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Chapter 7: Content-Based Audio Retrieval

One important topic in information retrieval is concerned with the development
of search engines that enable users to explore music collections in a flexible
and intuitive way. In Chapter 7, we discuss audio retrieval strategies that follow
the query-by-example paradigm: given an audio query, the task is to retrieve all
documents that are somehow similar or related to the query. Starting with
audio identification, a technique used in many commercial applications such as
Shazam, we study various retrieval strategies to handle different degrees of
similarity. Furthermore, considering efficiency issues, we discuss fundamental
indexing techniques based on inverted lists—a concept originally used in text
retrieval.

7.1 Audio Identification
7.2 Audio Matching
7.3 Version Identification
7.4 Further Notes



Music Retrieval

 Textual metadata
– Traditional retrieval
– Searching for artist, title, …

 Rich and expressive metadata
– Generated by experts
– Crowd tagging, social networks

 Content-based retrieval
– Automatic generation of tags
– Query-by-example



Query-by-Example

Query

Audio identification

Audio matching

Version identification

Category-based music retrieval

Retrieval tasks:

Database

Hits

Bernstein (1962) 
Beethoven, Symphony No. 5

Beethoven, Symphony No. 5:
 Bernstein (1962) 
 Karajan (1982) 
 Gould (1992)

 Beethoven, Symphony No. 9
 Beethoven, Symphony No. 3
 Haydn Symphony No. 94



Query-by-Example

Audio identification

Audio matching

Version identification

Category-based music retrieval

Retrieval tasks:

High
specificity

Low
specificity

Fragment-based 
retrieval 

Document-based 
retrieval

Specificity
level

Granularity
level

Taxonomy



Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification
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 Audio matching
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Audio Identification

Database: Huge collection consisting of all audio
recordings (feature representations) to be
potentially identified.

Goal: Given a short query audio fragment, identify
the original audio recording the query is taken
from.

Notes:  Instance of fragment-based retrieval
 High specificity
 Not the piece of music is identified but a

specific rendition of the piece



Application Scenario

 User hears music playing in the environment

 User records music fragment (5-15 seconds) with mobile 
phone

 Audio fingerprints are extracted from the recording 
and sent to an audio identification service

 Service identifies audio recording based on fingerprints

 Service sends back metadata (track title, artist) to user



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes some specific audio content.



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Ability to accurately identify an 
item within a huge number of 
other items
(informative, characteristic)

 Low probability of false positives

 Recorded query excerpt
only a few seconds

 Large audio collection on the
server side (millions of songs)



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Recorded query may be 
distorted and superimposed with 
other audio sources

 Background noise
 Pitching

(audio played faster or slower)
 Equalization
 Compression artifacts
 Cropping, framing
 …



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Reduction of complex
multimedia objects

 Reduction of dimensionality

 Making indexing feasible

 Allowing for fast search



Audio Fingerprints

Requirements: 

 Discriminative power 

 Invariance to distortions

 Compactness

 Computational simplicity

An audio fingerprint is a content-based compact 
signature that summarizes a piece of audio content

 Computational efficiency

 Extraction of fingerprint should 
be simple

 Size of fingerprints should be 
small



Literature (Audio Identification)

 Allamanche et al. (AES 2001)
 Cano et al. (AES 2002)
 Haitsma/Kalker (ISMIR 2002)
 Kurth/Clausen/Ribbrock (AES 2002)
 Wang (ISMIR 2003)

 Dupraz/Richard (ICASSP 2010)
 Ramona/Peeters (ICASSP 2011)

…
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Fingerprints (Shazam) 
Steps:
1. Spectrogram
2. Peaks

(local maxima)
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 Standard transform

 Robust
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Fingerprints (Shazam) 
Steps:

Time (seconds)
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 Noise, reverb, 
room acoustics, 
equalization

 Audio codec

 Superposition 
of other audio 
sources

Robustness:

1. Spectrogram
2. Peaks / differing peaks



Matching Fingerprints (Shazam) 

Database document
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Matching Fingerprints (Shazam) 
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Matching Fingerprints (Shazam) 
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Matching Fingerprints (Shazam) 
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Matching Fingerprints (Shazam) 
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Indexing



