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An algorithm is presented for the estimation of the fundamental frequelRgy ¢f speech or
musical sounds. It is based on the well-known autocorrelation method with a number of
modifications that combine to prevent errors. The algorithm has several desirable features. Error
rates are about three times lower than the best competing methods, as evaluated over a database of
speech recorded together with a laryngograph signal. There is no upper limit on the frequency
search range, so the algorithm is suited for high-pitched voices and music. The algorithm is
relatively simple and may be implemented efficiently and with low latency, and it involves few
parameters that must be tuned. It is based on a signal neigbdic signal that may be extended

in several ways to handle various forms of aperiodicity that occur in particular applications. Finally,
interesting parallels may be drawn with models of auditory processing20@2 Acoustical Society

of America. [DOI: 10.1121/1.1458024

PACS numbers: 43.72.Ar, 43.75.Yy, 43.70.3t, 43.66[BOS]

I. INTRODUCTION defined as the rate of vibration of the vocal folds. Periodic
vibration at the glottis may produce speech that is less per-
The fundamental frequencyFf) of a periodic signal is  fectly periodic because of movements of the vocal tract that
the inverse of its period, which may be defined as the smallfilters the glottal source waveform. However, glottal vibra-
est positive member of the infinite set of time shifts thattion itself may also show aperiodicities, such as changes in
leave the signal invariant. This definition applies strictly only amplitude, rate or glottal waveform shaffer example, the
to a perfectly periodic signal, an uninteresting objeSup-  duty cycle of open and closed phases intervals where the
posing one exisjshecause it cannot be switched on or off or yibration seems to reflect several superimposed periodicities
modulated in any way without losing its perfect periodicity. (diplophony, or where glottal pulses occur without an obvi-
Interesting signals such as speech or music depart from pgus regularity in time or amplitudéglottalizations, vocal
riodicity in several ways, and the art of fundamental fre-creak or fl’}) (Hedelin and Huber, 1990These factors con-
quency estimation is to deal with them in a useful and conspire to make the task of obtaining a useful estimate of
sistent way. speechF rather difficult. Fy estimation is a topic that con-
The subjective pitch of a sound usually depends on itsinyes to attract much effort and ingenuity, despite the many
fundamental frequency, but there are exceptions. Soundgethods that have been proposed. The most comprehensive
may be periodic yet “outside the existence region” of pitch review is that of Hesg1983, updated by Hes$1992 or
(Ritsma, 1962; Pressnitzet al., 2001). Conversely, a sound Hermes(1993. Examples of recent approaches are instanta-
may not be periodic, but yet evoke a pittYiller and Tay-  neous frequency methodabe et al, 1995; Kawaharat al,
lor, 1948; Yost, 1995 However, over a wide range pitch and 19993, statistical learning and neural networkBarnard
period are in a one-to-one relation, to the degree that thgt al, 1991; Rodet and Doval, 1992; Doval, 1994nd au-
word “pitch” is often used in the place dfy, andF, esti-  gitory models(Duifhuis et al, 1982; de Cheveignel997),
mation methods are often referred to as “pitch detection alyt there are many others.
gorithms,” or PDA (Hess, 1988 Modern pitch perception Supposing that it can be reliably estimatég,is useful
mOde|S assume that pltCh iS derived either from the periodfor a W|de range Of app”cations_ SpeeEB Variations con-
|C|ty of neural pattel’ns in the time doma!ihick“der, 1951, tribute to prosody' and in tonal |anguages they he'p distin-
Moore, 1997; Meddis and HeWItt, 1991; Cariani and Del-gUiSh lexical Categories_ Attempts to LE@ln Speech recog-
gutte, 1996, or else from the harmonic pattern of partials pition systems have met with mitigated success, in part
resolved by the cochlea in the frequency dom@oldstein,  pecause of the limited reliability of estimation algorithms.
1973; Wightman, 1973; Terhardt, 1974Both processes several musical applications neEg estimation, such as au-
yield the fundamental frequency or its inverse, the period. tomatic score transcription or real-time interactive systems,
Some applications give foF, a different definition, pyt here again the imperfect reliability of available methods
closer to their purposes. For voiced speeb,is usually s an obstacleF, is a useful ingredient for a variety of signal
processing methods, for exampke,-dependent spectral en-
3portions of this work were presented at the 2001 ASA Spring Meeting anc}/elope estlr_natl_oniKawa_haraet al, 1999, Fma”Y’ a f.alrly
the 2001 Eurospeech conference. recent application oF is as metadata for multimedia con-
YElectronic mail: cheveign@ircam.fr tent indexing.
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FIG. 2. F, estimation error rates as a function of the slope of the envelope

100 — of the ACF, quantified by its intercept with the abscissa. The dotted line
l\ [\ [\ [ represents errors for which tHg, estimate was too high, the dashed line

those for which it was too low, and the full line their sum. Triangles at the

0
right represent error rates for ACF calculated as in @&y( 7,a,=). These
-100 rates were measured over a subset of the database used in Sec. Ill.
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100 wherer(7) is the autocorrelation function of lagcalculated

50 + {\ I\ i A AaaA at time indext, andW is the integration window size. This

. V VVVVv o function is illustrated in Fig. (b) for the signal plotted in
~50 \l \I \/ V \I \l V Fig. 1(a). It is common in signal processing to use a slightly
-100 | , , , | different definition:
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FIG. 1. (a) Example of a speech waveforrth) Autocorrelation function ) ) ) ) ) o )
(ACF) calculated from the waveform ifa) according to Eq(1). (c) Same, Here the integration window size shrinks with increasing
calculated according to E@2). The envelope of this function is tapered to yglues ofr, with the result that the envelope of the function
zero because of the smaller number of terms in the summation at larger : . .
The horizontal arrows symbolize the search range for the period. decreas,'e_s, asa functlon of Iag as |Ilgstrateq n F‘ig) The
two definitions give the same result if the signal is zero out-

o ) side[t+1, t+W], but differ otherwise. Except where noted,
. The present article introduces a method oy estima- this article assumes the first definitiof@lso known as
tion that produces fewer errors than other well-known meth~ Jqified autocorrelation.” “covariance.” or “Cross-

ods. The name YIN(from “yin" and "yang” of oriental ¢ qqrejation,” Rabiner and Shafer, 1978; Huagigal, 2001).
philosophy aII_udes to _th_e interplay k_Jetwe_en gutocor_relanon In response to a periodic signal, the ACF shows peaks at
and cancellation that it involves. This article is the first of Amultiples of the period. The “autocorrelation method”

series of two, of which the seconKawaharaetal, in  choses the highest non-zero-lag peak by exhaustive search
preparatlom is also devoted to fundamental frequency esti-ihin a range of lagghorizontal arrows in Fig. )1 Obvi-
mation. ously if the lower limit is too close to zero, the algorithm
may erroneously choose the zero-lag peak. Conversely, if the
Il. THE METHOD higher limit is large enough, it may erroneously choose a

higher-order peak. The definition of Efl) is prone to the

This section presents the method step by step to providgacond problem, and that of E@) to the first(all the more
insight as to what makes it effective. The classic autocorrezg 55 the window sizéV is smal).
lation algorithm is presented first, its error mechanisms are 14 eyaluate the effect of a tapered ACF envelope on

analyzed, and then a series of improvements are introducgs,or rates. the function calculated as in ED). was multi-
to reduce error rates. Error rates are measured at each stgppg by a negative ramp to simulate the result of E2).

