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 Xavier Serra and Julius Smith III
 Center for Computer Research in Music and
 Acoustics

 Department of Music, Stanford University
 Stanford, California 94305 USA
 ucbvax!pixar!ymt!xavier julius@next.com

 Spectral Modeling
 Synthesis:
 A Sound Analysis/
 Synthesis System Based
 on a Deterministic

 plus Stochastic
 Decomposition

 When generating musical sound on a digital com-
 puter, it is important to have a good model whose
 parameters provide a rich source of meaningful
 sound transformations. Three basic model types are
 used widely today for musical sound generation: in-
 strument models, spectrum models, and abstract
 models. Instrument models attempt to parameter-
 ize a sound at its source, such as a violin, clarinet,
 or vocal tract. Spectrum models attempt to parame-
 terize a sound at the basilar membrane of the ear,
 discarding whatever information the ear seems to
 discard in the spectrum. Abstract models, such as
 FM, attempt to provide musically useful parame-
 ters in an abstract formula.

 This paper addresses the second category of syn-
 thesis technique: spectrum modeling. It describes a
 technique called spectral modeling synthesis (SMS),
 that models time-varying spectra as (1) a collection
 of sinusoids controlled through time by piecewise
 linear amplitude and frequency envelopes (the de-
 terministic part), and (2) a time-varying filtered
 noise component (the stochastic part). The analysis
 procedure first extracts the sinusoidal trajectories
 by tracking peaks in a sequence of short-time Fou-
 rier transforms. These peaks are then removed by
 spectral subtraction. The remaining "noise floor"
 is then modeled as white noise through a time-
 varying filter. A piecewise linear approximation to

 the upper spectral envelope of the noise is com-
 puted for each successive spectrum, and the sto-
 chastic part is synthesized by means of the overlap-
 add technique. The SMS technique has proved to
 give general, high quality transformations for a
 wide variety of musical signals.

 Background

 Additive synthesis is the original spectrum model-
 ing technique. It is rooted in Fourier's theorem,
 which states that any periodic waveform can be
 modeled as a sum of sinusoids at various ampli-
 tudes and harmonic frequencies.

 Additive synthesis was among the first synthesis
 techniques in computer music. In fact, it was de-
 scribed extensively in the first article of the first is-
 sue of the Computer Music Journal (Moorer 1977).

 In the early 1970s, Moorer developed a series of
 analysis programs to support additive synthesis. He
 first used the heterodyne filter to measure the in-
 stantaneous amplitude and frequency of individual
 sinusoids (Moorer 1973). The heterodyne filter im-
 plements a single frequency bin of the discrete Fou-
 rier transform (DFT), using the rectangular window.
 The magnitude and phase derivative of the complex
 numbers produced by the sliding DFT bin provided
 instantaneous amplitude and frequency estimates.
 The next implementation (Moorer 1978) was based
 on the digital phase vocoder (Portnoff 1976). In this
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 system, the fast Fourier transform (FFT) was used
 to provide, effectively, a heterodyne filter at each
 harmonic of the fundamental frequency. The use
 of a nonrectangular window gave better isolation
 among the spectral components.

 For years, Moorer's phase vocoder provided analy-
 sis support for additive synthesis at CCRMA. In the
 course of his thesis work, Grey (1975) demonstrated
 that natural instrument sounds, such as oboe and
 clarinet, could be successfully modeled as a sum of
 sinusoidal oscillators with piecewise linear ampli-
 tude envelopes. The degree to which the amplitude
 envelopes could be simplified by piecewise-linear
 approximation was surprising; it was not uncom-
 mon for a 100: 1 data reduction to sound as good as
 the original.

 The main problem with the phase vocoder was
 that inharmonic sounds with deep vibrato were dif-
 ficult to analyze. It is well known that the FFT can
 be regarded as a fixed filter bank or graphic equal-
 izer. If the length of the FFT is N, then there are N
 narrow bandpass filters, slightly overlapping, equally
 spaced between 0 Hz and the sampling rate. In the
 phase vocoder, the instantaneous amplitude and
 frequency are computed only for each channel filter
 or bin. A consequence of using a fixed-frequency fil-
 ter bank is that the frequency of each sinusoid is
 not normally allowed to vary outside the band-
 width of its channel, unless one is willing to com-
 bine channels in some fashion that requires extra
 work. (The channel bandwidth is nominally the
 sampling rate divided by the FFT length.) Also, the
 analysis system was really set up for harmonic sig-
 nals-you could analyze a piano if you had to, but
 the progressive sharpening of the partials meant
 that there would be frequencies where a sinusoid
 would be in the crack between two adjacent FFT
 bins. This was not an insurmountable condition

 (the adjacent bins could be combined intelligently
 to provide accurate amplitude and frequency enve-
 lopes), but it was inconvenient and outside the
 original scope of the analysis framework of the
 phase vocoder.

