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ABSTRACT

This paper introduces GlOttal-flow LPC Filter (GOLF), a
novel method for singing voice synthesis (SVS) that ex-
ploits the physical characteristics of the human voice using
differentiable digital signal processing. GOLF employs
a glottal model as the harmonic source and IIR filters to
simulate the vocal tract, resulting in an interpretable and
efficient approach. We show it is competitive with state-
of-the-art singing voice vocoders, requiring fewer synthe-
sis parameters and less memory to train, and runs an or-
der of magnitude faster for inference. Additionally, we
demonstrate that GOLF can model the phase components
of the human voice, which has immense potential for ren-
dering and analysing singing voice in a differentiable man-
ner. Our results highlight the effectiveness of incorporating
the physical properties of the human voice mechanism into
SVS and underscore the advantages of signal-processing-
based approaches, which offer greater interpretability and
efficiency in synthesis.

1. INTRODUCTION

Singing voice synthesis (SVS) has attracted substantial in-
terest as a research topic over the last decades, and a va-
riety of techniques have been developed. Early success-
ful SVS systems were usually based on sample concatena-
tion [1–4], while parametric systems have become much
more prevalent. The actual synthesis process in parametric
systems is carried out by a vocoder controlled by synthesis
parameters generated from a separate acoustic model given
some musical context factors (i.e. note number, duration,
phoneme, etc.). Early systems of this kind use a linear
source-filter model as vocoder [5, 6]. Deep Neural Net-
works (DNNs) have subsequently become the dominant
approach for state-of-the-art vocoders [7–13]. However,
mel-spectrograms are often chosen as input features to
these models, which are less interpretable than traditional
vocoder parameters (e.g. f0, aperiodicity ratios). Also, a
significant amount of data is needed to cover various vocal
expressions to achieve generalisation.
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In contrast, Differentiable Digital Signal Processing
(DDSP) models [14–16] incorporate existing signal pro-
cessing operations into neural networks as an inductive
bias, making them more interpretable and generalisable.
DDSP additive synthesis has been proposed for SVS by
Alonso et al. [17]. Wu et al. [18] improved this further
by using subtractive synthesis and sawtooth as the har-
monic source. Nercessian et al. [19] proposed a differ-
entiable version of the WORLD vocoder [20] for doing
end-to-end singing voice conversion. Yoshimura et al. [21]
used Taylor expansion to approximate the mel-log spec-
trum approximation filter’s (MLSA) exponential function
and embedded it into an SVS system. However, most of
their architectures only assume the target signal is a mono-
phonic instrument, which can potentially lead to solutions
that do not reflect some properties of voice. In their de-
sign, the harmonic sources are fixed to a specific shape
(e.g. sawtooth, pulse train), and the filters are symmetric
in the time domain, except Yoshimura et al. [21] which use
a minimum-phase MLSA filter. Incorporating constraints
specific to the human voice on the harmonic source and the
filters could lead to a more interpretable and compact SVS
vocoder.

In this work, we propose GlOttal-flow LPC Filter
(GOLF), an SVS module informed by the physical prop-
erties of the human voice. We build upon the Harmonic-
plus-Noise architecture of DDSP [14] and the subtractive
synthesis of SawSing [18], but replace the harmonic source
with a glottal model and use IIR filters. We developed
a differentiable IIR implementation in PyTorch [22] for
training efficiency. We then used this module as a neural
vocoder and compared its performance with other DDSP-
based vocoders. Specifically, a simple and lightweight NN
encoder converts the mel-spectrogram into synthesis pa-
rameters, and the synthesiser decodes the signal from it.
We paired different synthesisers with the same encoder and
trained them jointly.

Our contributions are twofold. First, GOLF has signifi-
cantly fewer synthesis parameters but is still competitive
with state-of-the-art SVS vocoders. Second, GOLF re-
quires less than 40% of memory to train and runs ten times
faster than its alternatives for inference. Moreover, we in-
directly show that GOLF could model the phase compo-
nents of the human voice by aligning the synthesised wave-
forms to the ground truth and calculating the differences.
This characteristic has excellent potential for analysing
singing voice in a differentiable manner. Decomposing the
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human voice into the glottal source and vocal tract could
also enable us to adjust the singing style in different ways,
such as altering the amount of vocal effort with varying
shapes of the glottal pulse.

