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Melody Extraction From Polyphonic Music Signals
Using Pitch Contour Characteristics

Justin Salamon and Emilia Gómez

Abstract—We present a novel system for the automatic extrac-
tion of the main melody from polyphonic music recordings. Our
approach is based on the creation and characterization of pitch
contours, time continuous sequences of pitch candidates grouped
using auditory streaming cues. We define a set of contour char-
acteristics and show that by studying their distributions we can
devise rules to distinguish between melodic and non-melodic con-
tours. This leads to the development of new voicing detection, oc-
tave error minimization and melody selection techniques. A com-
parative evaluation of the proposed approach shows that it outper-
forms current state-of-the-art melody extraction systems in terms
of overall accuracy. Further evaluation of the algorithm is pro-
vided in the form of a qualitative error analysis and the study of
the effect of key parameters and algorithmic components on system
performance. Finally, we conduct a glass ceiling analysis to study
the current limitations of the method, and possible directions for
future work are proposed.

Index Terms—Audio content description, multi-pitch estimation,
music information retrieval, pitch contour, predominant melody
estimation.

I. INTRODUCTION

A. Definition and Motivation

G IVEN the audio recording of a piece of polyphonic
music, the task of melody extraction involves automati-

cally extracting a representation of the main melodic line. By
polyphonic we refer to music in which two or more notes can
sound simultaneously, be it different instruments (e.g., voice,
guitar and bass) or a single instrument capable of playing more
than one note at a time (e.g., the piano). To define the extracted
melody representation, we must first have a clear definition of
what the main melody actually is. As stated in [1], the term
melody is a musicological concept based on the judgement of
human listeners, and we can expect to find different definitions
for the melody in different contexts [2], [3]. In order to have a
clear framework to work within, the music information retrieval
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(MIR) community has adopted in recent years the definition
proposed by [1], “ the melody is the single (monophonic)
pitch sequence that a listener might reproduce if asked to
whistle or hum a piece of polyphonic music, and that a listener
would recognize as being the ‘essence’ of that music when
heard in comparison.” We use this definition for the purpose
of this study and, as in previous studies, select the evaluation
material such that given the above definition human listeners
could easily agree on what the main melody is, regardless of
the musical genre of the piece. This is important as it allows us
to generate an objective ground truth in order to quantitatively
compare different approaches.

The melody representation used in this study is the one pro-
posed by [4], namely a sequence of fundamental frequency (F0)
values corresponding to the perceived pitch of the main melody.
It is important to note that while pitch and F0 are different con-
cepts (the former being perceptual and the latter a physical quan-
tity), as common to the melody extraction literature we will use
the term pitch to refer to the F0 of the melody. As argued in [4],
such a mid-level description (avoiding transcription into, for ex-
ample, Western score notation) has many potential applications
such as Query by Humming [5], music de-soloing for the au-
tomatic generation of karaoke accompaniment [6] and singer
identification [7], to name a few. Determining the melody of
a song could also be used as an intermediate step towards the
derivation of semantic labels from musical audio [8]. Note that
we consider not only sung melodies but also those played by in-
struments, for example a jazz standard in which the melody is
played by a saxophone.

B. Related Work

Many methods for melody extraction have been proposed.
Of these perhaps the largest group are what could be referred
to as salience-based methods, which derive an estimation of
pitch salience over time and then apply tracking or transition
rules to extract the melody line without separating it from
the rest of the audio [3], [4], [9], [10]. Such systems follow a
common structure—first a spectral representation of the signal
is obtained. The spectral representation is used to compute a
time–frequency representation of pitch salience, also known
as a salience function. The peaks of the salience function are
considered as potential F0 candidates for the melody. Different
approaches exist for computing the salience function, [11] uses
harmonic summation with weighting learned from instrument
training data, while [4] lets different F0s compete for har-
monics, using expectation–maximization (EM) to reestimate a
set of unknown harmonic-model weights. Finally, the melody
F0s are selected using different methods of peak selection or
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tracking. In some systems a subsequent voicing detection step
(determining whether the main melody is present or absent in
each time frame) is also included. A detailed review of such
systems is provided in [1].

Another set of approaches attempt to identify the melody
by separating it from the rest of the audio using timbre-based
source separation techniques [12], [13]. Such systems use two
separate timbre models, one for the melody (sometimes specif-
ically human singing voice) and the other for the accompani-
ment. Some systems incorporate grouping principles inspired by
auditory scene analysis (ASA), most often frequency proximity
[4]. Other grouping principles have also been exploited—in [14]
grouping principles based on frequency and amplitude prox-
imity and harmonicity are incorporated into a separation frame-
work based on spectral clustering, where a monophonic pitch
tracker is later applied to the separated melody source.

Algorithms that exploit the spatial information in stereo
recordings have also been proposed. In [15], stereophonic in-
formation is used to estimate the panning of each source, and a
production model (source/filter) is used to identify and separate
the melody. Melody extraction is used as an intermediate step
to tune the separation parameters to the estimated melody.
Finally, purely data-driven approaches have also been studied,
such as [16] in which the entire short-time magnitude spectrum
is used as training data for a support vector machine classifier.

Despite the variety of proposed approaches, melody extrac-
tion remains a challenging and unsolved task, with current
state-of-the-art systems achieving overall accuracies1 of around
70%.2 The complexity of the task is twofold—firstly, the signal
representation of polyphonic music contains the superposition
of all instruments which play simultaneously. When considering
the spectral content of the signal, the harmonics of different
sources superimpose making it very hard to attribute specific
frequency bands and energy levels to specific instrument notes.
This is further complicated by mixing and mastering techniques
such as adding reverberation (blurs note offsets) or applying
dynamic range compression (reduces the difference between
soft and loud sources, increasing interference). Second, even
once we obtain a pitch-based representation of the signal, the
task of determining which pitches constitute the main melody
needs to be solved [17]. This in turn entails three main chal-
lenges—determining when the melody is present and when it
is not (voicing detection), ensuring the estimated pitches are
in the correct octave (avoiding octave errors), and selecting
the correct melody pitch when there is more than one note
sounding simultaneously.