Indexing (Shazam) 
 Index the fingerprints using hash lists
 Hashes correspond  to (quantized) frequencies

Time (seconds)

Fr
eq

ue
nc

y 
(H

z)

Hash 1

Hash 2

Hash 2B



Indexing (Shazam) 
 Index the fingerprints using hash lists
 Hashes correspond  to (quantized) frequencies
 Hash list consists of time positions

(and document IDs) 

 N =  number of spectral peaks
 B =  #(bits) used to encode spectral peaks
 2B         =  number of hash lists 
 N / 2B = average number of elements per list

Problem:
 Individual peaks are not characteristic
 Hash lists may be very long
 Not suitable for indexing Time (seconds)
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Hash 1

Hash 2

Hash 2B

List to Hash 1:



Indexing (Shazam) 
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1. Peaks
2. Fix anchor point
3. Define target zone
4. Use paris of points
5. Use every point as 

anchor point



Indexing (Shazam) 
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Idea: Use pairs of peaks to increase specificity of hashes

New hash:

1. Peaks
2. Fix anchor point
3. Define target zone
4. Use paris of points
5. Use every point as 

anchor point

Consists of two frequency
values and a time difference:

(     ,     ,      )

f1

f2

∆t

f1 f2 ∆t



Indexing (Shazam)

 A hash is formed between an anchor point and each 
point in the target zone using two frequency values 
and a time difference.

 Fan-out (taking pairs of peaks) may cause a 
combinatorial explosion in the number of tokens. 
However, this can be controlled by the size of the 
target zone.

 Using more complex hashes increases specificity 
(leading to much smaller hash lists) and speed 
(making the retrieval much faster).



Indexing (Shazam)
Definitions:
 N = number of spectral peaks
 p = probability that a spectral peak can be found in (noisy and distorted) query
 F = fan-out of target zone, e. g. F = 10
 B = #(bits) used to encode spectral peaks and time difference

Consequences:
 F · N            =  #(tokens) to be indexed
 2B+B =  increase of specifity  (2B+B+B instead of 2B)
 p2 =  propability of a hash to survive
 p·(1-(1-p)F)  =  probability that, at least, on hash survives per anchor point

Example:  F = 10 and B = 10
 Memory requirements:      F · N = 10 · N
 Speedup factor:   2B+B / F2 ~ 106 / 102 = 10000 

(F times as many tokens in query and database, respectively)



Conclusions (Shazam)

Many parameters to choose:

 Temporal and spectral resolution in spectrogram

 Peak picking strategy

 Target zone and fan-out parameter

 Hash function

 …



Conclusions (Audio Identification)

 Many more ways to define robust audio fingerprints

 Delicate trade-off between specificity, robustness, and
efficiency

 Audio recording is identified (not a piece of music)

 Does not allow for identifying studio recording using
a query taken from live recordings

 Does not generalize to identify different interpretations
or versions of the same piece of music



Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification



Audio Matching

Database: Audio collection containing:
 Several recordings of the same piece of music
 Different interpretations by various musicians
 Arrangements in different instrumentations

Goal: Given a short query audio fragment, find all
corresponding audio fragments of similar 
musical content.

Notes:  Instance of fragment-based retrieval
 Medium specificity
 A single document may contain several hits
 Cross-modal retrieval also feasible



Bernstein

Karajan

Scherbakov (piano)

MIDI (piano)

Audio Matching

Beethoven’s Fifth

Various interpretations  



Application Scenario

Content-based retrieval



Application Scenario

Cross-modal retrieval



Audio Matching

Two main ingredients:

 Robust but discriminating
 Chroma-based features
 Correlate to harmonic progression
 Robust to variations in dynamics, timbre, articulation, local tempo

1.)  Audio features

 Efficient
 Robust to local and global tempo variations
 Scalable using index structure

2.)   Matching procedure 



Audio Features

Time (seconds) Time (seconds)
Time (seconds) Time (seconds)

Example: Beethoven’s Fifth

Karajan Scherbakov

Chroma representation (normalized, 10 Hz)



Audio Features

Time (seconds) Time (seconds)
Time (seconds) Time (seconds)

Example: Beethoven’s Fifth

Karajan Scherbakov

Smoothing (2 seconds) + downsampling (factor 5)
Chroma representation (normalized, 2 Hz)



Matching Procedure

Compute chroma feature sequences

 Database
 Query
 N very large (database size), M small (query size)

This image cannot currently be displayed.

