
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lab Course

Harmonic Percussive Source Separation

International Audio Laboratories Erlangen

Prof. Dr. Meinard Müller

Friedrich-Alexander Universität Erlangen-Nürnberg
International Audio Laboratories Erlangen
Lehrstuhl Semantic Audio Processing
Am Wolfsmantel 33, 91058 Erlangen

meinard.mueller@audiolabs-erlangen.de

International Audio Laboratories Erlangen
A Joint Institution of the

Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and
the Fraunhofer-Institut für Integrierte Schaltungen IIS

Authors:

Jonathan Driedger
Thomas Prätzlich

Tutors:

Jonathan Driedger
Thomas Prätzlich

Contact:

Jonathan Driedger, Thomas Prätzlich
Friedrich-Alexander Universität Erlangen-Nürnberg
International Audio Laboratories Erlangen
Lehrstuhl Semantic Audio Processing
Am Wolfsmantel 33, 91058 Erlangen
jonathan.driedger@audiolabs-erlangen.de

thomas.praetzlich@audiolabs-erlangen.de

This handout is not supposed to be redistributed.

Harmonic Percussive Source Separation, c© November 28, 2016

Lab Course

Harmonic Percussive Source Separation

Abstract

Sounds can broadly be classified into two classes. Harmonic sound on the one hand side is
what we perceive as pitched sound and what makes us hear melodies and chords. Percussive
sound on the other hand is noise-like and usually stems from instrument onsets like the hit on a
drum or from consonants in speech. The goal of harmonic-percussive source separation (HPSS)
is to decompose an input audio signal into a signal consisting of all harmonic sounds and a
signal consisting of all percussive sounds. In this lab course, we study an HPSS algorithm and
implement it in MATLAB. Exploiting knowledge about the spectral structure of harmonic and
percussive sounds, this algorithm decomposes the spectrogram of the given input signal into
two spectrograms, one for the harmonic, and one for the percussive component. Afterwards,
two waveforms are reconstructed from the spectrograms which finally form the desired signals.
Additionally, we describe the application of HPSS for enhancing chroma feature extraction and
onset detection. The techniques used in this lab cover median filtering, spectral masking and
the inversion of the short-time Fourier transform.

1 Harmonic-Percussive Source Separation

When listening to our environment, there exists a wide variety of different sounds. However, on a
very coarse level, many sounds can be categorized to belong in either one of two classes: harmonic
or percussive sounds. Harmonic sounds are the ones which we perceive to have a certain pitch
such that we could for example sing along to them. The sound of a violin is a good example of a
harmonic sound. Percussive sounds often stem from two colliding objects like for example the two
shells of castanets. An important characteristic of percussive sounds is that they do not have a
pitch but a very clear localization in time. Many real-world sounds are mixtures of harmonic and
percussive components. For example, a note played on a piano has a percussive onset (resulting
from the hammer hitting the strings) preceding the harmonic tone (resulting from the vibrating
string).

Homework Excercise 1

• Think about three real world examples of sounds which are clearly harmonic and three
examples of sounds which are clearly percussive.

• What are characteristics of harmonic and percussive signals? Sketch a waveform of a percus-
sive signal and the waveform of a harmonic signal. What are the main differences between
those waveforms?

The goal of harmonic-percussive source separation (HPSS) is to decompose a given input sig-
nal into a sum of two component signals, one consisting of all harmonic sounds and the other
consisting of all percussive sounds. The core observation in many HPSS algorithms is that in a
spectrogram representation of the input signal, harmonic sounds tend to form horizontal structures
(in time-direction), while percussive sounds form vertical structures (in frequency-direction). For
an example, have a look at Figure 1 where you can see the power spectrograms of two signals.
Figure 1a shows the power spectrogram of a sine-tone with a frequency of 4000 Hz and a duration
of one second. This tone is as harmonic as a sound can be. The power spectrogram shows just one
horizontal line. Contrary, the power spectrogram shown in Figure 1b shows just one vertical line.
It is the spectrogram of a signal which is zero everywhere, except for the sample at 0.5 seconds