C. Method Introduction, Contributions, and Paper Outline

Though promising results have been achieved recently by
separation-based methods [13], salience-based approaches are
still amongst the best performing systems, as well as being
conceptually simple and computationally efficient. In this paper
a novel salience-based melody extraction method is presented.
The method is centered on the creation and characterization of
pitch contours—time continuous sequences of F0 candidates

1Overall accuracy is defined in Section III-B.
2Music Information Retrieval Evaluation eXchange [Online]. Available:

http://www.music-ir.org/mirex/wiki/Audio_Melody_Extraction (Dec. 2011).

generated and grouped using heuristics based on auditory
streaming cues [18] such as harmonicity, pitch continuity and
exclusive allocation. We define a set of musical features which
are automatically computed for each contour. By studying the
feature distributions of melodic and non-melodic contours we
are able to define rules for distinguishing between the contours
that form the melody and contours that should be filtered out.
Combining these rules with voice leading principles [19],
novel techniques are developed for addressing the challenges
mentioned earlier—voicing detection, avoiding octave errors
and selecting the pitch contours that belong to the main melody.

The idea of F0 candidate grouping (or tracking) is not new
to the literature [10], [20]. ASA inspired grouping principles
have been employed in melody extraction systems based on
source separation [14], as well as in [9] where pitch contours are
first segmented into notes out of which the melody is selected.
While the structure of our system is somewhat similar, the pre-
sented method differs in several important ways. To begin with,
a wider set of contour characteristics beyond the basic pitch
height, length and mean salience is considered. The method
does not require segmentation into notes, and makes use of con-
tour features that would be lost during pitch quantization such
as vibrato and pitch deviation. Furthermore, these features are
exploited using new techniques following the study of contour
feature distributions.

The main contribution of the paper is the contour character-
ization and its application for melodic filtering. The contribu-
tion can be summarized as follows: a method for the generation
and characterization of pitch contours is described, which uses
signal processing steps and a salience function specifically de-
signed for the task of melody extraction. A set of pitch contour
features is defined and their distributions are studied, leading to
novel methods for voicing detection, octave error minimization
and melody selection.

In addition to the main contribution, a comparative evaluation
with state-of-the-art systems is provided, including a statistical
analysis of the significance of the results. We also study the ef-
fect of optimizing individual stages of the system [21] on its
overall performance, and assess the influence of different algo-
rithmic components. These evaluations are complemented with
a qualitative error analysis and glass ceiling analysis to deter-
mine the current limitations of the approach and propose direc-
tions for future work.

The outline of the remainder of the paper is as follows. In
Section II, the proposed melody extraction method is described.
In Section III, the evaluation process is described, including the
test collections and metrics used for evaluation. In Section IV,
the results of the evaluation are presented, followed by a qual-
itative error analysis, component evaluation and a glass ceiling
study. Finally, in Section V, we conclude with a discussion of
the proposed method and the obtained results, providing some
suggestions for future improvements as well as a discussion on
the remaining challenges in melody extraction.

II. PROPOSED METHOD

Our approach is comprised of four main blocks, as depicted
in Fig. 1. In the following sections we describe each of the four
blocks in detail. The motivation for choosing specific processing
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Fig. 1. Block diagram of the system’s four main blocks: sinusoid extraction,
salience function computation, pitch contour creation, and melody selection.

steps and parameter values for the first two blocks of the system
is discussed in Section IV-C.

A. Sinusoid Extraction

The sinusoid extraction process is divided into three stages
as depicted in Fig. 1: filtering, spectral transform and sinusoid
frequency/amplitude correction.

1) Filtering: We apply an equal loudness filter [22], which
enhances frequencies to which the human listener is more per-
ceptually sensitive (and attenuates those to which they are not).
This is done by taking a representative average of the equal loud-
ness curves [23] and filtering the signal by its inverse. The filter
is implemented as a tenth-order infinite impulse response (IIR)
filter cascaded with a second-order Butterworth high-pass filter
(for further details see [22]). The filter is well suited for melody
extraction, as it enhances mid-band frequencies where we can
expect to find the melody, and attenuates low-band frequencies
where low pitched instruments (e.g., the bass) can be found.

2) Spectral Transform: After filtering, we apply the short-
time Fourier transform (STFT) given by

and (1)

where is the time signal, the windowing function,
the frame number, the window length, the FFT length,

and the hop size. We use the Hann windowing function with
a window size of 46.4 ms, a hop size of 2.9 ms, and a 4 zero
padding factor, which for data sampled at kHz gives

, , and . The relatively small hop
size (compared to other MIR tasks [24]) is selected to facilitate
more accurate F0 tracking during the creation of pitch contours.

The decision to use the STFT rather than some type of mul-
tiresolution transform [4], [10], [20] is justified in Section IV-C.
Given the FFT of a single frame , spectral peaks are
selected by finding all the local maxima of the magnitude
spectrum .

3) Frequency/Amplitude Correction: The location of the
spectral peaks is limited to the bin frequencies of the FFT,
which for low frequencies can result in a relatively large
error in the estimation of the peak frequency. To overcome
this quantization we use the approach described in [25], in
which the phase spectrum is used to calculate the peak’s
instantaneous frequency (IF) and amplitude, which provide a
more accurate estimate of the peak’s true frequency and am-
plitude. The choice of this correction method over alternative
approaches is explained in Section IV-C.

The IF of a peak found at bin is computed from
the phase difference of successive phase spectra using the
phase vocoder [26] method as follows:

(2)

where the bin offset is calculated as

(3)

where is the principal argument function which maps the
phase to the range. The instantaneous magnitude is cal-
culated using the peak’s spectral magnitude and the bin
offset as follows:

(4)

where is the Hann window kernel.

