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Abstract
Multi-instrument Automatic Music Transcription
(AMT), or the decoding of a musical record-
ing into semantic musical content, is one of the
holy grails of Music Information Retrieval. Cur-
rent AMT approaches are restricted to piano and
(some) guitar recordings, due to difficult data col-
lection. In order to overcome data collection bar-
riers, previous AMT approaches attempt to em-
ploy musical scores in the form of a digitized
version of the same song or piece. The scores are
typically aligned using audio features and stren-
uous human intervention to generate training la-
bels. We introduce NoteEM , a method for simul-
taneously training a transcriber and aligning the
scores to their corresponding performances, in a
fully-automated process. Using this unaligned
supervision scheme, complemented by pseudo-
labels and pitch shift augmentation, our method
enables training on in-the-wild recordings with
unprecedented accuracy and instrumental variety.
Using only synthetic data and unaligned supervi-
sion, we report SOTA note-level accuracy of the
MAPS dataset, and large favorable margins on
cross-dataset evaluations. We also demonstrate
robustness and ease of use; we report comparable
results when training on a small, easily obtainable,
self-collected dataset, and we propose alternative
labeling to the MusicNet dataset, which we show
to be more accurate. Our project page is available
at https://benadar293.github.io.

1. Introduction
Automatic Music Transcription (AMT) is the task of decod-
ing musical notes from an audio signal, and is one of the
most central tasks in Music Information Retrieval (MIR). It
benefits musicology and music education, musical search,
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and could even aid in realistic music synthesis. AMT is
challenging due to several reasons, due to effects such as
notes sharing partial frequencies, polyphony (simultaneous
notes played together, analogous to occlusions in computer
vision), echo effects, and multi-instrument performances,
escalating complexity.

Unsurprisingly, similarly to fields such as Computer Vision
and Natural Language Processing, deep neural networks
have contributed to AMT as well. However, as DNNs re-
quire massive amounts of training data, progress is limited.
The main bottleneck is that manual annotation is severely in-
feasible, even if done by experts, as it requires highly precise
timing. For this reason, for most instruments no datasets
of highly accurate annotation have been collected. Collec-
tion efforts have concentrated mainly on two instruments.
Guitar (Xi et al., 2018; Wiggins & Kim, 2019) annotations
are done semi-automatically with human verification, in a
difficult to scale process. For the piano, unique equipment
(the Disklavier) logs key activity during performance, mak-
ing annotation trivial and data collection simpler. Indeed,
the guitar dataset we use for evaluation (Xi et al., 2018)
(which is practically the only available one) consists of only
∼3 hours of recordings, compared to ∼140 hours of pi-
ano material (Hawthorne et al., 2019). It is therefore not
surprising that most AMT literature concentrates on the lat-
ter, where supervision and evaluation are clean and readily
available (Hawthorne et al., 2018; 2019; 2021).

As it turns out, even within the case of the piano, supervised
detectors struggle to generalize to variances in the instru-
ment or environment, let alone from synthetic to real data.
For this reason, for example, the accuracy of SOTA meth-
ods degrades in cross-dataset evaluation (e.g., training on
the piano recordings of the MAESTRO dataset (Hawthorne
et al., 2019), and testing on those of MAPS (Emiya et al.,
2010), or other cross dataset evaluations (Gardner et al.,
2021)). To mitigate these data intensive requirements, a pop-
ular approach seeks to annotate existing recordings through
alignment of real performances to their corresponding mu-
sical score. In other words, an easily obtainable digitized
performance (or MIDI) of a musical piece is aligned to a
real recorded performance. After the MIDI is warped to
best match the recording, it is used as annotation. This is
how, for example, the popular MusicNet dataset was con-
structed (with the support of human verification) (Thickstun
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et al., 2017). While promising, the alignment quality this
approach demonstrates is not high enough to be used as
labeling for network training. Indeed, the aforementioned
dataset is notorious for its labeling inaccuracies (Hawthorne
et al., 2018; Gardner et al., 2021).

In this work, we observe that the alignment process could
be intertwined with the training of the transcriber, through
the Expectation Maximization (EM) framework. We intro-
duce NoteEM , a framework that supports unaligned super-
vision, based on easy-to-obtain musical scores to supervise
in-the-wild recordings. The process comprises three steps
(see Figure 1): first, we take an off-the-shelf architecture
proposed for transcription, and bootstrap its training on syn-
thetic data. Second, for the E-step, we use the resulting
network to predict the transcription of unlabeled recordings.
The unaligned score is then warped based on the predictions
as likelihood terms, and used as labeling. For the M-step,
the transcriber itself is trained on the new generated labels.
Depending on the metric, best results were obtained when
performing one or two such E-M iterations. In any case,
alignment based on network predicted likelihoods is con-
siderably more accurate than alignment based on spectral
features (Thickstun et al., 2017) (see Section 4). It also en-
ables better handling of inconsistencies between the audio
and the score, which are inevitable.

Using this scheme, we achieve transcription accuracy that
outperforms all existing methods on cross-dataset evalua-
tions by a large margin for both the note- and frame-level
metrics. For example, we reach 89.7% note-level and 77.0%
frame-level F1 score on the MAESTRO test set (without us-
ing MAESTRO training data), where Gardner et al. (2021)
reach 28% and 60% when excluding MAESTRO data from
training. Furthermore, we report note-level accuracy that
compares or even surpasses fully supervised piano/guitar-
specific transcription methods. This is despite our method
being trained on synthetic data and unaligned supervision
alone.

NoteEMalso enables simple and convenient training on dif-
ferent instruments and genres. To demonstrate this, we train
our network on other instruments, such as violin, clarinet,
harpsichord, and many others - between 11-22 instruments,
depending on the configuration. Furthermore, to evaluate
the method’s usability, we train it using a small-scale self-
collected set of musical performances and corresponding
unaligned supervision, and observe similar accuracy. We
even generate alternative labeling to the aforementioned Mu-
sicNet dataset, which we denote MusicNetEM , and demon-
strate it is more accurate. Finally, we also witness satisfying
generalization capabilities, through the high quality tran-
scription of unseen instruments and genres such as rock or
pop (in which case transcription is pitch only).

Our contributions are as follows:

• NoteEM– A general framework for training poly-
phonic (multi-instrument) transcribers using unaligned
supervision, allowing the use of in-the-wild recordings
for training.

Using this framework, we reach a new SOTA note-level
F1-score on the MAPS dataset of 87.3% (vs. 86.4% of
supervised (Hawthorne et al., 2019)), and considerable
improvement for cross-dataset evaluations. This is
even though training is done using less supervision and
less data (∼34 vs. ∼ 140 hours).

• unprecedented generalization to unseen instruments
and musical genres. Results on these genres are unfor-
tunately only qualitative due to lack of ground truth,
but they are unmistakably favorable non-the-less.

• Alternative annotation for MusicNet, denoted
MusicNetEM , which is shown to be more accurate.

2. Related Work
The two common forms of transcription are note-level,
where start (onset) / end (offset) note events are detected,
and frame-level transcription, where pitches are predicted
at every given time, implicitly determining the duration of
notes. Other forms of transcription include stream-level,
where the performance is segmented into different streams
or voices. Segmentation can be according to instrument (Wu
et al., 2020; Gardner et al., 2021), but can also be between
instances of the same instrument.

While early works reduced the task of transcription to de-
tection of active notes per-frame, later works (Hawthorne
et al., 2018; 2019; Wu et al., 2020) show the advantage of
breaking down the detection into two components: onsets
- beginning of notes, and frames - presence of notes. This
is based on the observation that the more important and
distinguished part of a note event is its onset.

