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Chapter 6: Tempo and Beat Tracking

Tempo and beat are further fundamental properties of music. In Chapter 6, we
introduce the basic ideas on how to extract tempo-related information from
audio recordings. In this scenario, a first challenge is to locate note onset
information—a task that requires methods for detecting changes in energy and
spectral content. To derive tempo and beat information, note onset candidates
are then analyzed with regard to quasiperiodic patterns. This leads us to the
study of general methods for local periodicity analysis of time series.

6.1 Onset Detection
6.2 Tempo Analysis
6.3 Beat and Pulse Tracking
6.4 Further Notes

Introduction

Basic beat tracking task:

Given an audio recording of a piece of music, 
determine the periodic sequence of  beat positions.

“Tapping the foot when listening to music’’



Time (seconds)

Example:      Queen – Another One Bites The Dust
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Example:      Queen – Another One Bites The Dust
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Time (seconds)

Introduction

Example:      Happy Birthday to you

Pulse level:  Measure

Introduction

Example:      Happy Birthday to you

Pulse level:  Tactus (beat)

Introduction

Example:      Happy Birthday to you

Pulse level:  Tatum (temporal atom)

Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          ???

Introduction



Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          50-200 BPM
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Introduction Introduction

Example:      Borodin – String Quartet No. 2

Pulse level: Quarter note

Tempo:          120-140 BPM (roughly)

Beat tracker without any prior knowledge

Beat tracker with prior knowledge on 
rough tempo range

Introduction

 Pulse level often unclear

 Local/sudden tempo changes (e.g. rubato)

 Vague information

(e.g., soft onsets, extracted onsets corrupt)

 Sparse information

(often only note onsets are used)

Challenges in beat tracking

 Onset detection
 Beat tracking
 Tempo estimation

Tasks
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 Onset detection
 Beat tracking
 Tempo estimation

Tasks
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periodphase

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Introduction



Tempo := 60 / period

Beats per minute (BPM)

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

period

Introduction Onset Detection

 Finding start times of 
perceptually relevant acoustic 
events in music signal

 Onset is the time position 
where a note is played 

 Onset typically goes along 
with a change of the signal’s 
properties:
– energy or loudness
– pitch or harmony
– timbre

Onset Detection

[Bello et al., IEEE-TASLP 2005]

 Finding start times of 
perceptually relevant acoustic 
events in music signal

 Onset is the time position 
where a note is played 

 Onset typically goes along 
with a change of the signal’s 
properties:
– energy or loudness
– pitch or harmony
– timbre

Steps

Time (seconds)

Onset Detection (Energy-Based)

Waveform

Onset Detection (Energy-Based)

Time (seconds)

Squared waveform

Steps
1. Amplitude squaring

Onset Detection (Energy-Based)

Time (seconds)

Energy envelope

Steps
1. Amplitude squaring
2. Windowing



Onset Detection (Energy-Based)

Capturing energy changes

Time (seconds)

Differentiated energy envelope

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation

Onset Detection (Energy-Based)

Time (seconds)

Novelty curve

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation
4. Half wave rectification

Only energy increases are 
relevant for note onsets

Onset Detection (Energy-Based)

Time (seconds)

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation
4. Half wave rectification
5. Peak picking

Peak positions indicate 
note onset candidates

Energy envelope

Onset Detection (Energy-Based)

Time (seconds)

Onset Detection (Energy-Based)

Time (seconds)

Energy envelope / note onsets positions

Onset Detection

 Energy curves often only work for percussive music

 Many instruments such as strings have weak note onsets

 No energy increase may be observable in complex sound 
mixtures

 More refined methods needed that capture
– changes of spectral content
– changes of pitch
– changes of harmony



1. Spectrogram
Magnitude spectrogram
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|| X Steps:
Onset Detection (Spectral-Based)

 Aspects concerning pitch, 
harmony, or timbre are 
captured by spectrogram

 Allows for detecting local 
energy changes in certain 
frequency ranges

Compressed spectrogram Y
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Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression

Steps:

 Accounts for the logarithmic 
sensation of sound intensity

 Dynamic range compression
 Enhancement of low-intensity 

values
 Often leading to enhancement 

of high-frequency spectrum
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Spectral difference

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation

Steps:

