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ABSTRACT
In Music Information Retrieval (MIR), a general goal is to recognize times of novelty
within music recordings. This includes estimating structural boundaries through the
detection of changes in harmony, tempo, or instrumentation and identifying onsets
of note and sound events by capturing changes in the music signal’s energy or spec-
tral content. These tasks leverage novelty functions, which are one-dimensional, time-
dependent functions characterized by sharp local maxima that indicate significant
musical and acoustical changes. From a given music recording, novelty functions can
be derived using a variety ofmethods, ranging from traditional signal-processing tech-
niques to modern data-driven approaches, where they are often termed “activation
functions.” In this tutorial, we explore the concept of novelty functions and some
of their essential properties. We discuss methods to enhance these functions and
improve their distinctive peak-like structures. These improvements are crucial for sim-
plifying the identification of specific musical events using post-processing methods,
from basic peak picking to more sophisticated approaches like periodicity analysis.
We also assess novelty functions through commonly used metrics such as precision,
recall, and F-measure but with an emphasis on error tolerance. Aimed at
Bachelor’s degree and beginning Master’s degree students with basic knowledge of
signal processing and mathematics, this tutorial uses illustrative figures to clarify key
concepts, thereby broadening its accessibility to a wider MIR audience and enrich-
ing their comprehension of this significant subject. Furthermore, Jupyter notebooks,
including Python source code for the core algorithms and audio examples that allow
for reproducing the tutorial’s figures, are provided at https://github.com/groupmm/ed
u_novfct.
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1 INTRODUCTION

In the field of Music Information Retrieval (MIR), seg-
menting music into meaningful sections is a fun-
damental task. Generally, in multimedia processing,
segmentation involves dividing a digital document into
parts to simplify analysis and facilitate understanding.
For example, in image processing, segmentation is the
process of dividing an image into regions based on char-
acteristics such as color, intensity, or texture, with bound-
aries typically marked by significant changes in these
properties. Similarly, music segmentation divides amusic
recording into musically and acoustically meaningful
sections, each defined by its start and end points. This can
include tasks from a detailed level, such as identifying the
start positions of individual notes or beats, to a broader
level, such as detecting changes in instrumentation or
harmony. In the latter scenario, these points of change
or novelty often indicate structural boundaries within the
music, such as the transition from a verse to a chorus or
from one musical theme to another.

A fundamental concept for detecting changes inmusic
recordings is the novelty function. Originally applied in
the context of music structure analysis by Foote (2000),
novelty functions have since been extensively used
for various MIR tasks, including onset detection (Bello
et al., 2005), beat and pulse tracking (Grosche andMüller,

2011), chord recognition (Pauwels et al., 2019), and
music transcription (Benetos et al., 2019). Mathemati-
cally, a novelty function is a time-dependent functionΔ ∶ R → R that yields a real value Δ(t) ∈ R for each time
point t ∈ R. The value Δ(t) represents the degree of nov-
elty (or a change) at each point in time. Intuitively, the
local maxima or peaks of a novelty function correspond
to changes in specific properties of the underlying music
recording. Illustrative examples are shown in Figure 1 for
various MIR tasks.

In practice, the methods for computing novelty func-
tions and identifying relevant peaks depend on the par-
ticular MIR task being addressed and the initial music
input representation. Starting with amusic recording, the
first step typically involves transforming the audio signal
into a feature representation, such as a chromagram or
spectrogram (Müller, 2021), to capture important musi-
cal and acoustical properties, such as those related to
harmony or frequency. Subsequently, this representation
undergoes conversion into an appropriate novelty func-
tion using filtering and differentiation techniques. To
identify significant peaks, the final step involves post-
processing, which can range from simple peak picking
to more complex methods like periodicity analysis and
dynamic programming. The positions of these peaks act
as potential markers for estimating the timing of musical
events under analysis.

Figure 1 Idealized novelty functions for various MIR tasks. (a) Musical score of the beginning of the second piano etude from Op. 100
by Burgmüller. (b) Audio recording of the corresponding excerpt. (c) Onset detection. (d) Beat tracking. (e) Downbeat (measure)
tracking. (f) Boundary estimation for music structure analysis.
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In recent years, data-driven machine learning meth-
ods have been applied to compute functions similar to
novelty functions, commonly referred to as activation
functions in this context. These approaches necessitate a
training dataset comprising music recordings and target
annotations that identify the time points when relevant
musical events occur. Despite activation functions being
used for a broader range of tasks, including the detection
of properties over longer time periods (e.g., singing voice
detection), the terms “activation function” and “novelty
function” are frequently used interchangeably within the
context of beat tracking, musical boundary detection,
and related MIR tasks. In this article, the term “novelty
function” is used to highlight our focus on functions char-
acterized by their peak structures.

Clearly, the success of the final segmentation heav-
ily relies on the characteristics of the novelty function.
The post-processing step is crucial, requiring the nov-
elty function to have distinct peaks at targeted loca-
tions (to capture true positives) while suppressing local
maxima at irrelevant positions (to avoid false posi-
tives). Enhancing the properties of novelty functions
often includes methods like smoothing and normaliza-
tion. Specifically, when incorporating novelty functions
into probabilistic frameworks, it is beneficial to constrain
novelty values to between 0 and 1, allowing them to be
interpreted and treated as pseudoprobabilities. In sum-
mary, ideally, novelty functions are sensitive to rele-
vant musical changes and are robust against irrelevant
aspects and noise. They should remain stable amidst
signal variations, offer precise timing, be computation-
ally efficient, and be adaptable across different music
genres.

After this general introduction, the remainder of this
tutorial is organized as follows: In Section 2, we pro-
vide basic mathematical definitions and, to make them
more concrete, consider two specific MIR applications:
onset detection and structure analysis. We demonstrate
the derivation of novelty functions for both tasks using
traditional signal processing techniques. Additionally, we
describe general principles of data-driven methods that
produce activation functions to achieve similar goals.
Then, in Section 3, we examine the fundamental proper-
ties of novelty functions and explore strategies to improve
them. In Section 4, we cover post-processing strategies,
with a focus on simple peak picking, and discuss their
evaluation based on precision, recall, and F-measure, tak-
ing into account error tolerance. Finally, in Section 5, we
summarize the tutorial and provide guidance for educa-
tional integration, recommended software, and relevant
datasets for hands-on experimentation.

We conclude this introduction by stating that this tuto-
rial is primarily aimed at Bachelor’s degree and beginning
Master’s degree students with basic knowledge of signal
processing and mathematics. However, through the use
of illustrative figures to explain key concepts, we strive to

make this tutorial accessible to a broader, non-technical
MIR audience. Furthermore, along with this article, we
provide Jupyter notebooks¹ that include Python source
code for the core algorithms. Additionally, by providing
music and audio examples, the notebooks allow for a
step-by-step reproduction of all results and illustrations
shown in the article’s figures.

2 BASIC DEFINITIONS AND NOVELTY
COMPUTATION

In this section, we discuss various ways to compute nov-
elty functions. To make things concrete, we consider two
representative MIR tasks known as onset detection and
structure analysis. Before doing so, we establish some
basic mathematical definitions that will be used in the
remainder of the tutorial.

