. EVALUATION APPROACH

We now introduce our novel evaluation approach, which
we will apply to compare reference piano recordings and
separated piano tracks. In Section 3.1, we briefly describe
the PCD collection, which will serve as a test dataset, and
present our score-based extensions. Then, in Section 3.2,



Room ID Room Description Piano Dur #Notes

R1 Lecture hall Yamaha C3 180 1780
R2 Private studio Yamaha C3X 180 2216
R3 Small concert hall Seiler 252 2305
R4 Big concert hall Steinway D 360 3741

Σ 972 10042

Table 2: Overview of the PCD test set, indicating the four
rooms and the piano models employed, and including the
duration (in seconds) and the number of notes (piano only).

we revisit the score-informed NMF approach for audio de-
composition. Finally, in Section 3.3, we define the SDR-
based evaluation metrics, which we use to gain a deeper
understanding of the source separation results.

3.1 Piano Concerto Dataset and its Extension

The PCD collection, introduced in [18], is based on piano
concerto recordings featuring five different amateur and
professional pianists playing along with orchestral record-
ings provided by the publisher Music Minus One 1 . Multi-
track recordings with clean piano and orchestra reference
tracks were produced from these sessions. The PCD con-
sists of 81 multitrack excerpts, each lasting 12 seconds,
selected from 15 piano concertos spanning the Baroque
to Post-Romantic period. As summarized in Table 2, the
PCD comprises excerpts recorded in four distinct acoustic
settings with different grand piano models.

Our novel evaluation approach relies on synchronized
score information used for notewise audio decomposition.
To this end, we manually generated symbolically encoded
sheet music representations using the Sibelius software 2

for the piano tracks (and piano-reduced versions of the or-
chestra tracks, which are not utilized in this study). We em-
ployed the Sync Toolbox [20] 3 to automatically align the
score information with the PCD audio excerpts. To ensure
high synchronization accuracy, we computed these align-
ments in two independent ways: once based on the piano-
only tracks and another time based on the piano–orchestra
mixes. We then applied fusion techniques to establish the
final score annotations. Additionally, expert listeners veri-
fied the final results using visual cues provided by the Sonic
Visualizer [29] and acoustic cues using sonified score an-
notations overlaid with the audio excerpts. With regard
to note onsets, the accuracy of the score annotations for
the piano tracks can be expected to lie in the range of
20–40ms. Additionally, we manually annotated the left-
hand (LH) and right-hand (RH) notes, resulting in further
musically meaningful note groupings beyond the notewise
ones.

We release the symbolically encoded sheet music along
with the score-based annotations of the audio excerpts,
thereby adding an additional score-based layer to the PCD
collection as part of the contributions of this paper. 4

1 www.halleonard.com/series/MMONE
2 www.sibelius.com/
3 www.github.com/meinardmueller/synctoolbox
4 www.audiolabs-erlangen.de/resources/MIR/PCD
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Figure 2: Illustration of the decomposition of the piano
track into left-hand (LH), right-hand (RH), and individual
note events as indicated by the rectangular windows.

3.2 NMF-Based Audio Decomposition

Nonnegative matrix factorization (NMF) is an algorithm
for approximating a nonnegative matrix as the product of
two low-ranked nonnegative matrices [30]. In the con-
text of music processing, NMF has been widely applied
to decompose a magnitude spectrogram into the product of
two nonnegative matrices [31], where the columns of the
first matrix encode spectral prototype patterns (called tem-
plates), and the rows of the second matrix encode their oc-
currences in time (called activations). Thanks to nonneg-
ativity and multiplicative update rules, NMF facilitates the
straightforward integration of prior musical knowledge,
such as information from an acoustic model or a musi-
cal score. For instance, one may constrain the spectral
template matrix to enforce a harmonic structure [32] or
use aligned score information to constrain the activation
matrix [16]. In addition to stabilizing the convergence of
the NMF algorithm, such constraints also guide the fac-
torization process to yield decompositions of musical rele-
vance [33].