B. Salience Function Computation

The extracted spectral peaks are used to construct a salience
function—a representation of pitch salience over time. The
peaks of this function form the F0 candidates for the main
melody. The salience computation in our system is based on
harmonic summation similar to [11], where the salience of a
given frequency is computed as the sum of the weighted ener-
gies found at integer multiples (harmonics) of that frequency.
Unlike [11], only the spectral peaks are used in the summa-
tion, to discard spectral values which are less reliable due to
masking or noise. Using the peaks also allows us to apply the
aforementioned frequency correction which has been shown to
improve the frequency accuracy of the salience function [21].

The important factors affecting the salience computation are
the number of harmonics considered and the weighting
scheme used. The choice of these parameters is discussed in
the results section of the paper (Section IV-C).

Our salience function covers a pitch range of nearly five oc-
taves from 55 Hz to 1.76 kHz, quantized into bins
on a cent scale (10 cents per bin). Given a frequency in Hz,
its corresponding bin is calculated as

(5)
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At each frame the salience function is constructed using
the spectral peaks (with frequencies and linear magnitudes

) returned by the sinusoid extraction step ( , where
is the number of peaks found). The salience function is defined
as

(6)

where is a magnitude compression parameter, is a mag-
nitude threshold function, and is the function that de-
fines the weighting scheme. The magnitude threshold function
is defined as

if
otherwise

(7)

where is the magnitude of the highest spectral peak in the
frame and is the maximum allowed difference (in dB) between

and . The weighting function defines the weight
given to peak , when it is considered as the th harmonic of
bin :

if
if

(8)

where is the distance in semitones be-
tween the harmonic frequency and the center frequency of
bin , and is the harmonic weighting parameter. The nonzero
threshold for means that each peak contributes not just to a
single bin of the salience function but also to the bins around
it (with weighting). This avoids potential problems that
could arise due to the quantization of the salience function into
bins, and also accounts for inharmonicities. In the results sec-
tion of this paper (Section IV-C) we discuss the optimization of
the aforementioned parameters for melody extraction, and ex-
amine the effect it has on the global performance of the system,
comparing melody extraction results before and after parameter
optimization.

C. Creating Pitch Contours (Peak Streaming)

Once the salience function is computed, its peaks at each
frame are selected as potential melody F0 candidates. At this
stage, some melody extraction methods attempt to track the
melody directly from the set of available peaks [4], [27]. Our
approach however is based on the idea that further information
(which can be exploited to select the correct melody pitch) can
be extracted from the data by first grouping the peaks into pitch
contours—time and pitch continuous sequences of salience
peaks. Each contour has a limited time span corresponding
roughly to a single note in the shortest case or a short phrase in
the longest. Though F0 grouping is not a new concept [9], [20],
in this paper the characterization of pitch contours is explored
in new ways, resulting in original solutions to the challenges
mentioned in Section I-B.

Before the streaming process is carried out, we first filter out
non-salient peaks to minimize the creation of “noise” contours
(non-melody contours). The filtering process is carried out in

two stages: first, peaks are filtered on a per frame basis by com-
paring their salience to that of the highest peak in the current
frame. Peaks below a threshold factor of the salience of the
highest peak are filtered out. In the second stage the salience
mean and standard deviation of all remaining peaks (in all
frames) are computed. Peaks with salience below
are then filtered out, where determines the degree of deviation
below the mean salience accepted by the filter. The first filter en-
sures we only focus on the most predominant pitch candidates
at each frame, while the second, a precursor to our voicing de-
tection method, removes peaks in segments of the song which
are generally weaker (and more likely to be unvoiced). This fil-
tering has an inherent trade-off—the more peaks we filter out the
less noise contours will be created (thus improving the detection
of nonvoiced segments and the correct selection of melody con-
tours), however the greater the risk of filtering out salience peaks
which belong to the melody (henceforth “melody peaks”). The
selection of optimal values for and is discussed at the end
of this section.

The remaining peaks are stored in the set , while the
peaks that were filtered out are stored in . The peaks are
then grouped into contours in a simple process using heuristics
based on auditory streaming cues [18]. We start by selecting
the highest peak in and add it to a new pitch contour. We
then track forward in time by searching for a salience peak
located at the following time frame (time continuity cue) which
is within 80 cents (pitch continuity cue) from the previously
found peak. A matching peak is added to the pitch contour and
removed from (exclusive allocation principle). This step is
repeated until no further matching salience peaks are found.
During the tracking we must ensure that short time gaps in the
pitch trajectory do not split what should be a single contour
into several contours. To do so, once no matching peak is found
in , we allow the tracking to continue for a limited amount
of frames using peaks from . The underlying assumption
is that melody peaks whose salience is temporarily masked by
other sources will be stored in , and tracking them allows
us to stay on the correct trajectory until we find a peak in .
If the gap length exceeds 100 ms (see below for selection of
threshold and parameter values) before a peak from is
found the tracking is ceased. We then go back to the first peak
of the contour and repeat the tracking process backwards in
time. Once the tracking is complete we save the contour and
the entire process is repeated until there are no peaks remaining
in .

To select the best parameters for the contour creation ( ,
the maximum allowed pitch distance and gap length), we
compared contours generated from different excerpts to the
excerpts’ melody ground truth and evaluated them in terms of
pitch accuracy (distance in cents between the ground truth and
the contours) and voicing (i.e., whether the contours exactly
cover the ground truth or are otherwise too long or too short).
This process was repeated in a grid search until the parameters
which resulted in the most accurate tracking were found (0.9,
0.9, 80 cents and 100 ms respectively). For and we also
measured the amount of melody peaks (and non-melody peaks)
before and after the filtering. This analysis revealed that as
is increased the number of non-melody salience peaks drops
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dramatically, while the number of melody peaks reduces very
gradually. Using the selected parameter values the number of
non-melody peaks is reduced by 95% while melody peaks are
reduced by less than 17% (and this loss can be recovered by the
gap tracking). The result is that the percentage of melody peaks
out of the total number of peaks goes up on average from 3%
initially to 52% after filtering. The quality of contour formation
is discussed in Section IV-G.