over a small database for illustration purposes. Fuller evalugith a window sizew= T

ation is proposed in Sec. lll. _
() (1= 7/Tma  f T<Tha

(=1, 3

A. Step 1: The autocorrelation method , otherwise.

The autocorrelation functiofACF) of a discrete signal Error rates were measured on a small database of sgeeeh
X; may be defined as Sec. Il for detail$ and plotted in Fig. 2 as a function of
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TABLE |. Gross error rates for the simple unbiased autocorrelation method

(step 2, and for the cumulated steps described in the text. These rates were 400 (a)
measured over a subset of the database used in Sec. lll. Integration window 300 —
size was 25 ms, window shift was one sample, search range was 40 to 800
Hz, and thresholdstep 4 was 0.1. 200 -
Version Gross erro(%) 100 —
Step 2 1.95
Step 3 1.69
Step 4 0.78
Step 5 0.77
Step 6 0.50

Tmax- 1N€ parameter,,, allows the algorithm to be biased
to favor one form of error at the expense of the other, with a
minimum of total error for intermediate values. Using Ez).
rather than Eq(1) introduces a natural bias that can be tuned
by adjusting W. However, changing the window size has I | I I I
other effects, and one can argue that a bias of this sort, if 0 100 200 300 400 500
useful, should be applied explicitly rather than implicitly. lag {samples)
This is one reason to prefer the definition of Ef). FIG. 3. (a) Difference function calculated for the speech signal of Fig).1
The autocorrelation method compares the signal to it¢b) Cumulative mean normalized d_iffere_nce fur_)ction. Note that the_ function
shifted self. In that sense it is related to the AMDE methodstarts at 1 rather than 0 and remains high until the dip at the period.
(average magnitude difference function, Regsal, 1974;
Ney, 1982 that performs its comparison using differencesThe same is true after taking the square and averaging over a
rather than products, and more generally to time-domaiRyindow:
methods that measure intervals between events in time w
(Hess, 1988 The ACF is the Fourier transform of the power 2 (X —X: 1 1)2=0 5)
spectrum, and can be seen as measuring the regular spacing ;51 " =T '
of harmonics within that spectrum. The cepstrum method ) )
(Noll, 1967) replaces the power spectrum by the log magni-CONnVversely, an unknown period may be found by forming
tude spectrum and thus puts less weight on high-amplitudg‘e difference function:
parts of the spectrurtparticularly near the first formant that W
often dominates the AQFSimilar “spectral whitening” ef- di(7)= E (xj—xH,)z, (6)
fects can be obtained by linear predictive inverse filtering or =1
center-clipping(Rabiner and Schafer, 1918r by splitting  and searching for the values effor which the function is
the signal over a bank of filters, calculating ACFs within zero. There is an infinite set of such values, all multiples of
each channel, and adding the results after amplitude normaghe period. The difference function calculated from the signal
ization (de Cheveignel199J). Auditory models based on au- in Fig. 1(a) is illustrated in Fig. 8a). The squared sum may
tocorrelation are currently one of the more popular ways tthe expanded and the function expressed in terms of the ACF:
explain pitch perceptioftiMeddis and Hewitt, 1991; Cariani
and Delgutts, 1096 ‘ di(7) =1 (0)+ 1y (0) = 2r (7). @)
Despite its appeal and many efforts to improve its per-The first two terms are energy terms. Were they constant, the
formance, the autocorrelation meth@hd other methods for  difference functiond,(7) would vary as the opposite of
that matter makes too many errors for many applications.r,(7), and searching for a minimum of one or the maximum
The following steps are designed to reduce error rates. Thef the other would give the same result. However, the second
first row of Table | gives the gross error rgtefined in Sec. energy term also varies with, implying that maxima of
[l and measured over a subset of the database used in thg{r) and minima ofd,(7) may sometimes not coincide. In-
section of the basic autocorrelation method based on(En. deed, the error rate fell to 1.95% for the difference function
without bias. The next rows are rates for a succession ofrom 10.0% for unbiased autocorrelati¢fable |).
improvements described in the next paragraphs. These num- The magnitude of this decrease in error rate may come
bers are given for didactic purposes; a more formal evaluaas a surprise. An explanation is that the ACF implemented

tion is reported in Sec. Ill. according to Eq(1) is quite sensitive to amplitude changes.
As pointed out by Hes&1983, p. 355 an increase in signal
B. Step 2: Difference function amplitude with time causes ACF peak amplitudes to grow

with lag rather than remain constant as in Figb)1 This
encourages the algorithm to choose a higher-order peak and
make a “too low” error (an amplitude decrease has the op-
Xi— X+ 7=0, Vt. (4)  posite effect The difference function is immune to this par-

We start by modeling the signg| as a periodic function
with period T, by definition invariant for a time shift of:
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ticular problem, as amplitude changes cause period-to-periggrevious step implemented the word “positiyeThe thresh-
dissimilarity to increase with lag in all cases. Hess points oubld determines the list of candidates admitted to the set, and
that Eq.(2) produces a function that is less sensitive to am-can be interpreted as the proportion of aperiodic power tol-
plitude changdEq. (A1) also has this propertyHowever, erated within a “periodic” signal. To see this, consider the
using d(7) has the additional appeal that this function isidentity:

more closely grounded in the signal model of E4), and
paves the way for the next two error-reduction steps, the first
of which deals with “too high” errors and the second with Taking the average over a window and dividing by 4,
“too low” errors. t+W

U2W) > (+xE )
j=t+1

202+ X2, 1) = X+ Xy 1) 2+ (X —Xei 1) 2 9)