(a)

 Time in seconds

 F
re

q
u

e
n

c
y
 i
n

 H
e

rt
z

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

A
m

p
lit

u
d

e
 i
n

 d
B

−30

−25

−20

−15

−10

−5

0

(b)

 Time in seconds

 F
re

q
u

e
n

c
y
 i
n

 H
e

rt
z

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

A
m

p
lit

u
d

e
 i
n

 d
B

−30

−25

−20

−15

−10

−5

0

Figure 1: (a): Spectrogram of an ideal harmonic signal. (b): Spectrogram of an ideal percussive
signal.

(a)

 Time in seconds

 F
re

q
u

e
n

c
y
 i
n

 H
e

rt
z

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

A
m

p
lit

u
d

e
 i
n

 d
B

−30

−25

−20

−15

−10

−5

0

(b)

 Time in seconds

 F
re

q
u

e
n

c
y
 i
n

 H
e

rt
z

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

A
m

p
lit

u
d

e
 i
n

 d
B

−30

−25

−20

−15

−10

−5

0

Figure 2: (a): Spectrogram of a recording of a violin. (b): Spectrogram of a recording of a
castanets.

where it is one. Therefore, when listening to this signal, we just hear a brief “click” at 0.5 seconds.
This signal is the prototype of a percussive sound. The same kind of structures can be observed
in Figure 2, which shows a spectrogram of a violin recording and a spectrogram of a castanets
recording.

Real world signals are usually mixtures of harmonic and percussive sounds. Furthermore, there
is no absolute definition of when a sound stops “being harmonic” and starts “being percussive”.
Think, for example, of white noise which cannot be assigned to either one of these classes. How-
ever, with the above observations it is possible to decide if a time-frequency instance of a spectral
representation of the input signal, like the short-time Fourier transform (STFT), belongs rather to
the harmonic component or rather to the percussive component. This can be done in the following
way. Assume we want to find out if a time-frequency bin in the STFT of the input signal belongs
to the harmonic component. In this case, the bin should be part of some horizontal, and therefore
harmonic structure. We can check this by first applying some filter to the power spectrogram of
the STFT, which enhances horizontal structures and suppresses vertical structures and see if the
filtered bin has some “high value”. However, even if its value is high, it might still belong to some
even stronger vertical, and therefore percussive structure. We therefore apply another filter to the
power spectrogram which enhances vertical structures and suppresses horizontal structures. Now,
in the case that the value of our bin in this vertically enhanced spectrogram is lower than in the
horizontally enhanced spectrogram, it is very likely that it belongs to some harmonic sound and
we can assign it to the harmonic component. Otherwise, if its value was higher in the vertically
enhanced spectrogram, we directly know that it is rather part of some percussive sound and assign
it to the percussive component. This way, we can decide for every time-frequency instance of the
original STFT of the input signal whether it belongs to the harmonic, or to the percussive compo-
nent and construct two new STFTs. In the STFT for the harmonic component, all bins which were

assigned to the percussive component are set to zero, and vice versa for the percussive component.
Finally, by “inverting” these STFTs, we get the audio signals for the harmonic and the percussive
component.

Homework Excercise 2

• Suppose you apply an HPSS algorithm to white noise. Recall that white noise has a constant
power spectral density (it is also said to be flat). What do you expect the harmonic and the
percussive component to sound like?

• If you apply an HPSS algorithm to a recording of your favorite rock band. What do you
expect the harmonic and the percussive component to sound like?

2 An HPSS Algorithm

We will now describe an actual HPSS algorithm. Formally, given a discrete input audio signal
x : Z → R, the algorithm should compute a harmonic component signal xh and a percussive
component signal xp, such that x = xh + xp. Furthermore, the signals xh and xp contain the
harmonic and percussive sounds of x, respectively. In the following we describe the consecutive
steps of an HPSS algorithm. We start with the computation of the STFT (Section 2.1) and proceed
with enhancing the power spectrogram using median filtering (Section 2.2). Afterwards, the filtered
spectrograms are used to compute binary masks (Section 2.3) which are used to construct STFTs
for the harmonic and the percussive component. These STFTs are finally transformed back to the
time domain (Section 2.4).