2. BACKGROUND

We first introduce the relevant notation. xi denotes the ith

column vector and xi,j denotes the entry at the ith row
and the jth column of the matrix X. Concatenating two
matrices along the column dimension is denoted by [; ]. xi

denotes the ith entry of the vector x or a time sequence
x indexed by i. X(z) denotes the response of xn in the
z-domain. Unless stated otherwise, we use n as the time
index and k as the frame index. Angular frequencies and
periods are normalised to the interval [0, 1]. We use one-
based indexing for elements with finite dimensions.

2.1 Glottal Source-Filter Model

In the source-filter model, we have the following simplified
voice production model:

S(z) = (G(z) +N(z))H(z)L(z), (1)

where G(z) represents the periodic vibration from the vo-
cal folds, N(z) represents random components of the glot-
tal source, H(z) represents the vocal-tract filter, and L(z)
represents the radiation at the lips [23]. Since this for-
mulation is linear, the radiation filter L(z) and the glot-
tal pulse G(z) can be merged into a single source G′(z)
called the radiated glottal pulse. If we assume L(z) is a
first-order differentiator 1 + z−1 [24], then G′(z) is the
derivative of the glottal pulse, which can be described by
the LF model [25], a four-parameter model of glottal flow.
H(z) is usually a Linear Predictive Coding (LPC) filter.

2.2 Linear Predictive Coding

LPC assumes that the current speech sample sn can be pre-
dicted from a finite number of previous M samples sn−1

to sn−M by a linear combination with residual errors en:

sn = en −
M∑
i=1

aisn−i, (2)

where ai are the linear prediction coefficients. This is
the same as filtering the residuals, equivalent to the glottal
source in our case, with an M th-order all-pole filter, a fil-
ter that has an infinite impulse response (IIR). We can use
the LPC filter to represent the response of the vocal tract
if the vocal tract is approximated by a series of cylindri-
cal tubes with varying diameters [26], providing a physical
interpretation.

Using LPC for neural audio synthesis is not new [8,
27, 28], and works have been conducted to incorporate
IIR filters and train them jointly with deep learning mod-
els [29–35]. The difficulty of training IIR in deep learning
framework (e.g. PyTorch) using Eqn (2) is that its compu-
tation is recursive, i.e. the output at each step depends on

the previous results, and to make the calculation differen-
tiable, separated tensors are allocated in each step. This
generates a significant number of memory allocations and
overheads for creating tensors, thus leading to performance
issues, especially for long sequences. One way to miti-
gate this is to allocate shared continuous memory before
computation. However, in-place modification is not differ-
entiable in these frameworks. Some studies sidestep the
recursion by approximating IIR in the frequency domain
using Discrete Fourier Transform (DFT) [27, 30, 32–35],
but the accuracy of this approximation depends on the DFT
resolution. Moreover, the IIRs used in practice are usually
low-order; in this case, it is faster to compute them directly,
especially on long sequences.

3. PROPOSED MODEL

Usually, N(z) in Eqn (1) is treated as amplitude-
modulated Gaussian noise [23, 24]. Our early experiments
found this formulation to be challenging to optimise. As
an alternative, we move the noise components N(z) out-
side the glottal source and filter it with time-varying filter
C(z), resulting in

S(z) = G′(z)H(z) +N(z)C(z). (3)

This resembles the classic Harmonic-plus-Noise
model [36] and was used in previous DDSP-based
SVS [17, 18]. Alonso et al. [17] modelled G′(z)H(z)
jointly using additive harmonic oscillators and time-
varying Finite Impulse Responses (FIRs) as C(z); Wu
et al. [18] introduced a sawtooth oscillator as G′(z) and
zero-phase time-varying FIRs as H(z). In this work, we
use a glottal flow model to synthesise harmonic sources
and time-varying IIRs as filters.

3.1 Glottal Flow Wavetables

We adopted the transformed-LF model [37] for generat-
ing glottal pulses. This model re-parameterises the LF
model [25] using just one parameter Rd, which has been
found to correspond to the perceived vocal effort well and
covers a wide range of different glottal flow shapes. We
sampled K values of log(Rd) with equal spacing inside
[log(0.3), log(2.7)] according to the value range suggested
by [23]. We calculate the flow derivative function g′(t;Rd)
in continuous time t for each sampled Rd and then sam-
pled L points in one period to get its discrete version. The
details for calculating g′(t;Rd) were given in [38]. By
stacking these sampled glottal flows, we built wavetables
D ∈ RK×L, with each row containing one period of a sam-
pled glottal pulse (see Fig. 1). The rows are sorted based
on Rd.