In multi-instrument transcription, the simpler form ig-
nores instrument classes, assigning a single class for each
pitch (Wu et al., 2019; Cheuk et al., 2021). Only a handful
of works also address, as we do, the problem of note-with-
instrument transcription (Wu et al., 2020; Manilow et al.,
2020; Gardner et al., 2021). As we demonstrate (Section 4),
our approach provides cleaner and more attainable labeling,
thus clearly surpassing the performance of these works.

For piano transcription, the main benchmarks are
MAPS (Emiya et al., 2010) and MAESTRO (Hawthorne
et al., 2019). The MAPS dataset consists of synthetic and
real piano performances, where usually the real perfor-
mances are used for testing. MAESTRO is a large-scale
dataset containing 140 hours of classical western piano per-
formances, with fine and accurate annotation, generated us-
ing a Disklavier. The accurate annotation allows outstanding
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transcription quality (Hawthorne et al., 2019; 2021; Gardner
et al., 2021). However, the main drawback of this dataset
is the lack of variety: It contains only piano recordings,
which prevents generalization to other musical instruments,
and even to varieties in recording environments and pianos.
Thus, transcription quality degrades significantly even when
testing the model on other piano test sets, such as MAPS.

For annotation of guitar transcription, Xi et al. (2018) rely
on hexaphonic pickup (separated to 6 strings), breaking the
problem down into annotation of monophonic music which
is simpler than polyphonic. Unfortunately, this approach
still requires manual labor, which limits broad data collec-
tion. This results in a small dataset - 3 hours in total. Hence,
this dataset can be used for evaluation but is less effective
for training in-the-wild transcribers.

For other instruments, or multi-instrument transcription,
the main existing dataset is MusicNet (Thickstun et al.,
2017), which contains 34 hours of classical western mu-
sic, performed on various instruments. The annotation was
obtained by aligning separate-sourced (i.e. by other per-
formers) MIDI performances, rendered into audio, with the
real recordings, according to low frequencies. This dataset
has the clear advantage of variety, both in instruments and in
recording environments, as recordings were gathered from
many different sources. However, despite being verified by
musicians, the alignment is of poor quality, and timing of
notes is not precise, significantly inhibiting learning and
performance, as we show. Similar datasets exist - SU (Su &
Yang, 2015), extended SU (Wu et al., 2020), and URMP (Li
et al., 2016) datasets, which suffer from similar limitations
and are small.

On the task of instrument-sensitive transcription (note-with-
instrument), few works have been done, because of the afore-
mentioned limitations of multi-instrument datasets. (Wu
et al., 2020) train and test on MusicNet for this task, but
reported note-level accuracies are very low, below 51% on
all instruments except for piano and violin, on which the ac-
curacies are ∼69% and ∼61% respectively. (Gardner et al.,
2021) train on a mixture of datasets - MAESTRO, GuitarSet,
MusicNet and Slakh2100 (Synthetic). They map the spec-
trogram into a sequence of semantic MIDI events, taking an
NLP seq2seq approach. This setting is flexible and allows
to easily represent multi-instrument transcription. However,
the performance on the cross-dataset, or zero-shot task, is
low (below 33% on note-level F1), and performance on
MusicNet is low, even when training on MusicNet (50%
note-level F1 at most).

It is important to note, that none of the latter works propose
any framework or method for weakly- or self-supervised
transcription. Cheuk et al. (2021) train instrument-
insensitive transcription without supervision using a re-
construction loss and Virtual Adversarial Training (Miy-

Algorithm 1 Transcription EM
Input: audio a1, . . . aN , unaligned MIDI m1, . . .mN

Output: transcriber fΘ, labels y1, . . . yN
pre-train fΘ (synthetic)
yi, di = None,∞ i = 1, . . . , N
repeat

for i = 1 to N do
ytemp
i , dtemp

i = DTW (fΘ(ai),mi)
if dtemp

i < di then
yi, di = ytemp

i , dtemp
i

end if
end for
Θ = argmin 1

N

∑N
i=1 L(fΘ, ai, yi)

until 1
N

∑N
i=1 di converges

return fΘ, y1, . . . yN

ato et al., 2019), but as we show, our framework performs
much better, and also allows instrument-sensitive transcrip-
tion. To our knowledge, our work is the first to propose
such a framework for multi-instrument polyphonic music,
including instrument-sensitive transcription.

3. Method
The key observation of our method is that a weak tran-
scriber can still produce accurate predictions if the global
content of the outcome is known up to a warping function.
These accurate predictions, in turn, can be used as labels to
further improve the transcriber itself. As we demonstrate
(see Section 4), this approach is more accurate than that of
pseudo-labels (see Section 3.3), due to the unaligned known
global content. The weak transcriber thus transforms weak
supervision into full supervision and refines itself.

Our method, described in pseudo-code Algorithm 1, relies
on Expectation Maximization (EM) (see Section 3.1), and
involves three components (see Figure 1 left): (I) Synthetic
data initial training (Section 3.2), (II) aligning real record-
ings with separate-source MIDI (Section B.1.1), including
deciding which frames to use and which not to (Section 3.3).
(III) transcriber refinement, including pitch-shift equivari-
ance augmentations (Section 3.4).

3.1. Expectation Maximization (EM)

Expectation Maximization (EM) is a paradigm for unsu-
pervised or weakly-supervised learning, where labels are
unknown, and are assigned according to maximum likeli-
hood. It can be formulated as an optimization problem:

Θ∗ = argmax
Θ

max
y1,...,yn

PΘ(a1, . . . , an, y1, . . . , yn)

where a1, . . . , an are data samples, and y1, . . . , yn are their
unknown labels. The optimization problem can be solved



Unaligned Supervision for Automatic Music Transcription In-the-Wild

Aligned dataset

Unaligned data

D .3 .2 .9

A .6 .1

E .1 .2

1 2 3 4

𝒯

DTWInput

Unaligned Supervision Label

𝒯

Train

[Hawthorne 
et al. 2019]

Full Supervision

Pitch Shift 
Aug.

Predictions

𝒯
Train

E-step

Synth 
data

M-step

Label

Initial 
training

logits

Figure 1. NoteEM system overview. Left: the overall EM approach. Given a synthetic or otherwise supervised dataset, and an unaligned
domain, we start by training the transcriber T on the synthetic data. Next, we use the transcriber to label the domain (E-step, middle).
We use this as supervision for further training, resulting in a stronger T model (M-step, right). Middle: At the core of our unaligned
supervision scheme is the alignment step. Probabilities for each note at each timestep are computed using T . Then, the unaligned labels
are warped using DTW to maximize said logits. Right: the warped results are accumulated into the aligned dataset, which can be used to
retrain T . During training we use pitch shift augmentation, to improve robustness and performance.

by alternating steps, repeated iteratively until convergence
(assuming some pre-training or bootstrapping of Θ):

y1, . . . , yn = argmax
y1,...,yn

PΘ(a1, . . . , an, y1, . . . , yn) (1)

Θ = argmax
Θ

PΘ(a1, . . . , an, y1, . . . , yn) (2)

which are referred to as the E-step (1) and the M-step (2).

In our scenario, the data samples a1, . . . , an are the unla-
belled audio recordings, and y1, . . . , yn are the unknown
per-frame labels. We assume that the recordings are perfor-
mances of pre-defined musical pieces m1, . . . ,mn, such as
in classical music, in the form of MIDI from other perform-
ers. We perform the E-step by aligning m1, . . . ,mn with
the predicted probabilities over a1, . . . , an using dynamic
time warping (DTW) (Müller, 2007). We initialize Θ by
training on synthetic data which is (trivially) supervised.

3.2. Initial training

We use synthetic data (see Section 4.1 for details) to train
the architecture proposed by Hawthorne et al. (2019). Of
course, our training scheme can also be applied to other
architectures, but this one has proven to be effective for
supervised piano transcription, reaching 95% note-level
and 90% frame-level F1 scores. It has separate detection
heads for onsets, offsets, and frames, allowing to perform
alignment according to semantic information. As we show
(see Supplementary), onset information is the most effective
for alignment. This initial network is trained to detect only
pitch, without instrument, but it can also be further trained
to detect instrument as well (see section 4.2.4).