2.1 BASIC MATHEMATICAL DEFINITIONS
As mentioned in the introduction, a novelty function can
be modeled as a time-dependent, real-valued function.
While considering continuous-time functions with time
points t ∈ R being intuitive, the use of computers neces-
sitates discrete-time modeling for practical implemen-
tations and computability. Therefore, for the remainder
of this tutorial, we will assume that the time axis is dis-
cretized and defined by a regularly sampled time grid.
Let FS denote the sampling rate (given in Hertz), which
specifies the number of samples per second defined by
this grid. Furthermore, we assume that the time axis cov-
ers only a finite time interval, starting with time posi-
tion t = 0. Then the discrete-time axis can be encoded
by a finite set of integers [0 ∶ N − 1] ∶= {0,1, . . . ,N − 1},
where N ∈ N is the total number of grid points and the
index n ∈ [0 ∶ N − 1] corresponds to the time point

t = n
Fs

(1)

given in seconds. In the following, we consider a novelty
function to be a discrete-time function given by

Δ ∶ [0 ∶ N − 1] → R, (2)

which specifies, for each time index n ∈ [0 ∶ N − 1], the
novelty value Δ(n). For the sake of easier understanding
and intuition, we continue to display a discrete-time nov-
elty function in our visualizations, with the time axis spec-
ified in seconds and using Equation (1) to convert indices
to physical time.

2.2 ONSET DETECTION
The objective of onset detection is to identify the phys-
ical start times of musical events in a recording, which
are often characterized by a sudden increase in energy
from percussive sound components, such as those pro-
duced by a drum or the hammer strike of a piano. This
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is exemplified in Figure 2, with an excerpt from “Another
One Bites the Dust” by Queen, featuring sound events
of various instruments. Time positions where the ampli-
tude envelope begins to rise can indicate note or sound
onsets, although finding such positions is more challeng-
ing with non-percussivemusical sounds, due to soft tran-
sitions and complex polyphonic music occurring because
of masking effects.

Instead of directly tracking energy changes, many
onset-detection methods detect changes across dif-
ferent frequency regions, leading to an audio feature
referred to as spectral flux. This involves converting the
music recording into a spectrogram using a short-time
Fourier transform (STFT), as detailed in (Müller, 2021).
While the STFT parameters, including the window size,
the window type, and the hop size, can be crucial for
the properties of the resulting novelty function, these
aspects are not covered further in this tutorial. In the
following paragraphs, we assume that the STFT is rep-
resented by a matrix X ∈ CN×K that encodes the phase
and magnitude at each time index n ∈ [0 ∶ N − 1] and
at each frequency index k ∈ [0 ∶ K − 1], with K ∈ N

denoting the number of frequency bands. The magni-
tude spectrogram |X| of our Queen example is shown in
Figure 2(c).

To enhance the small, yet acoustically significant,
frequency components that are barely visible in the

spectrogram, one can apply logarithmic compression.
This involves applying a logarithm to themagnitude spec-
trogram |X| , yielding

Y = log(1 + 𝛾 · |X|), (3)

with a hyperparameter 𝛾 > 0 used to control the degree
of compression; see also (Klapuri et al., 2006). This com-
pression not only accounts for the human perception of
sound intensity but also equalizes the signal’s dynamic
range.

Finally, one computes the discrete temporal deriva-
tive of the compressed spectrogram Y, and accumulates
the resulting frequency-dependent changes. Here, only
positive changes are considered, under the assumption
that onsets correspond to energy increases rather than
decreases. This process yields the novelty function Δ ∶[0 ∶ N − 2] → R, which is defined by

Δ(n) ∶= K−1∑
k=0

|Y(n + 1, k) − Y(n, k)|≥0 (4)

for n ∈ [0 ∶ N − 2]. In this definition, we use an operation
known as half-wave rectification, which is defined for a
real number x ∈ R:

|x|≥0 ∶= {x forx ≥ 0,
0 forx < 0. (5)

Figure 2 Computation of a novelty function based on spectral flux used for onset detection. The music excerpt corresponds to the
beginning of the song “Another One Bites the Dust” by Queen. (a) Music signal (shown as waveform). (b) Annotation of target onsets
for the applicable instruments. (c) Magnitude spectrogram. (d) Compressed magnitude spectrogram. (e) Novelty function.
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Figure 2(e) shows the resulting novelty function for our
example, where the peaks accurately indicate the onset
positions of all sound events. Notably, the four most
dominant peaks correspond to drum hits. Even at time
pointswhere only the hihat is active, one can observe four
smaller peaks, although these sound events are barely
visible in the waveform. This detection is possible due
to the weak but still characteristic broad-band transients
that are enhanced by the compression.

At this point, we want to emphasize that spectral
flux, as introduced in this section, serves only as an
illustrative and simple example of how one may obtain
a novelty function for onset detection. In many situa-
tions, spectral flux fails to reliably detect note onsets,
thus necessitating more refined methods. For instance,
when singing a tone or playing a note on a violin,
musicians often use a technique called vibrato, which
involves a pulsating change in frequency (frequency
modulation), usually in the range of 5 to 7 oscillations
per second. Spectral flux is sensitive to these modu-
lations, typically resulting in a large number of spuri-
ous peaks in the resulting novelty function that are not
related to the actual note beginning. In these scenarios,
techniques such as logarithmic compression may even
further amplify fluctuating and noise-like sound com-
ponents, thus increasing the number of spurious peaks.
Here, more refined techniques are required that, for
example, suppress vibrato effects (Böck and Widmer,
2013) or reduce the effect of non-stationary background
noise (Lostanlen et al., 2019).

2.3 MUSIC STRUCTURE ANALYSIS
The general goal of music structure analysis is to divide
a music representation into temporal segments that cor-
respond to musical parts and to categorize these seg-
ments into meaningful groups. An example is illustrated
in Figure 3 with a recording of the “Hungarian Dance No.
5” by Johannes Brahms, structured as A1A2B1B2CA3B3B4.
This structure includes three A-parts and four B-parts
that repeat, along with a unique C-part. Repetition is
key to identifying musical form, often with each section
being homogeneous in aspects such as instrumentation,
tempo, or harmony. For instance, contrasting sections
might be homogeneous in harmony but differ in musi-
cal key, as seen in the Brahms example with A-parts
and B-parts in G minor and the C-part in G major, as illus-
trated by Figure 3(b).

Rather than recovering the entire musical form, a sub-
task within music structure analysis is known as bound-
ary detection. Here, the objective is to identify the time
points where one musical part ends and the next musi-
cal part starts (e.g., the end of the B2 part in Gminor and
the beginning of the C-part in G major; see Figure 3(b)).
In this context, the concept of novelty-based boundary
detection is designed to identify transitions between two
contrasting yet homogeneous segments. Following the
classical approach by Foote (2000), we now proceed to
derive a novelty function for this segmentation task.

The first step in boundary detection is converting the
music signal into a feature representation that captures
essential musical information like melody, harmony,

Figure 3 Novelty-based boundary detection for music structure analysis. The example is based on a recording of the “Hungarian
Dance No. 5” by Johannes Brahms. (a) Music signal (shown as waveform). (b) Annotation of local key segments and the musical form.
(c) Chromagram. (d) Checkerboard kernel shown as 2-dimensional and 3-dimensional plot. (e) Self-similarity matrix with kernel
shifted along the main diagonal. (f) Annotation of the musical form. (g) Novelty function with a vertical line indicating the position of
the kernel shown in (e).
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rhythm, or timbre. For instance, when identifying bound-
aries associated with key changes, chroma-based audio
features are particularly effective. These features utilize
the 12 -tone equal-tempered scale, splitting pitch into
tone height (octave number) and chroma, which corre-
sponds to the twelve pitch-spelling attributes C, C#,D, . . . ,
B. Chroma features are computed for each time point by
aggregating the spectral information of all pitches that
share the same chroma across octaves into a single coef-
ficient. This results in a time-chroma representation, also
known as a chromagram, which offers robustness against
timbre variations and closely aligns with the harmonic
aspects of music; see Figure 3(c) for an example.