C. Step 3: Cumulative mean normalized difference
function W

_ VY
The difference function of Fig. (@) is zero at zero lag _1/(4W)j:t2+1 (X +Xj47)°+ 1(4W)

and often nonzero at the period because of imperfect period-
icity. Unless a lower limit is set on the search range, the 3 5
algorithm must choose the zero-lag dip instead of the period X (X =Xj41)" (10

j=t+1
dip and the method must fail. Even if a limit is set, a strong ] ] .
resonance at the first formaff1) might produce a series of The left-hand side approximates the power of the signal. The

secondary dips, one of which might be deeper than the petyvo terms on the right-hand side, both positive, constitute a
riod dip. A lower limit on the search range is not a satisfac-Partition of this power. The second is zero if the signal is
tory way of avoiding this problem because the ranges of FPeriodic with periodT, and is unaffected by adding or sub-
andF, are known to overlap. tracting periodic components at that period. It can be inter-
The solution we propose is to replace the differencePreted as the “aperiodic power” component of the signal
function by the “cumulative mean normalized difference POWer. With7=T the numerator of E¢8) is proportional to

t+W

function:” aperiodic power whereas its denominator, average(af
) for 7 between 0 andr, is approximately twice the signal
1, if 7=0, power. Thus,d’(T) is proportional to the aperiodic/total
d/(7)= 4 _ _ (8)  power ratio. A candidaté is accepted in the set if this ratio
di(7) (1/7)121 di(j)| otherwise. is below threshold. We'll see later on that the exact value of

this threshold does not critically affect error rates.
This new function is obtained by dividing each value of the
old b_y its average over shorter-lag values. It differ_s fromE_ Step 5: Parabolic interpolation
d(7) in that it starts at 1 rather than 0, tends to remain large
at low lags, and drops below 1 only whetér) falls below The previous steps work as advertised if the period is a
averag€g Fig. 3(b)]. Replacingd by d’ reduces “too high”  multiple of the sampling period. If not, the estimate may be
errors, as reflected by an error rate of 1.69#stead of incorrect by up to half the sampling period. Worse, the larger
1.95%. A second benefit is to do away with the upper fre-value ofd’(7) sampled away from the dip may interfere
quency limit of the search range, no longer needed to avoiwith the process that chooses among dips, thus causing a
the zero-lag dip. A third benefit is to normalize the function gross error.
for the next error-reduction step. A solution to this problem is parabolic interpolation.
Each local minimum ofl’ (7) and its immediate neighbors is
fit by a parabola, and the ordinate of the interpolated mini-
mum is used in the dip-selection process. The abscissa of the
It easily happens that one of the higher-order dips of theselected minimum then serves as a period estimate. Actually,
difference functior{Fig. 3(b)] is deeper than the period dip. one finds that the estimate obtained in this way is slightly
If it falls within the search range, the result is a subharmonidiased. To avoid this bias, the abscissa of the corresponding
error, sometimes called “octave errofimproperly because minimum of theraw difference functiond(7) is used in-
not necessarily in a power of 2 ratio with the correct value stead.
The autocorrelation method is likewise prone to choosing a  Interpolation of d’(7) or d(7) is computationally
high-order peak. cheaper than upsampling the signal, and accurate to the ex-
The solution we propose is to set an absolute thresholtent thatd’ (7) can be modeled as a quadratic function near
and choose the smallest value ofhat gives a minimum of the dip. Simple reasoning argues that this should be the case
d’ deeper than that threshold. If none is found, the globalf the signal is band-limited. First, recall that the ACF is the
minimum is chosen instead. With a threshold of 0.1, the erroFourier transform of the power spectrum: if the sigrais
rate drops to 0.78%from 1.69% as a consequence of a bandlimited, so is its ACF. Second, the ACF is a sum of
reduction of “too low” errors accompanied by a very slight cosines, which can be approximated near zero by a Taylor
increase of “too high” errors. series with even powers. Terms of degree 4 or more come
This step implements the word “smallest” in the phrase mainly from the highest frequency components, and if these
“the period is the smallest positive member of a sétie  are absent or weak the function is accurately represented by

D. Step 4: Absolute threshold
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lower order termgquadratic and constant=inally, note that gographF, estimate was derived automatically and checked
the period peak has the same shape as the zero-lag peak, afighially, and estimates that seemed incorrect were removed
the same shap@nodulo a change in sigras the period dip from the statistics. This process removed unvoiced and also
of d(7), which in turn is similar to that od’(7). Thus, irregularly voiced portiongdiplophony, creak Some studies
parabolic interpolation of a dip is accurate unless the signahclude the latter, but arguably there is little point in testing
contains strong high-frequency componeriis practice, an algorithm on conditions for which correct behavior is not
above about one-quarter of the sampling xate defined.

Interpolation had little effect on gross error rates over ~ When evaluating the candidate methods, values that dif-
the databas€).77% vs 0.78% probably becausEy’s were  fered by more than 20% from laryngograph-derived esti-
small in comparison to the sampling rate. However, testsnates were counted as “gross errors.” This relatively per-
with synthetic stimuli found that parabolic interpolation re- missive criterion is used in many studies, and measures the
duced fine error at alF, and avoided gross errors at high difficult part of the task on the assumption that if an initial

Fo. estimate is within 20% of being correct, any of a number of
techniques can be used to refine it. Gross errors are further

F. Step 6: Best local estimate broken down into “too low”(mainly subharmonicand “too
high” errors.

The role of integration in Eqg1) and (6) is to ensure In itself the error rate is not informative, as it depends on
that estimates are stable an.d do not fluctuate on the timg,e difficulty of the database. To draw useful conclusions,
scale of the fundamental period. Conversely, any such fluCgitterent methods must be measured on the same database.
tuation, if observed, should not be considered genuine. It igtynately, the availability of freely accessible databases
sometimes found, for nonstationary speech intervals, that the,§ sofiware makes this task easy. Details of availability and
estimate fails at a certain phase of the period that usually,rameters of the methods compared in this study are given
coincides with a relatively high value of (T,), whereTiis  j, the Appendix. In brief, postprocessing and voiced—
the_ period estimate at time At another phasétime t’) the | ,qyoiced decision mechanisms were disabletiere pos-
estimate may be correct and the valuedd(T, ) smaller.  gjpie) and methods were given a common search range of 40
Step 6 takes advantage of this fact, by “shopping” aroundy, g Hz, with the exception of YIN that was given an
the vicinity of each analysis point for a better estimate. upper limit of one-quarter of the sampling rat or 5 kHz

The algorithm is the following. For each time indéx depending on the database
search for a minimum ad,(T,) for ¢ within a small interval Table Il summarizes error rates for each method and
[t= Tmad2, 1+ Tmad2], whereT, is the estimate at im®  yatapase. These figures should not be taken as an accurate
and Ty is the largest expected period. Based on this initialyheagyre of the intrinsic quality of each algorithm or imple-
estimate, the estimation algorithm is applied again with dyentation, as our evaluation conditions differ from those for
restricted search range to obtain the final estlmalte... Usinghich they were optimized. In particular, the search range
Tmax=25ms and a final search range 20% of the |n|0t|al (40 to 800 Hz is unusually wide and may have destabilized
estimate, step 6 reduced the error rate to 0(8%m 0.77%.  ethods designed for a narrower range, as evidenced by the
Step 6 is reminiscent of median smoothing or dynamic projmpajance between “too low” and “two high” error rates for
gramming techmqueﬁsHess, 198;3 but differs in that it takes' several methods. Rather, the figures are a sampling of the
into account a relatively short interval and bases its Cho'c‘foerformance that can be expected of “off-the shelf” imple-
on quality rather than mere continuity. mentations of well-known algorithms in these difficult con-

