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Singing Voice Detection

Important pre-requisite for:
= Music segmentation

= Music thumbnailing (preview version)
= Singing voice transcription
= Singing voice separation

= Lyrics alignment

= Lyrics recognition

Singing Voice Detection

= Detect singing voice activity during course of a recording
= Assumptions:
Real-world, polyphonic music recordings are
analyzed
Singing voice performs dominant melody above
accompaniment

Time in seconds

Singing Voice Detection

= Challenges:
Complex characteristics of singing voice
Large diversity of accompaniment music
Accompaniment may play same melody as singing
Pitch-fluctuating instruments my be similar to singing

Stable pitch Fluctuating pitch

Singing Voice Detection

Common approach:
= Frame-wise extraction of audio features
= Classification via machine learning
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Audio Feature Extraction

Frame-wise processing:
= Hopsize Q

= Blocksize K

= Window function w(n)
= Signal frame x(n)

x(n)

Compute for each
analysis frame:

= Time-domain features
= Spectral features

= Cepstral feature

= others ...




Audio Feature Extraction

Time-domain features:
= Zero Crossing Rate (ZCR)
= High-pitched vs. Low-pitched

s(t),

= Linear Prediction Coeff. (LPC)
= Encodes spectral envelope
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Audio Feature Extraction

Spectral features:
= Spectrogram, linear vs. logarithmic frequency spacing

= Spectral Flatness (SF), Spectral Centroid (SC), and
many others ...
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Audio Feature Extraction

Cepstral features:

= Singing voice as an example
Convolutive: excitation * filter
Excitation: vibration of vocal folds
Filter: resonance of the vocal tract

= Magnitude spectrum
Multiplicative: excitation - filter

= Log-magnitude spectrum
Additive: excitation + filter

= “Liftering”
Separation into smooth spectral

envelope and fine-structured
excitation

Extraction of speciral envelope via cepstral ltering

Magnitude spectum

Logarithmic magnitude

Machine Learning

Application to audio signals:
= Speech recognition

= Speaker recognition

= Singing voice detection

= Genre classification

= |nstrument recognition

= Chord recognition

= etc ...

Machine Learning

Learning principles:
= Unsupervised learning
Find structures in data
= Supervised learning
Human observer provides ,ground truth“
= Semi-supervised learning
Combination of above principles
= Reinforcement learning

Feedback of ,confident” classifications to
the training

The Feature Space

Geometric and algebraic interpretation of ML problems
= Features contain numerical values
Concatenation of several features
Dimensionality M
= The data set contains N observations
Cardinality N
= |llustrative Example > SFM & SCF of 6 complex tones
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The Feature Space

= Each feature has
one value > M=2

= Number of

The Feature Space

= Each feature has
one value > M=2

= Number of

Scatter plot of Spectral Flatness vs. Spectral Centroid
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The Feature Space Classification methods
= Each feature has k-Nearest Neighbours (kNN)
one value > M=2
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Spectml Flalness

Classification methods

k-Nearest Neighbours (kNN)

Scatter piot of Spectral Flatness 8. Spectml Cantroid
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Spectml Flalness

L1-Dist. (Manhattan)

Il =20~y

L2-Dist. (Euclidean)
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Classification methods

Decision Trees (DT)

Spaciml Cantroid

Scatter piot of Spectral Flatness 8. Spectml Cantroid
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Classification methods

Random Forests (RF)

Scabter piot of Spectral Flatness v Spectml Cantroid
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Classification methods

Gaussian Mixture Models (GMM)

Scabter piot of Spectral Flatness v Spectml Cantroid
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Classification methods

Gaussian Mixture Models (GMM)

Scalter piot of Spectral Flatness v Spectml Centroid
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Classification methods

Support Vector Machines (SVM)

Scabter piot of Spectral Flatness v Spectml Cantroid
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Classification methods

Deep Neural Networks (DNN)

Scabter piot of Spectral Flatness v Spectml Cantroid
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Classification methods

Deep Neural Networks (DNN)

Scalter piot of Spectral Flatness v Spectml Centroid
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Classification methods

Further methods:

= Hidden Markov Models
Transition probabilities between GMMs

= Sparse Representation Classifier
Sparse linear combination of training data

= Boosting
Combine many weak classifiers

= Convolutional Neural Networks
= Recurrent Neural Networks

= Multiple Kernel Learning

= others ...

Singing Voice Detection
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Audio Mosaicing NMF-Inspired Audio Mosaicing
Target signal: Beatles—Let it be Source signal: Bees Non-negative matrix factorization (NMF)
> > Non-negative matrix Components Activations
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Mosaic signal: Let it Bee

Target's spectrogram Source’s spectrogram Activations

Frequancy
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Proposed audio mosaicing approach
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Basic NMF-Inspired Audio Mosaicing
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Basic NMF-Inspired Audio Mosaicing

Iterative updates
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Core idea: support the development of sparse diagonal activation structures




Frequency

Basic NMF-Inspired Audio Mosaicing
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Basic NMF-Inspired Audio Mosaicing
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Audio Mosaicing

Source signal: Whales

4
/

Target signal: Chic—Good times

B

Mosaic signal

https://www.audiolabs-erlangen.de/resources/MIR/2015-ISMIR-LetltBee

Audio Mosaicing

Target signal: Adele—Rolling in the Deep

Source signal: Race car
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Mosaic signal

https://www.audiolabs-erlangen.de/resources/MIR/2015-ISMIR-LetltBee

Drum Source Separation

Drum Source Separation

= Signal Model
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Drum Sound Separation

= Decomposition via NMFD

R

Score-based information
(drum notation)
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Audio-based information
(training drum sounds)
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Drum Sound Separation

Relative amplitude

Time (seconds)

https://www.audiolabs-erlangen.de/resources/MIR/2016-IEEE-TASLP-DrumSeparation