The model generates glottal pulses g′n by linearly inter-
polating the two D axes. The encoder network first pre-
dicts instantaneous frequency fn ∈ [0, 0.5] and the frac-
tional index τn ∈ [0, 1] for Rd. We then use the instan-
taneous phase ϕn =

∑n
i=1 fi to interpolate the waveform

as:



Figure 1. An example of the wavetables we used, corre-
sponding to matrix D with K = 31.

g′n = (1− p)
(
(1− q)d̂⌊k⌋,⌊l⌋ + qd̂⌊k⌋,⌈l⌉

)
+ p

(
(1− q)d̂⌈k⌉,⌊l⌋ + qd̂⌈k⌉,⌈l⌉

)
, (4)

where l = (ϕn mod 1)L + 1, k = τn(K − 1) + 1, p =
k − ⌊k⌋, q = l − ⌊l⌋, and D̂ = [D;d1] ∈ RK×(L+1). The
wavetables D are fixed in our case, contrary to [16], and
we only pick one wavetable at a time, not a weighted sum.

3.2 Frame-Wise LPC Synthesis

Time-varying LPC synthesis is usually done by linearly in-
terpolating the LPC coefficients to the audio resolution and
filtering sample by sample. This is not parallelisable and
slows down the training process. As an alternative, we ap-
proximate LPC synthesis by treating each frame indepen-
dently and using overlap-add:

sn =
∑
k

LPC(g′nγnun−kT ;ak)wn−kT , (5)

where LPC(en;a) represents Eqn (2), ak ∈ RM are the
filter coefficients at the kth frame, un and wn are the win-
dowing functions, γn ∈ R+ is the gain, and T is the hop
size. un is fixed to the square window. In this way, the
computation can be parallelised. We found that the voice
quality differences between overlap-add LPC and sample-
by-sample LPC are barely noticeable if we use a suffi-
ciently small hop size. We empirically found that a 200
Hz frame rate is sufficient.

3.3 LPC Coefficients Parameterisation

For the LPC filter to be stable, all of its poles must lie in-
side the unit circle on the complex plane. Stability can be
guaranteed using robust representations, such as reflection
coefficients [28]. The representation we chose in this work
is cascaded 2nd-order IIR filters, and we solve the stabil-
ity issue by ensuring all the 2nd-order filters are stable. We
use the coefficient representation from [33] to parameterise
the ith IIR filter’s coefficients 1 + ηi,1z

−1 + ηi,2z
−2 from

the encoder’s outputs and cascade them together to form
an M th-order LPC filter:

(1 + η1,1z
−1 + η1,2z

−2)(1 + η2,1z
−1 + η2,2z

−2)

· · · (1 + ηM
2 ,1z

−1 + ηM
2 ,2z

−2)

= 1 + a1z
−1 + a2z

−2 + · · ·+ aMz−M = A(z).

(6)

3.4 Unvoiced Gating

The instantaneous frequency fn predicted by the encoder is
always non-zero and keeps the oscillator working. Without
constraint, the model would utilise these harmonics in the
unvoiced region creating buzzing artefacts [18]. We pro-
pose to mitigate this problem by jointly training the model
to predict the voiced/unvoiced probabilities as vn ∈ [0, 1]
and feeding the gated frequency f̂n = vnfn to the oscilla-
tor instead.

4. OPTIMISATION

Training deep learning models is usually accomplished by
backpropagating the gradients evaluated at a chosen loss
function L throughout the whole computational graph back
to the parameters. Partially inspired by Bhattacharya et
al. [29], we derived the closed form of backpropagation
through time to utilise efficient IIR implementation to solve
the problems we mentioned in Section 2.2 while keeping
the filter differentiable. Here, e ∈ RN is the input, a ∈
RM is the filter coefficients, and s ∈ RN is the output.
Assuming we know ∂L

∂s , we can get the derivatives ∂L
∂e and

∂L
∂a , using chain rules ∂L

∂s
∂s
∂e and ∂L

∂s
∂s
∂a .

4.1 Backpropagation Through the Coefficients

Taking the derivatives of Eqn (2) with respect to ai we get:

∂sn
∂ai

= −sn−i −
M∑
k=1

ak
∂sn−k

∂ai
, (7)

which equals LPC(−sn−i;a). sn|n≤0 does not depend on
ai so the initial conditions ∂sn

∂ai
|n≤0 are zeros. We can get

∂sn
∂a with one pass of filtering because ∂sn

∂aj
is ∂sn

∂ai
shifted by

an offset j − i. Lastly, we calculate ∂L
∂ai

as
∑N

n=1
∂L
∂sn

∂sn
∂ai

.