Following the approach in [34], we adopt a score-
informed NMF approach to decompose a given audio sig-
nal x into its constituent notewise audio events xm for
m ∈ [1 :M ] and a residual signal r such that

x =

M∑
m=1

xm + r. (1)

Here, we assume that we have a score representation with
M denoting the number of note events, which are aligned
to the audio signal. Note that this alignment does not need
to be completely accurate, as it only serves to constrain
the NMF algorithm, which can then improve the accuracy
in the iteratively learned decomposition process. Besides
applying this procedure to obtain a notewise decomposi-
tion of the audio signal, one can use the same approach to
obtain a decomposition corresponding to note groups, re-
sulting, for example, in the decomposition of the LH and
RH notes, as illustrated in Figure 2.

We conclude our description of the NMF-based decom-
position approach with some final remarks regarding im-
plementation issues encountered in our experiments based
on the PCD test set. Note that, in general, NMF training
based on iterative update rules yields more reliable decom-

www.halleonard.com/series/MMONE
www.sibelius.com/
www.github.com/meinardmueller/synctoolbox
www.audiolabs-erlangen.de/resources/MIR/PCD


position results when applied to longer input spectrograms
exhibiting a coherent template structure. Therefore, rather
than applying the NMF-based decomposition to individ-
ual 12-second excerpts, we concatenated all 12-second ex-
cerpts recorded in the same room (see Table 2). This strat-
egy is grounded on the assumption that the learned spec-
tral templates, encoding characteristics of the piano and
room acoustics, exhibit coherence within each room. Sub-
sequently, we executed the NMF algorithm for 100 itera-
tions on the concatenated data for four subsets with distinct
room acoustics, using the same configurations and initial-
ization approach introduced in [16]. This procedure was
applied to both the reference piano recordings and the sep-
arated piano tracks generated by each MSS model. The
resulting notewise decomposition results serve as the basis
for our experiments, as reported in Section 4.

3.3 SDR-Based Metrics

The signal-to-distortion ratio (SDR) is a widely used met-
ric in the evaluation of source separation performance,
measuring the quality of a separated source by comparing
it to the reference source in terms of signal distortion [13].
In our evaluation, when given a reference signal x and a
separated signal x̂, we use instead the more computation-
ally efficient SDR metric proposed at the recent SDX chal-
lange [35], also denoted as SDR:

SDR(x, x̂) := 10 log10
||x||2

||x̂− x||2
. (2)

Rather than comparing entire excerpts, we use a localized
variant referred to as SDRlocal that better accounts for sig-
nificant level differences within the signal. To this end,
we split the reference and separated signals into 1-second
segments xk and x̂k, respectively, defining:

SDRlocal :=
1

K

K∑
k=1

SDR(xk, x̂k) (3)

In our evaluation, we have K = 12, as each excerpt in the
PCD test set has a duration of 12 seconds.

To obtain a musically more informed evaluation metric,
we exploit the decomposition as defined in Equation (1)
and consider notewise SDR values:

SDRnote := SDR(xm, x̂m), (4)

where xm and x̂m denote the notewise sound events of
the reference signal and the separated signal, respectively.
Note that, using the same score-based activation con-
straints in the NMF decomposition for x and x̂, respec-
tively, the lengths of xm and x̂m are identical for a given
m ∈ [1 :M ].

4. EXPERIMENTS

In this section, we report on our systematically conducted
experiments to highlight the potential of our notewise eval-
uation methodology. In this context, the piano concerto
separation task, along with the five MSS systems described

Model Piano Orchestra

UMX 8.38 ± 4.24 3.61 ± 2.19
SPL 8.16 ± 3.99 3.46 ± 2.25
DMC 7.59 ± 4.38 2.82 ± 2.13
HDMC 9.61 ± 4.42 4.75 ± 2.31

AudioShake 12.82± 4.24 8.01± 2.97

Table 3: SDRlocal values (mean and standard deviation)
averaged over all PCD excerpts for different MSS systems
(see Table 1).