 The PARSHL program was developed at CCRMA
 for the purpose of supporting inharmonic and pitch-
 changing sounds (Smith and Serra 1987). PARSHL
 was a simple application of FFT peak-tracking tech-

 nology commonly used in the Navy signal process-
 ing community (General Electric 1977; Wolcin
 1980a; 1980b; Smith and Friedlander 1984). As in
 the phase vocoder, a series of FFT frames is com-
 puted by PARSHL. However, instead of writing out
 the magnitude and phase derivative of each bin, the
 FFT is searched for peaks, and the largest peaks are
 tracked from frame to frame. The principal differ-
 ence in the analysis is the replacement of the phase
 derivative in each FFT bin by interpolated magni-
 tude peaks across FFT bins. This approach is better
 suited for analysis of inharmonic sounds.

 At about the same time, Quatieri and McAulay de-
 veloped independently a facility similar to PARSHL
 for analyzing speech (McAulay and Quatieri 1984;
 1986). Their system differed in the following ways:
 (1) peaks were found as changes in slope of the mag-
 nitude spectrum, whereas PARSHL finds the maxi-
 mum magnitude over all frequencies and "pulls
 out" the whole "hill"; (2) spectral peaks were not
 interpolated in frequency or amplitude as they are
 in PARSHL; (3) amplitude and frequency envelopes
 were not simplified to small numbers of piecewise
 linear breakpoints (a breakpoint was retained for
 each frame); (4) peak association across frames (in-
 cluding "birth" and "death" criteria for the line
 tracks) was solved by a different algorithm; and (5)
 PARSHL supports additional constraints, such as
 limiting the peak search to a specific frequency in-
 terval, specifying a maximum glissando slope be-
 fore dissociating peaks connected across adjacent
 frames, or rejecting peaks below a minimum dB
 level and/or width. Both systems were built on top
 of the short-time Fourier Transform facility (Allen
 1977).

 The PARSHL program works well for most sounds
 created by simple physical vibrations or driven peri-
 odic oscillations. It goes beyond the phase vocoder
 to support spectral modeling of inharmonic sounds.
 A problem with PARSHL, however, is that it is un-
 wieldy to represent noiselike signals, such as the
 attack of many instrumental sounds. Using sinu-
 soids to simulate noise is extremely expensive be-
 cause, in principle, noise consists of sinusoids at
 every frequency within the band limits. This moti-
 vated the next round of improvements, which is de-
 scribed in this paper.
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 The Deterministic plus Stochastic Model

 A sound model assumes certain characteristics of

 the sound waveform or the sound generation mech-
 anism. In general, every analysis/synthesis system
 has an underlying model. The SMS technique as-
 sumes the input sound to be composed of a deter-
 ministic plus a stochastic component.

 A deterministic signal is traditionally defined as
 anything that is not noise (i.e., an analytic signal, or
 perfectly predictable part, predictable from mea-
 surements over any continuous interval). However,
 in the present discussion the class of deterministic
 signals considered is restricted to sums of quasi-
 sinusoidal components (sinusoids with piecewise
 linear amplitude and frequency variation). Each si-
 nusoid models a narrowband component of the
 original sound and is described by an amplitude and
 a frequency function.

 A stochastic, or noise, signal is fully described by
 its amplitude probability density versus frequency,
 or its power spectral density. When a signal is as-
 sumed to be stochastic, it is not necessary to pre-
 serve either the instantaneous phase or the exact
 details of individual FFT frames.

 Therefore, the input sound s(t) is modeled as the
 sum of a series of sinusoids plus a noise signal,

 R

 s(t) = A,(t) cos[Or,(t)] + e(t),
 r=1

 where Ar(t) and ,r(t) are the instantaneous ampli-
 tude and phase of the rth sinusoid, and e(t) is the
 noise component at time t (in seconds).

 The model assumes that the sinusoids are stable

 partials of the sound and that each one has a slowly
 changing amplitude and frequency. The instantane-
 ous phase is then taken to be the integral of the in-
 stantaneous frequency or(t), and therefore satisfies

 Or(t) = o Or(T)d + Or(O),

 where o(t) is the frequency in radians per second
 and r is the sinusoid number.

 By assuming that e(t) is a stochastic signal, it can
 be described as filtered white noise,

 Fig. 1. Block diagram of
 the analysis part of SMS.
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 e(t) = h(t,r)u(r)dr,

 where u(r) is white noise and h(t,r) is the impulse
 response of a time-varying filter at time t. That is,
 the residual is modeled by the convolution of white
 noise with a time-varying frequency-shaping filter.

 Description of the SMS Technique

 Figures 1 and 2 show the block diagrams for the
 analysis and synthesis parts of the SMS technique.
 The first step is the derivation of a series of magni-
 tude spectra of the input sound by computing the
 FFT of every windowed portion of the waveform:
 i.e., computation of the sort-time Fourier transform
 (STFT). From the series of magnitude spectra the
 prominent peaks are detected in each spectrum.
 These peaks are then organized into frequency tra-
 jectories by means of a peak continuation algo-
 rithm. The relevance of this algorithm is that it ex-
 tracts the stable sinusoids present in the original
 sound (the deterministic component).

