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ERKLÄRUNG

Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
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ABSTRACT

Abstract

Computational harmony analysis plays an important role within the topic of Music Information

Retrieval. It comprises a wide range of analysis tasks and potential for practical applications.

Since chords constitute an essential notion for the analysis and perception of harmony, automatic

chord recognition from audio recordings offers interesting insights, both from a musicological and

technical standpoint. This thesis presents an evaluation of various chord recognition methods

and their individual parameters, applied to two cross-version datasets of Western classical

music recordings. In our experiments, we study the impact of individual parameters of various

signal processing steps that are applied as part of the chord recognition systems. This includes

enhancement strategies such as temporal filtering or compression, as well as the implementation

of various chord models. The results show a strong interplay between algorithmic parameters

and suggest their joint optimization. We use a comparison of features extracted from the audio

data with symbolic baseline features to highlight the relation of musical and technical challenges

involved in chord recognition. These baseline experiments investigate the problems of chord

recognition, when the technical challenge of extracting pitch content from the audio data is

eliminated. The results show that the musical challenge involved in chord recognition seems

to outweigh the problems arising from signal processing. Finally, an in-depth analysis of the

results on a track level shows the differences between evaluating across songs and versions of

a cross-version dataset. For both datasets, the efficiency of chord recognition shows a higher

variance across different songs than different versions. In summary, the results discussed within

this thesis offer insights both into the technical aspect of automatic chord recognition and into

the datasets themselves and their relevance for musicological studies.
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ZUSAMMENFASSUNG

Zusammenfassung

Die computergestützte Harmonieanalyse spielt eine wichtige Rolle im Feld der Music Information

Retrieval. Sie umfasst ein weites Feld an Aufgaben und besitzt weitreichendes Potential für

praktische Anwendungen. Akkorde bilden ein grundlegendes Konzept für die Wahrnehmung

und Analyse von musikalischen Harmonien. Aus diesem Grund kann die automatisierte Akko-

rderkennung von Musikstücken sowohl musikwissenschaftliche als auch technische Einblicke

bieten. In dieser Arbeit werden verschiedene Methoden zur Akkorderkennung und ihre Pa-

rameter im Kontext von zwei Korpora aus der klassischen Musik evaluiert. Beide Datensätze

beinhalten mehrere Versionen der jeweiligen Musikstücke. In den Experimenten wird zunächst

der Einfluss verschiedener algorithmischer Parameter auf die Qualität der Akkorderkennung

untersucht. Die Ergebnisse zeigen Wechselwirkungen zwischen den einzelnen Parametern, welche

eine gemeinsame Optimierung nahe legen. Um das Verhältnis von musikalischen und technischen

Herausforderungen in der Akkorderkennung zu untersuchen, werden verschiedene Arten von

Merkmalen verglichen. Der Vergleich von Merkmalen aus der klassischen Signalverarbeitung

mit symbolbasierten, perfekten Merkmalen zeigt, dass die musikalische Herausforderung der

Abstrahierung von Notenmerkmalen zu Akkorden einen größeren Einfluss auf die Qualität der

Akkorderkennung hat, als die technische Herausforderung der Extrahierung von aussagekräftigen

Merkmalen aus den Aufnahmen. Eine abschließende Detailanalyse der Ergebnisse zeigt die

Qualitätsschwankungen der Akkorderkennung für einzelne Lieder und Versionen der Datensätze.

Für beide Korpora zeigt sich eine größere Fluktuation der Ergebnisse für verschiedene Lieder,

als für verschiedene Versionen. Die experimentellen Ergebnisse dieser Arbeit bieten Einblicke in

technische und algorithmische Aspekte der automatisierten Akkorderkennung. Zudem werden

musikalische Merkmale der Datensätze herausgearbeitet.
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1. INTRODUCTION

Chapter 1

Introduction

Computational harmony analysis is one of the widest areas of research within Music Information

Retrieval (MIR). It offers an algorithmic approach to extract various information, such as global

or local keys, pitch activations, or chords, from music. This thesis presents a study of various

approaches to automatically extract chord information from audio recordings of Western classical

music.

