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A sawtooth waveform inspired pitch estimator �SWIPE� has been developed for speech and music.
SWIPE estimates the pitch as the fundamental frequency of the sawtooth waveform whose spectrum
best matches the spectrum of the input signal. The comparison of the spectra is done by computing
a normalized inner product between the spectrum of the signal and a modified cosine. The size of
the analysis window is chosen appropriately to make the width of the main lobes of the spectrum
match the width of the positive lobes of the cosine. SWIPE�, a variation of SWIPE, utilizes only the
first and prime harmonics of the signal, which significantly reduces subharmonic errors commonly
found in other pitch estimation algorithms. The authors’ tests indicate that SWIPE and SWIPE�
performed better on two spoken speech and one disordered voice database and one musical
instrument database consisting of single notes performed at a variety of pitches.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2951592�
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I. INTRODUCTION

Pitch is an attribute of sound that gives important infor-
mation about its source. In speech, it helps us to identify the
gender of the speaker �females tend to have higher pitch than
males� and gives additional meaning to words �a set of words
may be interpreted as an affirmation or a question depending
on the intonation�. In music, it determines the names of the
notes.

Several definitions of pitch have been proposed. One of
them is “pitch is that attribute of auditory sensation in terms
of which sounds may be ordered on a musical scale” �Ameri-
can Standards Association, 1960�. In practice, however, it is
convenient not only to order sounds by their pitch, but also
to assign a number to them. The standard method for doing
that is to ask a group of listeners to adjust the frequency of a
pure tone until its pitch matches the pitch of the target sound,
and then define the pitch of the target sound as the frequency
of the pure tone that best matched its pitch. Sometimes, com-
plex tones made up of several harmonics are preferred to
pure tones for matching.

Pitch estimation has applications in many areas that in-
volve processing of sound. In music, it is used for automatic
music transcription �Klapuri, 2004� and query by humming
�e.g., Dannenberg et al., 2004�. In communications, it is used
for speech coding �Spanias, 1994�. In speech pathology, it is
used to detect voice disorders �e.g., Yumoto et al. 1982�. In
linguistics, it is used to facilitate second language acquisition
through the display of intonation patterns �de Bot, 1983�.

Pitch estimation has a long history. An extensive review
is given by Hess �1983�. More recently, in a paper in which
we presented a pitch estimator based on a smooth harmonic
average peak-to-valley envelope �SHAPE� �Camacho and
Harris, 2007�, we included a review of some pitch estimators
and illustrated some of their problems. Specifically, we
showed that �i� algorithms that use the logarithm of the spec-

trum �e.g., cepstrum �Noll, 1967� and harmonic product
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spectrum �Schroeder, 1968�� are prone to fail when there are
missing harmonics; �ii� algorithms that use the square of the
spectrum �e.g., autocorrelation �Sondhi, 1968; Rabiner,
1977�� are prone to fail when there are salient harmonics;
�iii� algorithms that give the same weight to all the harmon-
ics �e.g., cepstrum, unbiased autocorrelation, and harmonic
product spectrum� are prone to estimate the pitch as one of
its subharmonics; �iv� algorithms that analyze the spectrum
only at harmonic frequencies are prone to fail for inharmonic
signals �e.g., harmonic product spectrum and subharmonic
summation �Hermes, 1988��; and �v� harmonic sieves �Duif-
huis et al., 1982�, in which a component is accepted as har-
monic if it is located within a certain range of a harmonic,
are not completely satisfactory, since a slight shift of the
component may put it in or out of the range, potentially
changing the estimated pitch drastically.

The work presented here is an extension of SHAPE. The
only new features are the use of window sizes that are pro-
portional to the pitch period of the candidates, and the mul-
tiplication of the first and last negative lobes of the kernel by
1 /2 to avoid a bias that existed in SHAPE. It will be shown
that the types of signals for which the algorithm is optimized
are periodic signals whose spectral envelope decays in-
versely proportional to frequency. An example of such a sig-
nal is a sawtooth waveform. This type of signal is the one
that motivated the name of the algorithm: sawtooth wave-
form inspired pitch estimator �SWIPE�.

We conclude this section with a description of the scope
of our work. Our goal is to estimate the pitch of speech and
musical instruments, but not the pitch of some synthetic
sounds that are traditionally used to test pitch perception
models, such as sinusoidally amplitude-modulated noise
�Meddis and Hewitt, 1991� and periodic signals with alter-
nating phase harmonics �Meddis and O’Mard, 1997�. Fur-
thermore, we do not attempt to explain how the auditory
system determines pitch but simply to create a black box that

attempts to reproduce human pitch percepts. It is also worth
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mentioning that our goal is to determine pitch but not funda-
mental frequency �defined as the maximum common divisor
of its spectral components�. In many cases, these two at-
tributes coincide, but that is not always the case. For ex-
ample, a periodic signal formed by the 13th, 25th, and 29th
harmonics of 50 Hz �i.e., 650, 950, and 1250 Hz� is per-
ceived as having a pitch of 334 or 650 Hz �Patel and Bala-
ban, 2001� but not 50 Hz.

II. METHOD

A. Main idea

The main idea of the algorithm is the same underlying
idea present in several pitch estimators �e.g., Sun, 2000;
Rabiner, 1977; Sondhi, 1968; Noll, 1967�: the measurement
of the average peak-to-valley distance �APVD� at harmonic
locations.1 The APVD at the kth harmonic of f is defined as

dk�f� = 1
2 ��X�kf�� − �X��k − 1/2�f���

+ 1
2 ��X�kf�� − �X��k + 1/2�f���

= �X�kf�� − 1
2 ��X��k − 1/2�f�� + �X��k + 1/2�f��� , �1�

where X�f� is the Fourier transform �FT� of the signal. Aver-
aging over the first n peaks, the global APVD is

Dn�f� =
1

n
�
k=1

n

dk�f�

=
1

n�1

2
�X�f/2�� −

1

2
�X��n + 1/2�f��

+ �
k=1

n

�X�kf�� − �X��k − 1/2�f��� . �2�

As a first approach, we estimate the pitch as the fre-
quency that maximizes the global APVD. This can be ex-
pressed using an integral transform as

p = arg max
f

	
0

�

�X�f���Kn�f , f��df�, �3�

where

Kn�f , f�� =
1

2
��f� − f/2� −

1

2
��f� − �n + 1/2�f�

+ �
k=1

n

��f� − kf� − ��f� − �k − 1/2�f� . �4�

Notice that the 1 /n factor was obviated because the argu-
ment that maximizes the integral is invariant to scaling fac-
tors.

The kernel corresponding to a pitch candidate of 190 Hz
and n=9 is shown in Fig. 1. The figure also shows the spec-
trum of a signal having the same pitch. The signal consists of
the vowel /u/ passed through a bandpass filter that removed
the frequencies outside the range 300–3400 Hz, mimicking
telephone speech. Its spectrum exhibits a strong second har-
monic that was presumably boosted by a formant close to

380 Hz.
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In the next sections, we will refine this first approach,
trying to avoid the problem-causing features cited in the In-
troduction. Specifically, we will warp the spectrum, intro-
duce a decaying weighting factor to the harmonics ampli-
tudes, and replace the pulses with a smoother function.

B. Warping of the spectrum2

When we developed SHAPE, we found that using the
square root of the spectrum produced better results than us-
ing the logarithm, square, or raw spectrum. Consequently, we
will use it for SWIPE as well. The reason we believe the
square root of the spectrum produces better results than the
other functions will be postponed until the next section.

