

Music Processing Analysis

Music Representations

Exercise

Stefan Balke, Meinard Müller

Introduction Stefan Balke

2008-2013: Electrical Engineering

Leibniz Universität Hannover

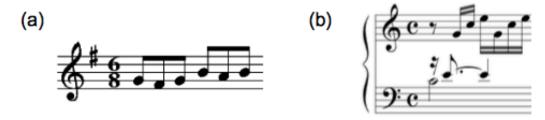
Since 2014: Working towards my PhD

- Research Interests:
 - Content-based retrieval
 - Fundamental frequency estimation
 - Jazz music
 - Web technologies
- Hobbies: Trumpet playing!
- Further infos: https://www.audiolabs-erlangen.de/fau/assistant/balke

Session Outline Music Representations

- Homework discussion + demos
- Introduction of practical exercises (STFT + HPSS)

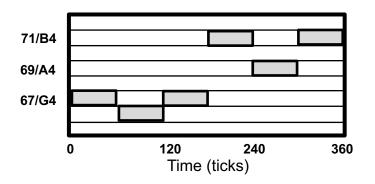
Homework Exercise 1.1


- A measure consists of 2 quarter notes (equals 1 half note).
- The tempo of a half note is notated as 108 BPM.
- Thus, a minute is divided into 108 bars: 60 s / 108 = 555.56 ms.
- A quarter note has half o the duration: 277.78 ms.

Homework Recap MIDI

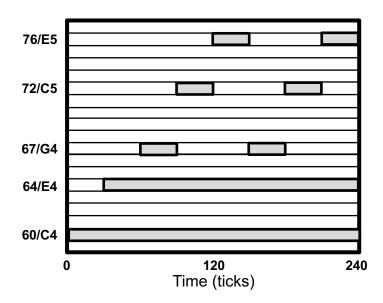
- Musical Instrument Digital Interface
- Standard format for controlling synthesizers.
- "Abused" as format for symbolic music.
- Format consists of events on a musical time line.
- Timeline is usually 120 ticks per quarter note (TPQN).
- Relevant events for symbolic music:
 - Note On/Off
 - Parameters: Note number (pitch), Velocity, Channel

Homework Exercise 1.2(a)


Exercise 1.2. Specify the MIDI representation (in tabular form) and sketch the piano-roll representation (similar to Figure 1.13) of the following sheet music representations. Assume that a quarter note corresponds to 120 ticks. Set the velocity to a value of 100 for all active note events. Furthermore, assign the notes of the G-clef to channel 1 and the notes of the F-clef to channel 2.

[Hint: In this exercise, we assume that the reader has some basic knowledge of Western music notation.]

Homework Solution 1.2(a)



Time (Ticks)	Message	Channel	Note Number	Velocity
0	NOTE ON	1	67	100
60	NOTE OFF	1	67	0
0	NOTE ON	1	66	100
60	NOTE OFF	1	66	0
0	NOTE ON	1	67	100
60	NOTE OFF	1	67	0
0	NOTE ON	1	71	100
60	NOTE OFF	1	71	0
0	NOTE ON	1	69	100
60	NOTE OFF	1	69	0
0	NOTE ON	1	71	100
60	NOTE OFF	1	71	0

Homework Solution 1.2(b)

Time (Ticks)	Message	Channel	Note Number	Velocity
0	NOTE ON	2	60	100
30	NOTE ON	2	64	100
30	NOTE ON	1	67	100
30	NOTE OFF	1	67	0
0	NOTE ON	1	72	100
30	NOTE OFF	1	72	0
0	NOTE ON	1	76	100
30	NOTE OFF	1	76	0
0	NOTE ON	1	67	100
30	NOTE OFF	1	67	0
0	NOTE ON	1	72	100
30	NOTE OFF	1	72	0
0	NOTE ON	1	76	100
30	NOTE OFF	1	76	0
0	NOTE OFF	2	64	0
0	NOTE OFF	2	60	0

Homework

Exercise 1.5

Exercise 1.5. Using (1.1), compute the center frequencies for all notes of the C-major scale C4, D4, E4, F4, G4, A4, B4, C5 and for all notes of the C-minor scale C4, D4, E^b4, F4, G4, A^b4, B^b4, C5 (see also Figure 1.5).

Homework Solution 1.5

$$F_{Pitch}(p) = 2^{p-69/12} 440 \text{ Hz}$$

C-major scale				
Note	p	$F_{\rm pitch}(p)$		
C4	60	261.63		
D4	62	293.66		
E4	64	329.63		
F4	65	349.23		
G4	67	392.00		
A4	69	440.00		
B4	71	493.88		
C5	72	523.25		

C-minor scale					
Note	p	$F_{\rm pitch}(p)$			
C4	60	261.63			
D4	62	293.66			
$\mathrm{E}^{\flat}4$	63	311.13			
F4	65	349.23			
G4	67	392.00			
$A^{\flat}4$	68	415.30			
$\mathrm{B}^{\flat}4$	70	466.16			
C5	72	523.25			

Homework Exercise 1.6

Exercise 1.6. Using (1.1), compute the frequency ratio $F_{\text{pitch}}(p+1)/F_{\text{pitch}}(p)$ of two subsequent pitches p+1 and p (see (1.2)). How does the frequency $F_{\text{pitch}}(p+k)$ for some $k \in \mathbb{Z}$ relate to $F_{\text{pitch}}(p)$? Furthermore, derive a formula for the distance (in semitones) for two arbitrary frequencies ω_1 and ω_2 .

Homework

Solution 1.6

$$F_{\text{pitch}}(p+1)/F_{\text{pitch}}(p) = 2^{(p+1-69)/12} \cdot 440 \cdot 2^{-(p-69))/12} \cdot (1/440)$$

$$= 2^{1/12} \cdot 2^{(p-69)/12} \cdot 2^{-(p-69))/12}$$

$$= 2^{1/12} \approx 1.059463.$$

$$F_{\text{pitch}}(p+k) = 2^{k/12} \cdot F_{\text{pitch}}(p).$$

$$\log_2\left(\frac{\boldsymbol{\omega}_1}{\boldsymbol{\omega}_2}\right) \cdot 12.$$

Homework Exercise 1.8

Exercise 1.8. Assume an equal-tempered scale that consists of 17 tones per octave and a reference pitch p = 100 having a center frequency of 1000 Hz. Specify a formula similar to (1.1), which yields the center frequencies for the pitches $p \in [0:255]$. In particular, determine the center frequency for the pitches p = 83, p = 66, and p = 49 in this scale. What is the difference (in cents) between two subsequent pitches in this scale?

Homework Solution 1.8

$$F_{\text{pitch}}^{17}(p) = 2^{(p-100)/17} \cdot 1000.$$

In particular, one has $F_{\rm pitch}^{17}(83) = 500$, $F_{\rm pitch}^{17}(66) = 250$, and $F_{\rm pitch}^{17}(59) = 125$. By (1.4), the difference (in cents) between two subsequent pitches is given by

$$\log_2\left(\frac{F_{\text{pitch}}^{17}(p+1)}{F_{\text{pitch}}^{17}(p)}\right) \cdot 1200 = \log_2(2^{1/17}) \cdot 1200 = 1200/17 \approx 70.6.$$