D. Pitch Contour Characterisation

Once the contours are created, the remaining challenge is that
of determining which contours belong to the melody. To do so,
a set of contour characteristics is defined which will be used
to guide the system in selecting melody contours. Similarly to
other systems, we define features based on contour pitch, length
and salience. However, by avoiding the quantization of contours
into notes [9] we are able to extend this set by introducing fea-
tures extracted from the pitch trajectory of the contour, namely
its pitch deviation and the presence of vibrato. Note that while
[9] also keeps a nonquantized version of each contour for use at
a later stage of the algorithm, it does not exploit it to compute
additional contour features. Furthermore, as shall be seen in the
next section, we use not only the feature values directly but also
their distributions. The characteristics computed for each con-
tour are the following:

• Pitch mean : the mean pitch height of the contour.
• Pitch deviation : the standard deviation of the contour

pitch.
• Contour mean salience : the mean salience of all peaks

comprising the contour.
• Contour total salience : the sum of the salience of all

peaks comprising the contour.
• Contour salience deviation : the standard deviation of

the salience of all peaks comprising the contour.
• Length : the length of the contour.
• Vibrato presence : whether the contour has vibrato or

not (true/false). Vibrato is automatically detected by the
system using a method based on [28]: we apply the FFT to
the contour’s pitch trajectory (after subtracting the mean)
and check for a prominent peak in the expected frequency
range for human vibrato (5–8 Hz).

In Fig. 2, we provide examples of contours created for ex-
cerpts of different musical genres (the relative sparseness of
non-melody contours can be attributed to the equal loudness
filter and salience peak filtering described earlier). By observing
these graphs we can propose contour characteristics that differ-
entiate the melody from the rest of the contours: vibrato, greater
pitch variance (in the case of human voice), longer contours, a
mid-frequency pitch range and (though not directly visible in the
graphs) greater salience. These observations concur with voice
leading rules derived from perceptual principles [19]. To con-
firm our observations, we computed the feature distributions
for melody and non-melody contours using the representative
data-set described in Section III-A3. Note that in most (but not
all) of the excerpts in this data-set the melody is sung by a human
voice. The resulting distributions are provided in Fig. 3, where

Fig. 2. Pitch contours generated from excerpts of (a) vocal jazz, (b) opera,
(c) pop, and (d) instrumental jazz. Melody contours are highlighted in bold.

Fig. 3. Pitch contour feature distributions. (a) Pitch mean, (b) pitch std. dev.,
(c) mean salience, (d) salience std. dev., (e) total salience, and (f) length. The
red solid line represents the distribution of melody contour features, the blue
dashed line represents the distribution of non-melody contour features.

for each feature we plot the distribution for melody contours
(solid red line) and non-melody contours (dashed blue line). In
plots (c), (d), and (e) the feature values are normalized by the
mean feature value for each excerpt. We see that the above ob-
servations are indeed evident in the feature distributions. Ad-
ditionally, for vibrato presence we found that 95% of all con-
tours in which vibrato was detected were melody contours. The
consideration of various contour characteristics means accom-
panying instruments will not necessarily be selected as melody
if they exhibit a certain melodic characteristic. For example, a
contour produced by an accompanying violin with vibrato may
still be discarded due to its pitch height. Finally, we note that
basing our system on pitch contours gives us the possibility of
introducing new contour features in the future, as well as using
these features for other MIR tasks such as genre classification
[29] or singing style characterization.
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E. Melody Selection

We now turn to describe how the melody is chosen out of all
the contours created in the previous step of our method. Rather
than selecting melody contours, we pose this task as a contour
filtering problem, where our goal is to filter out all non-melody
contours. As seen in the block diagram in Fig. 1, this process
is comprised of three steps: voicing detection, octave error min-
imization/pitch outlier removal, and final melody selection. In
the first two steps, contour characteristics are used to filter out
non-melody contours, and in the final step the melody frequency
at each frame is selected out of the remaining contours.

1) Voicing Detection: Voicing detection is the task of deter-
mining when the melody is present and when it is not. For ex-
ample in plot (a) of Fig. 2 the melody is present between seconds
0–3 and 4–5, but not between 3–4 where non-melody contours
are found. To filter out these contours we take advantage of the
contour mean salience distribution given in plot (c) of Fig. 3.
Though the distributions are not perfectly separated, we see that
by setting a threshold slightly below the average contour mean
salience of all contours in the excerpt , we can filter out a
considerable amount of non-melody contours with little effect
on melody contours. We define the following voicing threshold

based on the distribution mean and its standard deviation
:

(9)

The parameter determines the lenience of the filtering—a
high value will give more false positives (i.e., false melody
contours) and low value more false negatives (i.e., filter out
melody contours). The sensitivity of the system to the value of

is discussed in Section IV-E. We also compared using the con-
tour total salience instead of the mean salience in the equa-
tion above, but the latter was found to give better results. This
is likely due to the bias of the contour total salience towards
longer contours, which is not beneficial at this stage as we risk
removing short melody contours. At a later stage length will be
exploited to guide the system when a choice must be made be-
tween alternative concurrent contours.

In the previous section, we also noted that if the system de-
tected vibrato in a contour, it was almost certainly a melody con-
tour. Furthermore, in plot (b) of Fig. 3 we see that there is a
sudden drop in non-melody contours once the pitch deviation
goes above 20 cents, and once the deviation is greater than 40
cents the probability of a contour being a non-melody contour
is less than 5%. We use this information to tune our voicing
filter, by giving “immunity” to contours where vibrato was de-
tected or whose pitch deviation is above 40 cents

. In this way, we ensure that contours which have
relatively low salience but strong melodic characteristics are not
filtered out at this stage.