C. Weighting of the amplitude of the harmonics

Giving the same weight to all the harmonics amplitudes
may lead to subharmonics of the pitch obtain the same score
as the pitch. For example, if the signal consists of a pure tone
of frequency f Hz and the same weight is applied to all the
harmonic amplitudes, each of the subharmonic pitch candi-
dates f /2, f /3, . . ., and f /n Hz, would have the same score as
f Hz. To avoid this, we explored the use of the exponentially
and harmonically decaying weights shown in Fig. 2. For ex-
ponential decays, a weight of rk−1 was applied to the kth
harmonic amplitude �k=1,2 , . . . ,n, and r=0.5, 0.7, and 0.9�,
and for harmonic decays, a weight of 1 /kp was applied to the
kth harmonic amplitude �k=1,2 , . . . ,n, and p=1 /2, 1 and 2�.
In informal tests, the best results were obtained when using
harmonic decays with p=1 /2. Notice that this decay matches
the decay of the square root of the average spectrum of vow-
els �Fant, 1970�, which was the spectral warping shown to
work best in the previous section. In other words, better pitch
estimates were obtained when computing the inner product
between the square root of the spectrum and a kernel whose
envelope decays as 1 / 
 f , than when computing the inner
products between the spectrum and a kernel whose envelope
decays as 1 / f , for example.

The benefit of using a weighting of the harmonics am-
plitudes of the form 1 / 
k and the square root of the spec-

FIG. 1. Average peak-to-valley-distance �APVD� kernel. The APVD kernel
has positive pulses at multiples of the fundamental and negative pulses in
between. The first and last negative pulses have half the height of the others.
trum probably comes from the fact that when the signal has
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the expected shape of a vowel �i.e., the amplitudes of the
harmonics decay as 1, 1 /2, 1 /3, etc.�, each harmonic con-
tributes to the inner product with a value proportional to its
amplitude. If the spectrum has the aforementioned shape, the
square root of the harmonics amplitudes will decay as 1,
1 / 
2, and 1 / 
3, etc., just like the weights of the harmonics
amplitudes. This will make the terms in the sum of the inner
product decay as 1, 1 /2, 1 /3, etc., and the relative contribu-
tion of each harmonic will be proportional to its amplitude.
Conversely, if we compute the inner product over the raw
spectrum using a weighting of the form 1 /k, the terms of the
sum will be 1, 1 /4, 1 /9, etc., which are not proportional to
the amplitude of the harmonics but to their square. This
would make the contribution of the strongest harmonics too
large and the contribution of the weakest too small.

D. Blurring of the harmonics

Analyzing the spectrum only at harmonic locations is
inconvenient because it does not allow recognizing the pitch
of inharmonic signals. To recognize the pitch of these sig-
nals, we propose the use of smooth weighting functions that
take into account the spectrum not only at the harmonics, but
also in their neighborhood.

In our previous paper �Camacho and Harris, 2007�, it
was shown that the local maxima of the kernel must be
strictly concave �i.e., second derivative strictly positive�.
Consequently, concatenations of positive and negative trun-
cated parabolas, Gaussians, and cosine lobes as shown in
Fig. 3 �positive components with continuous lines and nega-
tive components with dashed lines� were proposed as ker-
nels.

The criterion used to select the truncation point was the
maximization of the smoothness of the concatenation by
making as many derivatives continuous as possible. Even
though smoothness sounds attractive, the main reason for
using this criterion was the uniqueness of the solution for the
Gaussian and the cosine: The truncation point has to be the

FIG. 2. Weighting of the harmonics amplitudes. Exponentially and harmoni-
cally decaying weighting factors of the form rk−1 �r=0.5, 0.7, and 0.9� and
1 /kp �p=1 /2, 1 and 2� were utilized to weight the kth harmonic �k
=1,2 , . . . ,n�. The highlighted curve corresponds to the one that produced
the best results.
inflection point. For the Gaussian, it occurs at one standard
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deviation and it warranties continuous first and second de-
rivatives for the concatenation. For the cosine, it occurs at
the zero crossing and it warranties all-order continuous de-
rivatives �the concatenation of cosine lobes truncated in that
way forms a cosine�. In the case of the parabola, it is not
possible to make a concatenation of positive and negative
parabolas having continuous second and higher order deriva-
tives, so arbitrarily we truncated it at its fixed point ��1,1�.

As it can be suspected from the similarity of the kernels
in Fig. 3, there were no significant differences in perfor-
mance between them. However, we preferred the cosine ker-
nel because of its smoothness and simplicity �it can be ex-
pressed without using concatenations�.

E. Number of harmonics

With respect to the number of harmonics, there are typi-
cally two types of algorithms: those that use a fixed number
of harmonics and those that use as many harmonics as pos-
sible, up to a certain frequency, usually the Nyquist fre-
quency. We explored both possibilities and found that the
best results were obtained when using as many harmonics as
possible, although going beyond 3.3 kHz for speech and
5 kHz for musical instruments did not increase the perfor-
mance significantly. Hence, we will use all available harmon-
ics on SWIPE.

F. Warping of frequency

For the purpose of computing the integral of a function,
we can think of warping the scale as the process of sampling
the function more finely in some regions than others, effec-
tively giving more emphasis to the more finely sampled re-
gions. Since we are computing an inner product to estimate
pitch, it makes sense to sample the spectrum more finely in
the regions that contribute the most to the determination of
pitch. It seems reasonable to assume that these regions are
the ones with the most harmonic energy. In the case of
speech, and assuming that the amplitude of the harmonics
decays as 1 / f , it seems reasonable to sample the spectrum

FIG. 3. Explored kernels. Kernels built from concatenations of truncated
positive �continuous lines� and negative �dashed lines� parabolas, Gaussians,
and cosine lobes were explored. �See the text for details about the selection
of the truncation point.�
more finely in the neighborhood of the fundamental, and
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decrease the granularity as we increase frequency, following
the expected 1 / f pattern. A decrease in granularity should
also be performed below the fundamental because no har-
monic energy is expected in that region. Unfortunately, the
determination of the location of the fundamental is ill-posed,
since that is precisely what we want to determine.

We explored frequency scale transformations of the
form

��f� = C log�1 + f/�� , �5�

where the constant factor C is irrelevant and can be set arbi-
trarily. The explored values of � were 229, 700, and 0 �the
latter in an asymptotical sense�. These transformations cor-
respond to the equivalent rectangular bandwidth �ERB�
�Glasberg and Moore, 1990�, mel, and logarithmic scales,
respectively. �Notice also that the Hertz scale corresponds to
�=�.� We also explored the Bark scale given by the formula
�Traunmüller, 1990�

z�f� = �26.81/�1 + 1960/f�� − 0.53. �6�

To compute the inner product between the spectrum and
the kernel, we sample both of them uniformly in the trans-
formed scale before computing the inner product. The scale
that on average produced the best results on speech was the
ERB scale, which is expressed in a base-10 logarithmic scale
as

ERBs�f� = 21.4 log10�1 + f/229� . �7�

This scale has several desirable characteristics: It approaches
a logarithmic behavior as f increases, tends towards a con-
stant �zero� as f decreases, and the frequency at which the
transition occurs �229 Hz� is close to the mean fundamental
frequency of speech, especially for females �Bagshaw, 1994;
Wang and Lin, 2004; Schwartz and Purves, 2004�.

For musical instruments, the Hertz scale was the one
that produced the best results. An explanation of why this
may be the case will be given in Sec. III D.