4.2 Backpropagation Through the Input

To get the derivatives for input en, we first re-write Eqn (2)
as the following convolutional form:

sn =

n∑
m=1

emhn−m, (8)

where hn = Z−1{H(z)}, H(z) = 1
A(z) . From Eqn (8)

we see that ∂sn
∂em

= hn−m. The derivative of loss L with
respect to em depends on all future samples sn, which is:

∂L
∂em

=

N∑
n=m

∂L
∂sn

∂sn
∂em

=

N∑
n=m

∂L
∂sn

hn−m. (9)



By swapping the variables n,m and considering the equiv-
alence of Eqn (2) and Eqn (8), Eqn (9) can be simplified to

∂L
∂en

=

N∑
m=n

∂L
∂sm

hm−n

=
∂L
∂sn

−
M∑
i=1

ai
∂L

∂en+i
.

(10)

Eqn (10) shows that we can get the derivatives ∂L
∂en

by just
filtering ∂L

∂sn
with the same filter, but running in backwards.

The initial conditions ∂L
∂en

|n>N are naturally zeros.
In conclusion, backpropagation through an IIR filter

consists of two passes of the same filter and one matrix
multiplication 1 . We implemented the IIR in C++ and
CUDA with multi-threading to filter multiple sequences si-
multaneously 2 . The differentiable IIR is done by register-
ing the above backward computation in PyTorch, and we
submitted the implementation to TorchAudio [39] as part
of the torchaudio.functional.lfilter.

5. EXPERIMENTAL SETUP

5.1 Dataset

We test GOLF as a neural vocoder on the MPop600
dataset [40], a high-quality Mandarin singing voice dataset
featuring nearly 600 singing recordings with aligned lyrics
sung by four singers. We used the audio recordings from
the f1 (female) and m1 (male) singers. For each singer, we
selected the first three recordings as the test set, the follow-
ing 27 recordings as the validation set, and used the rest as
training data (around three hours in total). All the record-
ings were downsampled to 24 kHz. The vocoder feature
we choose is the log mel-spectrogram. We computed the
feature with a window size of 1024 and 80 mel-frequency
bins and set the hop size T to 120. We normalised the fea-
ture to between zero and one and sliced the training data
into two seconds excerpts with 1.5 seconds overlap.

5.2 Model Details

We adopted the encoder from SawSing but replaced the
transformer layers with three layers of Bi-LSTM for
favourable implementation, resulting in around 0.7M pa-
rameters in total. A final linear layer predicts the synthe-
sis parameters {fk, vk, γk, βk,ak,bk}. The first four pa-
rameters are linearly upsampled to {fn, vn, γn, βn}. βn

and bk are the Gaussian noise’s gain and filter coefficients.
We added an average pooling layer with a size of 10 and
two convolution layers after the encoder to predict the Rd

fractional index τo at a lower rate and then linearly up-
sampled to τn. This step avoids possible modulation ef-
fects caused by switching the wavetables too quickly. A

1 The computation of the IIR does not need to fulfil the implementation
requirements set by the automatic differentiation framework, thus can be
highly optimised.

2 Although the single-core performance of a GPU is usually inferior to
a CPU, and we can only use at most one thread for each IIR, the GPU has
a much higher number of cores, which is beneficial for training on a large
number of sequences at once.

system diagram of GOLF is shown in Fig. 2. We set
K = 100, L = 2048, Hanning window for wn, and
M = 22 for both LPC filters. We used the same hop size
T and a window size of 480 for frame-wise LPC. We nor-
malised all wavetables to have equal energy and aligned
them with the negative peak.

Figure 2. Overview of the GOLF synthesis process. phase
offset is only introduced at test time, where the details are
given in Section 6.1.

We compare GOLF with three DDSP-based baselines
using the same NN encoder to predict their synthesis pa-
rameters. The first two are the original DDSP [14] and
SawSing [18]. We set their noise filter length to 80 and har-
monic filter length to 256 for SawSing. The third model is
PUlse-train LPC Filter (PULF), which is similar to GOLF
but replaces the glottal flow wavetables with a band-limited
pulse train [19] using additive synthesis, while the LPC or-
der for the harmonic source is increased to 26 to accom-
modate the glottal pulse response. The number of oscil-
lating sinusoids was set to over 150 for all the baselines.
We did not compare GOLF with Nercessian et al. [19] and
Yoshimura et al. [21] because these architectures are based
closely on the source-filter model, and use additional post-
nets to enhance the voice, which makes it harder to com-
pare directly with GOLF.