This image cannot currently be displayed.

This image cannot currently be displayed.

Matching curve



Matching Procedure

Query

DB

Bach Beethoven/Bernstein Shostakovich

Time (seconds)

Beethoven/Sawallisch
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Matching Procedure

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)
Matching curve

Time (seconds)



Matching Procedure

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

Bach Beethoven/Bernstein ShostakovichBeethoven/Sawallisch

1 2 5 3 4 6 7Hits

Matching curve

Time (seconds)



Matching Procedure

Time (seconds)

Problem: How to deal with tempo differences?

Karajan is much 
faster then Bernstein!

Matching curve does not indicate any hits!

Beethoven/Karajan



Matching Procedure
1. Strategy: Usage of local warping 

Karajan is much 
faster then Bernstein!

Beethoven/Karajan

Warping strategies 
are computationally 
expensive and hard 
for indexing.

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Beethoven/Karajan

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Query resampling simulates tempo changes

Beethoven/Karajan

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Minimize over all curves

Beethoven/Karajan

Query resampling simulates tempo changes

Time (seconds)



Matching Procedure
2. Strategy: Usage of multiple scaling

Minimize over all curves

Beethoven/Karajan

Query resampling simulates tempo changes

Resulting curve is similar warping curve

Time (seconds)



Experiments

 Audio database  ≈ 110 hours, 16.5 GB

 Preprocessing    → chroma features, 40.3 MB

 Query clip           ≈    20 seconds

 Retrieval time     ≈ 10 seconds            (using MATLAB)



Experiments

Rank Piece Position
1 Beethoven‘s Fifth/Bernstein 0 - 21
2 Beethoven‘s Fifth/Bernstein 101- 122
3 Beethoven‘s Fifth/Karajan 86 - 103

10 Beethoven‘s Fifth/Karajan 252 - 271
11 Beethoven (Liszt) Fifth/Scherbakov 0 - 19
12 Beethoven‘s Fifth/Sawallisch 275 - 296
13 Beethoven (Liszt) Fifth/Scherbakov 86 - 103
14 Schumann Op. 97,1/Levine 28 - 43

Query: Beethoven’s Fifth / Bernstein (first 20 seconds)

…
…

…
…

…
…

…
…



Experiments

Shostakovich/Chailly Shostakovich/Yablonsky

Time (seconds)

Query: Shostakovich, Waltz / Chailly (first 21 seconds)

Expected hits



Experiments

Rank Piece Position
1 Shostakovich/Chailly 0 - 21
2 Shostakovich/Chailly 41- 60
3 Shostakovich/Chailly 180 - 198
4 Shostakovich/Yablonsky 1 - 19
5 Shostakovich/Yablonsky 36 - 52
6 Shostakovich/Yablonsky 156 - 174
7 Shostakovich/Chailly 144 - 162
8 Bach BWV 582/Chorzempa 358 - 373
9 Beethoven Op. 37,1/Toscanini 12 - 28

10 Beethoven Op. 37,1/Pollini 202 - 218

Query: Shostakovich, Waltz / Chailly (first 21 seconds)



Conclusions (Audio Matching)

Audio Features

 Chroma            → invariance to timbre

 Normalization → invariance to dynamics

 Smoothing        →    invariance to local time deviations

Strategy: Absorb variations already at feature level

Message:  There is no standard chroma feature!
Variants can make a huge difference!