2.1 Short-Time Fourier Transform

In the first step, we compute the short-time Fourier transform (STFT) X of the signal x as:

X (m, k) :=

N−1∑
n=0

x(n+mH)w(n) exp(−2πikn/N) (1)

with m ∈ [0 : M − 1] := {0, . . . ,M − 1} and k ∈ [0 : N − 1], where M is the number of frames,
N is the frame size and length of the discrete Fourier transform, w : [0 : N − 1]→ R is a window
function and H is the hopsize. From X we can then derive the power spectrogram Y of x:

Y(m, k) := |X (m, k)|2. (2)

Homework Excercise 3

• The parameters of the STFT have a crucial influence on the HPSS algorithm. Think about
what happens to Y in the case you choose N to be very large or very small. How could this
influence the algorithm? (Hint: Think about how N influences the time- and frequency-
resolution of the STFT.)

• Explain in technical terms why harmonic sounds form horizontal and percussive sounds form
vertical structures in spectrograms (Hint: Have a look at the exponential basis functions of
the STFT. What does one of these functions describe? How can an impulse be represented
with them).

Lab Experiment 1

• Load an audio file from the Data folder using for example
[x,fs]=audioread(’CastanetsViolin.wav’);.

• Compute the STFT X of the input signal x using the provided function stft.m with the
parameters N=1024, H=512, w=win(’sin’,N).

• Compute the power spectrogram Y according to Equation (2).

• Visualize Y using the provided function visualize_matrix.m. Can you spot harmonic and
percussive structures? Note that this function has an optional second argument lcomp which
can be used to apply a logarithmic compression to the visualized matrix. We recommend
using lcomp=10 when visualizing spectrograms.

• Do the same for the parameters N=128, H=64, w=win(’sin’,N), and N=8192, H=4096,
w=win(’sin’,N). How do the spectrograms change when you change the parameters? What
happens to the harmonic and percussive structures?

• Have a look into the provided function code.

2.2 Median Filtering

In the next step, we want to compute a harmonically enhanced spectrogram Ỹh and a percussively
enhanced spectrogram Ỹp by filtering Y. This can be done by using a median filter. The median of
a set of numbers can be found by arranging all numbers from lowest to highest value and picking the
middle one. E.g. the median of the set {7, 3, 4, 6, 5} is 5. Formally, let A = {an ∈ R|n ∈ [0 : N −1]}
be a set of real numbers of size N . Furthermore, we assume without loss of generality that an ≤ an′
for n, n′ ∈ [0 : N − 1], n < n′. Then, the median of A is defined as

median(A) :=

{
aN−1

2
for N being odd

1
2 (aN

2
+ aN

2 +1) otherwise
(3)

Now, given a matrix B ∈ RM×K , we define harmonic and percussive median filters

medfilth(B)(m, k) := median({B(m− `h, k), . . . , B(m+ `h, k)}) (4)

medfiltp(B)(m, k) := median({B(m, k − `p), . . . , B(m, k + `p)}) (5)

for M,K, `h, `p ∈ N, where 2`h + 1 and 2`p + 1 are the lengths of the median filters, respectively.
Note that we simply assume B(m, k) = 0 for m /∈ [0 : M − 1] or k /∈ [0 : K − 1]. The enhanced
spectrograms are then computed as

Ỹh := medfilth(Y) (6)

Ỹp := medfiltp(Y) (7)

Homework Excercise 4

• The arithmetic mean of a set A ⊂ R of size N is defined as mean(A) := 1
N

∑N−1
n=0 an. Com-

pute the median and the mean for the set A = {2, 3, 190, 2, 3}. Why do you think the HPSS
algorithm employs median filtering and not mean filtering?