3.3. Labeling

We label real data using dynamic time warping between the
initial network’s predicted probabilities and the correspond-
ing MIDIs. This is contrary to Thickstun et al. (2017), who
compute the dynamic time warping in the frequency space.

As can be seen in the Supplementary, MIDI guided align-
ment yields more accurate labels than simple thresholding.
It also provides instrument information.

The alignment process is depicted in Figure 1 middle, and es-
sentially relies on Dynamic Time Warping. Using DTW, we
search for a chronologically monotonic mapping between
the unaligned labeling and its corresponding recording, such
that for each selected note the probability, as predicted by
the transcription model, is maximized.

We argue that using the network’s predicted probabilities as
local descriptors for DTW has the following advantages:

(i) Inconsistencies – For a separate-source MIDI (i.e., origi-
nating from a different performer), inconsistencies between
the performances in inevitable. This includes repetitions
of cadenzas, and more subtle nuances, such as trills, or in-
chord order changing. Precise onset timing can be adjusted
locally for each note independently according to predicted
likelihoods. Failed detection, whether false positive or false
negative, can be avoided based on network’s probabilities,
i.e., pseudo-labels can also be leveraged in addition to the
alignment.

(ii) Label refinement - the labeling process can be repeated
during training, thus refining the labels, since the network
has improved.

(iii) DTW computation speed - for DTW descriptors, we
project the 88 pitches into a single octave (12 pitches) using
maximum activation across octave, hence representation
length for DTW is 12 rather than 50 (Thickstun et al., 2017).
After projection, for an audio recording of ∼2:30 minutes,
DTW takes ∼1 second.

Pseudo Labels As aforementioned, the alignment can
produce false detections, whether positive or negative. To
avoid this false detection automatically, and still leverage
all data, we label classes with predicted confidence above
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a threshold Tpos as positive, and classes with predicted
confidence beneath a threshold Tneg as negative, regardless
of the alignment. Classes with probability 0.5 < p < Tpos

which were not marked positive are considered unknown
and we do not back-propagate loss through them. We do this
to allow detection of onsets undetected by the labeling. We
do not do the same for negative detection (i.e., Tneg < p <
0.5) as there is already a strong bias against onset detection,
as onsets are very sparse (an onset lasts a single frame).

In our experiments we use thresholds Tpos = 0.75 and
Tneg = 0.01 for all classes - onsets, frames and offsets.
We can use a low negative threshold since the MIDI per-
formance already constrains the labels, and activations
(whether onset, frame, or offset) are sparse, thus mode col-
lapse is less of an issue.

3.4. Tonality - Pitch Shift Equivariance

Music transcription has a unique inherent structure,
where a pitch shift on the waveform induces a corre-
sponding predetermined translation of the labels. We
leverage this structure by enforcing consistency across
pitch shift: We create 11 additional pitch shifted
copies of our data, with pitch shifts (in semitones):
si = i + αi,−5 ≤ i ≤ 5, αi ∼ U(−0.1, 0.1),
where U(−0.1, 0.1) is the uniform distribution on the in-
terval [−1, 1], as suggested by Thickstun et al. (2018). We
compute the labels only for the original copy, and for each
copy shift labels accordingly. This not only augments the
data by an order of magnitude, but also implicitly enforces
consistency across pitch shift, serving as a regularization,
forcing the model to learn tonality.

3.5. Instrument-Sensitive Transcription
(note-with-instrument)

In this setting, we define a distinct class for each combina-
tion of pitch and instrument, i.e., the number of classes C is
(number of pitches)·(number of instruments).

We start with instrument-insensitive training on synthetic
data. To adjust the transcriber to the new task of detecting
also instrument, we duplicate the weights of the final linear
layer of the onset stack I times: once for each instrument,
and one copy to maintain instrument-insensitive prediction.
This redundancy serves as regularization and improves learn-
ing. Thus, at the beginning of instrument-sensitive training,
upon detection of a note, the transcriber will detect the note
as active on all instruments. During training the transcriber
will learn to separate instruments, according to the labels.
We apply the same labelling process to this scenario as well
- the difference only being more classes. We maintain the
low representation length of 12 for DTW computation by
maximizing activation both across octave and instrument.
To allow the transcriber (which is initially insensitive to

instrument) to learn instrument separation, we do not use
pseudo-labels in the initial labelling, only from the second
labeling iteration.

4. Experiments
For all our experiments, we use an architecture similar to
the one proposed by Hawthorne et al. (2019). To handle
instrument variety, we increase network width compared to
the originally proposed architecture: we use LSTM layers of
size 384, convolutional filters of size 64/64/128, and linear
layers of size 1024.

We re-sampled all recordings to 16kHz sample rate, and
used the log-mel spectrogram as the input representation,
with 229 log-spaced bins (i.e., input dimensionality of 229).
We used the mean BCE loss, with an Adam optimizer, with
gradient clipped to norm 3, and batch size 8. The initial
synthetic model was trained for 350K steps. This took 65
hours on a pair of Nvidia GeForce RTX 2080 Ti GPUs. Fur-
ther training on real data was done for 90 ∗ |Dataset| steps.
In the case of MusicNetEM , this is ∼ 90 ∗ 310 = 28K iter-
ations. For most experiments, labeling is performed twice:
once after sythetic training, and once after 45 ∗ |Dataset|
steps. For perspective, MusicNetEM training, which in-
cludes 28K iterations and 2 DTW labelling iterations, took
16 hours on a pair of Nvidia GeForce RTX 2080 Ti GPUs.

In the following, we discuss the data we have used during
our evaluations (Section 4.1), we report quantitative results
(Section 4.2), and compare to previous work (throughout
the evaluations of Section 4.2). The effect of the pitch-shift
augmentation can be seen in Tables 1, and 3. Comparison
of labeling methods (alignment, pseudo labels, and a com-
bination of both) can be seen in Table 5. Further ablation
studies, considering various steps, such as EM iterations,
alignment quality, and others, can be found in the Supple-
mentary material (Section B.1).

4.1. Data & Instrument Distribution

In our experiments, we use three datasets:

MIDI Pop Dataset (AI, 2020) is a large collection of MIDI
files. The data consists of almost 80, 000 songs, from which
we randomly selected ∼ 8, 500. These were then synthe-
sized into audio. ∼ 4, 500 of the performances, of length
278:09:01 hours, are mp3 compressed, and the rest with
lossless flac compression. In total 501:11:30 hours of audio
were synthesized from MIDI. This data is used during our
pre-training step. Note that for flexibility, we only use pitch
labels from this data, without instrument specific labels.

MusicNet (Thickstun et al., 2017) comprises recordings
of multiple instruments in an unbalanced mix. The labels
for this dataset are of notorious quality (Hawthorne et al.,
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Table 1. Piano transcription results (Note- and Frame-level Precision, Recall, and F1 scores). In the supervised methods, Gardner et al.
(2021) was trained for instrument-sensitive transcription, while the rest are instrument-insensitive. Hawthorne et al. (2019) Train only on
MAESTRO, with or without various audio augmentations as reported by the authors. Note the accuracy drop when tested on MAPS.
Gardner et al. (2021) ZS is a cross-dataset evaluation, trained on a mixture of datasets excluding MAESTRO, and evaluated on the
MAESTRO test set. Note that ours is also a cross-dataset setting. ’Synth’ is trained only on synthetic data, and is the result of our initial
training step. All models following (beneath it in the table) are fine-tuned from it: ’MusicNet’ is fine-tuned on MusicNet with its original
annotation. Notice performance reduction compared to Synth, indicating low quality labeling. ’MusicNetEM ’ is fine-tuned on MusicNet
with our annotation, with two labeling iterations. ’MusicNetEM1L’ is with a single labeling iteration, and ’self-collected’ is using ∼30
hours of piano and guitar recordings, with our annotation. The presented pitch augmentation’s effect is evaluated on the ’MusicNet’
and ’MusicNetEM ’ test sets. As can be seen, our approach surpasses fully supervised note-level accuracy on the MAPS test set, and is
comparable for MAESTRO, despite not being trained on it.