Mathematically, a feature representation like a chro-
magram is modeled as a sequence (v0, v1, . . . , vN−1) with
feature vectors vn for each time index n ∈ [0 ∶ N − 1].
Often, the cosine similarity measure, defined as the
cosine of the angle between two vectors, is used to com-
pare two feature vectors. Assuming that all components
of the feature vectors are non-negative (which is, e.g., the
case when using magnitude- or probability-based fea-
ture values), a cosine similarity value is high (close to
1) if the two vectors are similar (i.e., if they point in the
same direction) and low (close to 0) if they are dissimilar
(i.e., if they point in orthogonal directions). Comparing all
feature vectors pairwise results in a self-similarity matrix
(SSM), whichwe denote as S ∈ RN×N. The values S(n,m) of
this matrix are defined as the cosine similarity between
vectors vn and vm for n,m ∈ [0 ∶ N − 1].

Self-similarity matrices are an important tool for dis-
playing structural properties of the feature represen-
tation: Repetitions appear as path-like structures, and
homogeneous segments appear as block-like regions;
see Figure 3(e) for an example. In particular, the block
structures of the SSM along its main diagonal represent
consecutive contrasting homogeneous segments, and
the corner points on the main diagonal of such blocks
characterizemusical boundaries. These corner points can
be captured as follows: A checkerboard-like kernel (as
shown in Figure 3(d)) is shifted along themain diagonal of
the SSM, and its correlation with the corresponding sub-
matrix of the SSM is computed; see Figure 3(e). This pro-
cess defines a novelty function in which the time index
corresponds to the kernel’s position and the function’s
value corresponds to the correlation result. High values in
the novelty function occurwhen the shifted kernel is posi-
tionedat the corner point of a checkerboard-like structure
in the SSM, indicating significant changes. Otherwise, the
correlation, and thus the value of the novelty function, is
low. For mathematical details, we refer to (Müller, 2021;
Paulus et al., 2010). As can be seen in Figure 3(g), the nov-
elty function of our Brahms example yields a particularly
high value at the transition from the B2-part to the C-part,
which is characterized by a key change from G minor to
G major.

2.4 DATA-DRIVEN NOVELTY COMPUTATION
Both methods of computing novelty functions for onset
and boundary detection rely on traditional signal-
processing techniques and follow a similar computa-
tional pipeline: Initially, the music signal is converted
into a feature representation, and a novelty measure is
applied to detect changes in these feature sequences.
In recent years, data-driven approaches based on deep
learning (DL) have provided an alternative by integrat-
ing feature extraction and novelty measurement within
a single framework. These approaches often treat nov-
elty detection as a frame-wise binary classification prob-
lem in which the network learns to predict the proba-
bility or likelihood of a relevant musical event occurring
at a given time point. These predicted values yield what
is commonly referred to as an activation function in the
deep learning literature. In our scenario, this activation
function serves as a novelty function that assigns each
index n ∈ [0 ∶ N − 1] to a pseudoprobability value rang-
ing from 0 to 1.

Data-driven approaches to novelty detection offer
several advantages: First, they often provide a novelty
function within a probabilistic framework (e.g., when
rephrasing the segmentation problem as a framewise
classification problem with a softmax output layer), thus
allowing for natural normalization and interpretation.
Second, neural networks can be designed to implicitly
learn signal properties relevant to novelty detection (e.g.,
in their hidden layers) without the need for explicit mod-
eling of musical or acoustical properties. Even though
one may argue that data-driven deep learning tech-
niques are also prone to inductive biases (stemming from
design choices made in, e.g., the network architecture,
data preparation, and input feature computation), these
approaches tend to be versatile for applications to differ-
ent music types and various MIR tasks.

However, such data-driven approaches also comewith
limitations. First, they typically require training data with
highly accurate reference annotations, such as audio
excerpts with annotated note onsets or musical bound-
aries. Such annotations are often not available in large
numbers, and their creationmay require significantman-
ual labor by domain experts. Secondly, although novelty
occurrences are defined locally, their identification and
understanding may require both temporal context and
long-termmusical knowledge. This is typically addressed
by providing networks with entire input patches (Schlüter
and Böck, 2014) or by using recurrent networks such
as bidirectional LSTM to capture longer-term dependen-
cies (Eyben et al., 2010). Thirdly, the rarity of relevant
changes in novelty detection leads to class imbalance,
where the network may frequently predict non-activity
(i.e., probability 0), potentially resulting in an all-zero nov-
elty function. Additionally, minor inaccuracies in annota-
tions can degrade network performance. One solution to
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this is a technique called target smearing, in which neigh-
boring frames around active frames are also marked as
active. This strategy may be combined with a Gaussian
weighting strategy during the learning stage to empha-
size the relevance of the originally annotated frames
(Ullrich et al., 2014).

In summary, deep learning has enabled significant
advancements in MIR tasks involving novelty detection,
thanks to deep learning’s ability to learn relevant
structures directly from training data. In practice, numer-
ous design choices remain, including network archi-
tecture, data preparation, input representation, target
smearing, and class imbalance compensation, among
others. Additionally, training these deep neural networks
is an art in itself, often requiring complicated optimiza-
tion approaches and sometimes leading to inconsistent
and unpredictable outputs. In Section 3, we will discuss
strategies that address some of these issues, including
the use of ensembling approaches to help reduce model
uncertainty. Since deep learning is not the focus of this
tutorial, we refer to the cited literature mentioned above
for further reading on this topic.

3 ENHANCEMENT STRATEGIES

As previously discussed, novelty functions should ide-
ally capture relevant musical changes while being robust
against irrelevant signal variations, background noise,
and random fluctuations. However, in practice, novelty
functions computed via signal processing methods or
obtained through activation functions using data-driven
machine-learning techniques often fall short of these

abilities. In this section, we explore general enhance-
ment strategies that aim to improve the prominence of
relevant peaks, suppress small fluctuations, and ensure
that the areas between relevant peaks remain close
to zero. To illustrate some of these strategies, Figure
4(c) displays a spectral-based novelty function computed
for an audio excerpt (orchestral version) from Dimitri
Shostakovich’s “Waltz No. 2, Suite for Variety Orchestra
No. 1.” For context, Figure 4(a) shows the musical score
of a piano-reduced version of this audio excerpt, and
Figure 4(e) shows the annotations for onsets, beats, and
downbeats. The first beats, which are played softly by
nonpercussive instruments, leading to weak onsets, cor-
respond to less pronounced peaks, while the sharp “stac-
cato” notes played with percussive support in the sec-
ond and third beats produce higher peaks. The excerpt
will serve as our running example in the next two
sections.

3.1 SMOOTHING
A simple but important strategy to reduce local fluctua-
tion is smoothing the novelty function. This can be done
inmanyways (e.g., already at the stage of computing the
novelty function). For example, when calculating spec-
tral flux (see Section 2.2), increasing the STFT window
size will smooth the spectrogram, which in turn has a
smoothing effect on the resulting novelty function. Sim-
ilarly, in the context of boundary detection (see Section
2.3), smoothing the input feature representation (such as
the chromagram) or increasing the size of the checker-
board kernel will smooth the novelty function. Further-
more, when computing an activation function using deep

Figure 4 Enhancement strategies. The example is based on an audio excerpt (orchestral version) from Dimitri Shostakovich’s “Waltz
No. 2, Suite for Variety Orchestra No. 1.” (a) Musical score of piano-reduced version. (b) Annotations of onset, beat, and downbeat
positions. (c) Novelty function based on spectral flux (see Figure 2). (d) Smoothed novelty function and local average function 𝜇 (red
curve). (e) Enhanced novelty function Δ. (f) Max-normalized novelty function and local max function (red curve). (g) Novelty function
after local-max normalization. (h) Novelty function from (f) after applying the hyperbolic tangent function.
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learning (Section 2.4), methods such as target smearing
may also have smoothing effects.

