INTERNATIONAL AUDIO LABORATORIES ERLANGEN

Lecture Music Processing

Music Synchronization

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Book: Fundamentals of Music Processing

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Chapter		Music Processing Scenario
1	}.	Music Represenations
2		Fourier Analysis of Signals
3		Music Synchronization
4		Music Structure Analysis
5		Chord Recognition
6		Tempo and Beat Tracking
7		Content-Based Audio Retrieval
8	÷	Musically Informed Audio Decomposition

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Book: Fundamentals of Music Processing

Meinard Müller

Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications 483 p., 249 illus., hardcover ISBN: 978-3-319-21944-8 Springer, 2015

Accompanying website: www.music-processing.de

Chapter 3: Music Synchronization

- 3.1 Audio Features
- 3.2 Dynamic Time Warping
- 3.3 Applications
- 3.4 Further Notes

As a first music processing task, we study in Chapter 3 the problem of music synchronization. The objective is to temporally align compatible representations of the same piece of music. Considering this scenario, we explain the need for musically informed audio features. In particular, we introduce the concept of chroma-based music features, which capture properties that are related to harmony and melody. Furthermore, we study an alignment technique known as dynamic time warping (DTW), a concept that is applicable for the analysis of general time series. For its efficient computation, we discuss an algorithm based on dynamic programming—a widely used method for solving a complex problem by breaking it down into a collection of simpler subproblems.

Various interpretations – Beethoven's Fifth

Bernstein	
Karajan	
Gould (piano)	
MIDI (piano)	

Music Synchronization: Audio-Audio

- **Given:** Two different audio recordings of the same underlying piece of music.
- **Goal:** Find for each position in one audio recording the musically corresponding position in the other audio recording.

Music Synchronization: Audio-Audio

Application: Interpretation Switcher

Music Synchronization: Audio-Audio

Two main steps:

1.) Audio features

- Robust but discriminative
- Chroma features
- Robust to variations in instrumentation, timbre, dynamics
- Correlate to harmonic progression
- 2.) Alignment procedure
 - Deals with local and global tempo variations
 - Needs to be efficient

Music Synchronization: Audio-Audio

Music Synchronization: Audio-Audio Cost matrix

Music Synchronization: Audio-Audio Cost matrix

Music Synchronization: Audio-Audio Optimal alignment (cost-minimizing warping path)

Music Synchronization: Audio-Audio Cost matrix

Music Synchronization: Audio-Audio Optimal alignment (cost-minimizing warping path)

Music Synchronization: Audio-Audio Optimal alignment (cost-minimizing warping path)

Music Synchronization: Audio-Audio

How to compute the alignment?

- \Rightarrow Cost matrices
- \Rightarrow Dynamic programming
- \Rightarrow Dynamic Time Warping (DTW)

Applications

Time

MIDI = meta data

Automated annotation

Audio recording

Sonification of annotations

- Automated audio annotation
- Accurate audio access after MIDI-based retrieval
- Automated tracking of MIDI note parameters during audio playback
- Performance analysis

MIDI = reference (score)

Tempo information

Audio recording

Alignment

Local tempo

Alignment

Local tempo

1 beat lasting 2 seconds ≙ 30 BPM

Alignment

Local tempo

1 beat lasting 1 seconds ≙ 60 BPM

Alignment

Local tempo

1 beat lasting 0.4 seconds ≙ 150 BPM
Alignment

Tempo curve

Tempo curve is optained by interpolation

Schumann: Träumerei

Schumann: Träumerei

Schumann: Träumerei

Strategy: Compute score-audio synchronization and derive tempo curve Performance:

Schumann: Träumerei

Schumann: Träumerei

Tempo curves:

Schumann: Träumerei

Schumann: Träumerei

Schumann: Träumerei

What can be done if no reference is available?

Schumann: Träumerei

What can be done if no reference is available?

 \rightarrow Tempo and Beat Tracking

Convert data into common mid-level feature representation

Image Processing: Optical Music Recognition

Convert data into common mid-level feature representation

Image Processing: Optical Music Recognition

Convert data into common mid-level feature representation

Audio Processing: Fourier Analyse

Image Processing: Optical Music Recognition

Audio Processing: Fourier Analyse

Application: Score Viewer

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai

Lyrics-Audio \rightarrow Lyrics-MIDI + MIDI-Audio

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai

Lyrics-Audio \rightarrow Lyrics-MIDI + MIDI-Audio

11111	Julik ada, a	and an		had the base of the second
MAN	Marthan Maria	n May Mill	-	^{an} patriaula

Experimental results for separating left and right hands for piano recordings:

Composer	Piece	Database	Results
			L R Eq Org
Bach	BWV 875, Prelude	SMD	
Chopin	Op. 28, No. 15	SMD	
Chopin	Op. 64, No. 1	European Archive	

Audio editing

- Well-known technique to find an optimal alignment between two given (time-dependent) sequences under certain restrictions.
- Intuitively, sequences are warped in a non-linear fashion to match each other.
- Originally used to compare different speech patterns in automatic speech recognition

Sequence
$$X$$
 X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9

Sequence Y
$$y_1$$
 y_2 y_3 y_4 y_5 y_6 y_7

Time alignment of two time-dependent sequences, where the aligned points are indicated by the arrows.