Train

Test MAESTRO MAPS
Note Frame Note Frame

P R F1 P R F1 P R F1 P R F1
Supervised

Hawthorne et al. (2019) 98.3 92.6 95.3 92.1 88.4 90.2 - - 83.0 - - 82.0
Hawthorne et al. (2019) aug. - - 94.8 - - 89.2 - - 86.4 - - 84.9

Kong et al. (2021) 98.2 95.4 96.7 88.7 90.7 89.6 - - - - - -
Gardner et al. (2021) - - 96.0 - - 88.0 - - - - - -

Weakly/self-supervised
Gardner et al. (2021) ZS - - 28.0 - - 60.0 - - - - - -

Cheuk et al. (2021) - - - - - - 86.1 67.3 75.2 88.8 72.7 79.5
Synth 86.0 82.1 83.8 79.1 72.6 74.7 79.5 79.3 79.1 85.0 70.9 76.6

Fine-tuned from Synth:
MusicNet 68.1 50.3 57.5 81.6 48.8 57.9 59.0 49.1 53.4 71.2 79.9 74.3

MusicNet (w/o pitch aug.) 59.3 43.2 49.7 78.8 55.0 62.0 54.8 43.3 48.1 69.2 75.5 71.4
MusicNetEM1L (ours) 95.6 84.7 89.7 79.1 76.9 77.0 90.3 83.7 86.8 86.2 78.0 81.4

MusicNetEM (ours) 92.6 87.2 89.7 77.4 76.1 76.0 88.2 86.5 87.3 84.4 76.7 79.6
w/o pitch aug. 91.1 85.6 88.1 76.3 74.8 74.3 85.9 83.7 84.7 83.9 74.0 78.0

Self-collected (ours) 93.5 86.2 89.6 76.3 79.3 76.8 88.8 84.6 86.6 81.6 81.1 80.9

Table 2. String and wind instruments evaluation. In the table we use the same test split as Cheuk et al. (2021) (excluding piano pieces,
which are less reliable compared to MAPS and MAESTRO). Results compare the same training on three different datasets (rows),
evaluated on both the given MusicNet annotations, and the ones generated using our unaligned supervision scheme (columns). We also
compare against Gardner et al. (2021), which use a different split.

Train

Test MusicNetEM Strings test MusicNet Strings test
Note Frame Note Frame

P R F1 P R F1 P R F1 P R F1
Cheuk et al. (2021) 63.6 58.8 61.0 78.9 60.7 68.4

Synth 73.0 59.7 65.2 70.3 45.5 54.4 57.3 44.2 49.1 66.7 40.9 49.8
Fine-tuned from Synth:

MusicNet 36.0 33.3 34.6 58.5 69.4 63.4 44.1 37.1 39.9 66.2 73.5 69.4
MusicNetEM (ours) 81.8 78.7 80.0 73.2 69.8 71.3 68.6 61.1 63.9 72.4 65.0 68.3

MusicNetEM Wind test MusicNet Wind test
Cheuk et al. (2021) 48.6 47.9 48.2 69.8 65.8 67.4

Synth 80.4 77.2 78.8 72.7 59.3 65.3 56.8 54.0 55.4 71.8 58.5 64.3
Fine-tuned from Synth:

MusicNet 50.3 46.6 48.4 66.8 75.0 70. 40.0 36.3 38.0 69.9 78.3 73.4
MusicNetEM (ours) 84.2 91.1 87.5 71.4 79.0 75.0 58.9 63.1 60.9 70.7 78.2 74.2

Gardner et al. (2021) test split
Gardner et al. (2021) - - 50.0 - - 68.0
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Table 3. Transcription results on GuitarSet. MusicNetEM is the
MusicNet recordings with our annotation. Note-level metrics of Xi
et al. (2018) and Wiggins & Kim (2019) are unavailable. Note that
our results is for an unseen instrument, since MusicNet recordings
contain no guitar performances. Gardner et al. (2021) reach high
accuracy on GuitarSet when training on GuitarSet, but perform
poorly when generalizing from one dataset to another, in the zero-
shot (ZS) task, where GuitarSet data is excluded from the train
set.

Note F1 Frame F1
Supervised

Xi et al. (2018) - 64.6
Wiggins & Kim (2019) - 82.6
Gardner et al. (2021) 90.0 89.0

Weakly/self-supervised
Gardner et al. (2021) ZS 32.0 58.0

Synth 68.4 72.9
Fine-tuned from Synth:

MusicNet 10.0 57.2
MusicNetEM (ours) 82.9 81.6
Self-Collected (ours) 82.2 79.3
w/o pitch aug. (ours) 75.4 77.8

2018; 2019; Gardner et al., 2021), as they were generated by
alignment to musical scores in preprocess. Most recordings
are of a piano (∼15 out of ∼ 34 hours are piano solo, and ∼7
other hours include the piano). We use the recordings of this
dataset, and their provided unaligned corresponding musical
scores. Instead of the provided labels (or aligned scores),
we offer MusicNetEM – an alternative labeling generated by
our framework – and demonstrate its superiority (Section 4).

For our Self-Collected dataset, we manually gathered 74
additional hours of recordings, including over 30 hours of
orchestra, 5 hours of solo guitar (pieces by Albeniz, Sor,
and Tarrega), 11 hours of harpsichord (6 hours solo), and
more. We use this data to supplement or replace MusicNet
in our experiments. We created this dataset to demonstrate
the simplicity of unaligned data collection, and show similar
quantitative results compared to the carefully curated official
datasets.

Our improved annotation for MusicNet, our code, together
with qualitative examples for various genres and instru-
ments, are available on our project page at https://
benadar293.github.io. Qualitative results on the
project page are from a model trained on all three datasets
(starting from the MIDI Pop dataset and continuing to the
other two).

4.2. Evaluation

As described in Section 3, our training process for all exper-
iments is similar - the network is trained on the synthetic

data rendered from the MIDI pop dataset with full super-
vision, and is then fine-tuned using the MusicNet and/or
Self-Collected audio files, with only unaligned labeling.
Since quality ground truth data is difficult to obtain, we
use the test sets of other datasets for quantitative evaluation.
Due to dedicated hardware, these datasets provide accurate
transcription, but to limited instruments. Note we do not use
these sets (MAESTRO, MAPS, or GuitarSet) for training.

We evaluate our method on piano, guitar, strings, and
wind instruments, in an instrument-sensitive (i.e., note-with-
instrument, see Table 4), or an instrument-insensitive (see
Tables 1 (piano), 2 (MusicNet test), and 3 (GuitarSet)) man-
ner.

For instrument-insensitive transcription (Tables 1, 2, 3) we
report the metrics note (onset detection within 50ms or less)
and frame (detection of active pitches, determining note
duration). Note-with-offset with varying thresholds can
be found in the Supplementary material. For instrument-
sensitive transcription (Table 4), we report the note-with-
instrument metric, which uses the same 50ms timing rule,
but only for notes of the correctly predicted instrument.