The term harmony refers to simultaneously sounding musical notes, which are perceived as one

unit by a human listener. When three or more notes are combined, one speaks of a chord. Chords

are considered to be one of the main building blocks of harmony and are therefore at the central

interest of musicological studies. Automatic chord recognition can be of aid in a multitude of

scenarios, especially when larger bodies of data are involved. It presents a multi-disciplinary

challenge, which can advance musical as well as technical research.

The complexity of automatic chord recognition tasks may vary widely, depending on the data

that is analyzed and the level of detail that is expected from the output. For example, the

analysis of audio recordings involves a great deal of front-end signal processing to create features

that are suited for automatic evaluation. The musical challenge of correctly recognizing the

played chords from pitch content is therefore extended by the technical challenge of providing

meaningful features from the raw data. Conversely, the analysis of purely symbolic data, e.g.,

piano-roll representations, significantly reduces this technical challenge. For the experiments

conducted as part of this thesis, we use audio recordings as input data.

Another influential factor is the style and historic background of music to be analyzed. In music

history, different eras are characterized by the use of typical instrumentation, harmonic language,

and musical structure. In these aspects, e.g., “Let It Be” by The Beatles will differ greatly from

the “Mass in B Minor” by Johann Sebastian Bach. Prior knowledge of these characteristics can

be beneficial when implementing chord recognition systems. The two datasets we analyze in our

studies are examples of music from the late Classical and the Romantic period.
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1. INTRODUCTION

In the following, we give a description of the individual segments of this thesis. Chapter 2 provides

a detailed description of the underlying problems of automatic chord recognition and an overview

of related work within the field. The focus of this discussion lies on the various implementations

and datasets that are commonly used in publications. In Chapter 3, we present the datasets

which we use for our experiments. This includes a quick overview of their musical characteristics

and a description of the raw data and annotations that are included within. Chapter 4 contains

an explanation of the approaches we utilize to perform chord recognition and evaluate the

results. We explain the different methods and introduce important parameters. Furthermore,

we describe the evaluation metrics for comparing the recognition results to the ground truth

annotations. Chapter 5 describes our practical experiments and analyzes the results in various

contexts. Initially, we focus on variations of the algorithmic parameters, their interactions and

their effect on the recognition results. We discuss and compare different possibilities to use the

datasets for data-driven chord recognition. Furthermore, we present the impact of utilizing chord

vocabularies of varying complexity and the related problems. In conjunction with the previously

explained parameter variations, we compare results for different feature types. This provides an

insight into the relationship of technical and musical challenges involved in chord recognition.

Finally, we use an in-depth analysis of the recognition results on a singular song level to discuss

the cross-version aspect and musical difficulties. To finalize the thesis, Chapter 6 summarizes the

results and gives an outlook on possible subsequent research opportunities.
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2. BACKGROUND AND RELATED WORK

Chapter 2

Background and Related Work

In the following sections, we discuss the task of automatic chord recognition on the basis of

scientific publications made in the field. Initially, we provide a detailed definition of the underlying

problems and the modality of different chord vocabularies. Furthermore, we present corpora of

music data that are commonly utilized in literature and compare them to the datasets we use for

our experiments. Finally, we give an overview of different technical implementations of chord

recognition systems and their efficacy.

2.1 Chord Recognition Problem

To define the problem of chord recognition, the term can be taken literal—to correctly recognize

which chord is present at what time in the music. This implies two separate challenges. Firstly,

segmentation of the data into temporal regions, whose start and end times correspond to the

chord changes in the music. The second challenge is finding the correct chord label for each

sequence. Most approaches address both challenges simultaneously by providing a chord label

for each time frame, implicitly setting region borders. While the term chord recognition seems

to be used synonymously in most publications with other terms such as chord estimation or

transcription, Humphrey et al. [12] suggest a subtle differentiation. They propose that chord

transcription is a more abstract task, taking into account structural information of the musical

data and finding functional relations between chords. This relates it principally closer to a

segmentation task than is the case for common approaches to chord recognition, which do not

consider functional harmony.

Evaluating the effectiveness of a chord recognition system requires the existence of reference

chord annotations, often referred to as ground truth. In most cases, these annotations are

manually created by music experts, assigning a single chord label to each segment of the music

recording. Due to the often ambiguous nature of musical harmony, a number of publications
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2. BACKGROUND AND RELATED WORK

focus on the influence of subjectivity on the annotation process, e.g., [12,17,31]. The comparison

of chord labels from different experts shows a clear impact of personal preferences on the labeling

process. Ni et al. [31] propose a maximum annotator agreement of around 90%. In a similar

experiment, Koops et al. [17] report that an agreement between annotators was reached on only

76% of the assessed data, decreasing with increasing complexity of utilized chord vocabularies.