G. Window type and size

Most common methods of pitch estimation use a fixed
window size. This makes the width of the main lobe of each
of the spectral components to be fixed as well. This has the
disadvantage of making high pitches more likely to obtain
high scores than low pitches. The reason for this is illustrated
in Fig. 4. Figure 4�a� shows the spectrum of a signal with a
pitch of 500 Hz and the kernel corresponding to that pitch,
and Fig. 4�b� shows the spectrum of a signal with a pitch of
125 Hz and the kernel corresponding to that pitch. The width
of the cosine lobes increases with pitch, but not the width of
the spectral lobes. This causes the overall weight given to the
main spectral lobes to increase as the pitch increases, and to
decrease as the pitch decreases. Actually, below a certain
pitch �125 Hz in this example�, the weight given to the sides
of the main spectral lobes becomes negative �not shown in
the figure�.

One way to solve this problem is to make the spectral
lobes as narrow as possible, but this requires making the

window infinitely large, which is undesirable given the
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changing nature of pitch �signals with constant pitch for eter-
nity do not occur in real life�. Another way to solve the
problem is to try to make the square root of the main spectral
lobes match the cosine lobes for each of the pitch candidates,
and then compute the normalized inner product between
them, defined as

�R��f���f�df

��R�2�f�df�1/2��R�2�f�df�1/2 , �8�

for any two functions ��f� and ��f�, over a region R. Since
the spectrum is non-negative, but not the cosine, the cosine
kernel must be normalized using only its positive part in
order to obtain a normalized inner product close to 1.3

A type of window whose square-root spectrum has a
large similarity with a cosine is the Hann window. A Hann
window of size T �in seconds� is defined as

hT�t� =
1

T
�1 + cos�2�t

T
� �9�

for �t�	1 /2, and 0 otherwise. Its FT is

HT�f� = sinc�Tf� + 1
2sinc�Tf − 1� + 1

2sinc�Tf + 1� , �10�

where the sinc function is defined as

FIG. 5. FT of the Hann window. The FT of the Hann window is a sum of

FIG. 4. Similarity between cosine lobes and square root of main spectral
lobes. �a� High pitch, low similarity. �b� Low pitch, high similarity.
three sinc functions.
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sinc�
� =
sin��
�

�

. �11�

This FT is illustrated in Fig. 5. The width of its main lobe is
4 /T. If we match this width to the width of the cosine lobe,
f /2, where f is the pitch of the candidate �in hertz�, and solve
for T, we will find that the window size must be T=8 / f .

Figure 6 shows the square root of the spectrum of a
Hann window of size T=8 / f and a cosine with period f . The
similarity between the main lobe of the spectrum and the
positive lobe of the cosine is remarkable. They match at five
frequencies: 0, �f /8, and �f /4, with values cos�0�=1,
cos�� /4�=1 / 
2, and cos�� /2�=0, respectively. The normal-
ized inner product between the main lobe of the spectrum
and the positive part of the cosine sampled at 128 equidistant
points is 0.9996, and the normalized inner product computed
over the whole period of the cosine sampled at 256 equidis-
tant points is 0.8896. This reduction in normalized inner
product is caused by the side lobes.

FIG. 6. Similarity between cosine lobe and square root of the spectrum of
the Hann window.
The normalized inner product between the cosine lobe

into hertz, ERBs�·� converts frequency from hertz into ERBs,
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and the main lobe of the square root of the spectrum for
other types of windows is shown in Table I. The width of the
main lobes of the spectrum of these windows is 2k /T, where
k depends on the window type �see Oppenheim et al., 1999�,
and is given in the second column of the table.

The window type that produces the largest normalized
inner product between the square root of the main lobe of the
spectrum and the cosine lobe is the Hann window �0.9996�.
When computed over the whole period of the cosine, there
are other window types that produce a larger normalized in-
ner product. However, most of these windows are larger than
the Hann window, and therefore require more computation.
The only window that has the same value of k as the Hann
window but a larger normalized inner product over the whole
period of the cosine is the Hamming window. However, we
prefer the Hann window because of its simpler formula.

H. SWIPE

Putting all pieces together, we can express the SWIPE

FIG. 7. Normalized SWIPE kernel. The SWIPE kernel consists of a trun-
cated decaying cosine with halved first and last valleys. The kernel is nor-
malized using its positive part.
estimate of the pitch at time t as
p�t� = arg max
f

�0
ERBs�fmax�1/����1/2K�f ,������X�t, f ,������1/2d�

��0
ERBs�fmax�1/�����K+�f ,������2d��1/2��0

ERBs�fmax��X�t, f ,������d��1/2 , �12�

where

K�f , f�� = �cos�2�f�/f� if 3/4 	 f�/f 	 n�f� + 1/4
1
2 cos�2�f�/f� if 1/4 	 f�/f 	 3/4 or n�f� + 1/4 	 f�/f 	 n�f� + 3/4
0 otherwise,

� �13�
X�t, f , f�� = 	
t−4/f

t+4/f

�1 + cos��f�t� − t�/4��x�t��e−j2�f�t�dt�,

�14�

� is frequency in ERBs, ��·� converts frequency from ERBs
K+�·� is the positive part of K�·� �i.e., max�0,K�·���, fmax is
the maximum frequency to be used �typically the Nyquist
frequency, although 5 kHz is enough for most applications�,
n�f�= �fmax / f −3 /4�, and j2=−1.

The normalized kernel corresponding to a candidate
with frequency 190 Hz �5.6 ERBs� is shown in Fig. 7. The
macho and J. G. Harris: Sawtooth waveform inspired pitch estimator

 or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



figure also shows the normalized spectrum of a signal with
the same pitch. It is easy to show that the type of signal for
which the function maximized in Eq. �12� achieves its maxi-
mum is periodic signals whose spectral envelope decays as
1 / f . An example of such type of signal is a sawtooth wave-
form, which is the one that inspired the name of the algo-
rithm. Another type of signal with that property �on average�
is a vowel �Fant, 1970�.

I. SWIPE�

One of the most common mistakes of SWIPE �and other
algorithms� is misestimating the pitch as one of its subhar-
monics. Figure 8 illustrates why this error is common. It
shows the spectrum of a signal whose component frequen-
cies are harmonics of 100 Hz and are of equal amplitude. It

TABLE I. Normalized inner products between the kernel and the square root
of the spectrum of several window types,a computed over the main spectral
lobe and over one period of the cosine around zero. The parameter k deter-
mines the window size T required to produce those normalized inner prod-
ucts, based on the formula T=4k / f , where f is the frequency of the cosine.

Window type k

Normalized inner product

Main spectral lobe Whole cosine period

Bartlett 2 0.9984 0.7959
Bartlett–Hann 2 0.9995 0.8820
Blackman 3 0.9899 0.9570
Blackman–Harris 4 0.9738 0.9689
Bohman 3 0.9926 0.9474
Flattop 5 0.9896 0.9726
Gauss 3.14 0.9633 0.8744
Hamming 2 0.9993 0.9265
Hann 2 0.9996 0.8896
Nuttall 4 0.9718 0.9682
Parzen 4 0.9627 0.9257
Rectangular 1 0.9925 0.5236
Triangular 2 0.9980 0.8820

aThe normalized inner products were computed using 128 equidistant
samples for the main spectral lobe and 256 equidistant samples for the
whole cosine period.

FIG. 8. Kernel corresponding to a subharmonic of the pitch. The figure
shows a signal formed by equal-amplitude harmonics of 100 Hz, and the
kernel corresponding to the 50 Hz candidate. This kernel produces a high
score based only on its even components.
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also shows the kernel corresponding to a candidate of 50 Hz.
Since every multiple of 100 is also a multiple of 50, this
candidate will receive significant credit based only on its
even harmonics. Something similar would occur with the
kernel at 33 Hz �not shown�, but based on its multiples-of-3
harmonics. The phenomenon extends to any subharmonic of
the pitch.