Quality: Audio Matching

Shostakovich/Chailly Shostakovich/Yablonsky

Standard Chroma (Chroma Pitch)

Query: Shostakovich, Waltz / Yablonsky (3. occurrence)

Time (seconds)



Quality: Audio Matching

Shostakovich/Chailly Shostakovich/Yablonsky

Standard Chroma (Chroma Pitch)
CRP(55)

Query: Shostakovich, Waltz / Yablonsky (3. occurrence)

Time (seconds)



Overview (Audio Retrieval)

 Audio identification
(audio fingerprinting)

 Audio matching

 Cover song identification



Cover Song Identification

 Gómez/Herrera (ISMIR 2006)
 Casey/Slaney (ISMIR 2006)
 Serrà (ISMIR 2007)
 Ellis/Polioner (ICASSP 2007)
 Serrà/Gómez/Herrera/Serra (IEEE TASLP 2008)



Cover Song Identification

Goal: Given a music recording of a song or piece of music, 
find all corresponding music recordings within a huge 
collection that can be regarded as a kind of version, 
interpretation, or cover song. 

Instance of document-based retrieval! 

 Live versions
 Versions adapted to particular country/region/language
 Contemporary versions of an old song
 Radically different interpretations of a musical piece
 …



Cover Song Identification



Cover Song Identification

 Automated organization of music collections

“Find me all covers of …”

 Musical rights management

 Learning about music itself

“Understanding the essence of a song”

Motivation



Cover Song Identification

Bob Dylan
Knockin’  on Heaven’s Door key Avril Lavigne

Knockin’  on Heaven’s Door

Metallica
Enter Sandman timbre Apocalyptica

Enter Sandman

Nirvana
Poly [Incesticide Album] tempo Nirvana

Poly [Unplugged]

Black Sabbath
Paranoid lyrics Cindy & Bert

Der Hund Der Baskerville

AC/DC
High Voltage recording conditions AC/DC

High Voltage [live]

song structure

Nearly anything can change! But something doesn't change. 
Often this is chord progression and/or melody



Cover Song Identification



Local Alignment

Assumption: 
Two songs are considered as similar if they contain
possibly long subsegments that possess a similar
harmonic progression

Task:  
Let X=(x1,…,xN) and Y=(y1,…,yM) be the two chroma
sequences of the two given songs, and let S be the
resulting similarity matrix. Then find the maximum similarity
of a subsequence of X and a subsequence of Y. 



Local Alignment

Note: 
This problem is also known from bioinformatics. 
The Smith-Waterman algorithm is a well-known algorithm
for performing local sequence alignment; that is, for
determining similar regions between two nucleotide or
protein sequences.

Strategy:
We use a variant of the Smith-Waterman algorithm.
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Cover Song Identification
Query: Bob Dylan – Knockin’ on Heaven’s Door
Retrieval result:

Rank Recording Score

1. Guns and Roses: Knockin‘ On Heaven’s Door 94.2

2. Avril Lavigne: Knockin‘ On Heaven’s Door 86.6
3. Wyclef Jean: Knockin‘ On Heaven’s Door 83.8
4. Bob Dylan: Not For You 65.4
5. Guns and Roses: Patience 61.8
6. Bob Dylan: Like A Rolling Stone 57.2
7.-14. …



Cover Song Identification
Query: AC/DC – Highway To Hell
Retrieval result:

Rank Recording Score

1. AC/DC: Hard As a Rock 79.2

2. Hayseed Dixie: Dirty Deeds Done Dirt Cheap 72.9
3. AC/DC: Let There Be Rock 69.6
4. AC/DC: TNT (Live) 65.0
5.-11. …
12. Hayseed Dixie: Highway To Hell 30.4
13. AC/DC: Highway To Hell Live (live) 21.0
14. …



Conclusions (Cover Song Identification)

 Harmony-based approach

 Measure is suitable for document retrieval, but seems to
be too coarse for audio matching applications

 Every song has to be compared with any other
→ method does not scale to large data collection

 What are suitable indexing methods?



Conclusions (Audio Retrieval)



Conclusions (Alignment Strategies)

X

 Classical DTW
Global correspondence
between X and Y

 Subsequence DTW
Subsequence of Y corresponds
to X

 Local Alignment
Subsequence of Y corresponds
to subequence of X

X
X

Y

Y

Y