When annotators were free to choose individual chord label complexity, the intersection of the

resulting vocabularies was smaller than 20% of all vocabularies combined. These findings offer

interesting insights into the “correctness” of ground truth annotations and raise concerns about

the significance of automatic chord recognition results that exceed annotator consensus. Modern

recognition systems may therefore have started to overfit the idiosyncracies of different chord

labeling styles used by individual annotators and datasets.

The use of different chord vocabularies generally plays an important role in the context of chord

recognition. In this scenario, the term vocabulary refers to the set of individual chord types

the recognizer has to distinguish. Commonly used vocabularies include, e.g., the major/minor

vocabulary (containing 24 different chords), or more complex variants such as a combined

major/minor and 7th chord vocabulary. The choice of vocabulary not only significantly impacts

the complexity of the chord recognition task, but also dictates the way in which harmonies

present in the music are mapped to specific chord symbols. As an example, when utilizing

the major/minor vocabulary, a C minor chord with an added minor seventh note is commonly

mapped to a C minor chord by the annotator. So is a C minor chord consisting only of the

corresponding triad notes. This implies that an automatic chord recognition system has to label

different features as the same chord. A larger and more complex vocabulary might introduce

distinguishable labels for specific chords, but makes it harder to differentiate between the higher

number of similar chords.

2.2 Chord Recognition Datasets

In the context of chord recognition, different datasets are used to develop, train, and evaluate

recognition algorithms. These collections are essential for research in the field and create a

common ground that can be used to compare approaches from various publications. For chord

recognition, these datasets usually contain start and end time stamps and a label for each chord

that is present in the music. The labels are usually manually created by music experts. The

creation of extensive datasets is an extremely labor-intensive and time-consuming task, which

involves a lot of expert knowledge and curation to make the annotations as accurate as possible.

Table 3.2 shows an example for audio-aligned chord label annotations.

While researchers might create own datasets for their studies, there is a number of datasets that

are commonly used within the chord recognition community. The most important one to mention

here is the Beatles dataset, containing annotations for a large number of songs published by the
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2.3 CHORD RECOGNITION METHODS

British band “The Beatles.” The annotations are publicly available as part of the Isophonics

dataset1, that is curated by the Centre for Digital Music at Queen Mary University in London.

It has been used in a large number of scientific and didactic publications within the field of MIR,

e.g., [13, 24,28].

In combination with a collection of songs by the bands “Queen” and “Zweieck,” the Beatles

dataset is used as a test dataset in the annual Music Information Retrieval Evaluation eXchange

(MIREX).2 The latter represents a community-based framework, where tasks from MIR can

be evaluated in a comparable manner [7]. Next to the Isophonics dataset, the more recent

Billboard dataset is also used to compare chord recognition algorithms at the MIREX challenge.

It comprises a large collection of annotations for songs from popular music that were included

in Billboard magazine’s “Hot 100” rankings between 1958 and 1991 [3]. The annotations are

also publicly available.3 While there is a relatively large amount of available annotated data for

chord recognition, most of it is popular music. There is a distinct lack of manually annotated

datasets that contain examples from classical music recordings. The datasets that are used in

this thesis are both relatively new and have therefore not been as extensively explored as the

aforementioned examples. They contain annotations for influential pieces of music from the

late Classical and Romantic period, both performed by multiple artists. We give a detailed

description of these datasets in Chapter 3.

Classical music provides an interesting approach for cross-version analysis, since different versions

usually follow the same score with the same instrumentation. In popular music, cover versions

are more common, which might use different instrumentation and usually deviate from the

original versions to a larger extent. A number of studies focus on cross-version approaches for

the harmony analysis of classical music. For example, Konz et al. [15] exploit deviations across

versions to stabilize the chord recognition process. Weiss et al. [37] explore the influence of

training data-driven local key estimators across versions, songs, and annotators.

2.3 Chord Recognition Methods

Since automatic chord recognition has been and still is a very active field within MIR, there

is a large number of different algorithmic approaches to extract chord information from music

recordings. In the following, we provide a thematic categorization of various approaches and

enhancement methods found in literature.