4.2.1. PIANO

We use the piano to evaluate our system since it provides test
sets with reliable labeling (due to the use of the Disklavier),
even though our network is trained for multi-instrument tran-
scription. We evaluate on the MAPS and MAESTRO test
sets. Results can be seen in Tables 1 (instrument-insensitive)
and 4 (instrument-sensitive). We explain the experiments
in Table 1: The Synth model is the initial model trained
on the MIDI Pop Dataset which serves as a baseline. In
the following two experiments (MusicNet with or without
pitch-shift) we fine-tune this model on MusicNet with the
original annotation, which only worsens performance. In
the following 4 experiments (bottom 4 rows) we fine-tune
the initial Synth model on MusicNet with unaligned annota-
tion (MusicNetEM , using 1 or 2 labeling iterations) or on
the Self-Collected data (using the default of 2 iterations).

In the 4 bottom rows of Table 1 it can be seen that note-
level accuracy is near-supervised level, even surpassing
supervised-level on MAPS. This is despite training on dif-
ferent datasets and no direct supervision, let alone precise
labeling of the exact same instrument. For frame-level ac-
curacy, the task is more challenging, since note endings are
typically weak and thus harder to decipher. While this ex-
pectedly induces lower F1 score for the MAESTRO dataset,
we also see near-supervised performance on MAPS. Note
that the same training procedure done using original Music-
Net annotations yields much lower accuracy. This strongly
indicates our annotation is more accurate. Similar results
are achieved with self-collected data of ∼30 hours of piano
and guitar.

https://benadar293.github.io
https://benadar293.github.io
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Table 4. Instrument-sensitive transcription results (note-with-instrument). We show results on the MusicNet test set, both with the original
labels, and our proposed labels – MusicNetEM . We also compare to Wu et al. (2020) who evaluate on the MusicNet test set. Notice the
improvements for horn, bassoon, and clarinet. For Violin, Cello, and Viola, accuracy according to the original annotation is comparable.
However, this is probably due to label quality. See Supplementary material and website for more detail and a qualitative comparison. We
also evaluate this task on MAPS, MAESTRO, and GuitarSet, who feature more reliable annotation. The most challenging instrument is
viola, due to the resemblance to both violin and cello.

Ours (Wu et al., 2020)
MusicNetEM test MusicNet test MusicNet test

Test Set P R F1 P R F1 P R F1
MN Piano (1759, 2303, 2556, 2628) 88.4 87.4 87.9 71.5 71.1 71.3 74.6 64.7 68.9

MN Violin (2106, 2382, 2628) 66.2 73.4 69.5 58.3 59.7 58.8 61.9 60.1 60.5
MN Viola (2106, 2382) 48.6 40.6 43.4 37.9 29.4 32.9 28.9 32.0 30.1

MN Cello (2106, 2298, 2382) 67.6 69.3 67.9 52.0 49.1 49.6 58.7 44.8 50.4
MN Horn (1819, 2416) 65.5 68.4 66.9 47.8 49.6 48.7 10.8 38.1 16.8

MN Bassoon (1819, 2416) 66.4 81.4 73.1 45.4 55.0 49.7 36.6 45.6. 40.6
MN Clarinet (1819, 2416) 81.4 86.3 83.8 58.0 62.6 60.2 47.9 55.2 51.0

Test Set Ours
Piano (MAESTRO) 90.5 76.4 82.3
Guitar (GuitarSet) 89.8 79.7 83.8

Piano (MAPS) 87.3 82.3 84.6

Table 5. Effect of different labeling methods, evaluating on MAESTRO, MAPS, and GuitarSet. We train on MusicNet recordings (without
the original labels), applying 3 different labeling methods (while using the same EM training scheme, with 2 labeling iterations): (i) In the
Psuedo Label method, we use predictions of the network as labels, without any alignment with MIDI. We use threshold 0.5 for all classes.
(ii) In the Alignment method, we label using our alignment method, without pseudo labels. (iii) In the Alignment & Pseudo Labels (Al.
& PL) method, we use both unaligned MIDI, and also pseudo labels, with positive threshold 0.75 and negative threshold 0.01 for all
classes. From pitches with predicted likelihood 0.5 < p < Tpos we do not back-propagate loss. In all 3 cases we train with pitch-shift
augmentation, and use the Synth model as initial weights. We provide the performance of the initial Synth model as a baseline. As can
be seen, pseudo labels alone improve F1 score compared to the Synth model, significantly improving precision, while recall remains
approximately the same, usually slightly lower. Alignment alone performs better than pseudo labels alone, and the combination of both
gives the best results.

Train

Test MAESTRO MAPS
Note Frame Note Frame

P R F1 P R F1 P R F1 P R F1
Synth 86.0 82.1 83.8 79.1 72.6 74.7 79.5 79.3 79.1 85.0 70.9 76.6

Pseudo Labels 0.5 94.6 81.3 87.3 76.3 69.6 71.5 90.0 80.3 84.8 86.2 68.7 75.2
Alignment 95.9 83.0 88.7 82.6 63.4 70.5 90.6 83.2 86.6 85.8 66.0 73.7

Al. & PL 0.75 92.6 87.2 89.7 77.4 76.1 76.0 88.2 86.5 87.3 84.4 76.7 79.6

Train

Test GuitarSet
Note Frame

P R F1 P R F1
Synth 61.0 80.7 68.4 71.0 76.4 72.9

Pseudo Labels 0.5 81.8 78.6 79.1 83.4 73.4 77.4
Alignment 90.1 77.4 82.5 79.2 80.6 79.4

Al. & PL 0.75 86.6 80.4 82.9 79.3 84.8 81.6



Unaligned Supervision for Automatic Music Transcription In-the-Wild

4.2.2. GUITAR

For guitar transcription, we evaluate on the GuitarSet dataset
(which is not used for training). Results can be seen in Ta-
bles 3 (instrument-insensitive) and 4 (instrument-sensitive).
Table 3 demonstrates generalization to a new instrument,
since MusicNetEM does not contain guitar performances.
For unseen instruments, we only use the results predicted
by the pitch-only part the network’s output, using the same
models as in Table 1. For guitar training data in Table 4
we use the self-collected ∼ 5 hours of guitar recordings
together with MusicNetEM . Results are consistent with the
piano experiments, indicating significant improvements.

4.2.3. STRING & WIND INSTRUMENTS

As mentioned, existing annotation of the MusicNet dataset
is notoriously inaccurate, and Tables 1, 3 indicate our an-
notation method is more accurate. To further demonstrate
this for other instruments, we evaluate on the MusicNet test
set using both the original annotation and ours (Table 2).
Test annotation is done as described in Section 3, but with-
out the pseudo labels step. Results can be seen in Tables 2
(instrument-insensitive) and 4 (instrument-sensitive).

As can be seen in Table 2, on the note-level, we have conclu-
sive results, that our generated annotation used for training
performs significantly better than training on the original
annotation (over 20% difference) on both test annotations.
This indicates the method can flexibly extend to novel mate-
rial with cheap labeling.

4.2.4. INSTRUMENT-SENSITIVE TRANSCRIPTION

Training & Evaluation For quantitative evaluation, we
use the 11 instrument classes of MusicNet, with the addition
of the guitar (see below), summing up to 12 instrument
classes. We evaluate on the MusicNet test set, on GuitarSet,
on MAESTRO, and on MAPS. In the instrument-sensitive
setting, a note is considered correct only if its predicted
instrument is correct (note-with-instrument). We train on
MusicNetEM together with the self-collected guitar data,
to allow guitar detection. Similar to Table 2, we report
MusicNet test results both according to our annotation, and
the original one. Results can be seen in Table 4. Metrics
are unsurprisingly lower than Table 2, since instrument
detection is required, and confusions can occur e.g. between
violin and viola.

We thus argue the metrics on the original MusicNet test
annotation do not reflect performance well, and encourage
using MusicNetEM . We provide a qualitative comparison
to Wu et al. (2020) and Gardner et al. (2021) on our project
page at https://benadar293.github.io, clearly
demonstrating the performance gap.