 The stochastic part of the waveform is calculated
 by first computing the STFT of the deterministic
 component, in the same way that the STFT of the
 original waveform was obtained, and then subtract-
 ing each magnitude spectrum from the correspond-
 ing spectrum of the original waveform. The enve-
 lope of each "residual" spectrum is then derived by

 14 Computer Music Journal
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 Fig. 2. Block diagram of
 the synthesis part of SMS.
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 performing a line-segment approximation. These
 envelopes represent the stochastic signal.
 The deterministic signal (i.e., the sinusoidal com-

 ponent) results from the magnitude and frequency
 trajectories, or their transformation, by generating a
 sine wave for each trajectory (i.e., additive synthesis).
 The stochastic signal is the result of creating a
 complex spectrum (i.e., magnitude and phase spec-
 tra) for every spectral envelope of the residual, or
 its modification, and performing an inverse-STFT
 (using the overlap-add method to form the final
 output). The magnitude spectrum is the envelope
 itself, and the phase spectrum is generated by a ran-
 dom number generator. This process corresponds to
 the filtering of white noise by a filter with a fre-
 quency response equal to the spectral envelope.
 The following sections describe each step of the
 system.

 Computation of the Magnitude Spectra

 The analysis part of SMS starts by computing a set
 of magnitude spectra using the STFT (Allen 1977;
 Allen and Rabiner 1977). This transform can be un-
 derstood as a time-varying DFT. It is defined as

 N-1

 X1(k) A > w(n)x(n + 1H)e-ik 1 = 0, 1,...
 n=O

 where w(n) is a real window that determines the
 portion of the input signal x(n) that receives em-
 phasis at a particular frame 1. H is the hop size, or
 time advance, of the window. Therefore, the STFT
 computes a DFT (i.e., a spectrum) at every frame 1,
 advancing with a hop size of H so as to slide the
 window w(n) along the sequence x(n).

 Fig. 3. Magnitude spec-
 trum of a rectangular
 window.
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 The output of the STFT is a series of spectra, one
 for every frame 1 of the input waveform. Each spec-

 trum Xl(k) is a complex valued function of bin-
 number k, converted to a magnitude function by

 A1(k) = IX,(k)( = V1a2(k) + b2({k),

 where IX1(k ) is the magnitude spectrum, and a(k)
 and b(k) are the real and imaginary parts of the
 complex value returned by the DFT for bin k.

 Analysis Window

 The choice of the analysis window is important. It
 determines the trade-off of time versus frequency
 resolution, which affects the smoothness of the
 spectrum and the detectability of different sinusoi-
 dal components. The most commonly used win-
 dows are called Rectangular, Hamming, Hanning,
 Kaiser, Blackman, and Blackman-Harris. Harris
 (1978) gives a good discussion of these and many
 other windows.

 All the standard windows are real and symmet-
 ric and have a frequency spectrum with a sinclike
 (sin(x)/x) shape (Fig. 3). For the purposes of SMS,
 and in general for any sound analysis/synthesis
 application, the choice of window type is mainly
 determined by two of its spectral characteristics:
 (1) the width of the main lobe, defined for present
 purposes as the number of bins between zero cross-
 ings on either side of the main lobe when the DFT
 length equals the window length; and (2) the high-
 est side-lobe level, which measures how many dB
 down the highest side lobe is from the main lobe.
 Ideally, we want a narrow main lobe (i.e., good fre-
 quency resolution) and a very low side-lobe level
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 (i.e., no cross-talk between DFT channels). The
 choice of window determines this trade-off. For ex-

 ample, the rectangular window has the narrowest
 main lobe, two bins, but the first side lobe is very
 high- 13 dB relative to the main-lobe peak. The
 Hamming window has a wider main lobe, four bins,
 and the highest side lobe is 43 dB down. A very
 different window, the Kaiser, allows control of
 the trade-off between the main-lobe width and the

 highest side-lobe level. If a narrower main-lobe
 width is desired, then the side-lobe level will be
 higher, and vice versa. Since control of this trade-off
 is valuable, the Kaiser window is a good general
 purpose choice. (See Serra [1989] for a more exten-
 sive discussion.)

 The window length must be sufficient to resolve
 the most closely spaced sinusoidal frequencies. A
 nominal choice for periodic signals is about four
 periods.

 Computation of the DFT

 Once a section of the waveform has been win-

 dowed, the next step is to compute the spectrum
 using the DFT. For practical purposes, the FFT
 should be used whenever possible, but this requires
 the length of the analyzed signal to be a power of
 two. This can be accomplished by taking any de-
 sired window length and "zero padding," i.e., filling
 with zeros out to the length required by the FFT.
 This not only allows use of the FFT algorithm,
 but computes a smoother spectrum as well. Zero-
 padding in the time domain corresponds to interpo-
 lation in the frequency domain.