 First-order temporal 
difference

 Captures changes of the 
spectral content

 Only positive intensity 
changes considered
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t
Novelty curve

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Steps:

 Frame-wise accumulation of 
all positive intensity changes 

 Encodes changes of the 
spectral content
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Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Steps:

Novelty curve
Substraction of local average

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Novelty curve



Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Normalized novelty curve

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization
6. Peak picking

Steps:

Normalized novelty curve

Logarithmic compression is essential

Novelty curve

Onset Detection (Spectral-Based)
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Ground-truth onsets

[Klapuri et al., IEEE-TASLP 2006]

C = 1

Onset Detection (Spectral-Based)

|)|1log( XCY 

Logarithmic compression is essential

Novelty curve

Ground-truth onsets

[Klapuri et al., IEEE-TASLP 2006]
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Onset Detection (Spectral-Based)
Logarithmic compression is essential

Novelty curve

Ground-truth onsets

C = 10

|)|1log( XCY 

[Klapuri et al., IEEE-TASLP 2006]

Fr
eq

ue
nc

y 
 (H

z)

Time (seconds)

Onset Detection (Spectral-Based)
Logarithmic compression is essential

Novelty curve

Ground-truth onsets

C = 1000

|)|1log( XCY 

[Klapuri et al., IEEE-TASLP 2006]
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Onset Detection (Spectral-Based)

 Spectrogram 

 Compressed Spectrogram

 Novelty curve 
Time (seconds)

Onset Detection

Peak picking

 Peaks of the novelty curve indicate note onset candidates

Time (seconds)

Onset Detection

Peak picking

 Peaks of the novelty curve indicate note onset candidates
 In general many spurious peaks
 Usage of local thresholding techniques
 Peak-picking very fragile step in particular for soft onsets

Onset Detection

Shostakovich – 2nd Waltz

Time (seconds)

Time (seconds)

Borodin – String Quartet No. 2 

Onset Detection

Drumbeat

Going Home

Lyphard melodie

Por una cabeza 

Donau

Beat and Tempo

 Steady pulse that drives music 
forward and provides the 
temporal framework of a piece 
of music

 Sequence of perceived pulses 
that are equally spaced in time

 The pulse a human taps along 
when listening to the music

[Parncutt 1994]

[Sethares 2007]

[Large/Palmer  2002]

[Lerdahl/ Jackendoff 1983]

[Fitch/ Rosenfeld 2007]

What is a beat?

The term tempo then refers to the speed of the pulse.



Beat and Tempo

 Analyze the novelty curve with 
respect to reoccurring or quasi-
periodic patterns

 Avoid the explicit determination 
of note onsets (no peak picking)

Strategy

Beat and Tempo

[Scheirer, JASA 1998]

[Ellis, JNMR 2007]

[Davies/Plumbley, IEEE-TASLP 2007]

[Peeters, JASP 2007]

Strategy

 Comb-filter methods
 Autocorrelation
 Fourier transfrom

Methods

[Grosche/Müller, ISMIR 2009]

 Analyze the novelty curve with 
respect to reoccurring or quasi-
periodic patterns

 Avoid the explicit determination 
of note onsets (no peak picking)

[Grosche/Müller, IEEE-TASLP 2011]

Definition: A tempogram is a time-tempo representation 
that encodes the local tempo of a music signal
over time. 
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Tempogram

Definition: A tempogram is a time-tempo represenation 
that encodes the local tempo of a music signal
over time. 

 Compute a spectrogram (STFT) of the novelty curve
 Convert frequency axis (given in Hertz) into 

tempo axis (given in BPM)
 Magnitude spectrogram indicates local tempo

Fourier-based method

Tempogram (Fourier)
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Tempogram (Fourier)
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Tempogram (Fourier)

Novelty curve (local section)
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Windowed sinusoidal 

Tempogram (Fourier)
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Windowed sinusoidal 

Tempogram (Fourier)
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Windowed sinusoidal 
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Definition: A tempogram is a time-tempo represenation 
that encodes the local tempo of a music signal
over time. 