Alternatively, direct smoothing of a novelty function
can be achieved by applying a low-pass filter (e.g., via
convolution with a Gaussian function), as illustrated in
Figure 4(d). The degree of smoothing is a trade-off
between removing small artifacts and retaining suffi-
cient information. Finally, we want to emphasize that
smoothing is crucial when applying resampling strategies
to change the novelty function’s sampling rate. In par-
ticular, downsamplingmay distort or even remove sharp,
impulse-like structures in the novelty function without
prior smoothing.

3.2 LOCAL THRESHOLDING
Furthermore, to compensate for a constant offset or
bias from zero as well as to reduce the effect of ran-
domnoise–like fluctuations in novelty functions, onemay
remove all values below a specified threshold and suit-
ably shift the novelty function. Instead of using a global
threshold, employing a local threshold can be more
effective. To achieve this, one first determines a local
average function 𝜇 ∶ [0 ∶ N − 1] → R as follows:

𝜇(n) ∶= 1
2M + 1

M∑
m=−M Δ(n +m), (6)

where n ∈ [0 ∶ N − 1] , and the parameter M ∈ N sets
the size of the averaging window. To prevent summa-
tion over invalid index regions (e.g., negative indices) in
this equation, one typically applies padding strategies
(e.g., zero padding, extending the novelty function with
zeros to the left and right). These approaches, however,
may introduce additional artifacts that need to be han-
dled with care. The enhanced novelty function Δ is then
obtained by subtracting this local average from Δ and
keeping only the positive values (half-wave rectification;
see Equation (5)):

Δ(n) ∶= |Δ(n) − 𝜇(n)|≥0 (7)

for n ∈ [0 ∶ N − 1]. Figure 4(d) illustrates the local aver-
age function 𝜇, and Figure 4(e) illustrates the resulting
enhanced novelty function Δ.
3.3 NORMALIZATION
Normalization is a crucial enhancement strategy for
novelty functions because it standardizes values within
a specific range, typically 0 to 1. This standardization
balances the values,making themcomparable and treat-
able as pseudoprobabilities within probabilistic frame-
works. The simplest method is max normalization, in
which the entire novelty function is divided by its maxi-
mum value by scaling all values to the range 0 to 1, as
shown in Figure 4(f). However, this procedure is sensitive
to outliers, as a single large value may push most of the
other values close to 0. Additionally, the normalization
process is sensitive to the section chosen, meaning that

using a subsection of the novelty function can result in a
different normalization.

To address this issue, one might apply local max nor-
malization by first deriving a local max function (com-
puted similarly to the local average function in Equation
(6)); see Figure 4(f). Pointwise division by this function
leads to local normalization, as illustrated in Figure 4(g).
However, this procedure must be handled with care to
avoid dividing by zero, which can be mitigated by setting
the minimum value of the local max function to a posi-
tive threshold. Additionally, local normalization can have
unintended effects, such as amplifying very small, noise-
like components to larger values

Finally, another common normalization method, also
frequently used in deep learning, involves applying a
function like the hyperbolic tangent (tanh), which maps
the value x = 0 to zero and compresses positive values
x > 0 between 0 and 1, as defined by

tanh (x) ∶= 1 − 2
1 + exp (2x) . (8)

The effect is illustrated in Figure 4(h). Similar to the
logarithmic compression defined in Equation (3), a hyper-
parameter can be introduced to control the degree of
compression.

3.4 ENSEMBLING
We conclude this section by discussing another general
enhancement strategy that involves combining several
independently computed novelty functions. In general,
ensembling refers to the process of combining multi-
ple models to produce a stronger and more accurate
model. By aggregating the predictions of several mod-
els, the ensemble can reduce errors and improve per-
formance compared to any single model. This strategy
can be applied to novelty functions that are computed
based on different feature representations or enhance-
ment strategies, with aggregation methods that extend
beyond simple averaging, such as usingmedian values or
voting approaches. A specific type of ensemble method
known as bagging (short for “bootstrap aggregating”)
in the machine learning literature (Breiman, 1996)
combines multiple versions of a model trained on differ-
ent subsets of the training data. This ensembling tech-
nique enhances the stability and accuracy of data-driven
approaches by reducing variance and preventing overfit-
ting. Although bagging increases computational load due
to the need to train multiple models, it often yields more
accurate and robust novelty functions, especially in com-
plex prediction tasks.

4 POST-PROCESSING AND EVALUATION

Understanding and assessing the properties of a nov-
elty function is not straightforward and is typically
conducted within the context of a specific MIR applica-
tion, such as onset detection, beat tracking, or music
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structure analysis. We first introduce how to evalu-
ate estimated peak positions against reference posi-
tions using threshold-dependent precision, recall, and
F-measure (Section 4.1). Then we demonstrate how the
peak positions can be selected using simple peak-picking
strategies (Section 4.2). These methods are instruc-
tive, rely on only a few assumptions, and highlight
the fundamental characteristics of novelty functions.
More advanced post-processing strategies are outlined in
Section 4.3.

4.1 PRECISION, RECALL, F-MEASURE
In music segmentation, a common evaluation approach
involves comparing a set of estimated time positions
(e.g., derived from the peak positions of a novelty func-
tion) with a list of reference time positions (also known
as ground truth or target positions). In onset detec-
tion, for example, these reference positions may be pro-
vided by a human annotator or by sensor technology,
such as Disklavier technology² for pianos, which captures
this information during a performance. The objective of
the evaluation measure is to assess how well the refer-
ence positions are covered by the estimated positions.
Depending on the application’s requirements, small inac-
curacies may be acceptable as long as they are within a
defined tolerance (expressed by a tolerance parameter𝜏 > 0). For instance, in the evaluation of onset detection
approaches, a tolerance of up to 50 milliseconds is often
chosen (which is roughly twice the duration a human
requires to distinguish between two separate complex or
real-world sounds). In music structure analysis, a toler-
ance of more than 500 milliseconds (which corresponds
to a beat duration at a tempo of 120 beats per minute)
may still be considered acceptable.

In the following, we assume that the estimated time
indices e𝓁 ∈ [0 ∶ N − 1] for 𝓁 ∈ [1 ∶ L] are provided
by a list (e1, e2, . . . , eL) of length L ∈ N, sorted by

increasing indices. Similarly, we assume that the refer-
ence time positions are given by a list (r1, r2, . . . , rM) of
length M ∈ N. As illustrated in Figure 5, an estimated
position e𝓁 is considered correct and is called a true posi-
tive (TP) if it falls within the 𝜏-neighborhood of a reference
boundary rm:

|e𝓁 − rm| ≤ 𝜏. (9)

If this is not the case, then e𝓁 is called a false positive
(FP). Additionally, a reference position rm is termed a false
negative (FN) if there is no estimated position within its𝜏-neighborhood.