• Apply a horizontal and a vertical median filter of length 3 to the matrix

B =

1 1 46 2
3 1 50 1
60 68 70 67
2 1 65 1

• Explain in your own words why median filtering allows for enhancing/suppressing har-
monic/percussive structures in a spectrogram.

Lab Experiment 2

• Apply harmonic and percussive median filters to the power spectrogram Y which you com-
puted in the previous exercise (N=1024, H=512, w=win(’sin’,N)) using the provided func-
tion medianFilter.m.

• Play around with different filter lengths (3, 11, 51, 101).

• Visualize the filtered spectrograms using the function visualize_matrix.m. What are your
observations?

• Have a look into the provided function code.

2.3 Binary Masking

Having the enhanced spectrograms Ỹh and Ỹp, we now need to assign all time-frequency bins of
X to either the harmonic or the percussive component. This can be done by binary masking. A
binary mask is a matrix M∈ {0, 1}M×K . It can be applied to an STFT X by computing X �M,
where the operator � denotes point-wise multiplication. A mask value of one preserves the value
in the STFT and a mask value of zero suppresses it. For our HPSS algorithm, the binary masks
are defined by comparing the values in the enhanced spectrograms Ỹh and Ỹp.

Mh(m, k) :=

{
1 if Ỹh(m, k) ≥ Ỹp(m, k)

0 else
(8)

Mp(m, k) :=

{
1 if Ỹp(m, k) > Ỹh(m, k)

0 else.
(9)

Applying these masks to the original STFT X yields the STFTs for the harmonic and the percussive
component of the signal Xh := (X �Mh) and Xp := (X �Mp). Note that by the definition ofMh

and Mp, it holds that Mh(m, k) +Mp(m, k) = 1 for m ∈ [0 : M − 1], k ∈ [0 : K − 1]. Therefore,
every time-frequency bin of X is assigned either to Xh or Xp.

Homework Excercise 5

Assume you have the two enhanced spectrograms

Ỹh =

1 1 2 2
1 3 1 1
60 68 68 67
1 2 1 1

 , Ỹp =

1 1 46 1
3 1 50 2
2 1 65 1
2 1 65 1

Compute the binary masks Mh and Mp and apply them to the matrix

X =

1 1 46 2
3 1 50 1
60 68 70 67
2 1 65 1

Lab Experiment 3

• Use the median filtered power spectrograms Ỹh and Ỹp from the previous exercise (filter
length 11) to compute the binary masks Mh and Mp.

• Visualize the masks using the function visualize_matrix.m (this time without logarithmic
compression).

• Apply the masks to the original STFT X to compute Xh and Xp.

• Visualize the power spectrograms Yh and Yp of Xh and Xp using visualize_matrix.m.

2.4 Inversion of the Short-Time Fourier Transform

In the final step, we need to transform our constructed STFTs Xh and Xp back to the time-domain.
To this end, we apply an “inverse” STFT to these matrices to compute the component signals xh
and xp. Note that the topic “inversion of the STFT” is not as trivial as it might seem at the first
glance. In the case that X is the original STFT of an audio signal x, and further preconditions
are satisfied (for example that N ≥ H for N being the size of the discrete Fourier transform and
H being the hopsize of the STFT), it is possible to invert the STFT and to reconstruct x from X
perfectly. However, as soon as the original STFT X has been modified to some X̃ , for example
by masking, there might be no audio signal which has exactly X̃ as its STFT. In such a case, one
usually aims to find an audio signal whose STFT is “approximately” X̃ . See Section 4 for pointers
to the literature. For this Lab Course, you can simply assume that you can invert the STFT using
the provided MATLAB function istft.m.

Homework Excercise 6

Assume X is the original STFT of some audio signal x. Why do we need the precondition N ≥ H
for N being the size of the discrete Fourier transform and H being the hopsize of the STFT to
reconstruct x from X perfectly?