5.3 Training Configurations

We trained separate models for each singer, resulting in
8 models. The loss function is the summation of the



multi-resolution STFT loss (MSSTFT) and f0 loss from
SawSing with FFT sizes set to {512, 1024, 2048}, plus a
binary cross entropy loss on voiced/unvoiced prediction.
We stopped the gradients from the harmonic source to the
f0s and voiced decisions to stabilise the training. We used
Adam [41] for running all optimisations. For DDSP and
SawSing, the batch size and learning rate were set to 32
and 0.0005; for GOLF and PULF, the numbers were 64
and 0.0001. We used the ground truth f0s (extracted by
WORLD [20]) for the harmonic oscillator of PULF during
training due to stability issues. We trained all the models
for 800k steps to reach sufficient convergence and picked
the checkpoint with the lowest validation loss as the final
model 3 .

6. EVALUATIONS

6.1 Objective Evaluation

The objective metrics we choose are the MSSTFT, the
mean absolute error (MAE) in f0, and the Fréchet audio
distance (FAD) [42] on the predicted singing of the test set.
Table 1 shows that DDSP has the lowest MSSTFT and f0
errors, while SawSing reaches the lowest FAD. GOLF and
PULF show comparable results in f0 errors to other base-
lines. We report the memory usage when training these
models and their real-time factor (RTF), both on GPU and
CPU, in Table 2. The amount of memory required to train
GOLF is around 35% of others, and it runs extremely fast,
especially on the CPU.

Singers Models MSSTFT MAE-f0 (cent) FAD

f1

DDSP 3.09 74.47±1.19 0.50±0.02
SawSing 3.12 78.91±1.18 0.38±0.02

GOLF 3.21 77.06±0.88 0.62±0.02
PULF 3.27 76.90±1.11 0.75±0.04

m1

DDSP 3.12 52.95±1.03 0.57±0.02
SawSing 3.13 56.46±1.04 0.48±0.02

GOLF 3.26 54.09±0.30 0.67±0.01
PULF 3.35 54.60±0.73 1.11±0.04

Table 1. Evaluation results on the test set. We omit the
standard deviation if it is smaller than 0.01.

As an additional metric we use the L2 loss between the
predicted and the ground truth waveform. The intuition
behind this is that GOLF and PULF are the only two mod-
els introducing non-linear phase response because of IIR
filtering. The filters in DDSP and SawSing are all zero-
phase, and the initial phases of the sinusoidal oscillators
are fixed to zeros. We emphasise that this test is not target-
ing human perception but the phase reconstruction ability
of the models. Humans cannot perceive the absolute fre-
quency phase, but accurate reconstruction could be impor-
tant in sound matching and mixing use cases. We evalu-
ate the loss on one of the test samples from m1 we used
in the subjective evaluation. We created a new parameter

3 The trained checkpoints, source codes, and audio samples are avail-
able at https://github.com/yoyololicon/golf.

called phase offset sampled at 20 Hz. We linearly upsam-
pled phase offset and added it to the instantaneous phase
ϕn, introducing a slowly varying phase shift. We optimised
this parameter by minimising the predicted waveform’s L2
loss to the ground truth using Adam with a learning rate of
0.001 and 1000 steps. We wrapped the differences between
the points of phase offset during optimisation to [-0.5, 0.5].
We ran this optimisation five times for each model. Each
time the phase offset was initialised randomly. We report
the minimum and maximum final losses from these trials.
Table 2 shows the lowest losses GOLF and PULF can reach
are significantly smaller than the others, with GOLF hav-
ing the smallest among all.

Models Memory
RTF Waveform L2

GPU CPU Min Max

DDSP 7.3 0.015 0.237 71.83 88.77
SawSing 7.3 0.015 0.240 75.72 93.16
GOLF 2.6 0.009 0.023 21.98 64.82
PULF 7.5 0.015 0.248 44.08 70.59

Table 2. The required number of VRAM (GB) for train-
ing with a batch size of 32, real-time factor (RTF), and
the minimum/maximum L2 loss on waveform using one
of the test samples. The benchmark was conducted on
an Ubuntu 20.04 LTS machine with an i5-4790k proces-
sor and an NVIDIA GeForce RTX 3070 GPU.