The combination of steps 1-6 constitutes a new methogiions. |t is worth noting that the ranking of methods differs
(YIN) that is evaluated by comparison to other methods inyeqyeen databases. For example methods “acf” and “nacf”
the next section. It |s_worth noting how the steps_ build UPONyo well on DB1(a large database with a total of 28 speak-
one another. Replacing the AGBtep 1 by the difference gy pyt less well on other databases. This shows the need
function (step 2 paves the way for the cumulative mean o, testing on extensive databases.
normalization operatiottstep 3, upon which are based the YIN performs best of all methods over all the databases.
threshold schemestep 4 and the measure’(T) that selects  ayeraged over databases, error rates are smaller by a factor
the best local estimatestep 6. Parabolic interpolatioftstep ot ahout 3 with respect to the best competing method. Error
5) is independent from other steps, although it relies on th@,ies gepend on the tolerance level used to decide whether an

spectral properties of the ACEtep 1. estimate is correct or not. For YIN about 99% of estimates
are accurate within 20%, 94% within 5%, and about 60%
I1l. EVALUATION within 1%.

Error rates up to now were merely illustrative. This sec-
tion reports a more formal evaluation of the new method inIV' SENSITIVITY TO PARAMETERS
comparison to previous methods, over a compilation of da-  Upper and loweF, search bounds are important param-
tabases of speech recorded together with the signal of eters for most methods. In contrast to other methods, YIN
laryngograph(an apparatus that measures electrical resisneeds no upper limitit tends, however, to fail foFy's be-
tance between electrodes placed across the laryfmem  yond one quarter of the sampling rat&his should make it
which a reliable “ground-truth” estimate can be derived. De-useful for musical applications in whidk, can become very
tails of the databases are given in the Appendix. The larynhigh. A wide range increases the likelihood of “finding” an
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TABLE Il. Gross error rates for severgl, estimation algorithms over four databases. The first six methods are
implementations available on the Internet, the next four are methods developed locally, and YIN is the method
described in this paper. See Appendix for details concerning the databases, estimation methods, and evaluation

procedure.
Gross error(%)
Method DB1 DB2 DB3 DB4 Average (low/high)
pda 10.3 19.0 17.3 27.0 16.8 (14.2/2.6
fxac 13.3 16.8 17.1 16.3 15.2 (14.2/1.0
fxcep 4.6 15.8 5.4 6.8 6.0 (5.0/1.0
ac 2.7 9.2 3.0 10.3 51 (4.1/1.0
cc 3.4 6.8 29 7.5 45 (3.4/11.
shs 7.8 12.8 8.2 10.2 8.7 (8.6/0.18
acf 0.45 1.9 7.1 11.7 5.0 (0.23/4.8
nacf 0.43 1.7 6.7 11.4 4.8 (0.16/4.7
additive 24 3.6 3.9 34 3.1 (2.5/0.55
TEMPO 1.0 3.2 8.7 2.6 3.4 (0.53/2.9
YIN 0.30 14 2.0 1.3 1.03 (0.37/0.66

incorrect estimate, and so relatively low error rates despite autationally expensive, but there are at least two approaches
wide search range are an indication of robustness. to reduce cost. The first is to implement Ed) using a

In some methodpspectral, autocorrelation based on Eq. recursion formula over timéach step adds a new term and
(2)], the window size determines both the maximum periodsubtracts an old The window shape is then square, but a
that can be estimatedower limit of the Fy search range  triangular or yet closer approximation to a Gaussian shape
and the amount of data integrated to obtain any particulacan be obtained by recursidthere is, however, little reason
estimate. For YIN these two quantities are decoufdleq,,  not to use a square windgw
andW). There is, however, a relation between the appropriate A second approach is to use E&) which can be cal-
value for one and the appropriate value for the other. Foculated efficiently by FFT. This raises two problems. The
stability of estimates over time, the integration window mustfirst is that the energy terms of E¢7) must be calculated
be no shorter than the largest expected period. Otherwisegparately. They are not the samergg0), butrather the
one can construct stimuli for which the estimate would be
incorrect over a certain phase of the period. The largest ex-

pected period obviously also determines the range of lags g 0.8
that need to be calculated, and together these considerations o 1
justify the well known rule of thumbF , estimation requires = 047
enough signal to covedwicethe largest expected period. The 2 i E (@)
window may, however, be larger, and it is often observed that ¢ 0.0, ———T T T
a larger window leads to fewer errors at the expense of re- 10 ? o4 s e 9-|oo
duced temporal resolution of the time series of estimates. window size (ms)
Statistics reported for YIN were obtained with an integration =
window of 25 ms and a period search range of 25 ms, the g
shortest compatible with a 40 Hz lower boundfg Figure 2
4(a) shows the number of errors for different window sizes. g

A parameter specific to YIN is the threshold used in step s

4. Figure 4b) shows how it affects error rate. Obviously it B I I !
does not require fine tuning, at least for this task. A value of 0.0 0.2 0.4 0.6 0.8
0.1 was used for the statistics reported here. A final param- threshold

eter is the cutoff frequency of the initial low-pass filtering of
the signal. It is generally observed, with this and other meth-
ods, that low-pass filtering leads to fewer errors, but obvi-
ously setting the cutoff below thE, would lead to failure.
Statistics reported here were for convolution with a 1-ms e
square window(zero at 1 kHz Error rates for other values 56789
are plotted in Fig. &). In summary, this method involves
comparatively few parameters, and these do not require fine

error rate (%)

1
low pass cutoff (kHz)

tuning. FIG. 4. Error rates of YIN:(a) as a function of window size(b) as a
function of threshold, an€c) as a function of low-pass prefilter cutoff fre-
V. IMPLEMENTATION CONSIDERATIONS guency(open symbol is no filtering The dotted lines indicate the values

. - . . . used for the statistics reported for YIN in Table Il. Rates here were measured
The basic building block of YIN is the function defined qyer a small database, a subset of that used in Sec. Il. Performance does not

in Eq. (1). Calculating this formula for everyand 7 is com-  depend critically on the values of these parameters, at least for this database.
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sum of squares over the first and |&8t- - samples of the @)
window, respectively. Both must be calculated for eadbut
this may be done efficiently by recursion overThe second
problem is that the sum involves more terms for smdhan
for large. This introduces an unwanted bias that can be cor- /\ .
rected by dividing each sample df7) by W— 7. However, \/ \rg

T T

50

it remains that large-samples ofd(7) are derived from a
smaller window of data, and are thus less stable than small- I |
samples. In this sense the FFT implementation is not as good 0 100 150 200 250
as the previous one. It is, however, much faster when pro- time (samples)

ducing estimates at a reduced frame rate, while the previous
approach may be faster if a high-resolution time series of
estimates is required.