 The size of the FFT, N, is normally chosen to be
 the first power of two that is at least twice the win-
 dow length M, with the difference N - M filled
 with zeros. If B, is the number of samples in the
 main lobe when the zero-padding factor is 1 (N = M),
 then a zero-padding factor of N/M gives BSN/M
 samples for the same main lobe (and same main-
 lobe bandwidth). The zero-padding (interpolation)
 factor N/M should be large enough to enable an ac-
 curate estimation of the true maximum of the main

 lobe. That is, since the window length is not an
 exact number of periods for every sinusoidal fre-

 quency, the spectral peaks do not, in general, occur
 at FFT bin frequencies (multiples of f/N). There-
 fore, the bins must be interpolated to estimate peak
 frequencies. Zero padding is one type of spectral
 interpolation.

 Choice of Hop Size

 Once the spectrum has been computed at a particu-
 lar frame in the waveform, the STFT hops along the
 waveform and computes the spectrum of the next
 section in the sound. This hop size H (i.e., how
 much the analysis time origin is advanced from
 frame to frame) is an important parameter. Its choice
 depends very much on the purpose of the analysis.
 In general, more overlap will give more analysis
 points and therefore smoother results across time,
 but the computational expense is proportionally
 greater. A general and valid criterion is that the
 successive frames should overlap in time, in such a
 way that all the data are weighted equally. A good
 choice is the window length divided by the main
 lobe width in bins (Allen 1977). For example, a
 practical value for the Hamming window is to use a
 hop size equal to one-fourth of the window size.

 Peak Detection

 Once the set of spectra of a sound is computed, the
 system extracts the prominent peaks of each spec-
 trum. A peak is defined as a local maximum in the
 magnitude spectrum. However, not all the peaks
 are equally prominent in the spectrum, and it is im-
 portant to have control over their selection. This is
 done by measuring the height of each peak in rela-
 tion to its neighboring valleys, where the neighbor-
 ing valleys are the closest local minima on both
 sides of the peak. Also, not all the peaks of the same
 height are equally relevant perceptually; their am-
 plitude and frequency are important. Thus, it is
 useful to specify frequency and magnitude ranges
 where the search for peaks takes place.

 Due to the sampled nature of the spectra re-
 turned by the STFT, each peak is accurate only to

 16 Computer Music Journal
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 Fig. 4. Peak detection on a
 spectrum of a piano attack
 sound.
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 within half a bin. A bin represents a frequency in-

 terval of fs/N Hz, where N is the FFT size, and fs is
 the sampling rate. As we saw in the previous sec-
 tion, zero padding in the time domain increases the
 number of DFT bins per Hz and thus increases the
 accuracy of simple peak detection. However, to ob-
 tain good frequency accuracy, the zero-padding fac-
 tor required is very large. A more efficient spectral
 interpolation scheme is to zero pad only enough so
 that parabolic spectral interpolation, using only
 three bins immediately surrounding the maximum-
 magnitude bin, can be used to refine the accuracy
 of the estimate (Serra 1989). Note that parabolic
 interpolation would be exact in the case of log-
 magnitude spectra using a Gaussian window. Fig-
 ure 4 shows the result of the peak detection on a
 spectrum.

 Peak Continuation

 Once the spectral peaks have been detected, a sub-
 set of them is organized by the peak continuation
 algorithm into peak trajectories, where each trajec-
 tory represents a stable sinusoid. The design of
 such an algorithm can be approached as a line de-
 tection problem, where out of a surface of discrete
 points, each one being a peak, the algorithm finds
 lines according to the characteristics imposed by
 the model.

 The algorithm is intended to work for a variety
 of sounds. The behavior of a partial, and therefore
 the way to track it, varies depending on the sound.
 Whether the sound source is speech, a violin, a

 Fig. 5. Illustration of the
 peak continuation algo-
 rithm. The frequency-
 guides have just been con-
 tinued through frame n.
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 r ------------
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 gong, an animal, etc., the time evolution of the
 component partials will vary. Thus, apart from be-
 ing general, the algorithm requires some knowledge
 of the characteristics of the sound that is being ana-
 lyzed. In the current algorithm there is no attempt
 to make the process completely automatic. The
 user is expected to know some of the characteristics
 of the sound beforehand, specifying them through a
 set of parameters.

 The basic idea of the peak continuation algo-
 rithm is that a set of frequency guides advances in
 time through the spectral peaks, looking for the
 appropriate ones (according to the specified con-
 straints), and forming trajectories out of them. The
 instantaneous state of the guides, their frequency,

 is kept in the variables f,, f, , . . ., f,, where p is
 the number of existing guides. These values are
 continuously updated as the guides are turned on,
 advanced, and finally turned off.

 To describe the peak continuation algorithm, let
 us assume that the frequency guides are currently
 at frame n. Suppose that the guide frequencies at

 the current frame are fl, 2, f.., f ?,, where p is the number of existing guides. We want to continue the
 p guides through the peaks of frame n with fre-
 quencies gi, g2, g3, ..., gm, thus continuing the cor-
 responding trajectories. Figure 5 illustrates the algo-
 rithm. There are three steps: guide advancement,
 update of the guide values, and start of new guides.
 These steps are described below.
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 Guide Advancement

 Each guide is advanced through frame n by finding
 the peak closest in frequency to its current value.