To avoid such situations, we propose to remove from the
kernel its nonprime harmonics, except the first one. We do
this by redefining the kernel as

K�f , f�� = �
i��1��P

Ki�f , f�� , �15�

where P is the set of prime numbers, and

Ki�f , f�� = �cos�2�f�/f� if �f�/f − i� 	 1/4
1
2 cos�2�f�/f� if 1/4 	 �f�/f − i� 	 3/4
0 otherwise.

�
�16�

�Notice that the SWIPE kernel can also be written as in Eqs.
�15� and �16� by including all the harmonics �not only the
first and the primes� in the sum of Eq. �15�.�

This variation of SWIPE in which only the first and
prime harmonics are used is named SWIPE�. The kernel cor-
responding to a pitch candidate of 190 Hz �5.6 ERBs� is
shown in Fig. 9. The numbers on top of the peaks of the
kernel indicate the corresponding harmonic number. With
this approach, no candidate below the pitch will get credit
from more than one of the harmonics of the signal.

J. Reduction of computational cost

Equations �12�–�14� �or Eqs. �12� and �14�–�16�� form a
complete description of the algorithm to estimate pitch in
continuous time. However, in practice, we use digital com-
puters, which require discrete-time and discrete-frequency
versions of these equations. Also, computational power is
usually limited, which implies that arbitrarily large levels of
resolution are unattainable. However, most signals we deal
with are relatively slowly varying, which means that after a
certain point, increments in resolution are unnecessary be-

FIG. 9. Normalized SWIPE� kernel. The SWIPE� kernel has peaks only on
its first and prime harmonics.
cause they only provide redundant information. For many
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applications, computations can be done at a relatively low
resolution, and if higher resolution is required, interpolation
can be used to fill in the gaps. This idea will be exploited in
the following sections.

1. Reduction of the number of Fourier transforms

One of the most costly operations of SWIPE and
SWIPE� is the computation of the �short term� FT in Eq.
�14�. Hence, to reduce computational cost, it is important to
reduce the number of FTs. There are two strategies to
achieve this: reducing the window overlap and sharing FTs
among candidates.

a. Reduction of window overlap. The most common
windows used in signal processing are attenuated towards
zero at the edges. Therefore, it is possible to overlook short
events if they are located at these edges. To avoid this situ-
ation, it is common to use overlapping windows, which in-
crease the coverage of the signal at the cost of an increase in
computation. However, after a certain point, overlapping
windows produce redundant data, making it unnecessary to
go to the limit of sample by sample window shifting.

A study by Doughty and Garner �1947� showed that,
depending on frequency, at least two to four cycles are re-
quired to perceive the pitch of a pure tone. To avoid this
interaction between number of cycles and frequency, we will
assume that a minimum of four cycles are required to detect
the pitch of a pure tone, regardless of its frequency. Further-
more, we extrapolate this result to the type of signals for
which SWIPE produces maximum output: sawtooth wave-
forms. Finally, we assume that the pitched/unpitched deci-
sion threshold is no larger than half the score obtained by a
full length sawtooth waveform ��0.89, according to Table I�.
It can be shown that, under these assumptions, four cycles of
a sawtooth waveform will obtain a score higher than the
threshold as long as the window overlap is at least 50%.

The worst case scenario occurs when the four cycles of
the sawtooth are centered at the middle point between two
consecutive windows. In this scenario, the signal spans over
one-half of each of the windows and the score obtained on
each window is half the score that would be obtained if the
signal would cover the whole window. Shifting the signal to
the left/right necessarily increases the score on the left/right
window, making the detection of the pitch more likely.

b. Use of exclusively power-of-2 window sizes. The use
of the “optimal” window size proposed in Sec. II G requires
that each pitch candidate uses a different window size, which
means that a FT must be computed for each candidate. Fur-
thermore, since the most efficient way to compute a FT is
using a fast Fourier transform �FFT� and this algorithm is
more efficient when using window sizes that are powers of 2
�in samples�, the optimal window sizes may not be appropri-
ate to use a FFT.

To alleviate this problem, we propose to substitute the
optimal window size with the two closest power-of-2 win-
dow sizes, and then linearly combine the scores obtained
using these windows into a single score, based on the dis-
tance between the size of the windows and the optimal win-
dow size, in a logarithmic scale. More precisely, if the opti-

* L+
mal window size in samples is N =2 , where L is an
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integer and 0�	1, the two closest power-of-2 window
sizes are N0=2L and N1=2L+1. Using these sizes, we compute
scores S0 �f� and S1 �f� as in the function maximized in Eq.
�12�, modifying the integration region in Eq. �14� to have a
length corresponding to those sizes. Finally, we combine
these two scores into the single score

S�f� = �1 − �S0�f� + S1�f� . �17�

The intuition behind this formula is that if the optimal win-
dow size is closer to N0 than to N1, S0 �f� will have a larger
contribution towards S �f� than S1 �f�, and vice versa.

Alternatively, we could have used only the score pro-
duced by the closest power-of-2 window size �in a logarith-
mic scale�, but this would have introduced undesirable dis-
continuities in S �f�, as shown in Fig. 10�a�. This figure
shows scores produced by two different window sizes. The
pitch was chosen to match the point where the change of

FIG. 11. Interpolated scores. Circles show scores of candidates separated at
a distance of 1 /8 semitone, squares show interpolated scores produced by an
order-2 polynomial, and diamonds show interpolated scores produced by an
order-4 polynomial.

FIG. 10. Individual and combined scores of candidates between 160 and
280 Hz for a sawtooth waveform with a pitch of 220 Hz. The scores in �a�
were produced using the power-of-2 window size closest to the optimal
window size for each of the candidates. The scores in �b� �crosses and
circles� were produced using the two power-of-2 window sizes closest to the
optimal window size for each of the candidates. The continuous line in �b�
consists of the combination of the scores produced by the two power-of-2
window sizes closest to the optimal window size for each of the candidates,
as determined in Eq. �17�.
macho and J. G. Harris: Sawtooth waveform inspired pitch estimator
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window size occurs. Since the larger window tends to pro-
duce larger scores, the estimated pitch may be shifted
slightly to the left in this case. In Fig. 10�b�, the scores pro-
duced by both windows were combined using Eq. �17� to
produce the continuous solid curve in between.

Besides using a convenient window size for the FFT
computation, the approximation of the optimal window size
using the two closest power-of-2 window sizes has another
advantage that is probably more important: The same FFT
can be shared by several pitch candidates, more precisely, by
all the candidates within an octave of the optimal pitch for
that FFT.

Using this approach, and translating the algorithm to a
frequency components is small, the terms of order 4 and
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discrete-time domain �necessary to compute a FFT�, we can
express the SWIPE estimate of the pitch at the discrete-time
index � as

p��� = arg max
f

�1 − �f��SL�f���, f� + �f�SL�f�+1��, f� ,

�18�

where

�f� = L*�f� − L�f� , �19�

L�f� = �L*�f�� , �20�

L*�f� = log �8f /f� , �21�
2 s
SL��, f� =
�m=0

�ERBs�fmax�/���1/��m���1/2K�f ,��m�����X̂2L��,��m�����1/2

��m=0
�ERBs�fmax�/���1/��m����K+�f ,��m�����2�1/2��m=0

�ERBs�fmax�/����X̂2L��,��m������1/2 , �22�
X̂N��, f�� = I��0, . . . ,N − 1�,XN��,�0, . . . ,N − 1��, f�N/fs� ,

�23�

XN��,
� = �
��=−N/2

N/2−1

�1 + cos�2���� − ��/N��x����e−j2�
��/N,

�24�

fs is the sampling frequency, �� is the ERB scale step size
�0.1 was used in our tests�, and I�� ,� ,�� is an interpolating
function that uses the functional relations �k=F��k� to pre-
dict the value of F���. The other variables, constants, and
functions are defined as before �see Sec. II H�.