Lab Experiment 4

• Apply the inverse STFT function istft.m to Xh and Xp from the previous experiment and
listen to the results.

• Save the computed harmonic and percussive component
by using audiowrite(’harmonicComponent.wav’,x_h,fs); and
audiowrite(’percussiveComponent.wav’,x_p,fs);

Figure 3: Harmonic-percussive source separation.

2.5 Physical Interpretation of Parameters

Note that one can specify the filter lengths of the harmonic and percussive median filters in seconds
and Hertz, respectively. This makes their physical interpretation easier. Given the sampling rate
fs of the input signal x as well as the frame length N and the hopsize H, we can convert filter
lengths given in seconds and Hertz to filter lengths given in indices

Lh(t) :=

⌈
fs
H
t

⌉
(10)

Lp(d) :=

⌈
N

fs
d

⌉
(11)

Homework Excercise 7

Assume fs = 22050 Hz, N = 1024, and H = 256. Compute Lh(0.5 sec) and Lp(600 Hz).

Lab Experiment 5

• Complete the implementation of the HPSS algorithm in HPSS.m:

1. Compute the STFT X of the input signal x using the provided function stft.m.

2. Compute the power spectrogram Y from the X .

3. Convert the median filter lengths from seconds and Hertz to indices using the Equa-
tions (10) and (11).

4. Apply median filters to Y using the provided function (medianFilter.m) to compute
Yh and Yp.

5. Derive the masks Mh and Mp from Yh and Yp.

6. Compute Xh and Xp.

7. Apply the inverse STFT (istft.m) to get xh and xp.

• Test your implementation:

1. Load the audio files ’Stepdad.wav’, Applause.wav, and DrumSolo.wav from the Data
folder.

2. Apply [x_h,x_p]=HPSS(x,N,H,w,fs,lh_sec,lp_Hz) using the parameters N=1024,
H=512, w=win(’sin’,N), lh_sec=0.2, and lp_Hz=500 to all loaded signals.

3. Listen to the results.

3 Applications of HPSS

In many audio processing tasks, the essential information lies in either the harmonic or the percus-
sive component of an audio signal. In such cases, HPSS is very well suited as a pre-processing step
to enhance the outcome of an algorithm. In the following, we introduce two procedures that can be
improved by applying HPSS. The harmonic component from the HPSS algorithm can be used to
enhance chroma features (Section 3.1) and the percussive component helps to improve the results
of an onset detection procedure (Section 3.2).

3.1 Enhancing Chroma Features using HPSS

Two pitches sound similar when they are an octave apart from each other (12 tones in the equal
tempered scale). We say that these pitches share the same chroma which we refer to by the
pitch spelling names {C,C],D,D],E,F,F],G,G],A,A],B}. Chroma features exploit the above
observation, by adding up all frequency bands in a power spectrogram that belong to the same
chroma. Technically this can be realized by the following procedure. First we assign a pitch index
(MIDI pitch number) to each frequency index k ∈ [1 : N/2 − 1] of the spectrogram by using the
formula:

p(k) = round

(
12 log2

(
k · fs

440 ·N

))
+ 69. (12)

where N is the number of frequency bins in the spectrogram and fs is the sampling rate of the
audio signal. Note that p maps frequency indices corresponding to frequencies around the chamber
tone A4 (440 Hz) to its MIDI pitch number 69. Then we add up all frequency bands in the power
spectrogram belonging to the same chroma c ∈ [0 : 11]:

C(m, c) :=
∑

{k| p(k)mod 12=c }

Y(m, k) (13)

where m ∈ [0 : M − 1] and M is the number of frames.

Chroma features are correlated with the pitches and the harmonic structure of music. Pitches
usually form horizontal structures in the spectrogram, whereas transient or percussive sounds form
vertical structures. Percussive sounds have a negative impact on the chroma extraction, as they
“activate all frequencies” in the spectrogram, see also Homework 3. Hence, one way to improve
the chroma extraction is to first apply HPSS and to perform the chroma extraction on the power
spectrogram of the harmonic component signal Yh(m, k) = |Xh(m, k)|2, see also Exercise 6.