4.2.5. ALIGNMENT VS. PSEUDO LABELS

To evaluate the contribution of each of the components -
alignment with MIDI and pseudo labels, we train two addi-
tional models - one where we label the real audio recordings
only using pseudo labels obtained by thresholding with a
0.5 threshold, and one where we label only using align-
ment. Results can be seen in Table 5. As can be seen,
alignment is a powerful step, especially on the note-level,
performing better than psuedo-labels on all evaluation sets
(MAPS, MAESTRO and GuitarSet). Finally, while both
the alignment and psuedo-labeling are shown to contribute
to accuracy, combining both performs best on all three test
sets, on both the note- and frame-level.

5. Conclusion
In this work we presented a method for multi-instrument
transcription, from easily attainable unaligned supervision.
We demonstrated the method’s strength for in-the-wild tran-
scription, including cross-dataset evaluation. We have also
showed the simplicity of collecting data for our framework,
which generates annotation on its own in a fully-automated
process. Our work presents unprecedented transcription
quality on a wide variety of instruments and genres. This
work’s capabilities open several new lines of research.

Besides extending to human voices, additional effects could
be added to the detection, such as velocity. In addition,
adding a musical prior, driving predictions to only make
sense musically (in a similar manner to a NLP) would also
probably boost performance. Another central direction for
future work is generative models. DNN based models that
synthesize realistic music, although producing realistic tim-
bre, cannot produce coherent music without conditioning on
notes. Generating realistic-sounding music conditioned on
notes is ideal for musicians as it enables full control over the
content of the produced music. We believe the transcriptions
produced using our approach can be used as a conditioning
signal for training generative models, by learning the reverse
mapping from transcriptions to original audio. Finally, addi-
tional E-M iterations on small data or specific performances,
even during inference, would also be an interesting avenue
for future research, which we hope this work would inspire.
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A. Supplementary Material for ”Unaligned Supervision for Automatic Music Transcription in
The Wild”

A.1. Aligning real data with MIDI from a different source

A.1.1. AVOIDING SINGULAR POINTS

Since we align real recordings with external MIDI (i.e., from a different performer), alignment can fail at points with a
contradiction in content between the two performances. This can happen when (i) one sequence has a repeated candenza
while the other does not, or (ii) because of subtle nuances, and differences in precise timing of adjacent notes (e.g. in trills,
or timing of individual notes within a chord). In such cases, the alignment will collapse a long segment of one sequence
into a single frame in the other sequence. The long segment can be e.g. 1 minute in case (i), or e.g. 1 second in case (ii).
Such frames that are mapped to long segments of the other sequence are called singular points. This issue is discussed by
Thickstun et al. (2017). Their solution is to verify alignment by experts, and to exclude recordings where this occurs. This
prevents the process from being fully automatic, and is less desired. Our solution is to only assign labels to non-singular
points, and mask the loss from singular points. We still might assign pseudo-labels to singular points, see Subsection 3.3 in
the paper. This allows us to avoid failed alignment and also leverage all data, in a fully-automated process.

In more detail, given an audio performance with frames 1, . . . , T , and an unaligned midi performance of the same piece with
frames 1, . . . Ttarget, the initial network predicts for each frame 1 ≤ t ≤ T and pitch 1 ≤ f ≤ 88 probabilities for onset,
frame, and offset. We denote these predictions: Pon, Pfr, Poff ∈ [0, 1]T×88. Similarly, we denote by Qon, Qfr, Qoff ∈
{0, 1}T×88 the onset, frame, and offset activations in the corresponding target midi. As local descriptors X,Y for frames of
the audio recording and the midi performance respectively, we use a weighted sum:

X = A ∗ Pon +B ∗ Pfr + C ∗ Poff (3)
Y = A ∗Qon +B ∗Qfr + C ∗Qoff (4)

X ∈ RT×88, Y ∈ RTtarget×88 (5)

where A >> B >> C, i.e., the alignment is based mainly on the onset information. In our experiments we used values
A = 100, B = 0.01, C = 0.001. See Table 7 for the significant difference in accuracy, in both note- and frame-level, when
aligning according to onset information, compared to aligning according to frame information.

Given a pair of sequences X,Y The DTW algorithm returns an optimal alignment in the form of monotone multi-valued
mappings (an index in the source can be mapped to multiple indices in the target):

M : X → Y, M−1 : Y → X

where monotonicity implies
i ≤ j =⇒ k ≤ k′ ∀k ∈ M(i), k′ ∈ M(j).

and similarly for M−1. We define the set of singular points S = S1 ∪ S2 where

S1 = {i : |M(i)| > w} S2 = ∪j:|M ′(j)|>w′M ′(j)

S1 is the set of indices mapped to more than w indices in the target domain (interval of length > w in the target collapses
into a single frame in the source), and S2 is the set of indices mapped to indices in the target domain that cover more than w′

indices in the source domain (interval of length > w′ in the source collapses into a single frame in the target). These window
sizes control a tradeoff between precision and recall. We used values 3 ≤ w ≤ 9, w′ = 100. Results in Tables 1, 2, 3 in the
paper were obtained using w = 3, and Table 4 using w = 7. Larger values of w cause noise as they allow imprecise onset
timing, and small values of w′ (e.g., w′ = 3) result in transcriptions that are entirely staccato.

We then assign labels to non-singular points in the following manner: Each non-singular frame t in the source sequence, is
mapped to a set of frames M(t) in the target sequence, where |M(t)| ≤ w. We define the label X̂(t, p) of frame t at pitch p
to be the maximum activation of the pitch p across all frames in M(t). Since we have multiple kinds of activations - onset,
frame, offset, and none - we use the hierarchy: onset > frame > offset > none.

We then assign labels only to non-singular points, in the following manner: The possible labels are: 3 - onset, 2 - frame, 1
offset, and 0 - none. We assign labels X̂:

X̂t = elem wise maxs∈M(t)Zs i ∈ [T ] \ S (6)
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Table 6. Instrument distribution in self-collected data.

INSTRUMENT LENGTH (HOURS)

PIANO 13:27:20
HARPSICHORD 6:20:37
HARPSICHORD & STRINGS 3:53:21
HARPSICHORD & FLUTE 1:02:18
GUITAR 4:46:21
LUTE 0:19:21
VIOLIN 2:11:49
CELLO 3:24:43
FLUTE 0:09:15
ORGAN 2:37:10
ORCHESTRA 25:56:52
ORCHESTRA & PIANO 7:54:05
ORCHESTRA & CHOIR 1:49:47
ALL 73:52:59
MUSICNET 33:43:07
ALL, WITH MUSICNET 107:36:06

Where Z is the target label, and is defined as follows:

Z = max{3 ∗Qon, 2 ∗Qfr, 1 ∗Qoff} ∈ [3]Ttarget×88

where Qon, Qfr, Qoff are defined as in line 4 in the equation in the previous section. Note that

Zs ∈ [3]88 1 ≤ s ≤ Ttarget

and the maximum over s in 6 is performed entry-wise.

We back-propagate loss only from non-singular points (unless they were marked positive/negative by the pseudo-labeling
which we perform afterwards). This enables us to leverage all data, and prevents the need to discard whole pieces because
they contain singular points.

A.1.2. LOCAL-MAX ADJUSTMENT

Because of the aforementioned slight differences in precise onset timing between the real recording and its corresponding
MIDI, the alignment can produce small errors in onset timing. We further refine the labels for each note independently
by adjusting each note onset to be a local maximum across time (according to the predicted probabilities), which allows
labeling with accurate onset timing. We do the same for note offsets. Still, offsets require further investigation since they
are harder to detect. This adjustment of onset timing is not possible when aligning spectral features of polyphonic music,
as in Thickstun et al. (2017). A similar local-max adjustment is performed by Xi et al. (2018) for annotation of guitar
performances, according to flux novelty (similar to spectral features) rather than a network’s predicted probabilities. This
however is only possible because the different guitar strings are separated, therefore the annotation is in fact of monophonic
music.