2. Reducing the number of spectral integral
transforms

Since the pitch resolution of SWIPE depends on the
granularity of the pitch candidates, to achieve high pitch res-
olution, a large number of pitch candidates are required. To
avoid excessive computational cost, we propose to compute
the score only for certain candidates, and then use interpola-
tion to estimate the score of the others. Since the autocorre-
lation function of a signal is the FT of its power spectrum, it
consists of a sum of cosines that can be approximated around
zero by using a Taylor series expansion with even powers �de
Cheveigné, 2002�. If the signal is periodic, its autocorrelation
function is also periodic, and the shape of the curve around
the pitch period is the same as the shape around zero. This
means that the autocorrelation function around the pitch pe-
riod can be approximated by the Taylor series expansion
around zero after shifting it to the pitch period. If the width
of the spectral lobes is narrow and the energy of the high
higher in the series vanish as the independent variable ap-
proaches the pitch period, and the series can be approxi-
mated using a parabola.

Since SWIPE multiplies a compressed version of the
spectrum by a cosine-based kernel, it could be expected that
a similar argument applies to SWIPE as well. However, there
are two complications: First, the widths of the spectral lobes
produced by SWIPE are not narrow, in fact, they are as wide
as the positive lobes of the cosine; and second, the use of the
square root of the spectrum rather than its energy could make
the contribution of the high frequency components large,
violating the principle of low contribution of high frequency
components.

Nevertheless, parabolic interpolation produces a good fit
to SWIPE’s score in the neighborhood of the maxima, as
shown in Fig. 11. This figure shows in circles the scores
�relative to the maximum� corresponding to the pitch and
two pitch candidates located at a distance of 1 /8 semitones
from the pitch, for a signal consisting of a sawtooth wave-
form. Since the function looks almost symmetric around its
maximum, its Taylor series expansion must contain mostly
even terms. The figure also shows polynomial expansions of
order 2 �squares� and order 4 �diamonds�, which look iden-
tical. Expansions of higher order are not shown, but they
look the same as these two. Therefore, a parabola is good
enough to satisfactorily interpolate the scores in the neigh-
borhood of the maximum for the chosen resolution.

III. EVALUATION

SWIPE and SWIPE� were compared against other algo-
rithms in terms of performance using three speech databases

and a musical instruments database.
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A. Algorithms

The algorithms against which SWIPE and SWIPE� were
compared are the following:

AC-P. This algorithm �Boersma, 1993� computes the au-
tocorrelation of the signal and divides it by the autocorrela-
tion of the window used to analyze the signal. It uses post-
processing to reduce discontinuities in the pitch trace. It is
available with the Praat System at http://
www.fon.hum.uva.nl/praat. The name of the function is ac.

AC-S. This algorithm uses the autocorrelation of the
cubed signal. It is available with the Speech Filing System at
http://www.phon.ucl.ac.uk/resource/sfs. The name of the
function is fxac.

ANAL. This algorithm �Secrest and Doddington, 1983�
uses autocorrelation to estimate the pitch, and dynamic pro-
gramming to remove discontinuities in the pitch trace. It is
available with the Speech Filing System at http://
www.phon.ucl.ac.uk/resource/sfs. The name of the function
is fxanal.

CATE. This algorithm uses a quasiautocorrelation func-
tion of the speech excitation signal to estimate the pitch. We
implemented it based on its original description �Di Martino
and Laprie, 1999�. The dynamic programming component
used to remove discontinuities in the pitch trace was not
implemented.

CC. This algorithm uses cross correlation to estimate the
pitch and postprocessing to remove discontinuities in the
pitch trace. It is available with the Praat System at http://
www.fon.hum.uva.nl/praat. The name of the function is cc.

CEP. This algorithm �Noll, 1967� uses the cepstrum of
the signal and is available with the Speech Filing System at
http://www.phon.ucl.ac.uk/resource/sfs. The name of the
function is fxcep.

ESRPD. This algorithm �Bagshaw, 1993; Medan et al.,
1991� uses a normalized cross correlation to estimate the
pitch, and postprocessing to remove discontinuities in the
pitch trace. It is available with the Festival Speech Filing
System at http://www.cstr.ed.ac.uk/projects/festival. The
name of the function is pda.

RAPT. This algorithm �Secrest and Doddington, 1983�
uses a normalized cross correlation to estimate the pitch, and
dynamic programming to remove discontinuities in the pitch
trace. It is available with the Speech Filing System at http://
www.phon.ucl.ac.uk/resource/sfs. The name of the function
is fxrapt.

SHS. This algorithm �Hermes, 1988� uses subharmonic
summation. It is available with the Praat System at http://
www.fon.hum.uva.nl/praat. The name of the function is shs.

SHR. This algorithm �Sun, 2000� uses the subharmonic-
to-harmonic ratio. It is available at Matlab Central �http://
www.mathworks.com/matlabcentral� under the title “Pitch
Determination Algorithm.” The name of the function is shrp.

TEMPO. This algorithm �Kawahara et al., 1999� uses
the instantaneous frequency of the outputs of a filterbank. It
is available with the STRAIGHT System at its author web
page �http://www.wakayama-u.ac.jp/�kawahara�. The name
of the function is exstraightsource.
YIN. This algorithm �de Cheveigné and Kawahara,
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2002� uses a modified version of the average squared differ-
ence function. It was made available by his author. The name
of the function is yin.

B. Databases

The databases used to test the algorithms were the fol-
lowing.

DVD: disordered voice database. This database contains
657 samples of the sustained vowel “ah” produced by per-
sons with disordered voice. Most of the files have a sampling
rate of 25 kHz, although a few of them �77� have a sampling
rate of 50 kHz. It can be bought from Kay Pentax �http://
www.kayelemetrics.com�.

KPD: Keele pitch database. This speech database was
collected by Plante et al. �1995� at Keele University with the
purpose of evaluating pitch estimation algorithms. It contains
about 8 min of speech spoken by five males and five fe-
males, sampled at 20 kHz. Laryngograph data were recorded
simultaneously with speech and were used to produce esti-
mates of the fundamental frequency.

MIS: musical instruments samples. This database con-
tains more than 150 min of sound produced by 20 different
musical instruments sampled at 44.1 kHz.4 It was collected
at the University of Iowa Electronic Music Studios, directed
by Lawrence Fritts, and is publicly available at http://
theremin.music.uiowa.edu.

PBD: Paul Bagshaw’s database for evaluating pitch de-
termination algorithms. This database contains about 8 min
of speech spoken by one male and one female, sampled at
20 kHz. Laryngograph data were recorded simultaneously
with speech and were used to produce estimates of the fun-
damental frequency. It was collected by Paul Bagshaw at the
University of Edinburg �Bagshaw et al., 1993; Bagshaw,
1994� and is publicly available at http://www.cstr.ed.ac.uk/
research/projects/fda.

C. Methodology

Whenever possible, the algorithms were asked to pro-
duce pitch estimates at every millisecond. The search range
was set to 40–800 Hz for speech and 30–1666 Hz for mu-
sical instruments, and the algorithms were given the freedom
to decide if the sound was pitched or not. To compute the
statistics, we rounded to the closest millisecond the times
associated with each ground truth value and the times asso-
ciated with each pitch estimate produced by the algorithms
that were able to give an output every millisecond, and con-
sidered only the rounded times at which all these algorithms
and the ground truth agreed that the sound was pitched.