Real-time applications such as interactive music track-
ing require low latency. It was stated earlier that estimation
requires a chunk of signal of at least 2,,. However, step 4
allows calculations started at=0 to terminate as soon as an 0
acceptable candidate is found, rather than to proceed over the
full search range, so latency can be reduced tg+T. Fur-
ther reduction is possible only if integration time is reduced
below T ., Which opens the risk of erroneously locking to
the fine structure of a particularly long period.

The valued’ (T) may be used as a confidence indicator
(large values indicate that thé, estimate is likely to be
unreliablg, in postprocessing algorithms to correct thg 0
trajectory on the basis of the most reliable estimates, and in
template-matching applications to prevent the distance be-
tween a pattern and a template from being corrupted by un-
reliable estimates within either. Another application is inFIG. 5. (a) Sine wave with exponentially decreasing amplitude.Differ-
multimedia indexing, in which af, time series may have to ©nce function calculated according to Ef) (periodic model. (c) Differ-

. ence function calculated according to Ef2) (periodic model with time-
be down-sampled to save space. The confidence measure @Afying amplitude Period estimation is more reliable and accurate using
lows down-sampling to be based on correct rather than inthe latter model.
correct estimates. This scheme is implemented in the
MPEG7 standardlSO/IEC_JTC_1/SC_29, 2001.

20 (b)

10

10

{ | | |
0 50 100 150 200 250
lag (samples)

If one supposes that the ratio=a;, t/a; does not depend
ont (as in an exponential increase or decrg¢atke value of
VI. EXTENSIONS a may be found by least squares fitting. Substituting that
value in Eq.(6) then leads to the following function:

The YIN method described in Sec. Il is based on the . 2
model of Eq.(4) (periodic signal. The notion of model is (1) =r(O)[1=r(n)r(O)re, (0)]. (12
insightful: an “estimation error” means simply that the Figure 5 illustrates the result. The top panel displays the
model matched the signal for an unexpected set of paraniime-varying signal, the middle a functiaii(7) derived ac-
eters. Error reduction involves modifying the model to makecording to the standard procedure, and the bottom the same
such matches less likely. This section presents extenddtinction derived using Eq12) instead of Eq(6). Interest-
models that address situations where the signal deviates syggly, the second term on the right of EQ.2) is the square
tematically from the periodic model. Tested quantitativelyof the normalized ACF.
over our speech databases, none of these extensions im- With two parameters the model of E¢l2) is more
proved error rates, probably because the periodic model uség@ermissive” and more easily fits an amplitude-varying sig-
by YIN was sufficiently accurate for this task. For this reasonnal. However, this also implies more opportunities for “un-
we report no formal evaluation results. The aim of this secexpected” fits, in other words, errors. Perhaps for that reason
tion is rather to demonstrate the flexibility of the approachit actually produced a slight increase in error rd@§7% vs.

and to open perspectives for future development. 0.50% over the restricted databaselowever, it was used
with success to process the laryngograph sigeed the Ap-
A. Variable amplitude pendix.

Amplitude variation, common in speech and music,
compromises the fit to the periodic model and thus induce8. Variable F,
errors. To deal with it the signal may be modeled as a peri-

. . o ; g Frequency variation, also common in speech and music,
odic function with time-varying amplitude: d y P

is a second source of aperiodicity that interferes wth
Xertlar =X /@ (12) estimation. WherF, is constant a lag- may be found for
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t+W

j;l (Xj=Xj+7)

2
@ () =1 (0) 15 A0)— 20 (7)+ (13

as illustrated in Fig. &).

Again, this model is more permissive than the strict pe-
riodic model and thus may introduce new errors. For that
reason, and because our speech data contained no obvious

! I J I DC offsets, it gave no improvement and instead slightly in-
0 50 100 150 200 250 creased error ratg®.51% vs 0.50% However, it was used
time (samples) . . .
with success to process the laryngograph signal, which had

600 - large slowly varying offsets.
b
400 — © D. Additive noise: Periodic
A second form of additive noise is a concurrent periodic
200 4 sound, for example, a voice or an instrument, hum, etc. Ex-
cept in the unlucky event that the periods are in certain
0 T T T T simple ratios, the effects of the interfering sound can be
© eliminated by applying a comb filter with impulse response
h(t)=6(t)— 8(t+U) whereU is the period of the interfer-
40 ence. IfU is known, this processing is trivial. If) is un-
known, both it and the desired periddnay be found by the
20 — joint estimation algorithm of de Cheveigrend Kawahara
(1999. This algorithm searches tlie,v) parameter space for
0 | I | | a minimum of the following difference function:
0 50 100 150 200 250 t+w
lag (samples) ddt(Tl V):_ %1 (XJ _Xj+r_ Xj+V+Xj+T+ V)z' (14)
i<

FIG. 6. (a) Sine wave with linearly increasing DC offsgb) Difference ) ) . )
function calculated according to E¢f). (c) Difference function calculated e algorithm is computationally expensive because the sum

according to Eq(13) (periodic model with DC offsét Period estimation is  must be recalculated for all pairs of parameter values. How-
more reliable and accurate using the latter model. ever, this cost can be reduced by a large factor by expanding
the squared sum of E@l4):

which (xj—xjﬂ)2 is zero over the whole integration win- dd =1 (0)+T.. (0)+r 0)+r 0
dow ofd(7), but with a time-varyindg-, it is identically zero (T ) =IO+ P (04 P (0 + P, (0)
only at one point. On either side, its valug { X ,)? varies —2r(7m)—2r(v)+2r(7+v)

guadratically with distance from this point, and thdér)
varies with the cube of window siz#y. F2r (v=1)=2r; (v)=2ry (7). (15

A shorter window improves the match, but we know thatThe right-hand terms are the same ACF coefficients that
the integration window must not be shortened beyond a ceiserved for single period estimation. If they have been precal-
tain limit (Sec. V). A solution is to split the window into two  culated, Eq(15) is relatively cheap to form. The two-period
or more segments, and to allowto differ between segments model is again more permissive than the one-period model
within limits that depend on the maximum expected rate ofand thus may introduce new errors. As an example, recall
change. Xu and Suri2000 give a maximum rate of, that the sum of two closely spaced sines is equally well in-
change of aboutt6 oct/s, but in our databases it did not terpreted as suctiby this model, or as an amplitude-
often exceed+1 oct/s (Fig. 10. With a split window the modulated sindby the periodic or variable-amplitude peri-
search space is larger but the match is improimda factor  odic model$. Neither interpretation is more “correct” than
of up to 8 in the case of two segmentagain, this model is the other.
more easily satisfied than that of Ed), and therefore may
introduce new errors. E. Additive noise: Different spectrum from target