Due to the tolerance parameter 𝜏, multiple estimated
positions may fall within the 𝜏-neighborhood of a single
reference position, and, conversely, a single estimated
position may cover multiple reference positions. This can
lead to anomalies in evaluation measures, an issue that
can be resolved by requiring that the distance between
consecutive boundaries must exceed twice the tolerance
parameter:

|e𝓁+1 − e𝓁| > 2 · 𝜏 and |rm+1 − rm| > 2 · 𝜏 (10)

for 𝓁 ∈ [1 ∶ L − 1] and m ∈ [1 ∶ M − 1], respectively. This
requirement also holds semantic significance, as bound-
aries that are too close together might indicate that
the defined segments lack substantial musical mean-
ing or distinctiveness. For example, considering structural
parts, a section lasting less than a second is unlikely to
occur. Similarly, two subsequent beats should be spaced
more than 100 milliseconds apart, implying a tempo
of less than 600 beats per minute. For alternatives to
using the constraints expressed in Equation (10) (e.g.,
based on bipartite graph matching), we refer to (Raffel
et al., 2014).

With these definitions and requirements in place, the
precision P𝜏 of the estimation is determined by dividing

Figure 5 Illustration of precision, recall, and F-measure with error tolerance. (a) Novelty function with estimated positions (blue dotted
lines) and reference positions (red dashed lines). (b) Illustration of reference positions (Ref), true positives (TP), false positives (FP), and
false negatives (FN), with error tolerance 𝜏 = 0.025 (indicated by red-shaded regions). One has #TP = 5, #FP = 2, and #FN = 3, thus
yielding P𝜏 = 5/7 = 0.714, R𝜏 = 5/8 = 0.625, and F𝜏 = 0.667.
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the number of true positives by the total number of esti-
mated positions:

P𝜏 = #TP#TP + #FP = #TP
L

. (11)

In contrast, the recall R𝜏 is defined as the number of
true positives divided by the total number of reference
positions:

R𝜏 = #TP#TP + #FN = #TP
M

. (12)

Note that both precision and recall have values in the
range between 0 and 1. A perfect precision, P𝜏 = 1,
means that every estimated position is correct. In con-
trast, a perfect recall, R𝜏 = 1,means that every reference
position is matched to an estimated position. Precision
and recall are often combined by taking their harmonic
mean to form a single measure, commonly referred to as
the F-measure:

F𝜏 = 2 · P𝜏 · R𝜏
P𝜏 + R𝜏 . (13)

For an example, we refer to Figure 5. A key property of
the F-measure is that it lies in the range between 0 and 1,
with F𝜏 = 1 if and only if P𝜏 = 1 and R𝜏 = 1. The tolerance
parameter 𝜏 can be viewed as a hyperparameter that can
be adjusted to meet specific requirements or to provide
different perspectives on accuracy by considering sweeps
over this parameter. Note that the threshold-dependent
versions generalize the notion of the standard defini-
tions of precision, recall, and F-measure used in informa-
tion retrieval. For further details, we refer to (Lukashevich,
2008; Müller, 2021). For an implementation of the most
common metrics used in general MIR research, we refer
to the open-source Python librarymir_eval (Raffel et al.,
2014).

4.2 PEAK PICKING
Peak picking is a critical step in identifying significant
points in a novelty function. It can be challenging due
to noise and irregularities that may generate spuri-
ous peaks. However, effective strategies for peak pick-
ing often involve enhancing the novelty function to
reduce noise, applying adaptive thresholding to suppress
insignificant peaks, and setting constraints on the mini-
mum distance between peaks to prevent selecting those
peaks that are too closely spaced. For illustration, we con-
tinue with our running Shostakovich example, as shown
in Figure 6, which we consider to be of a medium-
difficulty level for peak picking.

Intuitively, a peak is a local maximum characterized
by the property that the novelty function shifts from an
increasing state (positive derivative) to a decreasing state
(negative derivative). Therefore, a simple peak picking
approach searches for all such local maxima. As illus-
trated by Figure 6(b), this methodmay lead tomany spu-
rious peaks. Using a global threshold to discard small,
noise-like peaks that fall below it can eliminate many of
these spurious peaks, as seen in Figure 6(c). However,
this may also lead to losing relevant peaks, potentially
increasing the number of false negatives. As an alterna-
tive, as is illustrated by Figure 6(d), one may apply adap-
tive thresholding to select a peak only if its value exceeds
a local average of the novelty function, which can be
computed as shown in Equation (6).

Another simple but very effective heuristic used in
peak picking involves introducing a distance parameter
that specifies the required minimum temporal distance
between neighboring peaks, as depicted in Figure 6(e).
One straightforward approach to achieving this is to suc-
cessively disregard the smallest peaks until the condition
is met for all remaining peaks. The distance condition
is particularly beneficial for MIR tasks that inherently

Figure 6 Illustration of peak picking based on different heuristics. (a) Novelty function. (b) Simple peak picking (selected peak positions
are indicated by red vertical lines). (c) Usage of a global threshold (shown as a blue horizontal line). (d) Usage of a local threshold
(shown as a blue curve). (e) Usage of an additional distance constraint. (f) Application of Gaussian smoothing, max normalization, and
a local threshold.
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demand minimum distance bounds. For example, in
structure analysis, the expected minimum duration of
musical sections defines a minimum distance between
adjacent structural boundaries. Similarly, in beat tracking,
the expected maximum tempo necessitates a minimum
distance between successive beat positions.

There are many additional heuristics and refinements
for peak picking, such as applying prominence to highlight
peaks that stand out distinctly from their surrounding
peaks. More sophisticated approachesmay involve global
optimization strategies that jointly consider multiple cri-
teria such as peak height, prominence, distance, and reg-
ularity. We will address one such approach in Section 4.3.

As can be seen, novelty enhancement and peak pick-
ing heuristics are closely related. We want to emphasize
at this point that before applying an overly complicated
peak picking strategy based on several heuristics, it can
be highly beneficial to apply a Gaussian smoothing fil-
ter to the novelty function (with the Gaussian variance
informed, for example, by the tolerance parameter used
in the evaluation). As demonstrated in Figure 6(f), this
can significantly reduce the impact of noise-like fluctua-
tions, simplify the peak picking process, and substantially
improve the final analysis results.

At this point, we want to emphasize that we have only
touched on some common strategies for peak picking
and that we do not intend to propose a single solution.
Peak picking must be done with care, and the combi-
nation of heuristics and parameters will depend on the
requirements and prior knowledge specific to the appli-
cation. For experimenting with basic peak picking strate-
gies, we recommend the scipy.signal package from the
Python library SciPy (Virtanen et al. 2020). More advanced
techniques, especially for onset detection, are detailed
in (Böck et al., 2012). A variety of peak picking methods
are also compared in Part 6 of the FMP notebooks³; see
(Müller and Zalkow, 2019).

4.3 FURTHER POST-PROCESSING APPROACHES
As mentioned earlier, various heuristics can be used to
guide the selection of peaks from a novelty function, with
many peak picking strategies designed to balance sev-
eral criteria at the same time. These criteria are typically
tailored to the needs of specific MIR applications In beat
tracking; for example, it is practical to assume that beat
positions coincide with note onsets and are uniformly
spaced, mirroring the pulse a person taps while listening
tomusic. Thus, a beat sequence is typically characterized
by evenly spaced onset positions. Indeed, many music
genres feature a strong and steady beat, with a relatively
constant tempo throughout the recording.