Special care was taken to account for misalignments.
Specifically, the pitch estimates were associated with the
time corresponding to the center of their respective analysis
windows, and when the ground truth pitch varied over time
�i.e., for PBD and KPD�, the estimated pitch time series were
shifted in steps of 1 ms within the range �100 ms to find the
best alignment with the ground truth.

The performance measure used to compare the algo-
rithms was the gross error rate �GER�. A gross error occurs

when the estimated pitch is off from the reference pitch by
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more than 20%. At first glance, this margin of error may
seem too large, but considering that most of the error pitch
estimation algorithms produced are octave errors �i.e., halv-
ing or doubling the pitch�, this is a reasonable metric. On the
other hand, this tolerance gives room for dealing with mis-
alignments. The GER measure has been used previously to
test pitch estimators by other researchers �e.g., Bagshaw
et al., 1993; Di Martino and Laprie, 1999; de Cheveigné and
Kawahara, 2002�.

D. Results

Table II shows the GERs for each of the algorithms over
each of the speech databases. The rows and the columns are
sorted by average GER �the best algorithms are at the top
and the more difficult databases are at the right�. The best
algorithm overall is SWIPE�, followed by SHS and SWIPE.
On average, SHS performed better than SWIPE; however,
SHS beat SWIPE only on the disordered voice database, but
not in the normal speech databases, which suggests that
SWIPE works better than SHS on normal speech.

Table III shows the pitch estimation performance as a
function of gender for the two databases for which we had
access to this information: PVD and KPD. On average, error
rates are larger for females than for males.

Table IV shows the GERs for the musical instruments
database. Some of the algorithms were not evaluated on this
database because they did not provide a mechanism to set the
search range, and the range they covered was smaller that the
pitch range spanned by the database. The two algorithms that
performed the best were SWIPE� and SWIPE.

Table V shows the GERs by instrument family. The two
best algorithms are SWIPE� and SWIPE. SWIPE� tends to
perform better than SWIPE, except for the piano, for which
SWIPE produces almost no error. SWIPE� performance on
piano is relatively bad, especially when compared against

TABLE II. GERs obtained for speech and voice databases �PBD, KPD, and
DVD�.a

Algorithm

Gross error �%�

PBD KPD DVD Average

SWIPE� 0.13 0.83 0.63 0.53
SHS 0.15 1.00 1.10 0.75
SWIPE 0.15 0.87 1.70 0.91
RAPT 0.75 1.00 2.40 1.40
TEMPO 0.32 1.90 2.00 1.40
YIN 0.33 1.40 4.50 2.10
SHR 0.69 1.50 5.10 3.50
ESRPD 1.40 3.90 4.60 5.00
CEP 6.10 4.20 14.00 5.90
AC-P 0.73 2.90 16.00 6.70
CATE 2.60 10.00 7.20 6.60
CC 0.48 3.60 5.00 2.40
ANAL 0.83 2.00 35.00 13.00
AC-S 8.80 7.00 40.00 19.00

Average 1.70 3.00 9.90 4.90

aValues computed using two significant digits.
correlation based algorithms. In general, the family for
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which fewer errors were obtained was the brass family
�many algorithms achieved almost perfect performance for
this family�. The family for which more errors were pro-
duced was the strings family playing pizzicato, i.e., by pluck-
ing the strings. Indeed, pizzicato sounds were the ones for
which the performers produced more errors and the ones that
were hardest for us to label �see Appendix�.

Table VI shows the GERs as a function of octave. The
best performance on average was achieved by SWIPE� and
SWIPE.

As a final test, we wanted to validate the choices we
made in Sec. II, i.e., shape of the kernel, warping of the
spectrum, weighting of the harmonics, warping of the fre-
quency scale, and selection of window type and size. For this
purpose, we evaluated SWIPE� replacing every one of its
features with most5 of the alternative features described in
Secs. II B–II G. We varied each of these features, one at a
time, and obtained the results shown in Table VII. The step
sizes used for each of the alternative frequency scales and the
actual number of steps is shown in Table VIII. The step sizes

TABLE III. GERs by gender for speech databases �PVD and KPD�.a

Algorithm

Gross error �%�

Male Female Average

SWIPE� 0.36 2.40 1.4
SHS 0.55 2.50 1.5
SWIPE 0.49 2.70 1.6
RAPT 0.42 2.90 1.7
TEMPO 0.67 3.10 1.9
SHR 0.61 3.60 2.1
YIN 1.10 3.20 2.2
AC-P 2.10 3.60 2.9
CEP 1.80 4.20 3.0
CC 2.40 4.50 3.5
ESRPD 3.10 3.90 3.5
ANAL 1.30 5.90 3.6
AC-S 3.20 10.00 6.6
CATE 11.00 4.20 7.6

Average 2.10 4.00 3.1

aValues computed using two significant digits.

TABLE IV. GERs for musical instruments �MIS database�.a

Algorithm

Gross error �%�

Underestimates Overestimates Total

SWIPE� 1.00 0.10 1.10
SWIPE 1.30 0.02 1.30
SHS 0.88 1.00 1.90
TEMPO 0.29 1.70 2.00
YIN 1.60 0.83 2.40
AC-P 3.20 0.00 3.20
CC 3.60 0.00 3.60
ESRPD 5.30 1.50 6.80
SHR 15.00 5.30 20.00

Average 3.60 1.20 4.70

a
Values computed using two significant digits.
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were empirically chosen in a pilot test by decreasing their
magnitude until no significant improvement in performance
was observed. In all cases, the number of steps was forced to
be at least as large as the number of steps used on the ERB
scale.

Overall, no alternative feature made SWIPE� improve
neither consistently nor on average over all the databases,
although some of the alternative features performed as well
or almost as well as the proposed features, specifically, the
parabolic and Gaussian kernels, and all window types. How-
ever, there were some features that made SWIPE� improve
significantly �by more than 10% relative to the GER� on the
musical instruments database, specifically, the flat kernel en-
velope, and the Hertz, Barks, and mel scales. Inspection of
the spectrum of the signals on which SWIPE� improved
showed that the spectrum was far from having the expected
1 / f envelope. Instead, the spectrum tended to increase with
harmonic number at low order harmonics, and then de-
creased after a relatively high order harmonic. This is con-

TABLE V. GERs by instrument family �MIS databa

Algorithm Brassb
Bowed
stringsc Wo

SWIPE� 0.01 0.19
SWIPE 0.00 0.22
TEMPO 0.00 2.60
YIN 0.03 1.10
SHS 0.02 1.50
AC-P 0.03 0.56
CC 0.07 0.83
ESRPD 4.00 6.90
SHR 22.00 25.00

Average 2.90 4.30

aValues computed using two significant digits.
bFrench horn, bass/tenor trombones, trumpet, and tub
cDouble bass, cello, viola, and violin.
dFlute, bass/alto flutes, bass/Bb/Eb clarinets, and alto
eDouble bass and violin.

TABLE VI. GERs for musical instruments by octave

Algorithm

46.2 Hz
+ /−1 /2

oct.

92.5 Hz
+ /−1 /2

oct.

185 Hz
+ /−1 /2

oct.