Suppose now that the additive noise is neither DC nor
periodic, but that its spectral envelope differs from that of the
periodic target. If both long-term spectra are known and

A common source of aperiodicity is additive noise stable, filtering may be used to reinforce the target and
which can take many forms. A first form is simply a time- weaken the interference. Low-pass filtering is a simple ex-
varying “DC” offset, produced for example by a singer’'s ample and its effects are illustrated in Figcy
breath when the microphone is too close. The deleterious If spectra of target and noise differ only on a short-term
effect of a DC ramp, illustrated in Fig.(1§), can be elimi- basis, one of two techniques may be applied. The first is to
nated by using the following formula, obtained by setting thesplit the signal over a filter banifor example, an auditory
derivative ofd.(7) with respect to the DC offset to zero: model filter bank and calculate a difference function from

C. Additive noise: Slowly varying DC
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D/W

d(r)= kgl di(7/(D/W—K)). (18)

This function is the sum of@/W)(D/W—1)/2 differences.

For 7# T each difference includes both a deterministic part
(targe) and a noise part, whereas fer=T they only include

the noise part. Deterministic parts add in phase while noise
parts tend to cancel each other out, so the salience of the dip
at 7=T is reinforced. Equationi18) resemblegwith differ-

ent coefficientsthe “narrowed autocorrelation function” of
FIG. 7. Power transfer functions for filters with impulse resporge Brown and Pucketté¢1989 that was used by Brown and

— 8+, (full line) and &+ &, . (dashed ling for 7=1 ms. To reduce the Zhang (1991 for musical F, estimation, and by de Chev-
effect of additive noise orfg estin)at_ion, the algorithm search_es_for the eign'e(1989 and Slaney(1990 in pitch perception models.
value of 7 and the sign that maximize the power of the periodic target = = 1, o\, ymarize the basic method can be extended in sev-
relative to aperiodic interference. The dotted line is the spectrum of a typical . . T
vowel. eral ways to deal with particular forms of aperiodicity. These
extensions may in some cases be combiffed example,

each output. These functions are then added to obtain a sufflodeling the signal as a sum of periodic signals with varying

mary difference function from which a periodicity measure is@Mplitudes, although all combinations have not yet been

derived. Individual channels are then removed one by on&xplored. We take this flexibility to be a useful feature of the

until periodicity improves. This is reminiscent of Licklider's &PProach.

(1951 model of pitch perception.

The second technique applies an adaptive filter at th¢/!l. RELATIONS WITH AUDITORY PERCEPTION

input, and searches jointly for the parameters of the filter anY/ODELS

the period. This is practical for a simple filter with impulse As pointed out in the Introduction, the autocorrelation

responsé(t) = o(t) = 6(t+V), whereV and the sign deter- model is a popular account of pitch perception, but attempts

mine the shape of the power transfer function illustrated into turn that model into an accurate spedgef estimation

Fig. 7. The algorithm is based on the assumption that sommethod have met with mitigated success. This study showed

value ofV and sign will advantage the target over the inter-how it can be done. Licklider's1951) model involved a

ference and improve periodicity. The parameternd the network of delay linesthe r parameter and coincidence-

sign are determined, together with the perigdy searching counting neuronga probabilistic equivalent of multiplica-

for a minimum of the function: tion) with temporal smoothing propertigthe equivalent of

, _ integration. A previous study(de Cheveigne1998 showed

Ad; (7,2)=1(0) +114 H(0) #1144 (0) + 114 £4,(0) that excitatory coincidence could be replaced by inhibitory
*+2r(7)—2ry(v) ¥ 2r(7+v) “anti-coincidence,” resulting in a “cancellation model of
_ pitch perception” in many regards equivalent to autocorrela-
F2r (v 7) =20 (V) 220 (1), (16 tion. The present study found that cancellation is actually

which (for the negative signis similar to Eq.(15). The more effective, but also that it may be accurately imple-

search spaces faf andV should be disjoint to prevent the mented as a sum of autocorrelation terms.

comb-filter tuned td/ from interfering with the estimation of Cancellation modelséde Cheveigne1993, 1997, 1998

T. Again, this model is more permissive than the standardequire both excitatory and inhibitory synapses with fast

periodic model, and the same warnings apply as for othetemporal characteristics. The present study suggests that the

5kHz

frequency (Hz)

extensions to that model. same functionality might be obtained with fast excitatory
synapses only, as illustrated in Fig. 8. There is evidence for
F. Additive noise: Same spectrum as target fast excitatory interaction in the auditory system, for ex-

If the additi . h h | | ample in the medial superior olidSO), as well as for fast
the additive noise shares the same spectral envelope §g,initory interaction, for example within the lateral superior

the target_ on an _mstantgne_o_us basis, none of the Previots, e (LSO) that is fed by excitatory input from the cochlear
methods is effective. Reliability and accuracy can neverthehucleus, and inhibitory input from the medial trapezoidal

less be improved if the target is stationary and of sufficiently, ody. However, the limit on temporal accuracy may be lower
long du_ratlon. The |d§a IS t.o make as many penod-tq-perlo or inhibitory than for excitatory interactiofJoris and Yin,
comparisons as possible given available data. Denotifiy as 1998. A model that replaces one by the other without loss of

the duration, and'settlng the window _SMétO be at Ie.ast as functionality is thus a welcome addition to our panoply of
large as the maximum expected period, the following func

; ‘models.
tions are calculated: Sections VID and VIE showed how a cascade of sub-
D-kw tractive operations could be reformulated as a sum of auto-
de(n)= 2 (Xj—Xj—)% k=1,.D/IW. (17)  correlation terms. Transposing to the neural domain, this

=1 suggests that the cascaded cancellation stages suggested by

The lag(7) axis of each function is then “compressed” by a de Cheveighend Kawahard1999 to account for multiple
factor of D/W—k, and the functions are summed: pitch perception, or by de Cheveigii#997 to account for
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FIG. 8. (a) Neural cancellation filtefde Cheveigngl993, 1997. The gating DB3
neuron receives excitatoridirec) and inhibitory (delayed inputs, and 200
transmits any spike that arrives via the former unless another spike arrives n
simultaneously via the latter. Inhibitory and excitatory synapses must both
be fast(symbolized by thin lines Spike activity is averaged at the output to
produced slowly varying quantitigsymbolized by thick lines (b) Neural 0
circuit with the same properties as (@), but that only requires fast excita-
tory synapses. Inhibitory interaction involves slowly varying quantities
(thick lines. Double “chevrons” symbolize that output discharge probabil-
ity is proportional to the square of input discharge probability. These circuits 400

should be understood as involving many parallel fibers to approximate con-
tinuous operations on probabilities.

x103

)
o
—

>

© 200
>
concurrent vowel identification, might instead be imple-
mented in a single stage as a neural equivalent of £5j.or 05 — T
(16). Doing away with cascaded time-domain processing 40 80 160 320 640
avoids the assumption of a succession of phase-locked neu- FO (Hz)

rons, and thus makes such models more plau5|ble. SlmlléHIG. 9. Histograms of values over the four databases. Each line corre-

remarks apply to cancellation models of binaural processingpongs to a different speaker, either mis lines) or female(dotted lines.