B. Data & Instrument Distribution
As we mention in the paper, the MusicNet dataset provides recordings of multiple instruments, however, the dataset is
imbalanced. Most recordings are of solo piano (∼15 out of ∼ 34 hours are piano solo, and ∼7 other hours include piano).
We demonstrate the simplicity of collecting data for our method, by gathering 74 additional hours of recordings. The full
distribution of instruments can be seen in Table 6. Transcriptions in the video are by a model trained on all data, both
MusicNet and the self-collected.
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Table 7. Alignment results. PL is short for pseudo label. Local max is the local max adjustment of onset timing.
Note Frame

P R F1 P R F1
Thresholding 0.5 86.2 83.4 84.7 76.2 73.6 74.0

frame Alignment (w=3, w’=100) 61.0 35.5 44.0 67.1 28.0 37.7
frame Alignment + PL 0.75 (w=3, w’=50) 85.6 61.3 70.8 77.3 56.9 64.2

frame Alignment + PL 0.75 (w=3, w’=100) 85.7 62.7 71.9 77.0 59.5 66.0
onset Alignment (w=3, w’=100) 87.7 83.1 85.2 75.4 61.5 66.5

onset Alignment + PL 0.75 (w=1, w’=100) 92.3 80.2 85.6 77.7 70.5 72.9
onset Alignment + PL 0.75 (w=3, w’=100) 91.2 86.8 88.8 77.2 76.8 76.1
onset Alignment + PL 0.75 (w=9, w’=100) 90.4 87.1 88.6 78.9 74.4 75.6
onset Alignment + PL 0.5 (w=3, w’=100) 88.3 87.5 87.7 74.3 79.5 75.9
onset Alignment + PL 0.75 (w=3, w’=10) 91.2 86.3 88.5 79.1 73.7 75.3
onset Alignment + PL 0.75 (w=3, w’=50) 91.2 86.7 88.8 77.5 76.3 76.0

onset Alignment (local max 3) 87.4 83.0 85.0 75.2 61.4 66.3
onset Alignment (w/o local max) 87.9 82.0 84.7 75.2 60.8 66.0

onset Alignment (w/o local max) + PL 0.75 92.3 84.9 88.3 77.1 75.4 75.4
Thresholding (0.5) after training on the 46 pieces w/o gt labels 95.2 90.4 92.7 78.1 77.7 77.2

B.1. Further Experiments & Ablation Studies

B.1.1. ALIGNMENT EVALUATION

We measure the accuracy of our labeling process on the Maestro validation dataset, for which precise annotation exists. For
46 out of the 105 pieces in the validation dataset, of total time 6:57:22, we were able to find additional unaligned MIDI (to
be used instead of those offered with the dataset). We report the note and frame metrics of the alignment w.r.t the ground
truth annotation, when alignment is done over predictions of the model trained on synthetic data. We compare the results
to simple thresholding. We also show the higher accuracy of aligning according to onset information rather than frame
information, even for the frame-level accuracy. We show results for other parameters as well. Unless otherwise stated, we
use local-max adjustment of onset timing with a window size of 7 frames. We do this in an inclusive manner: after the initial
alignment, if a neighbor of an onset has a higher onset prediction, we mark it as an onset instead, and repeat this 3 times. We
do this for both left and right neighbors, hence the small decrease in precision. All results can be seen in Table 7. We also
measure the accuracy on these 46 pieces, after training on them with the labels computed by the alignment (not the ground
truth labels), and evaluate the accuracy of the network on them using the ground truth labels (last row in Table 7). Main
points to note in the table are: (i) Alignment according to onset information yields much more accurate annotations than
aligning according to frame information, even in the frame-level metric. (ii) While annotation according to alignment alone
yields slightly better annotation than thresholding with threshold 0.5, the combination of alignment, with thresholding with
a higher threshold of 0.75, performs significantly better, with improvement of 4%. (iii) The window size parameters w,w′

control a tradeoff between precision and recall. (iv) Local max adjustment significantly increases note-level recall, also
increases frame-level recall, and gives a slight improvement in note- and frame-level F1 score. (v) The actual performance of
the network on the 46 pieces after training on them with the computed annotation, is higher than the annotation’s accuracy.

B.1.2. PITCH SHIFT

An ablation study measuring the effect of pitch shift augmentation can be seen in Table 8: we train an additional model
without pitch shift augmentation. We train both models for the same time to compensate for the smaller amount of data
when training without pitch shift. For piano transcription, this augmentation gives ∼2% of improvment in both note- and
frame-level F1 score, increasing both precision and recall. For guitar, the improvement is 7.5% note-level and almost 4%
frame-level.

B.1.3. LABEL UPDATE RATE

To evaluate the effect of repeated updates of annotation (repeating the E-step), we train 3 models with different policies:
(i) We compute the labels once only, and train on this annotation. (ii) We update the labels 12 times during training in
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Table 8. Effect of pitch shift when evaluating on MAESTRO, MAPS, and GuitarSet.
MAESTRO MAPS

Note Frame Note Frame
P R F1 P R F1 P R F1 P R F1

MusicNetEM w/o pitch shift 91.1 85.6 88.1 76.3 74.8 74.3 85.9 83.7 84.7 83.9 74.0 78.0
MusicNetEM w/ pitch shift 92.6 87.2 89.7 77.4 76.1 76.0 88.2 86.5 87.3 84.4 76.7 79.6

GuitarSet
Note Frame

P R F1 P R F1
MusicNetEM w/o pitch shift 71.1 81.2 75.4 73.1 84.1 77.8
MusicNetEM w/ pitch shift 86.6 80.4 82.9 79.3 84.8 81.6

Table 9. Effect of repeated labelling. We compare labeling once at the beginning of training, to labelling twice, to labelling 12 times at
equal intervals. Best tradeoff between note-level precision and recall is two labeling iterations. Best frame-level performance is achieved
with a single labeling iteration.

Test Set MAESTRO MAPS
Transcription Level Note Frame Note Frame

P R F1 P R F1 P R F1 P R F1
Synth 86.0 82.1 83.8 79.1 72.6 74.7 79.5 79.3 79.1 85.0 70.9 76.6

Single labelling 95.6 84.7 89.7 79.1 76.9 77.0 90.3 83.7 86.8 86.2 78.0 81.4
Iterative labelling (1/12) 90.9 86.7 88.6 76.5 74.3 74.3 86.8 86.3 86.5 83.4 74.1 77.7
Iterative labelling (1/2) 92.6 87.2 89.7 77.4 76.1 76.0 88.2 86.5 87.3 84.4 76.7 79.6

equal intervals. (iii) We update the labels once, in the middle of training. Single labelling had the highest precision, but
lower recall. Results can be seen in Table 9. Policy (iii) produced the best note-level results, while policy (i) gave the best
frame-level results.

B.1.4. VELOCITY

Dynamics and velocity are key components of any musical performance, and are a central part of the expressivity. Hawthorne
et al. (2018; 2019) incorporate velocity into their model, i.e., the model predicts the intensity in which each note was
played. The designated equipment they use for data annotation (Disklavier) also provides velocity information. However,
in a weakly supervised setting such as ours, velocity becomes a challenge, since there is no direct way to recover the
original note velocities from the training data, since the audio recording and the midi performance are from different sources,
moreover, velocity is not necessarily well-defined. There might be some correlation between the real performances and the
corresponding midi performances, but this is not guarantied. Note that velocity annotation only exists for piano datasets
(MAESTRO and MAPS) but neither for GuitarSet nor MusicNet.

