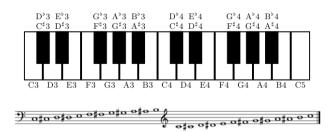

Lecture
Music Processing

Music Representations

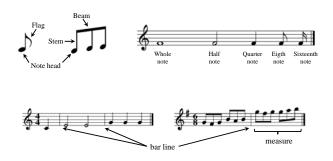
Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Music Representations

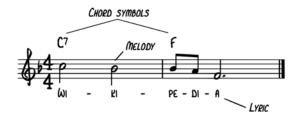

Music Representations

- Score representation: symbolic description
- MIDI representation: hybrid description (models note events explicitely but may also encode performance subtleties)
- Audio representation: physical description (encodes a sound wave)


Score Representation

Score Representation

Score Representation


Score Representation

Score Representation

Score Representation

Score Representation

Score Representation

Types of score:

- Full score: shows music for all instruments and voices; used by conductors
- Piano (reduction) score: transcription for piano
 Example: Liszt transcription of Beethoven symphonies
- Short score: reduction of a work for many instruments to just a fews staves
- Lead sheet: specifies only melody, lyrics and harmonies (chord symbols); used for popular music to capture essential elements of a song

Score Representation

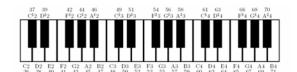
- Scanned image
- Various symbolic data formats
 - Lilypond
 - MusicXML
- Optical Music Recognition (OMR)
- Music notation software
 - Finale
 - Sibelius

Score Representation

MusicXML

```
<note>
  <pitch>
        <pitch>
            <step>E</step>
            <alter>-1</alter>
            <octave>4</octave>
            </pitch>
            <duration>2</duration>
            <type>half</type>
</note>
```


Score Representation


Musical score / sheet music:

- Graphical / textual encoding of musical parameters (note onsets, pitches, durations, tempo, measure, dynamics, instrumentation)
- · Guide for performing music
- Leaves freedom for various interpretations

MIDI Representation

- Musical Instrument Digital Interface (MIDI)
- Standard protocol for controlling and synchronizing digital instruments
- Standard MIDI File (SMF) is used for collecting and storing MIDI messages
- SMF file is often called MIDI file

MIDI Representation

MIDI Representation

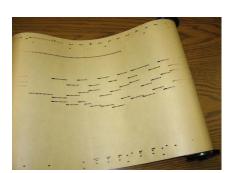
MIDI parameters:

MIDI note number (pitch) [0:127]

```
p = 21, ..., 108 \triangleq "piano keys"
p = 69 \triangleq concert pitch A (440Hz)
```

- Tempo measured in clock pulses or ticks (each MIDI event has a timestamp)
- Absolute tempo specified by
 - ticks per quarter note (musical time)
 - micro-seconds per tick (physical time)

MIDI Representation



Time	Message	Channel	Note	Velocity	
(Ticks)			Number		
60	NOTE ON	1	67	100	
0	NOTE ON	1	55	100	
0	NOTE ON	2	43	100	
55	NOTE OFF	1	67	0	
0	NOTE OFF	1	55	0	
0	NOTE OFF	2	43	0	
5	NOTE ON	1	67	100	
0	NOTE ON	1	55	100	
0	NOTE ON	2	43	100	
55	NOTE OFF	1	67	0	
0	NOTE OFF	1	55	0	
0	NOTE OFF	2	43	0	
5	NOTE ON	1	67	100	
0	NOTE ON	1	55	100	
0	NOTE ON	2	43	100	
55	NOTE OFF	1	67	0	
0	NOTE OFF	1	55	0	
0	NOTE OFF	2	43	0	
5	NOTE ON	1	63	100	
0	NOTE ON	2	51	100	
0	NOTE ON	2	39	100	
240	NOTE OFF	1	63	0	
0	NOTE OFF	2	51	0	
0	NOTE OFF	2	39	0	

MIDI Representation 71/B4 67/G4 60/C4 55/G3 48/C3 43/G2

36/C2

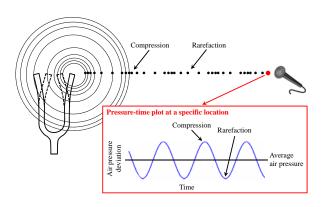
MIDI Representation

MIDI Representation

MIDI Representation

Piano roll representation:

- Piano roll: music storage medium used to operate a player piano
- Perforated paper rolls
- Holes in the paper encode the note parameters onset, duration, and pitch
- First pianola: 1895


Audio Representation

Various interpretations - Beethoven's Fifth

Bernstein	
Karajan	>
Scherbakov (piano)	>
MIDI (piano)	>

Audio Representation

Waveform

Audio Representation

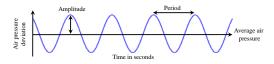
Waveform

- Audio signal encodes change of air pressure at a certain location generated by a vibrating object (e.g. string, vocal cords, membrane)
- Waveform (pressure-time plot) is graphical representation of audio signal
- Parameters: amplitude, frequency / period

Audio Representation

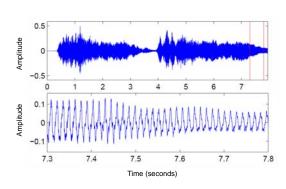
Waveform

Pure tone (harmonic sound):


- Sinusoidal waveform
- Prototype of an acoustic realization of a musical note

Parameters:

- Period p: time between to successive high pressure points
- Frequency $f = \frac{1}{p}$ (measured in Hz)
- Amplitude a: air pressure at high pressure points