 Guide r claims frequency g, for which If, - gl is
 a minimum. The three possible situations are as
 follows.

 If a match is found within the maximum devia-

 tion allowed, the guide is continued (unless
 there is a conflict to resolve, as described be-
 low). The selected peak is then incorporated
 into the corresponding trajectory.

 If no match is found, it is assumed that the cor-
 responding trajectory must turn off entering
 frame n, and its current frequency is matched
 to itself with 0 magnitude. Since the trajectory
 amplitudes are ramped linearly from one frame
 to the next, the terminating trajectory ramps to
 0 over the duration of one hop size. Whether or
 not the actual guide is killed depends on the al-
 lowed sleeping time.

 If a guide finds a match that has already been
 claimed by another guide, we give the peak to
 the guide that is closest in frequency, and the
 loser looks for another match. If the current

 guide loses the conflict, it simply picks the
 best available nonconflicting peak within the
 allowed frequency range. If the current guide
 wins the conflict, it calls the assignment pro-
 cedure recursively on behalf of the dislodged
 guide. When the dislodged guide finds the same
 peak and wants to claim it, it sees there is a
 conflict that it loses and moves on. This pro-
 cess is repeated for each guide, solving conflicts
 recursively, until all possible matches are made.

 Update of the Guide Values

 Once all the existing guides and their trajectories
 have been continued through frame n, the guide
 frequencies are updated. There are two possible
 situations.

 If a guide finds a continuation peak, its frequency
 is updated from f, to h, according to

 h, = a(g, - f,) + f,, ae[0,1]

 where gi is the frequency of the peak that the
 guide has found at frame n, and a is the given
 contribution that the peak makes to the guide.
 When a = 1, the frequency of the peak trajec-
 tory is the same as the frequency of the guide,
 so the difference between guide and trajectory
 is lost.

 If a guide has not found a continuation peak for
 the allowed sleeping time, the guide is killed at
 frame n. If it is still under the sleeping time, it
 keeps whatever value it already had. In order
 to distinguish between guides that find a con-
 tinuation peak from the ones that do not but
 still are alive, we refer to the first ones as ac-
 tive guides and the second ones as sleeping
 guides.

 Start of New Guides

 New guides, and therefore new trajectories, are cre-
 ated from the peaks of frame n that are not incorpo-
 rated into trajectories by the existing guides.

 A guide is created at frame n by searching through
 the unclaimed peaks of the frame for the one with
 the highest magnitude that is separated from every
 existing guide by a given minimum frequency sepa-
 ration. The frequency value of the selected peak is
 the frequency of the new guide. The actual trajec-
 tory is started in the previous frame, n - 1, where
 its amplitude value is set to 0 and its frequency
 value to the same as the current frequency, thus
 ramping in amplitude to the current frame. This
 process is recursively done until there are no more
 unclaimed peaks in the current frame, or the num-
 ber of guides has reached the maximum allowed.

 The attack portion of most sounds is quite noisy,
 and the search for partials is harder in such a rich
 spectrum. A useful modification to the algorithm is
 to start the process from the end of the sound: that
 is, to start tracking the peaks from the last frame
 and work towards the front. The tracking process
 encounters the end of the sound first, and since this
 is a very stable part in most instrumental sounds,

 18 Computer Music Journal
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 the algorithm finds a very clear definition of the
 partials. When the guides arrive at the attack, they
 are already tracking the main partials and can reject
 irrelevant peaks appropriately, or at least evaluate
 them with some knowledge acquired from the rest
 of the analysis.

 Variations on the Algorithm for Harmonic Sounds

 When the sound to be analyzed is known to be har-
 monic, the peak continuation algorithm can be spe-
 cialized. For this case, the frequency guides are cir-
 cumscribed to track harmonic frequencies. Two
 major changes result with respect to the general al-
 gorithm: there is a specific fundamental frequency
 at every frame, and each guide tracks a specific har-
 monic number.

 In order to accommodate these changes, the steps
 involved in this new algorithm are slightly differ-
 ent. At the current frame the succession of steps is
 now the detection of the fundamental frequency,
 and guide advancement. The only new step is the
 detection of the fundamental frequency; the guide
 advancement is the same as for the general case.

 Before advancing the guides through frame n, a
 pitch detection algorithm searches for the funda-
 mental frequency of frame n. If this is found, the
 guide values are reset to the harmonic series of the
 new fundamental, without considering the values
 of the previous frame. If the fundamental is not
 found, the guides keep their frequency values.

 Given the set of peaks of frame n, with magni-
 tude and frequency values for each one, there are
 many possible fundamental detection strategies. In
 the current application, we are dealing with single-
 source sounds and assuming that a fundamental-
 frequency peak exists. With these restrictions, a
 simple algorithm is designed that suffices for this
 situation. It is based on finding the M highest peaks
 at frame n and then searching for the peak that is a
 fundamental for all of them (we are currently using
 M = 3). By choosing the highest peaks, it is assured
 that they are good harmonic partials, therefore they
 have to be multiples of a fundamental.