6.2 Subjective Evaluation

We conducted an online listening test using Go Listen [43].
We picked one short clip from each test set recording, re-
sulting in 6 clips with duration ranging from 6 to 11 sec-
onds. The test is thus divided into six examples, each con-
sisting of one ground truth clip and four synthesised results
from different models, and their loudness was normalised
to –16dB LUFS. The order of the examples and the stimu-
lus were randomised for each subject. Each subject was re-
quested to rate the quality of these stimuli on a score from
0 to 100. We collected responses from 33 anonymous par-
ticipants. We dropped one of the participants who did not
indicate using headphones. We normalise scores to fall be-
tween 1 to 5 and report the Mean Opinion Score (MOS)
in Fig. 4. DDSP has the highest opinion scores overall,
and a Wilcoxon signed-rank test shows that it is not statis-
tically significantly different from the f1 ground truth (p
= 0.168). We applied the one-side Wilcoxon test on GOLF
and PULF to compare them with SawSing, and the results
show that GOLF significantly outperforms SawSing (p <
0.0001), and PULF performs better than SawSing on m1
(p < 0.022).

7. DISCUSSIONS

Given the evaluation results and the number of synthe-
sis parameters in GOLF is roughly six times smaller than
DDSP and SawSing, it is clear that GOLF’s synthesis pa-
rameters are a more compact representation. Comparing

https://github.com/yoyololicon/golf


Figure 3. The predicted waveforms of a short segment from one of the m1 test samples. The differences were computed
by subtracting the predicted signal from the reference.

Figure 4. The MOS results of the vocoders trained on dif-
ferent singers with 95% confidence interval.

the differences between GOLF and PULF in Table 2, we
can see that the performance gain is due to the use of
wavetables. Other baselines synthesise band-limited har-
monic sources with many sinusoids oscillating simulta-
neously, thus increasing the computational cost. PULF’s
MOS score is much worse on f1, with noticeable arte-
facts in the unvoiced region and random components of
the voice. After investigation, we found the noise gains βn

predicted by PULF fluctuating at high speed, producing a
modulation effect. This behaviour is also found in PULF
trained on m1 and GOLF, even on the harmonic gains γn.
Still, the amount of fluctuation is small and barely notice-
able in the test samples. Given the available results, we
could only conclude that this effect relates to the type of
harmonic source and the range of f0, i.e., female singers
have higher f0. This amplitude modulation effect cannot
be observed in spectrograms and thus is not captured by
the training loss we used. It could be an intrinsic drawback
of using frame-wise LPC approximation, but more experi-
ments and comparisons with sample-wise LPC are needed.
In addition, SawSing produced low scores for both singers
because of the buzzing artefacts in the unvoiced region.
Although unvoiced gating (Sec. 3.4) reduces this problem
to a large degree, human ears are susceptible to this effect.
This could be an inherent problem in using a sawtooth as
the harmonic source.

The L2 loss shown in Table 2 demonstrates that GOLF
matches phase-related characteristics more accurately than

other models. Fig. 3 shows GOLF produces the most sim-
ilar waveform to the ground truth. Other baselines’ wave-
forms are similar because they use the same additive syn-
thesiser. It is possible to reduce their L2 loss by optimising
the initial phases of the oscillators, but this cannot account
for time-varying source shapes. Low L2 loss is a positive
effect of the deterministic phase responses embedded in
GOLF. This opens up many possibilities, such as decom-
posing and analysing the voice in a differentiable manner
and training the vocoder using the time domain loss func-
tion. The latter could be a possible way to reduce the
fluctuation problem discussed in the previous paragraph.
The waveform matching of GOLF can be improved further
by using a more flexible glottal source model, adding FIR
and all-pass filters to account for the voice’s mixed-phase
components and the recording environment’s acoustic re-
sponse.

Lastly, we note that cascaded IIR filters provide an or-
derless representation (i.e. the cascading order does not af-
fect the outputs). This results in the responsibility prob-
lem [44, 45] for the last layer of the encoder, which might
be one of the reasons why GOLF and PULF are less sta-
ble to train than other baselines. Developing architectures
that can handle orderless representation or switch to other
robust representations are possible ways to address this.

8. CONCLUSIONS

We present a lightweight singing voice vocoder called
GOLF, which uses wavetables with different glottal flows
as entries to model the time-varying harmonic components
and differentiable LPC filters for filtering both the harmon-
ics and random elements. We show that GOLF requires
less memory to train and runs an order of magnitude faster
on the CPU than other DDSP-based vocoders, but still
attains competitive voice quality in subjective and objec-
tive evaluations. Furthermore, we empirically show that
the predicted waveforms from GOLF represent the voice’s
phase response more faithfully, which could allow us to
use GOLF to decompose and analyse human voice.
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