In 1999, Fujishima [9] proposed a matching of hand-crafted, binary chord template vectors

with chroma features extracted from audio signals. The matching was implemented using the

Euclidean distance or the cosine similarity as measures, picking the chord template with highest

1http://www.isophonics.net/datasets
2https://www.music-ir.org/mirex/
3https://ddmal.music.mcgill.ca/research/The McGill Billboard Project (Chord Analysis Dataset)/
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2. BACKGROUND AND RELATED WORK

Figure 2.1. Schematic overview of the common stages of automatic chord recognition systems [28].

similarity as recognition result for each time frame. While this approach has been published over

20 years ago, the basic idea or parts of it can still be found in most modern chord recognition

methods.

Generally, the process can be broken down into two main steps: the extraction of suitable

features from the music-based input data and the matching of these features with some form

of chord templates. Enhancement methods that are applied before the pattern matching stage

are referred to as pre-filtering in literature. When applied during or after the pattern matching,

these enhancements are denoted post-filtering. Figure 2.1 provides a schematic visualization of

the structure. It should be noted that there are numerous publications using symbolic music

representations as input data. In this thesis, the applied methods and presented state-of-the-art

will be restricted to chord recognition from audio recordings.

In [9], the pitch class profile (PCP) is used as feature representation. It is a twelve-dimensional

vector, representing the salience of the twelve semitone pitch classes4 within the audio data.

This representation does not contain octave information. The PCP is also referred to as chroma,

which is the term we will use throughout this thesis. Chroma vectors have been found to be

a suitable feature for many MIR tasks, including chord recognition. They can be obtained in

different ways. Commonly, they are acquired by first computing a pitch representation with, e.g.,

the constant-Q transform (CQT) or a binned Short-time Fourier transform (STFT) and then

summing up elements of the same pitch class.

In literature, efforts were made to improve chroma features used for chord recognition by, e.g.,

making them more robust to timbre changes [29], using Non-negative Matrix Factorization (NMF)

for prior note transcription [21], reducing negative influences of overtones [23], or refining the

frequency resolution by using spectral reassignment [32]. Comprehensive comparisons of various

strategies for chroma feature enhancement can be found in [5] and [13]. Both studies showed that

the use of different chroma features and pre-filtering methods heavily impacts the results of chord

recognition. Especially logarithmic compression and overtone removal by suitably weighting the

pitch features were found to be beneficial pre-filtering strategies.

Next to traditional signal processing methods, techniques from machine learning and especially

deep-learning have been popularized more recently to extract features from audio recordings.

4i.e., {C, C], D, D], E, F, F], G, G], A, A], B}
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2.3 CHORD RECOGNITION METHODS

In [24] and [39], Convolutional Neural Network (CNN) architectures are used to extract features

from CQT-based spectral representations of the audio data. In [18], a Deep Neural Network

(DNN) is implemented to extract chroma features from quarter-tone STFT spectrograms. The

studies showed an increase in chord recognition quality when using features obtained with

deep-learning strategies, compared to traditional signal processing chroma features.

Fujishima [9] used twelve-dimensional, binary, hand-crafted pitch class chord templates to

represent different chords.5 While this implementation is quite demonstrative and can be well-

used for didactic purposes [28], it is rarely found in state-of-the-art chord recognition systems.

Modern approaches usually rely on some form of data-driven chord models, mostly trained by

supervised learning strategies. An intuitive implementation is the averaging of all feature vectors

that are equally annotated to create averaged chord templates. More sophisticated methods not

only use the average statistics of training data, but also their variance. The most popular choice

for such a model are multivariate Gaussian distributions, as used in, e.g., [5, 6, 35]. Each chord

model is defined by a mean vector and a covariance matrix, the number of dimensions is usually

chosen to match the feature space. This way, chord similarity values for each feature vector can

be obtained by evaluating the probability density function of each Gaussian chord model. Mean

vector and covariance matrix can easily be calculated directly from the labeled training data.