Lab Experiment 6

Apply the HPSS algorithm as a pre-processing step in a chroma extraction procedure:

1. Load the file CastanetsViolin.wav using [x,fs]=audioread(’CastanetsViolin.wav’).

2. Compute chroma features on x using the provided implementation in simple_chroma.m with
the parameters N=4410 and H=2205.

3. Visualize the chroma features by using the visualization function given in
visualize_simpleChroma.m.

4. Apply your HPSS algorithm to separate the castanets from the violin.

5. Use the harmonically enhanced signal xh to compute chroma features and visualize them.

6. Now compare the visualization of the chroma extracted from the original signal x and the
chroma extracted from the harmonic component signal xh. What do you observe?

3.2 HPSS for Onset Detection

Onset detection is the task of finding the temporal positions of note onsets in a music recording.
More concrete, the task could be to detect all time positions on which some drum is hit in a
recording of a rock song. One way to approach this problem is to assume, that drum hits emit a
short burst of high energy and the goal is therefore to detect these bursts in the input signal. To
this end, one first computes the short-time power P of the input signal x by

P(m) :=

N−1∑
n=0

x(n+mH)2 (14)

where H is the hopsize and N is the length of one frame (similar to the computation of the STFT).
Since we are looking for time-positions of high energy, the goal is therefore to detect peaks in P. A
common technique to enhance peaks in a sequence is to subtract the local average P̃ from P itself.
P̃ is defined by

P̃(m) :=

J∑
j=−J

P(m+ j)
1

2J + 1
(15)

for a neighborhood J ∈ N, m ∈ [0 : M − 1], and M is the number of frames. Note that we assume
P(m) = 0 for m /∈ [0 : M − 1]. From this, we compute a novelty curve N

N (m) := max(0,P(m)− P̃(m)) (16)

The peaks in N indicate positions of high energy in x, and are therefore potential time positions
of drum hits.

This procedure works well in case the initial assumption, namely that onsets or drum hits emit
some burst of energy which stand out from the remaining energy in the signal, is met. However,
especially in professionally mixed music recordings, the short-time energy is often adjusted to be

more or less constant over time (compression). One possibility to circumvent this problem is to
apply HPSS to the input signal prior to the onset detection. The onset detection is then executed
solely on the percussive component which usually contains all drum hits and satisfies the assumption
of having energy bursts at the respective time-positions.

Lab Experiment 7

• Complete the implementation of the onset detection algorithm in onsetDetection.m:

1. Compute the short-time power P of the input signal x using the provided function
stp.m.

2. Compute the local average P̃ as defined in Equation (15). (Hint: Note that Equa-
tion (15) can be formulated as a convolution and that you can compute convolutions
in MATLAB using the command conv. Note further that this command has an option
’same’. Finally, have a look at the MATLAB command ones).

3. Compute the novelty curve N as described in Equation (16).

• Test your implementation by applying it to the audio file StillPluto_BitterPill.wav. As
a starting point, use N = 882, H = 441, and J = 10.

• Sonify your results using the function sonify_noveltyCurve.m. This function will gen-
erate a stereo audio signal in which you can hear the provided original signal in one of
the channels. In the other channel, each peak in the provided novelty curve is audible as
a click sound. You can therefore check by listening whether the peaks in your computed
novelty curve are aligned with drum hits in the original signal. To apply the function
sonify_noveltyCurve.m, you need to specify the sampling frequency of the novelty curve.
How can you compute it? (Hint: It is dependent on H and the sampling frequency fs of the
input audio signal).

• Listen to the generated results. What is your impression?

• Now apply your HPSS algorithm to the audio file and rerun the detection algorithm on just
the percussive component xp. Again, sonify the results. What is your impression now?

