

Learning principles:

- Unsupervised learning
- Find structures in data Supervised learning
- Human observer provides "ground truth"
- Semi-supervised learning
- Combination of above principles
- Reinforcement learning
 - Feedback of "confident" classifications to the training

Geometric and algebraic interpretation of ML problems

- Features contain numerical values
 - Concatenation of several features
 - Dimensionality M
- The data set contains N observations
- Cardinality N

SF

Illustrative Example → SFM & SCF of 6 complex tones

$$=\frac{\sqrt[k]{\prod_{k=0}^{K-1} s(k)}}{\frac{1}{K}\sum_{k=0}^{K-1} s(k)}$$
 SC = $\frac{\sum_{k=0}^{K-1} f(k) \cdot s(k)}{\sum_{k=0}^{K-1} s(k)}$

 $\cdot s(k)$

The Feature Space

- Each feature has one value → M=2
- Number of observations → N=6
- Mapping of features

 t_1

 t_N

- SC to y-axis
- SF to x-axis
- Scatter plot with
- unnormalized axes
- Target class labels
 - Provided by manual annotation

Target Labels		Spectral Centroid	Spectral Flatness
0	x ₁	258.62	0.59
0		512.73	0.99
0		550.13	0.92
1	:	146.50	0.27
1		47.93	0.01
1	\mathbf{x}_N	43.95	0.01

Classification methods

k-Nearest Neighbours (kNN)

Classification methods

Classification methods

Decision Trees (DT)

Classification methods

Gaussian Mixture Models (GMM)

Classification methods

Deep Neural Networks (DNN)

Classification methods

Gaussian Mixture Models (GMM)

Classification methods

Support Vector Machines (SVM)

Classification methods

Deep Neural Networks (DNN)

<section-header>

https://www.audiolabs-erlangen.de/resources/MIR/2016-IEEE-TASLP-DrumSeparation