 Compare novelty curve with time-lagged 
local sections of itself

 Convert lag-axis (given in seconds) into 
tempo axis (given in BPM)

 Autocorrelogram indicates local tempo

Autocorrelation-based method

Tempogram (Autocorrelation)

Tempogram (Autocorrelation)

Novelty curve (local section)
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Tempogram (Autocorrelation)

Lag  =  0 (seconds)
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Tempogram (Autocorrelation)

Lag  =  0.26 (seconds)
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Tempogram (Autocorrelation)
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Tempogram (Autocorrelation)

Lag  =  1.56 (seconds)
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Tempo@Tatum = 210 BPM Tempo@Measure = 70 BPM
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Tempogram

Fourier Autocorrelation
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Emphasis of tempo harmonics 
(integer multiples)

Emphasis of tempo subharmonics 
(integer fractions)

[Grosche et al., ICASSP 2010][Peeters, JASP 2007]

Tempogram (Summary)

Fourier Autocorrelation

Novelty curve is compared with
sinusoidal kernels each
representing a specific tempo

Novelty curve is compared with
time-lagged local (windowed) 
sections of itself

Convert frequency (Hertz) into
tempo (BPM)

Convert time-lag (seconds) into
tempo (BPM)

Reveals novelty periodicities Reveals novelty self-similarities

Emphasizes harmonics Emphasizes subharmonics

Suitable to analyze tempo on 
tatum and tactus level

Suitable to analyze tempo on 
tactus and measure level



Beat Tracking

 Given the tempo, find the best sequence of beats

 Complex Fourier tempogram contains magnitude 
and phase information

 The magnitude encodes how well the novelty curve 
resonates with a sinusoidal kernel of a specific tempo

 The phase optimally aligns the sinusoidal kernel with 
the peaks of the novelty curve

[Peeters, JASP 2005]

Beat Tracking
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[Peeters, JASP 2005]

Beat Tracking
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[Peeters, JASP 2005]

Beat Tracking
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Beat Tracking

[Grosche/Müller, IEEE-TASLP 2011]



Beat Tracking

Novelty Curve

Predominant Local Pulse (PLP)

[Grosche/Müller, IEEE-TASLP 2011]Time (seconds)

 Periodicity enhancement of novelty curve
 Accumulation introduces error robustness 
 Locality of kernels handles tempo variations

 Indicates note onset candidates
 Extraction errors in particular for soft onsets
 Simple peak-picking problematic

Beat Tracking

Predominant Local Pulse (PLP)

Novelty Curve

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking

 Local tempo at time       :                                     [60:240] BPM

 Phase       

 Sinusoidal kernel 

 Periodicity curve

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking
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Borodin – String Quartet No. 2

[Grosche/Müller, IEEE-TASLP 2011]

Beat Tracking
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Borodin – String Quartet No. 2

[Grosche/Müller, IEEE-TASLP 2011]

Strategy: Exploit additional knowledge
(e.g. rough tempo range)
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Beat Tracking

Brahms Hungarian Dance No. 5
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Beat Tracking

Brahms Hungarian Dance No. 5
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Applications

 Feature design 
(beat-synchronous features, adaptive windowing)

 Digital DJ / audio editing 
(mixing and blending of audio material)

 Music classification

 Music recommendation 

 Performance analysis 
(extraction of tempo curves)

Application: Feature Design

Fixed window size

[Ellis et al., ICASSP 2008] [Bello/Pickens, ISMIR 2005] [Bello/Pickens, ISMIR 2005]

Application: Feature Design

Fixed window size Adaptive window size

[Ellis et al., ICASSP 2008]

Application: Feature Design

Fixed window size (100 ms)

Time 
(seconds)

Application: Feature Design

Adative window size (roughly 1200 ms)
Note onset positions define boundaries

Time 
(seconds)



Application: Feature Design

Time 
(seconds)

Denoising  by excluding boundary neighborhoods

Adative window size (roughly 1200 ms)
Note onset positions define boundaries

Application: Audio Editing (Digital DJ) 

http://www.mixxx.org/

Application: Beat-Synchronous Light Effects Summary

1. Onset Detection
 Novelty curve (something is changing)
 Indicates note onset candidates
 Hard task for non-percussive instruments (strings)

2. Tempo Estimation
 Fourier tempogram
 Autocorrelation tempogram
 Musical knowledge (tempo range, continuity)

3. Beat tracking
 Find most likely beat positions
 Exploiting phase information from Fourier tempogram