2) Octave Errors and Pitch Outliers: One of the main
sources of errors in melody extraction systems is the selection
of a harmonic multiple/submultiple of the correct melody F0
instead of the correct F0, commonly referred to as octave errors.
Various approaches have been proposed for the minimization of

octave errors, usually performed directly after the calculation of
the salience function and on a per-frame basis [20], [30]. When
we consider a single frame in isolation, determining whether
two salience peaks with a distance of one octave between them
were caused by two separate sources or whether they are both
the result of the same source (one peak being a multiple of
the other) can prove a difficult task. On the other hand, once
we have created the pitch contours, detecting the presence of
octave duplicates becomes a relatively straight forward task, as
these manifest themselves as contours with practically identical
trajectories at a distance of one octave from each other. In prac-
tice, to compare contour trajectories we compute the distance
between their pitch values on a per-frame basis for the region
in which they overlap, and compute the mean over this region.
If the mean distance is within 1200 50 cents, the contours are
considered octave duplicates. An example of octave duplicates
can be observed in Fig. 2 plot (b) between seconds 3–4 s where
the correct contour is at about 4000 cents and the duplicate at
about 2800 cents.

In this paper, we propose a method for octave error minimiza-
tion that takes advantage of this type of temporal information in
two ways. First, as mentioned above, we use the creation of pitch
contours to detect octave duplicates by comparing contour tra-
jectories. Second, we use the relationship between neighboring
contours (in time) to decide which of the duplicates is the cor-
rect one. Our approach is based on two assumptions: firstly, that
most (though not all) of the time the correct contour will have
greater salience than its duplicate (the salience function param-
eters were optimized to this end). Second, that melodies tend to
have a continuous pitch trajectory avoiding large jumps, in ac-
cordance with voice leading principles [19].

To implement these principles, we iteratively calculate a
“melody pitch mean” , i.e., a pitch trajectory that rep-
resents the large scale time evolution of the melody’s pitch.
When octave duplicates are encountered, the assumption is
that the contours directly before and after the duplicates will
pull towards the duplicate at the correct octave. Thus, the
duplicate closest to is selected as the correct contour and
the other is discarded. Similarly, we use to remove “pitch
outliers”—contours more than one octave above or below the
pitch mean. Filtering outliers ensures there are no large jumps
in the melody (continuity assumption), and may also filter out
non-voiced contours that were not captured by the voicing
detection algorithm. The distance between a contour and
is computed as before, by averaging the per-frame distances
between them. The complete process can be summarized as
follows.

1) Calculate at each frame as the weighted mean of the
pitch of all contours present in the frame.

2) Smooth using a 5-s sliding mean filter (length deter-
mined empirically) with a hop size of 1 frame. This limits
the rate at which the melody pitch trajectory can change,
ensuring continuity and avoiding large jumps.

3) Detect pairs of octave duplicates and, for each pair, remove
the contour furthest from .

4) Recompute using the remaining contours, following
Steps 1–2.
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Fig. 4. Removing octave duplicates and pitch outliers. (a) Steps 1–2: the initial
smoothed melody pitch mean � ��� is computed (dashed red line). (b) Step 3:
an octave duplicate is detected and removed. (c) Steps 4–5: � ��� is recomputed
and two pitch outliers are removed. (d) Step 6: � ��� is recomputed.

5) Remove pitch outliers by deleting contours at a distance of
more than one octave from .

6) Recompute using the remaining contours, following
Steps 1–2.

7) Repeat Steps 3–6 twice more, each time starting with all
contours that passed the voicing detection stage, but using
the most recently computed melody pitch mean . The
number of iterations was chosen following experimenta-
tion suggesting this was sufficient for obtaining a good ap-
proximation of the true trajectory of the melody. In the fu-
ture we intend to replace the fixed iteration number by a
stabilization criterion.

8) Pass the contours remaining after the last iteration to the
final melody selection stage.

It was found that the pitch mean computed in Step 1
most closely approximates the true trajectory of the melody
when each contour’s contribution is weighted by its total
salience . This biases the mean towards contours which are
salient for a longer period of time, which is desirable since such
contours are more likely to belong to the melody, as evident
from the distributions in Fig. 3(e) and (f).

An example of running steps 1–6 is provided in Fig. 4. In plot
(a) we start with a set of contours, together with the smoothed
melody pitch mean (Steps 1–2) represented by the dashed
red line. In the next plot (b), octave duplicates are detected, and
the duplicate farther from the melody pitch mean is removed
(Step 3). Next, (c) the mean is recomputed (Step 4), and
pitch outliers are detected and removed (Step 5). Finally,
is recomputed once more (Step 6), displayed in plot (d) together
with the remaining contours.

3) Final Melody Selection: In this final step we need to se-
lect from the remaining contours the peaks which belong to
the main melody (recall that each peak represents an F0 can-
didate). While in other systems this step often involves fairly
complicated peak tracking using streaming rules or note tran-
sition models, in our system these considerations have already
been taken into account by the contour creation, characteriza-
tion and filtering process. This means that often there will only
be one peak to choose. When there is still more than one con-
tour present in a frame, the melody is selected as the peak be-
longing to the contour with the highest total salience . If no
contour is present the frame is regarded as unvoiced. In order to
evaluate raw pitch and chroma accuracy (see Section III-B) we

Fig. 5. Vocal jazz excerpt. (a) All pitch contours created, (b) contours after
filtering and melody pitch mean (thick red line), and (c) final extracted melody
(black) and ground truth (thick red, shifted down one octave for clarity).

also provide an F0 estimate for unvoiced frames by selecting the
peak of the most salient contour that was present in these frames
prior to contour filtering. In Fig. 5 we provide an example of the
complete melody extraction process for the excerpt previously
featured in plot (a) of Fig. 2. In Fig. 5 plot (a) we show all cre-
ated contours, in plot (b) the remaining contours after filtering
with the final melody pitch mean indicated by the thick red
line, and in plot (c) the final melody estimation (black) and the
ground truth (thick red, shifted down one octave for clarity).