SWIPE� 1.20 1.00 2.30
SWIPE 0.08 1.20 3.00
YIN 3.20 0.95 5.30
AC-P 0.24 2.00 7.80
SHS 7.80 2.60 3.20
CC 0.26 2.60 8.20
TEMPO 15.00 2.80 2.00
ESRPD 7.90 2.60 4.80
SHR 37.00 0.60 1.80

Average 8.10 1.80 4.30

a
Values computed using two significant digits.
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sistent with the improvement produced by the flat envelope,
which gives relatively more weight to high order harmonics
than the 1 / f envelope does. It is also consistent with the
improvement produced by the Hertz and mel scales, which
give a relatively better sampling of the high frequencies
compared to the ERB scale �i.e., the transition from linear to
logarithmic behavior in Eq. �5� occurs at larger values of ��.
Such statement is hard to make for the Bark scale since Eqs.
�5� and �6� are not directly comparable. However, the GERs
of Table VII suggest that the Bark scale behaves as being
between the mel and the Hertz scales, probably because its
frequency scaling factor �1960� is between the frequency
scaling factors of the mel and Hertz scales �700 and infinity,
respectively�. Finally, the last row of Table VII shows the
results of combining the flat envelope and the Hertz scale.6

The combination of these features made SWIPE� improve
even more on the musical instruments database, but also
worsen on the speech databases.

The discussion in the previous paragraph suggests that

ross error �%�

ndsd Piano
Plucked
stringse Average

0.14 2.20 8.80 2.30
0.23 0.02 11.00 2.30
1.40 7.30 4.00 3.10
1.50 0.36 14.00 3.40
0.72 12.00 8.10 4.50
0.80 0.36 26.00 5.60
1.00 0.36 28.00 6.00
7.10 6.00 11.00 7.00
8.00 26.00 15.00 25.00

5.60 6.10 14.00 6.60

ano saxophones.

S database�.a

oss error �%�

370 Hz
+ /−1 /2

oct.

740 Hz
+ /−1 /2

oct.

1480 Hz
+ /−1 /2

oct. Average

0.89 0.13 0.29 0.97
1.00 0.25 0.38 0.99
1.80 0.69 0.96 2.20
2.50 0.71 0.30 2.30
1.20 0.23 0.14 2.50
2.70 0.93 0.40 2.50
1.10 0.52 0.31 3.60
4.20 12.00 32.00 11.00

27.00 70.00 81.00 36.00

4.70 9.50 13.00 6.90
se�.a

G

odwi

3

a.

/sopr
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SWIPE and SWIPE� would benefit from preprocessing the
signal with an auditory model, as in the work by Klapuri
�2008�. Klapuri �2008� showed that preprocessing the signal
with a gammatonelike filterbank, followed by a half-wave
rectifier, a compressive function, and a low pass filter, tend to
produce low order harmonics in each of the outputs of the
system, even in the outputs that came from filters that re-
sponded only to high order harmonics. This means that such
preprocessing would boost �or make appear� weak �or miss-
ing� low order harmonics, making the signal more suitable
for analysis with SWIPE or SWIPE�. However, this claim
needs further validation.

TABLE VII. GERs of variations of SWIPE� on PBD

Variation PBD

Original 0.13
Flat envelope 0.16
Raw spectrum and 1 / f envelopeb 0.30
Squared spectrum and 1 / f2 envelopeb 12.00
Pulsed kernel 0.21
Parabolic kernel 0.13
Gaussian kernel 0.13
Hertz scalec 0.23
Bark scalec 0.18
Mel scalec 0.16
Logarithmic scalec 0.14
Fixed window sized 0.15
Hamming window �k=2�e 0.13
Blackman window �k=3�e 0.14
Gaussian window �k=3.14�e 0.13
Blackman-Harris window �k=4�e 0.15
Flat envelope and Hertz scalef 0.49

aValues computed using two significant digits.
bThe use of the raw or squared spectrum implies the
respectively, to match the spectral envelope of a saw
cSpectrum was computed using FFTs and was inter/e
Table VIII for step size�.
dThe power-of-2 window size whose optimal pitch w
used in each case �1024 for the speech databases and
eWindow type was selected among all the window t
square root produced the largest normalized inner pr
around zero �see Table I�.
fThe spectral analysis was limited to the range 0–5

TABLE VIII. Step sizes and number of steps used to
databases. The range used to sample the spectrum w
pitch and upper bounded by the frequency specified in
has two columns because it contains files sampled at

Scale Step size
MIS

�5 kHz�

ERBs 1 /10 288
Bark 1 /20 384
Mel 5 471
Logarithmic 1 /96 octave 901
Hertz 5 1000
J. Acoust. Soc. Am., Vol. 124, No. 3, September 2008 A. Camacho
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IV. SUMMARY AND CONCLUSIONS

SWIPE estimates the pitch as the fundamental frequency
of the sawtooth waveform whose spectrum best matches the
spectrum of the input signal. The schematic description of
the algorithm is the following.

�1� For each pitch candidate f within a pitch range fmin

− fmax, compute its score as follows:
�a� Compute the square root of the spectrum of the signal.
�b� Normalize the square root of the spectrum and apply

an integral transform using a normalized cosine ker-
nel whose envelope decays as 1 / 
 f .

D, DVD, and MIS databases.a

Gross error �%�

KPD DVD MIS Average

0.83 0.63 1.10 0.67
1.00 1.40 0.60 0.79
2.20 1.70 10.00 3.60

14.00 9.70 22.00 14.00
0.84 3.00 2.60 1.70
0.83 0.62 1.10 0.67
0.83 0.63 1.10 0.67
1.70 1.40 0.37 0.93
1.00 0.90 0.61 0.67
0.97 0.88 0.67 0.67
1.10 0.89 2.30 1.10
0.77 1.70 9.10 2.90
0.80 0.64 1.20 0.69
0.80 0.74 1.20 0.72
0.83 0.63 1.10 0.67
0.76 0.77 1.20 0.72
5.00 2.30 0.17 2.00

of a kernel whose envelope decays as 1 / f or 1 / f2,
waveform.

olated to equidistant steps in the specified scale �see

sest to the geometric mean pitch of the database was
for the musical instruments database�.

with that value of k for having the spectrum whose
between its main lobe and one period of the cosine

see text for details�.

le the spectrum for each of the frequency scales and
wer bounded by one-quarter of the lowest expected
nthesis �the Nyquist frequency on each case�. �DVD
different sampling rates.�

Number of steps

PBD & KPD
�10 kHz�

DVD
�12.5 kHz�

DVD
�25 kHz�

350 370 434
446 461 495
612 659 809
957 988 1084

2000 2500 5000
, KP

use
tooth
xtrap

as clo
256

ypes
oduct

kHz �
samp
as lo
pare
two
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�2� Estimate the pitch as the highest score candidate.

An implicit objective of the algorithm is to find the fre-
quency for which the average peak-to-valley distance at its
harmonics is maximized. To achieve this, the kernel is set to
zero below the first negative lobe and above the last negative
lobe, and to avoid bias, the magnitude of these two lobes is
halved. To make the contribution of each harmonic of the
sawtooth waveform proportional to its amplitude, the square
root of the spectrum is taken before applying the integral
transform. To make the kernel match the normalized square-
root spectrum of the sawtooth waveform, a 1 / 
 f envelope is
applied to the kernel, which is normalized using only its
positive part, and the spectrum is computed using a window
size that makes the width of the main spectral lobes match
the width of the lobes of the kernel.

Several techniques are applied to reduce computational
cost. First, the optimal window size is replaced with the two
closest power-of-2 window sizes, for which it is more effi-
cient to compute a FFT, and the scores are appropriately
combined to produce a single score. This approach has the
extra advantage of allowing a FFT to be shared by several
pitch candidates. Second, the scores are computed using a
coarse resolution and then fine-tuned using parabolic inter-
polation. Third, the window overlap is minimized while al-
lowing the pitch of a signal as short as four cycles to be
recognized. Last, the inner product between the kernel and
the square root of the spectrum is computed on the ERB
frequency scale, since this scale emphasizes the regions
where most of the spectral energy is concentrated. This last
technique not only reduces the computational cost but also
improves the performance �as shown in the tests�.