Time alignment of two time-dependent sequences, where the aligned points are indicated by the arrows.

The objective of DTW is to compare two (time-dependent) sequences

$$X := (x_1, x_2, \dots, x_N)$$

of length $N \in \mathbb{N}$ and

$$Y := (y_1, y_2, \ldots, y_M)$$

of length $M \in \mathbb{N}$. Here,

$$x_n, y_m \in \mathcal{F}$$
, $n \in [1:N]$, $m \in [1:M]$,

are suitable features that are elements from a given feature space denoted by ${\mathcal F}\,.$

To compare two different features $x, y \in \mathcal{F}$ one needs a local cost measure which is defined to be a function

$$c: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$$

Typically, c(x, y) is small (low cost) if x and y are similar to each other, and otherwise c(x, y) is large (high cost).

Evaluating the local cost measure for each pair of elements of the sequences X and Y, one obtains the cost matrix

$$C \in \mathbb{R}^{N \times M}$$

denfined by

$$C(n,m) := c(x_n, y_m).$$

Then the goal is to find an alignment between X and Y having minimal overall cost. Intuitively, such an optimal alignment runs along a "valley" of low cost within the cost matrix C.

Dynamic Time Warping Cost matrix C

Dynamic Time Warping Cost matrix C

Time (indices)
Dynamic Time Warping Cost matrix C

Dynamic Time Warping Cost matrix C

The next definition formalizes the notion of an alignment.

A warping path is a sequence $p = (p_1, \ldots, p_L)$ with $p_{\ell} = (n_{\ell}, m_{\ell}) \in [1:N] \times [1:M]$

for $\ell \in [1:L]$ satisfying the following three conditions:

- Boundary condition: $p_1 = (1, 1)$ and $p_L = (N, M)$

Monotonicity condition: $n_1 \leq n_2 \leq \ldots \leq n_L$ and $m_1 < m_2 < \ldots < m_L$

Step size condition:

 $p_{\ell+1} - p_{\ell} \in \{(1,0), (0,1), (1,1)\}$ for $\ell \in [1:L-1]$

Each matrix entry (cell) corresponds to a pair of indices.

Cell = (6,3)

Boundary cells: $p_1 = (1,1)$ $p_L = (N,M) = (9,7)$

The total cost $c_p(X, Y)$ of a warping path p between Xand Y with respect to the local cost measure c is defined as L

$$c_p(X,Y) := \sum_{\ell=1}^{2} c(x_{n_\ell}, y_{m_\ell})$$

Furthermore, an optimal warping path between X and Y is a warping path p^* having minimal total cost among all possible warping paths. The DTW distance DTW(X, Y) between X and Y is then defined as the total cost o p^*

$$DTW(X,Y) := c_{p^*}(X,Y)$$

= min{c_p(X,Y) | p is a warping path}

- The warping path p^* is not unique (in general).
- DTW does (in general) not definne a metric since it may not satisfy the triangle inequality.
- There exist exponentially many warping paths.
- How can p^* be computed efficiently?

Notation:
$$X(1:n) := (x_1, ..., x_n), \quad 1 \le n \le N$$

 $Y(1:m) := (y_1, ..., y_m), \quad 1 \le m \le M$
 $D(n,m) := DTW(X(1:n), Y(1:m))$

The matrix D is called the accumulated cost matrix.

The entry D(n,m) specifies the cost of an optimal warping path that aligns X(1:n) with Y(1:m).

Lemma:

(i)
$$D(N,M) = DTW(X,Y)$$

(ii) $D(1,1) = C(1,1)$
(iii) $D(n,1) = \sum_{k=1}^{n} C(k,1)$
 $D(1,m) = \sum_{k=1}^{m} C(1,k)$
(iv) $D(n,m) = \min \begin{pmatrix} D(n-1,m-1) \\ D(n-1,m) \\ D(n,m-1) \end{pmatrix} + C(n,m)$
for $n > 1, m > 1$

Proof: (i) - (iii) are clear by definition

Proof of *(iv)*: Induction via n, m:

Let n > 1, m > 1 and $q = (q_1, \ldots, p_{L-1}, p_L)$ be an optimal warping path for X(1:n) and Y(1:m). Then $q_L = (n, m)$ (boundary condition).