AudioShakeUMX SPL DMC HDMC

Figure 3: Comparison of different evaluation methodolo-
gies for the piano case using boxplots. The three outliers
for AudioShake, indicated by the black oval, are shown in
Figure 8.

in Section 2, should be considered an illustrative case study
of practical relevance. When describing the various exper-
iments, we progress from a coarse to a fine perspective.
We start with a more global view of the source separation
quality of the MSS systems (Section 4.1). Subsequently,
we adopt a more fine-grained perspective, delving into the
separation quality depending on the musical pitch (Sec-
tion 4.2). Finally, we assume an excerptwise view and dis-
cuss specific examples to illustrate how separation errors
may occur in musically complex situations (Section 4.3).
This hierarchical discussion underscores how the notewise
evaluation methodology serves as a tool, enabling users to
delve into and comprehend not only the separation results
but also the intricacies within the underlying music.

4.1 Global Perspective

To gain an initial understanding of the overall performance
of the five MSS systems, Table 3 presents the SDRlocal

values averaged across the 81 PCD excerpts for both sepa-
rated piano tracks and orchestra tracks. For instance, in the
piano case, DMC achieves the lowest SDRlocal value at 7.59,
while HDMC shows a higher value of 9.61, and AudioShake
outperforms all other models with a value of 12.82. Similar
trends are evident in the separated orchestra case, although
all values are notably lower compared to the piano case.
Similar tendencies have been reported in [28].

In the subsequent finer-grained evaluation, we employ
notewise evaluation metrics. Since we have the required
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Figure 4: SDRnote values aggregated by pitch (specified by MIDI note number) shown for five MSS systems.

symbolic score information for the score-based NMF de-
composition exclusively for the piano tracks, we confine
our analysis to the piano case. 5 Extending the evalu-
ation methodology for the five MSS systems, Figure 3
shows boxplots that indicate the median, first quartile, third
quartile, and outliers of differently computed SDR val-
ues. The first group of boxplots (Excerpt) provides the
SDRlocal values computed as in Table 3. The second (LH)
and third (RH) groups show the SDRnote values for the
left-hand and right-hand notes, respectively, and the last
group (All Notes) shows the SDRnote values for all indi-
vidual notes.

While the general trends for the five MSS systems
are similar to those shown in Table 3, the different
evaluation methodologies provide additional information.
Firstly, being based on notewise aggregation, outliers in
the SDRnote-based boxplots offer explicit cues worth fur-
ther investigation. For instance, outliers such as the three
indicated by the black oval in Figure 3 yield interesting ex-
amples for musically complex passages as further explored
in Section 4.3. The boxplots in Figure 3 also facilitate a
comparison of SDRnote values between the LH and RH
notes. Notably, for all MSS systems, a better separation
quality can be observed for the right hand compared to the
left hand, with a difference of approximately 5 dB. Draw-
ing from these observations, one can formulate various hy-
potheses regarding the relationship between source separa-
tion quality and pitch or musical complexity, as we detail
in the subsequent sections. Please visit our demo webpage
to find audio examples separated by five MSS models. 6

4.2 Pitchwise Evaluation

Considering that RH typically contains higher notes than
LH, one may conjecture that source separation quality de-
pends on the pitch of the played notes. To test this hy-
pothesis, Figure 4 provides an overview of the SDRnote

values aggregated by pitch (specified by MIDI note num-
ber). While the overall trend regarding the MSS systems’

5 For the orchestra, we generated only piano-reduced scores due to the
considerable effort required for full scores. Additionally, automated syn-
chronization and decomposition approaches present greater challenges
for orchestral music compared to piano, extending beyond the scope of
the case study presented in this paper.

6 www.audiolabs-erlangen.de/resources/MIR/
2024-ISMIR-PianoSepEval

performances remains the same (AudioShake performing
best, DMC worst, and HDMC being in between), the pitch-
dependent SDRnote values indicate that, overall, source
separation quality tends to increase for higher pitch num-
bers, with the highest values in the pitch range 74–80.

However, such trends, and drawing conclusions from
them, need to be taken with care. For example, the curves
in Figure 4 may indicate that source separation becomes
more difficult for very high pitches in the range 96–104.
However, these numbers lack statistical significance due to
the limited occurrence (indicated by the dotted line). Also,
one may assume that such pitches may rarely occur in the
training material used for training the MSS systems, thus
leading to poor generalizations on the test set.