 Representation of the Deterministic Part

 The output of the peak continuation algorithm is a
 set of peak trajectories. These represent the deter-
 ministic component: i.e., the partials of the ana-
 lyzed sound. Each peak is a pair of numbers of the

 form (A,(1), 6r,(1)), where A and 6j are the amplitude and frequency, respectively, for each frame 1 and
 each trajectory r. The pairs corresponding to a tra-
 jectory r are interpreted as breakpoints for ampli-
 tude and frequency functions, one breakpoint for
 each frame 1. From these functions, a series of sinu-
 soids can be synthesized that reproduce the deter-
 ministic part of the sound.

 These amplitude and frequency functions can be
 further processed to achieve a data reduction of
 the representation. A data reduction strategy is to
 perform a line-segment approximation on each
 function, thus reducing the number of breakpoints
 (Grey 1975; Strawn 1980). However, for the purpose
 of easy manipulation of the representation it is use-
 ful to have equally spaced points along each func-
 tion, and thus it may be better to keep one break-
 point per frame as returned by the analysis, unless
 data reduction is a priority. Another alternative for
 data reduction is to combine groups of similar func-
 tions into a single one, thus reducing the number of
 functions.

 Deterministic Synthesis

 Given the representation of the deterministic part
 of the sound, SMS generates the time domain wave-
 form with an additive synthesis technique. From
 the amplitude and frequency functions, A,(1) and
 (r,(1), a frame of the deterministic sound is ob-
 tained by

 d'(m) = A't cos[mtN],
 r=1

 m= 0, 1, 2,... H- 1

 where R' is the number of trajectories present at
 frame 1, and H is the length of the synthesis frame
 (without any time scaling H is the analysis hop
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 size). The final sound d(n) results from the juxtapo-
 sition of all the synthesis frames. To avoid clicks
 at the frame boundaries, the parameters (Af, ~) are
 smoothly interpolated from frame to frame.

 The instantaneous amplitude A(m) is obtained
 by linear interpolation,

 A(m) = A'-' + m, H

 where m = 0, 1,..., H - 1 is the time sample in
 the 1 frame.

 The instantaneous phase is taken to be the inte-
 gral of the instantaneous frequency, where the in-
 stantaneous radian frequency &(m) is also obtained
 by linear interpolation,

 A(m) = I,'-1 + H m,

 and the instantaneous phase for the rth trajectory is

 ,(m) = ,r(1 - 1) + c,(m)m.
 Finally, the synthesis equation becomes

 R1

 d'(m) = A Ar(m) cos[i(m)], r=1

 where A(m) and O(m) are the calculated instantane-
 ous amplitude and phase.

 Computation of the Stochastic Part

 Once the deterministic component of the sound
 has been detected, the next step is to obtain the re-
 sidual, which in a simplified form becomes the sto-
 chastic component.

 Since the deterministic component does not
 preserve the phases of the original sound, a time
 domain subtraction cannot be performed. For a
 method that allows a time domain subtraction see
 Serra (1989). However, since the magnitude and fre-
 quency of each sinusoid are preserved, the magni-
 tude spectrum of both signals are comparable, as
 shown in Fig. 6. Accordingly it is possible to per-
 form a frequency-domain subtraction from the
 magnitude spectra of both signals. The result is
 a set of magnitude spectrum residuals.

 Fig. 6. Example of the de- phase tracking (b), magni-
 terministic synthesis with- tude spectrum of original
 out phase tracking: wave- sound (c), magnitude spec-
 form from an original trum of deterministic
 piano tone (a), determinis- component (d).
 tic component without

 (a)
 amp

 0

 0 .05 .1

 (b) amp

 0

 0 sec 0 .05 .1
 (c) db

 -80 , , KHz
 0 4 8 12 16

 0 4 8 12 16

 One of the underlying assumptions of the current
 model is that the residual is a stochastic signal.
 Such an assumption implies that the residual sound
 is fully described by its amplitude and its general
 frequency characteristics. It is unnecessary to keep
 either the instantaneous phase or the exact fre-
 quency information. Based on this, the stochastic
 residual can be completely characterized by the en-
 velopes of the magnitude-spectrum residuals: i.e.,
 these envelopes keep the amplitude and the general
 shape of the residual spectrum. The set of enve-
 lopes forms the stochastic representation.
 The computation of the stochastic representation
 involves the subtraction of each magnitude spec-
 trum of the deterministic component from the cor-
 responding magnitude spectrum of the original
 sound, and the approximation of each residual spec-
 trum with an envelope. Each step is described below.
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 Fig. 7. Example of the sto-
 chastic computation: mag-
 nitude spectrum from a
 piano tone (a), residual
 spectrum (b), residual ap-
 proximation (c).

 db
 (a) odb

 -60
 0 2 4 6 8

 (b) 0 - KHz

 -60
 0 2 4 6 8

 0 2 4 6 8
 KHz

 Computation of the Spectral Residuals

 The first step in obtaining the stochastic compo-
 nent is to subtract the set of magnitude spectra of
 the deterministic signal from that of the original
 sound. This results in the magnitude-spectrum re-
 siduals shown in Fig. 7. For this to be feasible, the
 spectra to be subtracted have to be comparable and
 therefore have to be computed in the same manner.
 The STFTs from which they are obtained must use
 the same analysis window, window length, FFT
 size, and hop size.