(Culling and Summerfield, 1995; Akeroyd, 2000; BreebartThe bin width is one semitonell—2 of an octave The skewed or bimodal

et al, 2007). distributions pf database 3 are due to the presence of material pronounced in
To summarize, useful parallels may be drawn betweefd faisetto voice.

signal processing and auditory perception. The YIN algo-

rithm is actually a spin-off of work on auditory models. Con- probably step 3 that allows it to escape from the bias para-

versely, addressing this practical task may be of benefit taligm, so that the two types of error can be addressed inde-

auditory modeling, as it reveals difficulties that are not obvi-pendently. Other steps can be seen as either preparing for this

ous in modeling studies, but that are nevertheless faced bstep(steps 1 and 2or building upon it(steps 4 and 6

auditory processes. Parabolic interpolatioristep 5 gives subsample resolu-
tion. Very accurate estimates can be obtained using an inter-
VIIl. DISCUSSION val of signal that is not large. Precisely, to accurately esti-

mate the periodl of a perfectly periodic signalandto be

~Hundreds of, estimation methods have been proposeds e hat the true period is not instead greater fhaat least
in the past, many of them ingenious and sophisticated. Their

mathematical foundation usually assumes periodicity, and

when that is degrade@vhich is when smart behavior is most
needeglthey may break down in ways not easy to predict. As

pointed out in Sec. Il A, seemingly different estimation meth- =)
ods are related, and our analysis of error mechanisms can E
probably be transposed, mutatis mutandis, to a wider class of
methods. In particular, every method is faced with the prob- 0
lem of trading off too-high versus too-low errors. This is ) 1 0 1 2

usually addressed by applying some form of bias as illus- rate of change (oct/s)

trated in Sec. Il A. Bias may be explicit as in that section, but

often it is the result of particular side effects of the aIgorithm,F'G- 1Q. Histograms of rate df, change for each of the four databases.
such as the tapering that restited with E2).from limited _ 55" Ine  &n s00regae Netograr over ) speskrs of e etabese. Te
window size. If the algorithm has several parameters, credibwest expected,). The bin width is 0.13 oct/s. The asymmetry of the
assignment is difficult. The key to the success of YIN isdistributions reflects the well-known declining trendFef in speech.
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2T+ 1 samples of data are needed. If this is granted, there i§he method is relatively simple and may be implemented

no theoretical limit to accuracy. In particular, it is not limited efficiently and with low latency, and may be extended in

by the familiar uncertainty principlA TAF = const. several ways to handle several forms of aperiodicity that oc-
We avoided familiar postprocessing schemes such asur in particular applications. Finally, an interesting parallel

median smoothingRabiner and Schafer, 1978r dynamic  may be drawn with models of auditory processing.

programming(Ney, 1982; Hess, 1983as including them

complicates evaluation and credit assignment. Nothing pre-

vents applying them to further improve the robustness of thé\ CKNOWLEDGMENTS

method. The aperiodicity measutk(T) may be used 10 Thjs work was funded in part by the Cognitique program
ensure that estimates are corrected on the basis of their relis the French Ministry of Research and Technology, and
ability rather than continuitper se “evolved from work done in collaboration with the Advanced

The issue of voicing detection was also avoided, agaifrgjecommunications Research Laboratof&ER) in Japan,
because it greatly complicates evaluation and credit assigijnder a collaboration agreement between ATR and CNRS. It
ment. The aperiodicity measuce  seems a good basis for \yould not have been possible without the laryngograph-
voicing detection, perhaps in combination with energy. How-jgpejed speech databases. Thanks are due to Y. Atake and
ever, equating voicing with periodicity is not satisfactory, as.q_\workers for creating DB1 and making it available to the
some forms of voicing are inherently irregular. They prob-gihors, Paul Bagshaw was the first to distribute such a da-
ably still carry intonation cues, but how they should be quany,h354DB2) freely on the Internet. Nathalie Henrich, Chris-
tified is not clear. In a companion papéawaharaet al, in tophe D'Alessandro, MicHe Castellengo, and Vu Ngoc
preparatiof, we present a rather different approach®e  1yan kindly provided DB3. Nick Campbell offered DB4, and
estimation and glottal event detecti(_)n, ba;ed on insta.ntebeorg Meyer DB5. Thanks are also due to the many people
neous frequency and the search for fixed points in mappinggng generously created, edited, and distributed the software
along the frequency and time axes. Together, these two paackages that were used for comparative evaluation. We of-
pers offer a new perspective on the old taslegfestimation.  fer apologies in the event that our choice of parameters did

YIN has been only informally evaluated on music, but not 4o them justice. Thanks to John Culling, two anonymous
there are reasons to expect that it is appropriate for that taskeviewers, and the editor for in-depth criticism, and to Xue-

Difficulties specific to music are the wide range and fast-mg sun, Paul Boersma, and Axel Roebel for useful com-
changes irF,. YIN's open-ended search range and the facgments on the manuscript.

that it performs well without continuity constraints put it at

an advantage over other algorithms. Other potential advan-

tages, yet to be tested, are low latency for interactive system&PPENDIX: DETAILS OF THE EVALUATION

(Sec. Vj, or extensions to deal with polyphori$ec. VI D). PROCEDURE

Evaluation on music is complicated by the wide range of;

instruments and styles to be tested and the lack of a well-

labeled and representative database. The five databases comprised a total of 1.9 h of speech,
What is new? Autocorrelation was proposed for period-0f which 48% were labeled as regularly voiced. They were

icity analysis by Licklider(1951), and early attempts to ap- Produced by 48 speakef24 male, 24 femaleof Japanese

ply it to speech are reviewed in detail by H¢4983, who  (30), English(14), and French{4). Each included a laryngo-

also traces the origins of difference-function methods such agraph waveform recorded together with the speech.

the AMDF. The relation between the two, exploited in EQ. (1) pg1: Fourteen male and 14 female speakers each spoke
(7), was analyzed by Nef1982. Steps 3 and 4 were applied 30 japanese sentences for a total of 0.66 h of speech, for