Let $q_{L-1} = (a, b)$. The step size condition implies

$$(a,b) \in \{(n-1,m-1), (n-1,m), (n,m-1)\}$$

The warping path (q_1, \ldots, q_{L-1}) must be optimal for X(1:a), Y(1:b). Thus,

$$D(n,m) = c_{(q_1,\dots,q_{L-1})}(X(1:a),Y(1:b)) + C(n,m)$$

Accumulated cost matrix

Given the two feature sequences X and Y, the matrix D is computed recursively.

- Initialize D using (ii) and (iii) of the lemma.
- Compute D(n, m) for n > 1, m > 1 using (iv).
- DTW(X,Y) = D(N,M) using (i).

Note:

- Complexity *O(NM)*.
- Dynamic programming: "overlapping-subproblem property"

Optimal warping path

Given to the algorithm is the accumulated cost matrix D. The optimal path $p^* = (p_1, \ldots, p_L)$ is computed in reverse order of the indices starting with $p_L = (N, M)$. Suppose $p_\ell = (n, m)$ has been computed. In case (n, m) = (1, 1), one must have $\ell = 1$ and we are done. Otherwise,

$$p_{\ell-1} := \begin{cases} (1, m-1), & \text{if } n = 1\\ (n-1, 1), & \text{if } m = 1\\ \arg\min\{D(n-1, m-1), \\ D(n-1, m), D(n, m-1)\}, & \text{otherwise}, \end{cases}$$

where we take the lexicographically smallest pair in case "argmin" is not unique.

Summary

Summary

Algorithm: DTW

Input:Cost matrix C of size $N \times M$ Output:Accumulated cost matrix DOptimal warping path P^*

Procedure: Initialize $(N \times M)$ matrix **D** by $\mathbf{D}(n, 1) = \sum_{k=1}^{n} \mathbf{C}(k, 1)$ for $n \in [1 : N]$ and $\mathbf{D}(1,m) = \sum_{k=1}^{m} \mathbf{C}(1,k)$ for $m \in [1 : M]$. Then compute in a nested loop for n = 2, ..., N and m = 2, ..., M:

$$\mathbf{D}(n,m) = \mathbf{C}(n,m) + \min \left\{ \mathbf{D}(n-1,m-1), \mathbf{D}(n-1,m), \mathbf{D}(n,m-1) \right\}.$$

Set $\ell = 1$ and $q_{\ell} = (N, M)$. Then repeat the following steps until $q_{\ell} = (1, 1)$:

Increase ℓ by one and let $(n,m) = q_{\ell-1}$. If n = 1, then $q_{\ell} = (1,m-1)$, else if m = 1, then $q_{\ell} = (n-1,m)$, else $q_{\ell} = \operatorname{argmin} \{ \mathbf{D}(n-1,m-1), \mathbf{D}(n-1,m), \mathbf{D}(n,m-1) \}$. (If 'argmin' is not unique, take lexicographically smallest cell.)

Set $L = \ell$ and return $P^* = (q_L, q_{L-1}, \dots, q_1)$ as well as **D**.

Example

$$X = (1,3,3,8,1)$$

$$Y = (2,0,0,8,7,2)$$

$$c(x,y) = |x - y|, \ x,y \in \mathbb{R}$$

Optimal warping path: $P^* = ((1,1), (2,2), (3,3), (4,4), (4,5), (5,6))$

Dynamic Time Warping Step size conditions

 $\Sigma = \{(1,0), (0,1), (1,1)\}$

Dynamic Time Warping Step size conditions

 $\Sigma = \{(2,1), (1,2), (1,1)\}$

Dynamic Time Warping Step size conditions

- Computation via dynamic programming
- Memory requirements and running time: O(NM)
- Problem: Infeasible for large N and M
- Example: Feature resolution 10 Hz, pieces 15 min

 $\Rightarrow N, M \sim 10,000$ $\Rightarrow N \cdot M \sim 100,000,000$

Dynamic Time Warping Global constraints

Dynamic Time Warping Global constraints

Problem: Optimal warping path not in constraint region

Compute optimal warping path on coarse level

Project on fine level

Specify constraint region

Compute constrained optimal warping path

- Suitable features?
- Suitable resolution levels?
- Size of constraint regions?

Good trade-off between efficiency and robustness?

Suitable parameters depend very much on application!