4 Further Notes

The task of decomposing an audio signal into its harmonic and its percussive component has
received large research interest in recent years. This is mainly because for many applications it
is useful to consider just the harmonic or the percussive portion of an input signal. Harmonic-
percussive separation has been applied to many audio processing tasks, such as audio remixing [1],
the enhancement of chroma features [2], tempo estimation [3], or time-scale modification [4, 5].
Several decomposition algorithms have been proposed. In [6], the percussive component is modeled
by detecting portions in the input signal which have a rather noisy phase behavior. The harmonic
component is then computed by the difference of the original signal and the computed percussive
component. The algorithms presented in [7] and [8] both exploit the spectral structure of harmonic
and percussive sounds that we have seen in this lab course. The HPSS algorithm discussed in this
lab is the one presented in [8].

Concerning the task of inverting a modified STFT, one can say that it is not possible in general
from a mathematical point of view. This is the case since the space of signals is smaller than the
space of STFTs and therefore no bijective mapping between the two spaces can exist. However, it
is possible to “approximate” inversions, see [9].

If you are interested in further playing around with chroma features or onset detection (and
their applications) you can find free MATLAB implementations at [10] and [11].

Finally we would like to also point out that median filtering techniques have also successfully
applied to other signal domains. They can for example be used to reduce certain classes of noise,

namely salt and pepper noise, in images, see [12].

References

[1] N. Ono, K. Miyamoto, H. Kameoka, and S. Sagayama, “A real-time equalizer of harmonic and
percussive components in music signals,” in Proceedings of the International Conference on
Music Information Retrieval (ISMIR), Philadelphia, Pennsylvania, USA, 2008, pp. 139–144.

[2] Y. Ueda, Y. Uchiyama, T. Nishimoto, N. Ono, and S. Sagayama, “HMM-based approach for
automatic chord detection using refined acoustic features,” in ICASSP, 2010, pp. 5518–5521.

[3] A. Gkiokas, V. Katsouros, G. Carayannis, and T. Stafylakis, “Music tempo estimation and
beat tracking by applying source separation and metrical relations,” in ICASSP, 2012, pp.
421–424.

[4] J. Driedger, M. Müller, and S. Ewert, “Improving time-scale modification of music signals
using harmonic-percussive separation,” Signal Processing Letters, IEEE, vol. 21, no. 1, pp.
105–109, 2014.

[5] C. Duxbury, M. Davies, and M. Sandler, “Improved time-scaling of musical audio using phase
locking at transients,” in Audio Engineering Society Convention 112, 4 2002.

[6] ——, “Separation of transient information in audio using multiresolution analysis techniques,”
in Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick,
Ireland, 12 2001.

[7] N. Ono, K. Miyamoto, J. LeRoux, H. Kameoka, and S. Sagayama, “Separation of a monaural
audio signal into harmonic/percussive components by complementary diffusion on spectro-
gram,” in European Signal Processing Conference, Lausanne, Switzerland, 2008, pp. 240–244.

[8] D. Fitzgerald, “Harmonic/percussive separation using medianfiltering,” in Proceedings of the
International Conference on Digital Audio Effects (DAFx), Graz, Austria, 2010, pp. 246–253.

[9] D. W. Griffin and J. S. Lim, “Signal estimation from modified short-time Fourier transform,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 32, no. 2, pp. 236–243,
1984.

[10] M. Müller and S. Ewert, “Chroma Toolbox: MATLAB implementations for extracting vari-
ants of chroma-based audio features,” in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), Miami, FL, USA, 2011, pp. 215–220.

[11] P. Grosche and M. Müller, “Tempogram Toolbox: MATLAB tempo and pulse analysis of
music recordings,” in 12th International Conference on Music Information Retrieval (ISMIR,
late-breaking contribution), Miami, USA, 2011.

[12] S. Jayaraman, T. Veerakumar, and S. Esakkirajan, Digital Image Processing. Tata McGraw
Hill, 2009.