III. EVALUATION METHODOLOGY

The described system was submitted to the 2010 and 2011
Music Information Retrieval Evaluation eXchange (MIREX),
an annual campaign in which different state-of-the-art MIR al-
gorithms are evaluated against the same data-sets in order to
compare their performance [31]. This allowed us not only to
evaluate our proposed method on an extensive and varied set
of testing material, but also to compare it with alternative ap-
proaches. The difference between our submission in 2010 and
2011 is the analysis and parameter optimization described in
Section IV-C. By comparing our results before optimization
(2010) and after (2011) we can evaluate the effect of the op-
timization on the overall performance of the system.

In addition to the MIREX results, we carried out several com-
plementary evaluation experiments, providing further insight
into the nature of the remaining challenges. These include: a
qualitative error analysis focusing on octave errors, a study of
the effect of the key parameter in our voicing detection method

on performance, an evaluation of the influence of each algo-
rithmic component of the system on overall performance, and a
glass ceiling study in which we examine the current limitations
of the system, including the quality of contour formation (peak
streaming). The results of these experiments, in particular the
glass ceiling study, allow us to identify which parts of the algo-
rithm could be further improved, and provide future directions
for our research.
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TABLE I
MUSIC COLLECTIONS USED FOR EVALUATION IN MIREX 2010/2011

A. Test Collections

1) MIREX: Four music collections were used in the MIREX
evaluations (2010 and 2011), as detailed in Table I. Note that
each clip from the MIREX09 collection was mixed at three dif-
ferent levels of signal-to-accompaniment ratio resulting in three
different test collections, which together with the other collec-
tions makes a total of six test collections.

2) Parameter Optimization: For optimizing system parame-
ters, a separate collection of 14 excerpts of various genres was
used. Further details about this collection and the optimization
procedure are provided in [21]. A summary of the results ob-
tained in [21] is provided in Section IV-C.

3) Additional Experiments: For the voicing detection
(Section IV-E), component evaluation (Section IV-F) and glass
ceiling study (Section IV-G), we used a representative test
set freely available to researchers. This set includes 16 of the
ADC2004 excerpts, 13 excerpts similar to those used in the
MIREX05 collection, and 40 excerpts similar to those used in
the MIREX09 collection.

B. Evaluation Metrics

The algorithms in MIREX were evaluated in terms of five
metrics, as detailed in [1]:

• Voicing Recall Rate: the proportion of frames labeled
voiced in the ground truth that are estimated as voiced by
the algorithm.

• Voicing False Alarm Rate: the proportion of frames la-
beled unvoiced in the ground truth that are estimated as
voiced by the algorithm.

• Raw Pitch Accuracy: the proportion of voiced frames in
the ground truth for which the F0 estimated by the algo-
rithm is within tone (50 cents) of the ground truth
F0. Algorithms may also report F0 values for frames they
estimated as unvoiced so that the raw pitch accuracy is not
affected by incorrect voicing detection.

• Raw Chroma Accuracy: same as the raw pitch accuracy
except that both the estimated and ground truth F0s are
mapped into a single octave. This gives a measure of pitch
accuracy ignoring octave errors which are common in
melody extraction systems.

TABLE II
OVERALL ACCURACY RESULTS: MIREX 2010

• Overall Accuracy: this measure combines the perfor-
mance of the pitch estimation and voicing detection tasks
to give an overall performance score for the system. It
is defined as the proportion of frames (out of the entire
piece) correctly estimated by the algorithm, where for
non-voiced frames this means the algorithm labeled them
as non-voiced, and for voiced frames the algorithm both
labeled them as voiced and provided a correct F0 estimate
for the melody (i.e., within tone of the ground
truth).

IV. RESULTS

The results obtained by our optimised algorithm are pre-
sented in Table III (Section IV-D). For completeness, we
start by presenting the results of MIREX 2010, followed by a
qualitative error analysis of our submission. Next, we provide
a summary of the optimization process carried out in [21],
and then we present the results obtained by our optimized
algorithm in MIREX 2011. Then, we describe the additional
evaluation experiments carried out to assess the influence of
specific parameters and algorithmic components. Finally, we
present the results of a glass ceiling analysis of our algorithm.

A. Comparative Evaluation: MIREX 2010

Five algorithms participated in the 2010 audio melody ex-
traction task of the MIREX campaign. In Table II, we present
the overall accuracy results obtained by each system for each
of the test collections. Systems are denoted by the initials of
their authors—HJ [32], TOOS [33], JJY (who submitted two
variants) [34], and SG (our submission). For completeness, we
also include the results obtained by the best performing system
from the previous year’s campaign [10], denoted KD. In the last
column we provide the mean overall accuracy computed over all
six collections.3

We see that of the systems participating in 2010, our system
achieved the highest mean overall accuracy, surpassed only by
the best performing system from the previous year. Nonetheless,
the performance of all systems is very similar (with the excep-
tion of KD for the 2004 and 2005 data-sets4). We performed an
analysis of variance (ANOVA) of the results obtained by the
algorithms participating in 2010, revealing that for the 2004,

3The mean is not weighted by the size of the data-sets due to the order of
magnitude difference in size between the 2009 data-sets and the other collec-
tions which, though smaller, are more representative of the type of material one
would encounter in a real world scenario.

4A possible explanation for this is KD’s better ability at extracting non-vocal
melodies, which constitute a larger proportion of these collections.
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Fig. 6. (a) Mean pitch and chroma accuracies for each test collection. (b) Per-
song pitch and chroma accuracies for the MIREX05 collection.

2005, and 2008 data-sets there was in fact no statistically sig-
nificant difference between any of the algorithms (for a p-value

0.05). This is probably in part due to the small size of these
collections. For the three 2009 collections, a statistically signifi-
cant difference was found between most algorithms, though the
artificial nature of these collections (karaoke accompaniment,
amateur singing and no studio mixing or post production) makes
them less representative of a real-world scenario. In conclusion,
the comparable performance of most systems suggests that fur-
ther error analysis would be of much value. Only through ana-
lyzing the types of errors made by each algorithm can we get a
better understanding of their advantages and pitfalls.