 Given that the magnitude spectrum of the origi-
 nal sound at frame 1 is IX1(k)l and that of the deter-
 ministic signal is ID1(k)j, then the residual is

 lE(k)l = lX;(Ak)l - ID;(k)ll.

 Approximation of the Spectral Residual

 Assuming that the residual signal is quasi-stochastic,
 each magnitude-spectrum residual can be approxi-

 mated by its envelope, since only its shape contrib-
 utes to the sound characteristics.

 This type of problem is generally solved by per-
 forming some sort of curve fitting (Strawn 1980):
 i.e., finding a function that matches the general
 contour of a given curve, which in our case is a
 magnitude spectrum. Standard techniques are
 spline interpolation, the method of least squares,
 or straight-line approximations. For the purposes
 of our system, a simple line-segment approximation
 is accurate enough and gives the desired flexibility.

 Another practical alternative is to use a type of
 least-squares approximation called linear predictive
 coding, LPC (Markel and Gray 1976). LPC is a popu-
 lar technique used in speech research for fitting an
 nth-order polynomial to a magnitude spectrum. It
 is sufficient to say that the line-segment approach
 is more flexible than LPC, and even though LPC re-
 sults in fewer analysis points, the flexibility is con-
 sidered more important here.

 The particular line-segment approximation per-
 formed here is done by stepping through the magni-
 tude spectrum and finding local maxima in every
 section,

 E(q) = max(jEI(k + qH))),
 k

 k = -M/2, -M/2 + 1,...,0,...,
 M/2 - 2, M/2 - 1

 q = 0, 1 ,...

 where H is the hop size, M the window size (or size
 of the section) and F)(q) is the maximum of section
 q at frame 1. The resulting points are linearly inter-
 polated to create the spectral envelope (as shown
 in Fig. 7). The accuracy of the fit is given by the
 hop size, which is set depending on the sound
 complexity.

 Representation of the Stochastic Part

 The stochastic analysis returns an envelope E&(q)
 for every frame 1, where q is the breakpoint number
 in the envelope, q = 0, 1,..., Q - 1. These enve-
 lopes can be interpreted differently depending on
 which variable, 1 or q, is considered fixed. When 1
 is fixed, the interpretation is as a frequency-shaping
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 filter for frame 1. When q is fixed, the interpreta-
 tion is, as an amplitude-modulated bandpass filter,
 centered at fsq/2Q Hz and with a bandwidth of
 fs/2Q Hz.

 These frequency envelopes or time functions (de-
 pending on the interpretation) can be simplified and
 smoothed as in the deterministic representation. As
 with that representation, it is also useful to keep
 the same number of breakpoints on both the fre-
 quency and the time axes.

 Stochastic Synthesis

 The synthesis of the stochastic component can be
 understood as the generation of a noise signal that
 has the frequency and amplitude characteristics de-
 scribed by the spectral envelopes of the stochastic
 representation. The intuitive operation is filter-
 ing white noise with these frequency envelopes:
 that is, performing a time-varying filtering of white
 noise. In practice, the SMS technique generates the
 stochastic signal by an overlap-add synthesis tech-
 nique from the spectral envelopes. The inverse Fou-
 rier transform of each envelope is computed and
 the resulting waveforms are overlapped and added.

 Before the inverse-STFT is performed, a complex
 spectrum (i.e., magnitude and phase spectra) is ob-
 tained from each frequency envelope. The magni-
 tude spectrum is generated by interpolating the ap-

 proximation /~(q) of length Q to a curve of length
 N/2, where N is the FFT size. The FFT size is the
 first power of 2 that is bigger than the synthesis
 window (discussed below) plus Q. There is no phase
 information in the stochastic representation, but
 since the phase spectrum of noise is a random sig-
 nal, the phase spectrum can be created with a ran-
 dom number generator. To avoid a periodicity at the
 frame rate, different values are generated at every
 frame. Therefore the magnitude and phase spectra
 at frame 1 are

 A,(k)= E rnk),

 0I(k) = - ran(2rr),

 where !?(k) is the interpolated spectral envelope
 and ran(27r) is a function that produces random
 numbers in the range from 0-27r.

 From the interpolated magnitude envelope and
 the random phase spectrum, the complex spectrum

 pl(k) results from a change of coordinates,

 Re{El(k)} = A1(k) cos[O((k)],

 Im{l(Ak)} = Al(k) sin[l1(k)l.