4.3.1 Tempo-informed optimal beat sequence
Based on these assumptions, Ellis (2007) introduces a
beat tracking procedure that starts with a novelty func-
tion indicating note onsets (e.g., computed using spectral

flux). Thismethod involves selecting time positions corre-
sponding to strong peaks that are also regularly spaced
in time, matching the expected tempo. In particular, a
score function is introduced to assess how well a beat
sequencemeets the criteria of novelty strength and tem-
poral regularity. Among all possible beat sequences, it
computes the optimal beat sequence that maximizes
this score, effectively constituting the final beat tracking
result. Although computing scores for all potential beat
sequences may seem daunting, dynamic programming
facilitates efficient computation by minimizing redun-
dant calculations. This approach makes it feasible to
identify the optimal beat sequence with a runtime that
is at most quadratic in the length N of the novelty func-
tion. The runtime can be further reduced by limiting the
computation at each time step to a small search window
informed by the expected tempo (e.g., double the period
of the expected tempo). This heuristic is applied, for
example, in the implementation provided by the Python
package librosa (McFee et al., 2015).

4.3.2 Hidden Markov models
The main limitation of the beat tracking procedure pre-
viously described is its reliance on a single, predefined
tempo. More advanced approaches, many based on con-
cepts related to Hidden Markov Models (HMMs), accom-
modate potential tempo changes and also address other
musical elements such as meter and rhythm. In these
models, various aspects are represented by hidden states
that can be inferred from audio data but are not directly
observable. In (Krebs et al., 2015), an HMM is employed
that incorporates state-space discretization and a tempo
transition model, with a novelty function serving as the
observation sequence. State-space discretization con-
verts continuous musical features into discrete states,
thus simplifying the model and reducing computational
demands. The tempo transition model primarily main-
tains consistent tempi, permitting changes only at beat
positions. Again, dynamic programming is employed to
compute an optimal beat sequence that meets con-
straints related to tempo, meter, and other musical
aspects.

4.3.3 Predominant local pulse
While targeting similar objectives as beat tracking, the
method introduced by Grosche and Müller (2011) takes
a conceptually different approach to deal with tempo
changes and weak or even missing note onsets. The
main idea of the computational pipeline is illustrated in
Figure 7, which continues our Shostakovich example in
Figure 4. First, one computes a novelty function that cap-
tures note onset information, as shown in Figure 7(c). The
intuitive ideas are to locally compare the novelty func-
tion with windowed sinusoids of different frequencies
and to consider, for each time position, the windowed
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Figure 7 Illustration of the computational pipeline for deriving the predominant local pulse (PLP) function, continuing the
Shostakovich example introduced in Figure 4, (a) Musical score of piano-reduced version. (b) Audio recording of the corresponding
excerpt. (c) Novelty function. (d) Tempogram showing timedependent tempo maxima, indicated by colored dots. These dots are
displayed at only four selected time positions for better visibility. (e) Optimal windowed sinusoids corresponding to the maxima.
(f) PLP function obtained by applying overlap-add and half-wave rectification techniques.

sinusoid with the frequency and phase that best capture
the local peak structure of the novelty function. To imple-
ment this idea, an STFT is employed to convert the nov-
elty function into a time-frequency representation. Note
that the frequency axis can be reinterpreted as a tempo
axis, where 1 Hertz (one oscillation per second) corre-
sponds to 60 beats per minute (BPM). This results in a
time-tempo representation, also called a tempogram, as
seen in Figure 7(d). For each time position, one then con-
siders the maximal tempo value and derives from this
the aforementioned optimal windowed sinusoid (where
required frequency and phase information is obtained by
the STFT); see Figure 7(e). Finally, an overlap-add tech-
nique is employed to accumulate all these windowed
sinusoids over time, and half-wave rectification is used to
retain only the positive parts. As a result, a single func-
tion is obtained that enhances the local periodicity of the
original novelty function; see Figure 7(f). This function,
referred to as the PLP function, reveals predominant local
pulse (PLP) information. The term “predominant pulse” is
loosely used to describe the strongest pulse levelmeasur-
able in the novelty function. Intuitively, the PLP function
acts as a pulse tracker, which is capable of adjusting to
both continuous and sudden tempo changes, provided
that the underlying novelty function displays locally peri-
odic patterns.

5 EDUCATIONAL INTEGRATION AND
RECOMMENDATIONS

We conclude this tutorial with a summary and some
thoughts on the intended audience and the potential
curriculum integration for this material. Additionally, we
offer recommendations for software and datasets that
facilitate hands-on experience and further exploration.

5.1 SUMMARY
In this tutorial, we explored the concept of novelty func-
tions, which are time-dependent functions with peak-like
structures that are used to identify significant changes
in a time series or in a feature sequence representation.
Using concrete MIR tasks as examples, we demonstrated
how to construct and enhance these functions. We also
discussed peak identification through basic peak picking
and more sophisticated post-processing procedures and
also discussed their evaluation using precision, recall, and
the F-measure, including error tolerance.

The concept of novelty functions extends beyond MIR
and is applicable to general time series analysis and
multimedia processing. We considered the context of
music to motivate constructions such as spectral flux
using spectrograms and kernel-based novelty detection
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using self-similarity matrices. We hope that these exam-
ples are straightforward, explicit, and easy to under-
stand, also motivating the most important character-
istics that should be captured by novelty functions in
general. Once a novelty function is constructed, the
enhancement and peak-picking strategies discussed in
this tutorial are generic and can be applied to any novelty
or activation function with a peak-like structure.

5.2 TARGET READERSHIP AND CURRICULUM
As mentioned in the introduction, this tutorial is geared
toward students who have basic signal processing and
mathematics skills typically acquired at the Bache-
lor’s degree level in computer science or engineering.
In particular, students should be familiar with concepts
including audio signals, Fourier transforms, spectral rep-
resentations, and filtering techniques. We also assume
some exposure to or interest inmusic, with a basic under-
standing of concepts such as notes, beats, downbeats,
and musical form, although no deeper musicological
knowledge is required.

At some points in this tutorial, we did not shy
away from using mathematical notation to demon-
strate how concepts can be expressed mathe-
matically. Along with textual and mathematical
descriptions, we provided illustrations of compu-
tational pipelines using concrete music examples,
including score representations and annotations
to give context. Thus, while the tutorial is technically
oriented, we also aim for it to be accessible to a broader,
even non-technically oriented, readership.

This basic tutorial, focusing on classical concepts
of general relevance, is designed primarily for inter-
mediate Bachelor’s degree or beginning Master’s
degree courses. It provides sufficient material for
a 90-minute lecture unit within a course on music
information retrieval or music processing and covers
classical MIR tasks such as beat tracking and music
structure analysis. Additionally, this tutorial is suitable
for general courses in computer science, multimedia
engineering, information science, and digital human-
ities, for which the music domain serves as a practi-
cal example for studying complex and multifaceted
time series.

5.3 SOFTWARE
This tutorial provides both a theoretical foundation for
novelty functions and concrete applications such as beat
tracking and boundary detection. Complementary lec-
tures and hands-on experience are essential for deepen-
ing the understanding of these concepts and their prac-
tical relevance (Müller et al., 2021). Therefore, along with
this tutorial, we provide Jupyter notebooks at https://git
hub.com/groupmm/edu_novfct that allow for reproduc-
ing and experimenting with all the examples discussed

in this article. Furthermore, suitable software packages
like the Python package librosa (McFee et al., 2015),
which is standard in MIR research, and libfmp (Müller and
Zalkow, 2021), with its educational lens, enhance inter-
active learning by providing functions for various music
segmentation tasks discussed in this tutorial.