Audio Representation

Waveform

Audio Representation

Waveform

Audio Representation

Waveform

Bernstein (orchestra) Glen Gould (piano)

Audio Representation

Sound

- Sound: superposition of sinusoidals
- When realizing musical notes on an instrument one obtains a complex superposition of pure tones (and other noise-like components)
- Harmonics: integer multiples of fundamental frequency
 - 1. Harmonic ≙ fundamental frequency (e.g. 440 Hz)
 - 2. Harmonic ≙ first overtone (e.g. 880 Hz)
 - 3. Harmonic \triangleq second overtone (e.g. 1320 Hz)

Audio Representation

Pitch

- Property that correlates to the perceived frequency (

 fundamental frequency)
- Example: middle A or concert pitch

 440 Hz
- Slight changes in frequency have no effect on perceived pitch (pitch \(\text{pitch} \) entire range of frequencies)
- Pitch perception: logarithmic in frequency

Audio Representation

Equal-tempered scale: A system of tuning in which every pair of adjacent notes has an identical frequency ratio

Western music: 12-tone equal-tempered scale

- Each octave is devided up into 12 logarithmically equal parts
- Notes correspond to piano keys $p=21~(\mathrm{A0})~\mathrm{to}~p=108~(\mathrm{C8})$
- Referenz: standard pitch $p = 69 \text{ (A4)} \triangleq 440 \text{ Hz}$
- Frequency of a note with MIDI pitch P

$$f_{\text{MIDI}}(p) = 2^{\frac{p-69}{12}} \cdot 440$$

Audio Representation

Harmonics

Harmonics: Frequen	cy = integer	nultiples	of fur	ıdamen	tal fred	uency							М
							\triangleright		\triangleright				Þ
Deviation in cents:	+2	-14	+2	-31		+4	-14	-49	+2	+41	-31	-12	
MIDI: Frequency = fu	ndamental f	equency	of MII	OI pitch									
					\triangleright		\triangleright		\triangleright			\triangleright	
Stereo file: Harmonic	s vs. MIDI												
KI KI KI	N N	No.											IN.

Audio Representation

Dynamics

- Intensity of a sound
- Energy of the sound per time and area
- Loudness: subjective (psychoacoustic) perception of intensity (depends on frequency, timbre, duration)

Audio Representation

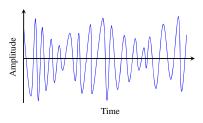
Dynamics

• intensity =
$$\frac{energy}{time \cdot area} = \frac{power}{area}$$
 $\left(\frac{W}{m^2}\right)$

- Decibel (dB): logarithmic unit to measure intensity relative to a reference level
- Reference level: threshold of hearing (THO) $P_0 = 1 \cdot 10^{-12} \frac{W}{m^2}$
- Intensity P_1 measured in dB: $dB(P_1) = 10 \cdot \log_{10} \left(\frac{P_1}{P_0} \right)$

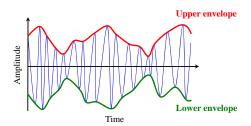
■ Examples:
$$P_1 = 10 \cdot P_0 \rightarrow P_1 \text{ has a sound level of } 10 \, dB$$

$$P_2 = 100 \cdot P_0 \rightarrow P_2 \text{ has a sound level of } 20 \, dB$$

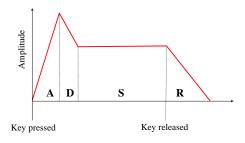

Audio Representation

Dynamics

Source	Intensity	Intensity level	× TOH
Threshold of hearing (TOH)	10-12	0 dB	0
Whisper	10-10	20 dB	10 ²
Pianissimo	10-8	40 dB	104
Normal conversation	10-6	60 dB	10 ⁶
Fortissimo	10-2	100 dB	1010
Threshold of pain	10	130 dB	1013
Jet take-off	10 ²	140 dB	1014
Instant perforation of eardrum	104	160 dB	10 ¹⁶

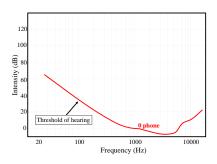

Audio Representation

Dynamics


Audio Representation

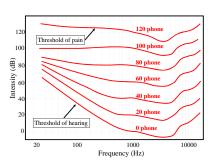
Dynamics

Audio Representation


Dynamics

Audio Representation

Loudness

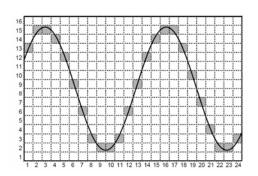

Equal-loudness contours (phone)

Audio Representation

Loudness

Equal-loudness contours (phone)

Audio Representation


Timbre

- Quality of musical sound that distinguishes different types of sound production such as voices or instruments
- Tone quality
- Tone color
- Depends on energy distribution in harmonics

Audio Representation Timbre All instruments play the same note C4 (261.6 Hz) Piano Trumpet Violine Flute Flute Violine Flute Violine Flute Flute Flute Frime (seconds) Vibrato: Frequency modulation

Audio Representation

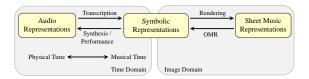
Digitization

Audio Representation

Digitization

- Convertion of continuous-time (analog) signal into a discrete signal
- Sampling (discretization of time axis)
- Quantization (discretization of amplitudes)

Examples:


Audio CD: 44100 Hz sampling rate

16 bits (65536 values) used for quantization

Telephone: 8000 Hz sampling rate

8 bits (256 values) used for quantization

Music Representations