 Its inverse Fourier transform gives one frame of the
 noise waveform,

 1 N/2 -
 e (m) E Al(k)ei)km, m = O, 1,...,N - 1

 N k= -N/2

 The waveform e(m) is a constant-amplitude wave-
 form of size N, where N is the FFT size. Since the
 phase spectrum used is not the result of an analysis
 process (with windowing of a waveform, zero pad-
 ding, and FFT computation), the resulting signal
 does not taper to 0 at the boundaries. This is be-
 cause a phase spectrum with random values corre-
 sponds to a phase spectrum of a rectangular-
 windowed noise waveform of size N. In order to
 succeed in the overlap-add resynthesis (i.e., to ob-
 tain smooth transitions between frames) we need a
 smoothly windowed waveform of size M, where M
 is the synthesis-window length. This window
 length depends on the window used, but a practical
 choice is to use a length four times the hop size.
 Note that this length is independent of the analy-
 sis-window length, and it is only related to the
 analysis hop size (in the case where no time scaling
 is performed). Therefore the resulting waveform
 elf(m) is multiplied by a length M window,

 l(m) = e ;(m)w(m). m = 0, 1, . . . , M - 1
 There is no reason to use the same window as in
 the STFT analysis, nor to use a very sophisticated
 one. A simple Hanning window suffices. Then the
 stochastic signal results from the overlap and add of
 these windowed waveforms,

 L-1

 &(n) = C ;(n - 1H),
 I=0
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 where H is the analysis hop size and 1 is the frame
 number.

 Representation of Timbral Modifications

 The deterministic analysis results in a set of ampli-
 tude and frequency functions, A,(1) and Ar(1), where
 r is the function number and 1 the breakpoint num-
 ber in each function. The stochastic analysis results

 in a set of spectral envelopes, !E( q), where q is the
 breakpoint number in the envelope. From these re-
 presentations, a great number of sound transforma-
 tions are possible.

 Time-scale modifications are accomplished in
 both representations by resampling the analysis
 points in time. This is done by changing the syn-
 thesis frame size (or the hop size in the case of the
 stochastic synthesis) and results in slowing down or
 speeding up the sound while maintaining pitch and
 formant structure. A time-varying frame size gives
 a time-varying modification. Due to the separation
 of the stochastic and deterministic sound compo-
 nents, this representation is more successful in
 time-scale modifications than traditional additive
 synthesis techniques. The noise part of the sound
 remains noise no matter how much the sound is
 stretched (which is not the case in "sinusoids-only"
 representations).

 In the deterministic representation, each func-
 tion pair, amplitude and frequency, accounts for a
 partial of the original sound. The manipulation of
 these functions is easy and musically intuitive. All
 kinds of frequency and magnitude transformations
 are possible. For example, the partials can be trans-
 posed in frequency, with different values for every
 partial and varying during the sound. It is also pos-
 sible to decouple the sinusoidal frequencies from
 their amplitude, obtaining effects such as changing
 pitch while maintaining formant structure.

 The stochastic representation is modified by
 changing the shape of each of the envelopes. Chang-
 ing the envelope shape corresponds to further filter-
 ing of the stochastic signal. Their manipulation is
 much simpler and more intuitive than the manipu-

 lation of a set of all-pole filters, such as those re-
 sulting from an LPC analysis.

 Interesting effects can also be accomplished by
 changing the relative amplitude of the two compo-
 nents, thus emphasizing one or the other at differ-
 ent moments in time.

 The characterization of a single sound by two dif-
 ferent representations may cause problems. When
 different transformations are applied to each repre-
 sentation, it is easy to create a sound in which the
 two components, deterministic and stochastic, do
 not fuse into a single entity. This may be desirable
 for some musical applications, but in general it is
 avoided and requires some practical experimenta-
 tion with the actual representations.

 The best synthesis is generally considered the
 one that results in the best perceptual identity with
 respect to the original sound. Then, transforma-
 tions are performed on the corresponding represen-
 tation. For musical applications, however, this may
 not always be desirable. Very interesting effects re-
 sult from purposely setting the analysis parameters
 "wrong." We may, for example, set the parameters
 such that the deterministic analysis only captures
 partials in a specific frequency range, leaving the
 rest to be considered stochastic. The result is a

 sound with a much stronger noise component.

 Conclusion

 Spectral modeling synthesis is an analysis-based
 technique capable of capturing the perceptual char-
 acteristics of a wide variety of sounds. The repre-
 sentation that results from the analysis is intuitive
 and is easily mapped to useful musical parameters.

 The analysis part is central to the system. It is a
 complex algorithm that requires the manual setting
 of a few control parameters. Further work may au-
 tomate the analysis process, particularly if there is
 a specialization for a group of sounds. Some aspects
 of the analysis are also open to further research, in
 particular the peak-continuation algorithm.

 The synthesis from the deterministic plus sto-
 chastic representation is simple and can be per-
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 formed in real-time with current technology. A
 real-time implementation of this system would al-
 low the use of this technique in performance. The
 representation would be computed ahead of time
 and stored, and the sound transformations would
 be done interactively.
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