Much of this tutorial’s material is included in the FMP
notebooks (Müller and Zalkow, 2019), which bridge the-
ory and practice by integrating technical concepts, math-
ematical details, code examples, illustrations, and sound
examples in a unified Jupyter notebook framework. This
tutorial expands on the FMP notebooks by providing a
compact account of novelty functions and their proper-
ties, offering new perspectives on this material.

Figures in the tutorial were generated using Python
functions from librosa and libfmp. Alongside the
code, we provide audio excerpts integrated into Jupyter
notebooks that allow for reproducing all figures. The
accompanying material demonstrates how the figures
were generated and serves as a practical entry point for
students to engage in hands-on experimentation using
their own examples and to start conducting their own
research.

For evaluation metrics, we recommend the Python
package mir_eval (Raffel et al., 2014), and for sim-
ple peak picking strategies, we recommend the scipy.
signal package from the SciPy library (Virtanen et al.,
2020). Additionally, the Python library madmom (Böck
et al., 2016) is a good starting point for exploring deep
learningmethods for computing and experimenting with
activation functions for onset, beat, and downbeat esti-
mation. The Python package MSAF4 provides compu-
tational tools for music structure analysis (Nieto and
Bello, 2016), including an implementation of the kernel-
based novelty detection approach discussed in this arti-
cle. Finally, we want to point to the ISMIR homepage,
which includes an overview website of further MIR soft-
ware tools.5

5.4 DATASETS
In addition to software, one requires datasets with suit-
able annotations for conducting systematic experiments
in music segmentation and assessing methods across
various music genres. Starting with beat tracking, the
Ballroom dataset (Gouyon et al., 2006) and the GTZAN
dataset (Tzanetakis and Cook, 2002) offer audio excerpts
and annotations for diverse styles. Classical and non-
Western music genres often pose specific challenges in
beat tracking due to their variations in tempo and rhyth-
mic complexity. The Mazurka dataset provides detailed
annotations for beat tracking in classical music (Grosche
et al., 2010).

Beyond beat tracking, the RWCPop dataset (Goto et al.,
2002) features 100 pop songs, and the Beatles dataset
(Harte et al., 2005) includes 180 songs from twelve
Beatles albums, both providing extensive annotations
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for beats, structure, and other musical elements. The
SALAMI database, one of the largest for music structure
analysis, provides more than 2400 annotations on 1356
recordings (Smith et al., 2011), highlighting issues such
as structural ambiguities and cross-annotator differences
(Flexer, 2014). The Jazz Structure Dataset (JSD) (Balke
et al., 2022) further enriches the field with more than
3000 segments annotated for structure and instrumen-
tation, supporting tasks such as structure analysis and
instrument recognition. Furthermore, we want to point
out the open-source Python library mirdata,6 which
provides tools for working with common MIR datasets
(Bittner et al., 2019).

Many of the datasets and music examples in this
article are from Western music cultures. However, the
concepts of novelty functions can also apply to other gen-
res and types of music, given the principles of onset and
musical boundary detection. Music examples from non-
Western music cultures (including Hindustani, Carnatic,
Turkish-makam, Arab-Andalusian, and Beijing Opera) can
be found as part of the Dunya7 research prototype that
has been developed as part of the CompMusic8 project
(Serra, 2014).

Finally, we point to the Music Information Retrieval
Evaluation Exchange (MIREX), an annual evaluation
of MIR algorithms between 2005 and 2021, provid-
ing results, datasets, and reference implementations
(Downie, 2008). For more details, we refer readers to the
MIREX homepage.9 Further pointers to dataset resources
can be found on the ISMIR homepage.10

ACKNOWLEDGMENTS

We thank Peter Meier, Johannes Zeitler, and Simon
Schwär for proofreading the manuscript and improv-
ing the Jupyter notebooks that accompany this article.
Additionally, we thank the anonymous reviewers and the
section editor for their helpful and constructive com-
ments.

FUNDING INFORMATION

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under
Grant No. 500643750 (MU 2686/15-1) and the National
Science and Technology Council (NSTC), Taiwan, under
Grant No. NSTC 112-2917-I-564-011. The International
Audio Laboratories Erlangen are a joint institution of
the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Fraunhofer Institute for Integrated
Circuits IIS.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTION

Meinard Müller was the primary contributor to the con-
ceptualization and writing of this article. Ching-Yu Chiu
contributed to the writing and to setting up the Jupyter
notebooks that accompany the article.

NOTES

1. https://github.com/groupmm/edu_novfct

2. https://en.wikipedia.org/wiki/Disklavier

3. https://audiolabs-erlangen.de/FMP

4. https://pythonhosted.org/msaf/

5. https://ismir.net/resources/software-tools/

6. https://mirdata.readthedocs.io/

7. https://dunya.compmusic.upf.edu/

8. https://compmusic.upf.edu/

9. https://www.music-ir.org/mirex/wiki/MIREX_HOME

10. https://ismir.net/resources/datasets/

AUTHOR AFFILIATIONS
Meinard Müller https://orcid.org/0000-0001-6062-7524
International Audio Laboratories Erlangen, Friedrich-Alexander
Universität Erlangen-Nürnberg, AmWolfsmantel 33, 91058
Erlangen, Germany

Ching-Yu Chiu https://orcid.org/0000-0002-3671-8474
International Audio Laboratories Erlangen, Germany

REFERENCES

Balke, S., Reck, J., Weiß, C., Abeßer, J., and Müller, M. (2022).

JSD: A dataset for structure analysis in jazz music.

Transactions of the International Society for Music

Information Retrieval (TISMIR), 5(1), 156–172.

Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M.,

and Sandler, M. B. (2005). A tutorial on onset detection in

music signals. IEEE Transactions on Speech and Audio

Processing, 13(5), 1035–1047.

Benetos, E., Dixon, S., Duan, Z., and Ewert, S. (2019).

Automatic music transcription: An overview. IEEE Signal

Processing Magazine, 36(1), 20–30.

Bittner, R. M., Fuentes, M., Rubinstein, D., Jansson, A., Choi, K.,

and Kell, T. (2019). mirdata: Software for reproducible

usage of datasets. In Proceedings of the International

Society for Music Information Retrieval Conference (ISMIR)

(pp. 99–106).

Böck, S., and Widmer, G. (2013). Maximum filter vibrato

suppression for onset detections. In Proceedings of the

International Confenference on Digital Audio Effects (DAFx).

Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., and Widmer,

G. (2016). madmom: A new Python audio & music signal

processing library. In Proceedings of the ACM International

Conference on Multimedia (ACM-MM) (pp. 1174–1178).

Böck, S., Krebs, F., and Schedl, M. (2012). Evaluating the online

capabilities of onset detection methods. In Proceedings of

https://github.com/groupmm/edu_novfct
https://en.wikipedia.org/wiki/Disklavier
https://audiolabs-erlangen.de/FMP
https://pythonhosted.org/msaf/
https://ismir.net/resources/software-tools/
https://mirdata.readthedocs.io/
https://dunya.compmusic.upf.edu/
https://compmusic.upf.edu/
https://www.music-ir.org/mirex/wiki/MIREX_HOME
https://ismir.net/resources/datasets/
https://orcid.org/0000-0001-6062-7524
https://orcid.org/0000-0002-3671-8474
https://doi.org/10.5334/tismir.202


Müller and Chiu Transactions of the International Society for Music Information Retrieval DOI: https://doi.org/10.5334/tismir.202 193

the International Society for Music Information Retrieval

Conference (ISMIR) (pp. 49–54).