When evaluating on the MAESTRO an MAPS test sets, The best velocity predictions were made by the initial model
trained on synthetic data, as it was trained with full supervision over the velocity. I.e., the real data did not improve velocity
prediction - see Table 10. We tried using velocities from the MIDI (Table 10 AL), and using velocities predicted by the

Table 10. Note with velocity results. In this metric, a note is considered correct only if its predicted velocity is within a threshold. In this
metric the initial model trained on synthetic data performs best, as velocity information does not exist for in-the-wild recordings.

MAESTRO MAPS
Velocity labels P R F1 P R F1

PL 65.2 61.4 63.2 63.5 62.4 62.9
AL 56.7 53.5 55.0 60.5 59.2 59.8

Synth 72.2 69.1 70.5 66.1 66.3 65.9
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Table 11. Full transcription results on GuitarSet. MusicNetEM is the MusicNet recordings with our annotation. Note-level metrics of
Xi et al. (2018) and Wiggins & Kim (2019) are unavailable. It is important to note that our results demonstrate generalization to a new
instrument since the MusicNet recordings contain no guitar performances. Gardner et al. (2021) reach high accuracy on GuitarSet when
training on GuitarSet, but perform poorly in the zero-shot task (ZS), where GuitarSet data is excluded from the train set.

Note Frame
Supervised P R F1 P R F1

Xi et al. (2018) - - - 77.8 56.2 64.6
Wiggins & Kim (2019) - - - 90.0 76.4 82.6
Gardner et al. (2021) - - 90.0 - - 89.0

Weakly/self-supervised
Gardner et al. (2021) ZS - - 32.0 - - 58.0

MusicNet orig. 15.0 8.5 10.0 71.4 53.3 57.2
Synth 61.0 80.7 68.4 71.0 76.4 72.9

MusicNetEM (ours) 86.6 80.4 82.9 79.3 84.8 81.6
Self-Collected (ours) 86.7 79.7 82.2 75.4 84.7 79.3

Table 12. Note-with-offset F1 scores for different tolerance thresholds. The standard tolerance for note-with-offset is the maximum
between 50ms and 20% of the reference note length. We show results also for higher tolerance as follows: we increase the tolerance to
250, 500, 1000, and 2000ms, keeping the 20% threshold fixed (rows 4-7), and increase the tolerance to 40, 50, 100, 200, 300%, keeping
the 50ms threshold fixed (rows 8-12). For low tolerance, results are inconclusive between the model trained on synthetic data, our method,
and pseudo-labels. As can be expected, as the tolerance increases, the note-with-offset F1 score becomes closer to the note-level F1 score,
and when reaching a 0.25s tolerance (rows 4-7), our method achieves highest note-with-offset F1 score on all three test sets.

MAPS MAESTRO GuitarSet
Threshold (s, %) Synth Ours PL Sup. Synth Ours PL Sup. Synth Ours PL Sup.

0.05, 20 (def.) 42.5 52.2 46.6 67.4 43.6 39.6 39.7 80.3 35.7 48.8 35.6 78.0
0.25, 20 57.3 66.9 60.9 - 54.6 56.2 52.5 83.1 58.2 67.0 59.6 86.0
0.5, 20 65.4 73.5 68.9 - 62.9 66.3 61.5 85.5 62.1 71.9 63.8 90.0
1.0, 20 72.0 78.9 75.2 - 71.2 75.3 70.4 88.8 65.2 75.7 66.8 -
2.0, 20 75.9 82.5 79.1 - 77.1 81.7 76.5 91.3 67.2 78.1 68.3 -
0.05, 40 46.0 58.7 49.9 - 49.4 47.0 46.7 82.6 50.9 61.4 50.8 -
0.05, 50 48.7 62.3 52.5 - 52.3 50.2 49.9 83.8 55.4 64.7 55.9 -

0.05, 100 61.0 77.2 64.4 - 68.7 66.0 67.5 89.9 62.2 70.4 64.4 -
0.05, 200 67.8 80.9 71.1 - 73.6 72.8 72.8 91.3 64.5 74.3 66.3 -
0.05, 300 71.5 82.5 74.6 - 76.3 76.9 75.7 92.0 65.7 76.1 67.4 -

initial model as labels (Table 10 PL), but this did not improve velocity prediction. Since accurate velocity information cannot
be derived from separate-source MIDI, we believe self-supervision is the main direction for training velocity detection, and
we leave this to future work.

B.1.5. GUITARSET FULL METRICS

Results can be seen in Table 11.

B.1.6. FRAME & OFFSET DETECTION

Onsets by definition are the initial appearance, or beginning of notes, and their lengths do not vary between notes - long
notes and short notes have an onset with the same length, which is typically defined to be a single frame. Thus, there is a
strict correspondence between onsets in a real performance and its corresponding midi, up to a warping function. However,
frame activation determines the duration of a note, which lasts several frames and can significantly vary between different
notes. The musical score of a piece has instructions for note duration, which provides approximate information that enables
learning frame-level transcription in the weakly supervised setting. However, small discrepancies can exist between the
real and the midi performances, even after warping, as the exact time of offset can slightly vary between performances.
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Table 13. Training on MAESTRO with unaligned supervision. For ∼7 hours of the MAESTRO validation set, we find unaligned MIDI of
the same pieces from unrelated performers, and denote this data MAESTROEM . First row - accuracy when training on MAESTROEM

and evaluating on MAESTROEM , but w.r.t. the GT labels. Second row - training on both MAESTROEM and MusicNetEM , and
evaluating on the MAESTRO test set. Metrics in row 3 from Hawthorne et al. (2019). Notice the small gap in note-level metrics between
rows 1 (unaligned supervision) and 3 (full supervision).

Note Frame
P R F1 P R F1

train MAESTROEM , test: MAESTROEM GT 95.2 90.4 92.7 78.1 77.7 77.2
train: MusicNetEM + MAESTROEM , test: MAESTRO test 93.9 88.6 91.1 72.3 85.4 78.0

MAESTRO train acc. (Supervised) 98.9 94.4 96.6 94.2 92.6 93.4
train: Synth, test: MAESTROEM GT 86.2 83.6 84.8 76.5 74. 74.3

train: MusicNetEM , test: MAESTROEM GT 93.3 88.6 90.8 77.6 74.5 75.5

Therefore, although there is improvement in frame-level accuracy gained through weak supervision, it is moderate. These
small discrepancies in performance explain the gap between supervised and weakly supervised learning in the frame-level
accuracy in Table 1 (79.6-81.4% vs. 84.9%) and between note-level accuracy and frame-level accuracy in the weakly
supervised setting (79.6-81.4% vs. 87.3%). However, as we’ve explained in Section 1, the human ear is sensitive mainly to
the onset time, and less to the notes’ precise duration and offset time, assuming note duration is approximately correct.

To measure the accuracy of our trained model in detecting note offsets, we compute the note-with-offset level metrics for
different thresholds. The standard tolerance for offset detection is 50 milliseconds, or %20 of the note length, whichever is
greater. Results can be seen in Table 12. It can be seen that the contribution of unaligned supervision to offset detection is
small, and increases as the offset tolerance thresholds are increased.

We believe frame-level detection, together with offset detection, can be further improved through self-supervision, and this
is an important direction for future work.

B.1.7. MAESTRO WITH UNALIGNED SUPERVISION

An important question that arises is what is the accuracy on the test set, when some samples from the test domain, or
samples similar to the test domain, are seen during training, but without labels, only unaligned supervision. To evaluate
this, we searched for midi performances of pieces in the MAESTRO dataset, unaligned and by other performers. We were
able to find such performances for 46 pieces from the MAESTRO validation set, of total time 6:57:22. We denote this by
MAESTROEM . We conduct two experiments: (i) We train on MAESTROEM alone using our method, without the ground
truth labels, and then measure accuracy on MAESTROEM w.r.t. the ground truth labels. (ii) In another experiment, we add
MAESTROEM to MusicNetEM to measure the effect on the MAESTRO test set. Results can be seen in Table 13, rows 1-2.