4.3 Excerptwise Evaluation

Rather than source separation quality solely being a mat-
ter of pitch height, there may be other confounding factors
underlying the trend. An alternative hypothesis could be
that the LH (or lower-pitched) piano notes are more inter-
woven with the orchestral track, while the RH (or higher-
pitched) piano notes stand out and can be better isolated
by MSS systems. To explore aspects of musical complex-
ity, we present in Figure 5 SDRnote values aggregated by
excerpt (specified by PCD ID), this time focusing on the re-
sults for the two best-performing MSS systems, HDMC and
AudioShake. Sorting the excerpts, e. g., based on decreas-
ing mean values concerning AudioShake, facilitates the
identification of challenging excerpts, which are depicted
toward the right side of the plot.

Guided by the plot in Figure 5, let us consider some con-
crete examples. Examining the top three excerpts (PCD
IDs 045, 042, and 024), a manual inspection reveals that
these excerpts share a common characteristic of relatively
low musical complexity, consisting of slower passages
drawn from the second movements of piano concertos by
Beethoven and Mozart. For such passages, both MSS sys-
tems achieve a good separation quality.

Next, let us examine the excerpt with the lowest
SDRnote value. This excerpt has PCD ID 076 and cor-
responds to measures 18–24 of the first movement of
Tchaikovsky’s Piano Concerto Op. 23, as shown in Fig-
ure 6. Evidently, this passage exhibits a high musical com-
plexity, with both piano and orchestra playing numerous

www.audiolabs-erlangen.de/resources/MIR/2024-ISMIR-PianoSepEval
www.audiolabs-erlangen.de/resources/MIR/2024-ISMIR-PianoSepEval
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Figure 6: Excerpt with PCD ID 079: Tchaikovsky’s Piano
Concerto Op. 23, measures 18–24 of the first movement
(only four measures are shown here).
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Figure 7: Excerpt with PCD ID 000: Bach’s Piano Con-
certo BWV 1056, measures 1–8 of the first movement
(only four measures are shown here).

373 168 35

(a) (b) (c)

Figure 8: Musical context within the piano scores for the
three notewise outliers marked in Figure 3 (here indicated
by the red circles). (a) PCD ID: 052. (b) PCD ID: 061. (c)
PCD ID: 077.

notes within a wide pitch range. Particularly notable are
the fortissimo and broken chords in the piano part, which
strongly interfere with the full orchestral sound, not to
mention the effects resulting from the application of the
sustain pedal. As a second concrete example, let us have a

closer look at the excerpt with PCD ID 000, also yield-
ing a low SDRnote value. This excerpt corresponds to
the first measures of Bach’s Piano Concerto BWV 1056,
where the piano and orchestra play many notes in unison
(see Figure 7). This scenario represents one of the most
challenging situations for source separation models to deal
with [36, 37].

Finally, we revisit the boxplots shown in Figure 3,
where we marked three outliers indicating problematic
notewise sound events with low SDR values, poorly sepa-
rated by AudioShake. Figure 8 provides the musical con-
text within the piano scores where these notes occur. A
common feature in these examples, which is also typical
in piano music in general, is the simultaneous playing of
two notes that belong to the same pitch class, contribut-
ing to a rich and complex sound texture. Obviously, such
instances are difficult for any MSS system, as well as the
NMF algorithm to handle.

Overall, these examples show that while MSS systems
like AudioShake and HDMC are capable of achieving im-
pressive separation quality, their efficacy is highly influ-
enced by the intrinsic characteristics of the musical pieces.

5. CONCLUSION

In this paper, we have considered a novel evaluation
methodology that compares separated sounds with refer-
ence sounds on a notewise basis rather than at the excerpt
level. For the challenging piano concerto scenario and em-
ploying five MSS systems, we applied this methodology in
a case study focusing on the separated piano tracks. This
allowed us to gain insights into the separation quality and
the complexity of the underlying music. While our focus
has been on the piano case, future work may involve eval-
uating other orchestral instruments and guitars. This could
pose additional challenges not only for source separation
itself but also for automated synchronization and decom-
position approaches. On a meta-level, we hope that our hi-
erarchical discussion, assuming different perspectives, also
showcased the potential of musically informed evaluation
methodologies, providing a basis for interdisciplinary dia-
logue between engineering and music experts.
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