Breiman, L. (1996). Bagging predictors. Machine Learning,

24(2), 123–140. https://doi.org/10.1007/bf00058655

Downie, J. S. (2008). The music information retrieval evaluation

exchange (2005–2007): A window into music information

retrieval research. Acoustical Science and Technology,

29(4), 247–255. https://doi.org/10.1250/ast.29.247

Ellis, D. P. (2007). Beat tracking by dynamic programming.

Journal of New Music Research, 36(1), 51–60. https://doi.org

/10.1080/09298210701653344

Eyben, F., Böck, S., Schuller, B., and Graves, A. (2010).

Universal onset detection with bidirectional long

short-term memory neural networks. In Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR) (pp. 589–594).

Flexer, A. (2014). On inter-rater agreement in audio music

similarity. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR) (pp.

245–250).

Foote, J. (2000). Automatic audio segmentation using a

measure of audio novelty. In Proceedings of the IEEE

International Conference on Multimedia and Expo (ICME)

(pp. 452–455).

Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002).

RWC music database: Popular, classical and jazz music

databases. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR) (pp.

287–288).

Gouyon, F., Klapuri, A. P., Dixon, S., Alonso, M., Tzanetakis, G.,

Uhle, C., and Cano, P. (2006). An experimental comparison

of audio tempo induction algorithms. IEEE Transactions on

Audio, Speech, and Language Processing, 14(5), 1832–1844.

https://doi.org/10.1109/tsa.2005.858509

Grosche, P., and Müller, M. (2011). Extracting predominant local

pulse information from music recordings. IEEE Transactions

on Audio, Speech, and Language Processing, 19(6),

1688–1701. https://doi.org/10.1109/tasl.2010.2096216

Grosche, P., Müller, M., and Sapp, C. S. (2010). What makes

beat tracking difficult? A case study on Chopin Mazurkas. In

Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR) (pp. 649–654).

Harte, C., Sandler, M. B., Abdallah, S., and Gómez, E. (2005).

Symbolic representation of musical chords: A proposed

syntax for text annotations. In Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR) (pp. 66–71).

Klapuri, A. P., Eronen, A. J., and Astola, J. (2006). Analysis of

the meter of acoustic musical signals. IEEE Transactions on

Audio, Speech, and Language Processing, 14(1), 342–355.

https://doi.org/10.1109/tsa.2005.854090

Krebs, F., Böck, S., and Widmer, G. (2015). An efficient

state-space model for joint tempo and meter tracking. In

Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR) (pp. 72–78).

Lostanlen, V., Palmer, K., Knight, E., Clark, C. W., Klinck, H.,

Farnsworth, A., Wong, T., Cramer, J., and Bello, J. P.

(2019). Long-distance detection of bioacoustic events with

per-channel energy normalization. In Proceedings of the

Workshop on Detection and Classification of Acoustic

Scenes and Events (DCASE) (pp. 144–148).

Lukashevich, H. (2008). Towards quantitative measures of

evaluating song segmentation. In Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR) (pp. 375–380).

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M.,

Battenberg, E., and Nieto, O. (2015). Librosa: Audio and

music signal analysis in Python. In Proceedings of the

Python Science Conference (pp. 18–25).

Müller, M. (2021). Fundamentals of music processing using

Python and Jupyter Notebooks (2nd ed.). Springer Verlag.

Müller, M., and Zalkow, F. (2019). FMP Notebooks: Educational

material for teaching and learning fundamentals of music

processing. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR)

(pp. 573–580).

Müller, M., and Zalkow, F. (2021). libfmp: A Python package for

fundamentals of music processing. Journal of Open Source

Software (JOSS), 6(63), 1–5.

Müller, M., McFee, B., and Kinnaird, K. (2021). Interactive

learning of signal processing through music: Making Fourier

analysis concrete for students. IEEE Signal Processing

Magazine, 38(3), 73–84. https://doi.org/10.1109/msp.2021.

3052181

Nieto, O., and Bello, J. P. (2016). Systematic exploration of

computational music structure research. In Proceedings of

the International Society for Music Information Retrieval

Conference (ISMIR) (pp. 547–553).

Paulus, J., Müller, M., and Klapuri, A. (2010). Audiobased music

structure analysis. In Proceedings of the International

Society for Music Information Retrieval Conference (ISMIR)

(pp. 625–636).

Pauwels, J., O’Hanlon, K., Gómez, E., and Sandler, M. B. (2019).

20 years of automatic chord recognition from audio. In

Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR) (pp. 54–63).

Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O.,

Liang, D., and Ellis, D. P. W. (2014). mir_eval:
A transparent implementation of common MIR metrics. In

Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR) (pp. 367–372).

Schlüter, J., and Böck, S. (2014). Improved musical onset

detection with convolutional neural networks. In

Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP) (pp.

6979–6983).

Serra, X. (2014). Creating research corpora for the

computational study of music: The case of the CompMusic

project. In Proceedings of the AES International Conference

on Semantic Audio.

https://doi.org/10.1007/bf00058655
https://doi.org/10.1250/ast.29.247
https://doi.org/10.1080/09298210701653344
https://doi.org/10.1080/09298210701653344
https://doi.org/10.1109/tsa.2005.858509
https://doi.org/10.1109/tasl.2010.2096216
https://doi.org/10.1109/tsa.2005.854090
https://doi.org/10.1109/msp.2021.3052181
https://doi.org/10.1109/msp.2021.3052181
https://doi.org/10.5334/tismir.202


Müller and Chiu Transactions of the International Society for Music Information Retrieval DOI: https://doi.org/10.5334/tismir.202 194

Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., Roure, D. D., and

Downie, J. S. (2011). Design and creation of a large-scale

database of structural annotations. In Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR) (pp. 555–560).

Tzanetakis, G., and Cook, P. (2002). Musical genre classification

of audio signals. IEEE Transactions on Speech and Audio

Processing, 10(5), 293–302. https://doi.org/10.1109/tsa.20

02.800560

Ullrich, K., Schlüter, J., and Grill, T. (2014). Boundary detection

in music structure analysis using convolutional neural

networks. In Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR) (pp.

417–422).

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,

Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,

Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,

Jones, E., Kern, R., and Larson, E. (2020). SciPy 1.0:

Fundamental algorithms for scientific computing in

Python. Nature Methods, 17, 261–272. https://doi.org/10.10

38/s41592-020-0772-5

TO CITE THIS ARTICLE:
Müller, M., & Chiu, C.-Y. (2024). A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing. Transactions of the
International Society for Music Information Retrieval, 7(1), 179–194. DOI: https://doi.org/10.5334/tismir.202

Submitted: 7 May 2024 Accepted: 12 August 2024 Published: 19 September 2024

COPYRIGHT:
© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See https://creativecommons.org/licenses/by/4.0/.

Transactions of the International Society for Music Information Retrieval is a peer-reviewed open access journal published by Ubiquity
Press.

https://doi.org/10.1109/tsa.2002.800560
https://doi.org/10.1109/tsa.2002.800560
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.5334/tismir.202
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5334/tismir.202

	A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing
	Introduction
	Basic Definitions and Novelty Computation
	Basic mathematical definitions
	Onset detection
	Music structure analysis
	Data-driven novelty computation

	Enhancement Strategies
	Smoothing
	Local thresholding
	Normalization
	Ensembling

	Post-Processing and Evaluation
	Precision, recall, F-measure
	Peak picking
	Further post-processing approaches
	Tempo-informed optimal beat sequence
	Hidden Markov models
	Predominant local pulse


	Educational Integration and Recommendations
	Summary
	Target readership and curriculum
	Software
	Datasets