B. Qualitative Error Analysis

Following the conclusions of the previous section, we per-
formed a qualitative error analysis of our submission, focusing
on octave errors. We noted that for the MIREX05 collection
there was a significant difference between the raw pitch accu-
racy and the raw chroma accuracy. This disparity is caused due
to the selection of contours at the wrong octave. In Fig. 6, we
display the raw pitch accuracy versus the raw chroma accuracy
obtained by our algorithm in each of the collections (a), and the
per-song results for the MIREX05 collection (b).

Examining the per-song results we discovered that the largest
differences between pitch and chroma accuracy occur mainly
in non-vocal excerpts, especially solo piano pieces. This sug-
gests that while our octave selection method works well for
vocal music, further work would be required to adapt it for in-
strumental music, especially that performed by a single (poly-
phonic) instrument.

C. Process Analysis and Parameter Optimization

In [21] the first two blocks of the system, sinusoid extraction
and salience function computation, were studied with the goal
of identifying the processing steps and parameter values most
suitable for melody extraction. In this section, we provide a brief
summary of the conclusions reached in that study, which were
used to select the processing steps and parameter values for the
first two blocks of the system presented in this paper. The effect
of the optimization is shown in the following section were the
MIREX 2011 results are presented.

In the first part of the study carried out in [21], alternative
signal processing methods were compared for each of the three

stages in the sinusoid extraction process (filtering, spectral
transform, and frequency/amplitude correction). For filtering,
it was shown that the equal loudness filter (cf. Section II-A1)
considerably reduces the energy of non-melody spectral peaks
while maintaining almost all energy of melody peaks.

Next we evaluated the spectral transform. Some melody ex-
traction systems use a multi-resolution transform instead of the
STFT which has a fixed time–frequency resolution [4], [10],
[20]. The motivation for using a multi-resolution transform is
that it might be beneficial to have greater frequency resolution
in the low frequency range where peaks are bunched closer to-
gether and are relatively stationary over time, and higher time
resolution for the high frequency range where we can expect
peaks to modulate rapidly over time (e.g., the harmonics of
singing voice with a deep vibrato). In the study we compared the
STFT to the multi-resolution FFT (MRFFT) proposed in [25].
Interestingly, it was shown that the MRFFT did not provide any
statistically significant improvement to spectral peak frequency
accuracy and only a marginal improvement to the final melody
F0 accuracy (less than 0.5 cents). Following these observations
we opted for using the STFT in the proposed system.

For frequency/amplitude correction two methods were com-
pared: parabolic interpolation [35] and instantaneous frequency
using the phase vocoder method [26]. It was shown that both
methods provide a significant improvement in frequency accu-
racy compared to simply using the bin locations of the FFT,
and that the phase-based method (used in this paper) performs
slightly better (no significant difference though).

In the second part of the study, an evaluation was carried
out to study the effect of the weighting parameters and ,
the magnitude threshold and the number of harmonics
on the resulting salience function. The salience function was
computed with different parameter value combinations using
a grid search and the resulting salience peaks were evaluated
using metrics specifically designed to estimate the predomi-
nance of the melody compared to other pitched elements present
in the salience function. This led to the determination of op-
timal values for the salience function parameters: ,

, , and . For comparison, the values
used in MIREX 2010 were 0.8, 2, 40, and 8, respectively, empir-
ically assigned based on initial experiments carried out before
the more comprehensive parameter optimization study in [21].

D. Comparative Evaluation: MIREX 2011

Eight participants took part in the MIREX 2011 melody
extraction campaign, including our optimized system (SG).5

The overall accuracy results are provided in Table III. For
easy comparison, our result from 2010 is repeated in the last
row of the table. We see that our optimized system achieves
the highest overall accuracy in four of the six test-sets. Con-
sequently, our method also achieves the highest mean overall
accuracy (surpassing KD), making it the best performing
melody extraction algorithm to be evaluated on the current
MIREX test-sets (2009 to date). When comparing our results
before optimization (2010) and after (2011), we see that for
all collections there is a notable improvement in accuracy. The

5Detailed information about all participating algorithms can be found at:
http://nema.lis.illinois.edu/nema_out/mirex2011/results/ame/mirex09_0dB/
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TABLE III
OVERALL ACCURACY RESULTS: MIREX 2011

Fig. 7. Overall accuracy, voicing recall, and voicing false alarm rates versus
the voicing parameter � .

increase can be attributed to better voicing detection (resulting
in lower voicing false alarm rates), better contour generation
(higher pitch and chroma accuracies) and less octave errors
(smaller difference between pitch and chroma accuracies). We
note that while the system’s parameters have been optimized, it
could still be improved through the introduction of new contour
characteristics or additional signal processing steps. These
options are discussed further in Section IV-G.

E. Voicing

In Section II-E1, we proposed a new voicing detection
method in which the determination of voiced sections is based
on the study of contour feature distributions. The method was
in part responsible for the successful results in MIREX, where
our system achieved the best tradeoff between voicing recall
and voicing false alarm rates. In this section, we study the
sensitivity of our system to the method’s key parameter [(9)].
Recall that determines the lenience of the filtering: increasing

makes it more lenient (less contours are filtered out), while
decreasing makes it stricter (more contours are filtered out).
In Fig. 7 we plot the overall accuracy, voicing recall and voicing
false alarm rates for each collection in our representative test
set, as a function of .

As expected, the tradeoff between the voicing recall and
voicing false alarm rates is clearly visible. As is increased
(reducing the filtering threshold ) the recall rate goes up for
all collections, but so does the false alarm rate. The optimal
value for is the one which gives the best balance between the
two, and can be inferred from the overall accuracy. We see that
this optimal value is slightly different for each of the three col-
lections. This is because the relationship between the salience

TABLE IV
SYSTEM PERFORMANCE WITH DIFFERENT COMPONENTS REMOVED

distribution of melody contours and the salience distribution
of non-melody contours [c.f. Fig. 3 plot (c)] is affected by the
type of musical accompaniment used, which varies between
the collections. Nonetheless, the optimal values for the three
collections lie within a sufficiently limited range (0.0–0.4)
such that a satisfactory compromise can be made (e.g., for the
collections under investigation, ). Finally, this (albeit
small) difference between the optimal values suggests that
while the proposed approach already provides good results,
further contour characteristics would have to be considered in
order to improve voicing detection rates across a wide range
of musical styles and genres. As future work we propose the
development of a voiced contour classifier trained using a wider
set of contour features.