SWIPE�, a variation of SWIPE, uses only the first and
prime harmonics of the signal, which largely decreases the
scores of subharmonics of the pitch, significantly reducing
the chances of estimating the pitch as one of its subharmon-
ics.

SWIPE and SWIPE� were tested using speech and mu-
sical instruments databases and their performance was com-
pared against 12 other algorithms, which have been cited in
literature and for which free implementations exist. SWIPE�
was shown to outperform all the algorithms on all the data-
bases. SWIPE was ranked second in the normal speech and
musical instruments databases, and was ranked third in the
disordered speech database.

APPENDIX: EXTRA DETAILS OF THE EVALUATION

1. Disordered voice database

The fundamental frequency estimates included in the
disordered voice database were not used as ground truth. The
reason was that we wanted to estimate pitch, and fundamen-
tal frequency does not always correspond to pitch, as men-
tioned in the Introduction.

Since this database consisted of sustained vowels and
most of them had a relatively stable pitch, we used a subject
with vast experience in music transcription �the first author�
to label the samples with their pitch, by matching them to the

closest note playing sawtooth waveforms on an electronic
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keyboard. Assuming that he correctly chose one of the two
closest notes, this procedure should introduce an error no
larger than 6% �one semitone�, which is smaller than the
20% necessary to produce a gross error �see its definition in
Sec. III C�.

There are some samples in this database for which the
pitch spans a perfect fourth or more �i.e., the highest pitch is
more than 33% higher than the lowest pitch�. Since this
range is relatively large compare to the permissible error
��20% �, these samples were excluded. Only samples for
which the range did not span more than a major third �i.e.,
the highest pitch does not exceed the lowest pitch by more
than 26%� were preserved, and they were assigned the pitch
of the note corresponding to the median of the range. If the
median was between two notes, the pitch of any of them was
assigned to the sample. This should introduce an error no
larger than two semitones �12%�, which is about half the
maximum permissible error of 20%. There were 30 samples
for which the subject could not confidently perceive pitch;
hence, those samples were also excluded.

The GERs on this database were first computed per
sample �vowel�, and then averaged over the samples. Since
the ground truth data were based on the perception of only
one listener, it could be argued that these data have low
validity. To alleviate this, we excluded the samples for which
the minimum GER was larger than 50%.

2. Musical instruments database

The files were downsampled from 44.1 to 10 kHz in or-
der to reduce computational cost. No noticeable change of
pitch was perceived by doing this, even for the highest pitch
sounds.

The files were labeled assuming that their content was a
chromatic scale. However, some of the intervals were impre-
cise in some of the files, leading to accumulated errors that
exceeded one semitone, and consequently to wrong labels.
This situation was especially common among string instru-
ments, especially when playing pizzicato. To correct this
situation, the first author listened to the files and relabeled
them using an electronic keyboard as reference. This proce-
dure introduced repeated file names, which were removed by
keeping only the sounds whose pitch was closest to the tar-
get. When the conflicting files had notes whose pitches were
equally close to the target, the file with the best sound quality
was preserved. This removal of files was done to avoid the
overhead of having to add extra symbols to the file names to
allow for repetitions, which would have complicated the gen-
eration of scripts to test the algorithms. Since the process of
manually correcting the names of the notes was very tedious,
especially for pizzicato sounds, only the labels of bass and
violin pizzicato files were fixed, and the cello and viola piz-
zicato sounds were excluded from the evaluation.

The commands issued for each of the algorithms were
the following.

AC-P. To pitch �ac�…0.001 30 15 no 0.03 0.45 0.01 0.35
0.14 1666.

CC. To Pitch �cc�…0.001 30 15 no 0.03 0.45 0.01 0.35

0.14 1666.
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ESRPD. pda input�file -o output�file -P -d 1 -shift 0.001
-length 0.0384 -fmax 1666 -fmin 30 -n 0 -m 0.

SHS. To pitch �shs�… 0.001 30 15 5000 15 0.84 1666
48.

SHR. �t ,p�=shrp�x, fs, �30 1666� ,40,1 ,0.4,5000,0 ,0�.
SWIPE�. �p,t��swipep�x,fs, �30 1666�, 0.001, 1/96, 0.1,-

Inf�.
YIN. p .minf0=30; p .maxf0=1666; p.hop=10; p.sr

=10000; r=yin�x,p�.
Since the range 30–1666 Hz was too large for the

Speech Filing System algorithms �AC-S, ANAL, CEP, and
RAPT�, they were not evaluated on this database.

The GERs on this database were first computed per
sample �i.e., note� and then averaged over the samples. How-
ever, there were some samples for which agreement on exis-
tence of pitch among the algorithms existed only at very few
instants of time �only one in some cases�. To avoid giving
too much emphasis to these few instants, only samples in
which the algorithms agreed that pitch existed in more than
50% of the time were used in the statistics.

3. Speech databases „KPD and PBD…

The commands issued for each of the algorithms were
the following7

AC-P. To pitch �ac�…0.001 40 15 no 0.03 0.45 0.01 0.35
0.14 800.

AC-S. fxac input�file.
ANAL. fxanal input�file.
CC. To pitch �cc�…0.001 40 15 no 0.03 0.45 0.01 0.35

0.14 800.
CEP. fxcep input�file.
ESRPD. pda input�file -o output�file -L -d 1 -shift 0.001

-length 0.0384 -fmax 800 -fmin 40 -lpfilter 600.
RAPT. fxrapt input�file.
SHS. To pitch �shs�…0.001 40 15 1250 15 0.84 800 48.
SHR. �t ,p�=shrp�x, fs, �40 800� ,40,1 ,0.4,1250,0 ,0�.
SWIPE. �p,t��swipe�x,fs,�40 800�, 0.001, 1/96,

0.1,-Inf�.
SWIPE�. �p,t��swipep�x,fs,�40 800�, 0.001, 1/96, 0.1,

-Inf�.
TEMPO. f0raw=exstraightsource�x, fs�.
YIN. p .minf0=40; p .maxf0=800; p .hop=20; p .sr=fs;

r=yin�x,p�.

1This assertion can be inferred from the analysis by Camacho and Harris
�2007�.

2In this work, we will make use of the magnitude of the spectrum but not
its phase. Hence, to abbreviate, the words magnitude of will be omitted,
and whenever the word spectrum is found, it should be understood as
magnitude of the spectrum.

3A normalized inner product equal to 1 is unattainable since side lobes will
inevitably appear in the same region as the negative part of the cosine.

4It was downsampled to 10 kHz in our evaluation to save computational
cost �see Appendix for details�.

5The logarithm of the spectrum was not evaluated because it can be nega-
tive, which would make the normalization in Eq. �12� nonsense. Also, only
the window types with the largest normalized inner product between the
kernel and the square root of the spectrum evaluated over the whole period
of the cosine for each value of k in Table I were evaluated. The flattop
window was left out because its high value of k made its computational
cost too high for our evaluation.

6
For this test, the spectral analysis was limited to 5 kHz in all databases.
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This was done to discard the possibility that the use of a higher upper limit
of frequency for speech �10–25 kHz� than for musical instruments
�5 kHz� may have had an effect on the performance divergence �i.e., in-
crease of performance on musical instruments but decrease of perfor-
mance on speech� occurred in the tests where the flat envelope and the
Hertz scales were evaluated separately.

7The command for CATE is not reported because we used our own imple-
mentation of the algorithm.
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