Databases

to AMDF by de Cheveigné1990 and de Cheveign€l996, the purpose of evaluation df,-estimation algorithms
respectively. Step Fparabolic interpolationis a standard (Atake etal, 2000. The data include a “voiced—
technique, applied for example to spectrum peaks inffe unvoiced” mask that was not used here.

estimation methqd_of Duifthuist al. (19_)82. New are st_ep 6, (2) DB2: One male and one female speaker each spoke 50
the idea of combining steps as described, the analysis of why English sentences for a total of 0.12 h of speech, for the

it all works, and most importantly the formal evaluation. purpose of evaluation df,-estimation algorithm¢Bag-
shaw et al, 1993. The database can be downloaded
IX. CONCLUSION from the URL (http://www.cstr.ed.ac.uk/

An algorithm was presented for the estimation of the  ~pcb/fda eval.tar.gz
fundamental frequency of speech or musical sounds. Startin@) DB3: Two male and two female speakers each pro-
from the well-known autocorrelation method, a number of  nounced between 45 and 55 French sentences for a total
modifications were introduced that combine to avoid estima- of 0.46 h of speech. The database was created for the
tion errors. When tested over an extensive database of speech study of speech production, and includes sentences pro-
recorded together with a laryngograph signal, error rates nounced according to several modes: nor(tdll), head
were a factor of 3 smaller than the best competing methods, (30), and fry (32) (Vu Ngoc Tuan and d’Alessandro,
without postprocessing. The algorithm has few parameters, 2000. Sentences in fry mode were not used for evalua-
and these do not require fine tuning. In contrast to most other tion because it is not obvious how to defiRg when
methods, no upper limit need be put on thgsearch range. phonation is not periodic.
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TABLE IIl. Gross error rates measured using alternative ground truth. DB1:DB5, using referenc&, estimates produced by the authors

manually checked estimates derived from the laryngograph signal using th6f those databases using their own criteria. The ranking of

TEMPO method of Kawaharat al. (1999h. DB2 and DB5: estimates de- .. . .

rived independently by the authors of those databases. methods is _S|m|lar to that found in Table III, suggestmg that
the results in that table are not a product of our particular

Gross erron%) procedures.
Method DB1 DB2 DB5
2. Reference methods

pda 9.8 14.5 15.1 ) )

fxac 13.2 14.9 16.1 Reference methods include several methods available on
fxcep 4.5 12.5 8.9 the Internet. Their appeal is that they have been indepen-
ac 2.7 7.3 5.1 dently implemented and tuned, are representative of tools in
gﬁs 3;35 1(131 %21 common use, and are easily accessible for comparison pur-

poses. Their drawback is that they are harder to control, and
acf 0.45 2.5 31 that the parameters used may not do them full justice. Other

ggggﬂve (2’";2 gi :2%? reference methods are only locally available. Details of pa-
TEMPO 0.77 o8 46 rameters, availability and/or implementation are given below.

ac: This method implements the autocorrelation method
YIN 0.29 2.2 2.4 of Boersma(1993 and is available with the Praat system at
(http://www.fon.hum.uva.nl/praat/ It was called with the
command “To Pitch(ag)...0.01 40 15 no 0.0 0.0 0.01 0.0 0.0

(4) DB4: Two male speakers of English and one male and300.”
one female speaker of Japanese produced a total of 0.51 cC: This method, also available with the Praat system, is
h speech, for the purpose of deriving prosody rules fordescribed as performing a cross-correlation analysis. It was
speech synthesi€ampbell, 199y, called with the command: “To Pitcfcc)... 0.01 40 15 no 0.0

(5) DB5: Five male and five female speakers of English0.0 0.01 0.0 0.0 800.”
each pronunced a phonetically balanced text for a total ~ shs This method, also available with the Praat system,
of 0.15 h of speech. The database can be downloaddg described as performing spectral subharmonic summation

from (ftp://ftp.cs.keele.ac.uk/pub/pitch/Spegch according to the algorithm of Herme¢988. It was called
with the command: “To Pitcl{shsg...0.01 40 4 1700 15 0.84

Ground-truthF, estimates for the first four databases 800 48.”
were extracted from the laryngograph signal using YIN. The  pda: This method implements the eSRPD algorithm of
threshold parameter was set to 0.6, and the schemes of SeBagshaw(1993, derived from that of Medaet al. (1997,
VI A and VI C were implemented to cope with the large and is available with the Edinburgh Speech Tools Library at
variable DC offset and amplitude variations of the laryngo-(http://www.cstr.ed.ac.uk/ It was called with the command:
graph signal. Estimates were examined together with thépda input_file -o out-put_file -L -d 1 -shift 0.001-length
laryngograph signal, and a reliability mask was created).1-fmax 800-fmin 40-Ipfilter 1000 -n 0.” Examination of
manually based on the following two criterigt) any esti- the code suggests that the program uses continuity con-
mate for which the~, estimate was obviously incorrect was straints to improve tracking.
excluded and2) any remaining estimate for which there was fxac: This program is based on the ACF of the cubed
evidence of vocal fold vibration was included. The first cri- waveform and is available with the Speech Filing System at
terion ensured that all estimates were correct. The seconhttp://www.phon.ucl.ac.uk/resource/sfs/ Examination of
aimed to include as many “difficult” data as possible. Esti- the code suggests that the search range is restricted to 80—
mate values themselves were not modified. Estimates had tl#®0 Hz. It provides estimates only for speech that is judged
same sampling rate as the speech and laryngograph signéisiced,” which puts it at a disadvantage with respect to
(16 kHz for DB1, DB3, and DB4, 20 kHz for database DB2 programs that always offer an estimate.
Figures 9 and 10 show the range & andF, change rate fxcep: This program is based on the cepstrum method,
over these databases. and is also available with the Speech Filing System. Exami-

It could be argued that applying the same method tmation of the code suggests that the search range is restricted
speech and laryngograph data gives YIN an advantage relée 67—-500 Hz. It provides estimates only for speech that is
tive to other methods. Estimates were all checked visuallyjjudged “voiced,” which puts it at a disadvantage with re-
and there was no evidence of particular values that couldpect to programs that always offer an estimate.
only be matched by the same algorithm applied to the speech additive: This program implements the probabilistic
signal. Nevertheless, to make sure, tests were also performegectrum-based method of DovdlR94 and is only locally
on three databases using ground truth not based on YIN. Thevailable. It was called with the command: “additive -0 -S
laryngograph signal of DB1 was processed by the TEMPQnput_file -f 40 -F 800 -G 1000 -X -fOascii -1 0.001.”
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are similar(Table IIl, column 2 to those obtained previously formance over DBJ, and chooses the global maximum be-
(Table 11, column 2. Scores were also measured for DB2 andtween 1.25 to 25 m§40 to 800 Hz.
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