F. Component Evaluation

As with the voicing filter, each algorithmic component of
the system influences its overall performance. In Table IV we
evaluate the complete system on the representative test set
(Section III-A3) each time removing one component, in this
way assessing its effect on overall performance. The compo-
nents removed are: equal loudness filter (EQ), peak frequency
correction (FC), voicing filter (VF), octave duplicate and outlier
removal (OO). We also tested replacing the optimized salience
function parameters with the MIREX 2010 configuration (SF),
as well as removing different combinations of components.

We see that each component has a direct effect on the overall
accuracy. Importantly, we note that there is a strong interaction
between components. For example, without the voicing filter
(VF) accuracy goes down by 5% and without the octave du-
plicate and outlier removal (OO) it goes down by 2%, but if
both were removed the accuracy would drop by 10%. This re-
veals that the latter step (OO), in addition to its primary role,
also improves voicing detection by removing non-voiced con-
tours that were missed by the voicing filter. If all components
were removed the combined effect would cause a drop of 17%
in overall accuracy, which is 4% more than the sum of all indi-
vidual accuracy decreases combined.

G. Glass Ceiling Analysis

As a final evaluation step, we test to see what would be the
best result our algorithm could possibly achieve, assuming we
had a perfect contour filtering approach. To do this, we compare
all contours generated for an excerpt with its ground truth, and
keep only those which overlap with the reference melody. These
contours are then passed to the final melody selection stage as
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TABLE V
RESULTS ACHIEVED BY SYSTEM AND GLASS CEILING RESULTS

before, and the resulting melody is evaluated against the ground
truth. In Table V we present for each collection the best result
obtained by our algorithm, followed by the result obtained using
the perfect filtering simulation.

Comparing the results obtained by our system to the results
using the perfect filtering simulation, we can make several im-
portant observations. First of all, we see that the overall accuracy
using the perfect contour filtering simulation is below 100%.
As suggested by the title of this section, this reveals a glass
ceiling, i.e., a top limit on the overall accuracy that could be
obtained by the system in its current configuration. We begin
by discussing the differences between our system’s results and
the glass ceiling results, and then analyze the limitations of the
system that result in this glass ceiling limit.

We start by drawing the reader’s attention to the raw chroma
metric. We see that the chroma accuracy of our system is prac-
tically equal to the glass ceiling result. This suggests that the
system can almost perfectly select the correct contour when
faced with two or more simultaneous contours (that are not oc-
tave duplicates). Turning to the raw pitch accuracy, the results
obtained by the system are on average only 3.5% below the glass
ceiling result. Again, this implies that while there is still room
for improvement, the octave error minimization method pro-
posed in the paper is certainly promising. The main difference
between our system and the glass ceiling results is the voicing
false alarm rate. Though already one of the best voicing detec-
tion methods in MIREX, we see that further improvements to
the method would provide the most significant increase in the
overall accuracy of our system.

Finally, we consider the possible cause of the identified glass
ceiling limit. Assuming the system can perform perfect contour
filtering, the overall accuracy is determined entirely by the ac-
curacy of the contour formation. If all melody contours were
perfectly tracked, the raw pitch and chroma scores of the glass
ceiling should reach 100%. This implies that to increase the po-
tential performance of our system, we would have to improve
the accuracy of the contour formation. Currently, our tracking
procedure takes advantage of temporal, pitch and salience infor-
mation. We believe that an important part of the puzzle that is
still missing is timbre information. Timbre attributes have been
shown to provide important cues for auditory stream segrega-
tion [36], suggesting they could similarly be of use for pitch
contour tracking. Furthermore, the extraction of pitch specific
timbre attributes could lead to the development of a contour
timbre feature , that could be used in the melody selection
process by introducing rules based on timbre similarity between
contours. Another possibility for improving contour formation
would be the suppression of noise elements in the signal before

the salience function is computed. For instance, we could apply
harmonic/percussive source separation such as in [33], [37] to
minimize the disruptions in the salience function caused by per-
cussive instruments.

V. CONCLUSION

In this paper, we presented a system for automatically ex-
tracting the main melody of a polyphonic piece of music from
its audio signal. The signal processing steps involved in the ex-
traction of melody pitch candidates were described, as well as
the process of grouping them into pitch contours. It was shown
that through the characterization of these pitch contours and
the study of their distributions, we can identify characteristics
that distinguish melody contours from non-melody contours. It
was then explained how these features are used for filtering out
non-melody contours, resulting in novel voicing detection and
octave error minimization methods.

The proposed system was evaluated in two MIREX cam-
paigns, where the latest version of our algorithm (2011) was
shown to outperform all other participating state-of-the-art
melody extraction systems. The results were complemented
with a qualitative error analysis, revealing that the different
characteristics of instrumental music complicate the task of
octave error minimization, requiring further adjustments to the
proposed method for this type of musical content. The MIREX
2011 results confirmed the expected increase in performance
following the optimization of system parameters [21]. We
evaluated the influence of individual algorithmic components
on system performance, and noted that the interaction between
different components can be important for maintaining high
accuracies. Finally, a glass ceiling analysis confirmed that in
most cases the proposed contour filtering process is successful
at filtering out non-melody contours, though a further increase
in accuracy could still be achieved by reducing the voicing false
alarm rate of the system. In addition, it was determined that to
increase the potential performance of the system we would have
to improve its contour formation stage, and possible methods
for achieving this were proposed.
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