By using multiple, weighted Gaussian distributions for each chord model, Gaussian Mixture

Models (GMM) provide a more sophisticated approach with higher capacity to fit the training

data. This comes at the cost of a higher computational complexity for training the chord models,

which is usually done by using the Expectation Maximization (EM) algorithm, see [26,35]. In a

comprehensive study by Cho and Bello [5], the comparison of Gaussian chord models of various

complexity showed no prominent gain in chord recognition effectiveness when using higher-order

GMMs. While more complex chord models do provide better results, the differences can be

largely offset by a suitable choice of features.

In [9], cosine similarity and Euclidean distance are used as a similarity measure to compare feature

vectors with chord templates. The similarity-maximizing template was picked as recognition

output for each time frame independently. Since the frame rate is often higher than the chord

change rate in music, temporal post-filtering techniques such as median or average filtering can be

applied to the similarity representation before picking the output. In modern chord recognition

systems, the pattern matching and post-filtering steps are often combined by considering chord

sequences instead of singular chords. For this, the most popular method in literature is the

implementation of Hidden Markov-models (HMM). Their use for chord recognition was first

proposed by Sheh and Ellis [35], inspired by algorithms used in the field of speech recognition.

HMMs are used to model chords as hidden states, with sets of initial, transition, and emission

probabilities. Feature vectors are viewed as an observable output sequence. In most cases,

5e.g., C major chord template: (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)T
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2. BACKGROUND AND RELATED WORK

Viterbi decoding is applied to find the chord (state) sequence with the highest likelihood, see,

e.g., [5,6,21,35]. The transition probability set is used to model musical relations between chords.

It can be acquired by implementing the EM algorithm, though Cho and Bello [5] showed that

the use of an untrained, uniform, diagonal enhanced transition matrix with high self-transition

probability values leads to similar chord recognition effectiveness. As an alternative to HMMs,

Conditional Random Fields (CRF) with Viterbi decoding are often used for chord sequence

decoding, especially when combined with DNN architectures, see, e.g., [19, 22, 39]. Other models

that are used in literature to include temporal dependencies within chord sequences are Recurrent

Neural Networks (RNN) [24], dynamic Bayesian networks [23], or weighted acyclic harmonic

graphs [34].

A good way to comparably measure the quality of automatic chord recognition algorithms is the

annual MIREX challenge, as mentioned in Section 2.2. The task is to recognize chords from the

Isophonics and Billboard datasets with five different chord vocabularies of increasing size and

complexity. As an evaluation measure, the Chord Symbol Recall (CSR) is used, as described

in [33]. It is calculated by dividing the duration of correctly recognized segments by the total

duration of annotated segments. The CSR is similar to our recall measure, which we describe

in Section 4.5. While we use a quantized time axis based on sampled time frames, the CSR is

calculated on a continuous time axis. The best algorithms from the past few years achieved

a CSR of around 85% for the more simple chord vocabularies6 and around 70% for the most

complex vocabulary.7 As previously mentioned, these values are only evaluated on popular music

recordings. Hence, there is a lack of common ground for chord recognition in classical music.

This thesis does not represent an effort to further optimize the quality of state-of-the-art automatic

chord recognition algorithms, but to offer insights into the characteristics of the analyzed audio

recordings and selected algorithmic parameters.

6root note only and major/minor only
7major/minor + 7th chords + inversions
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3. DATASETS

Chapter 3

Datasets

In this chapter, we describe our two analyzed datasets in detail. This includes an overview of all

relevant annotation modalities that are included, a short musical categorization, and statistical

information about the chord labeling. Furthermore, we describe the individual chords included

in the three different chords vocabularies we use for our experiments.

3.1 Schubert Winterreise Dataset (SWD)

Winterreise (eng. Winter Journey, D.911/op. 89) is a song cycle for solo voice and piano,

written by Austrian composer Franz Schubert in 1827. It represents one of the most popular

examples of the art song, a musical genre characteristic for the Romantic period. It consists of

24 songs, the lyrics are based on poems by Wilhelm Müller. The Schubert Winterreise dataset

(SWD) is a multimodal dataset, comprising multiple representations of the raw data and several

annotations. It is publicly available.1 The raw data includes sheet music, MIDI2 representation

of the score, lyrics in text format, as well as audio recordings of nine different performances

of the full song cycle. The annotations comprise musical keys, score- and audio-aligned chord

labels, and structural segmentation. Figure 3.1 a) shows an overview of the different songs and

versions of the SWD. The IDs of the nine different versions are AL98, FI55, FI66, FI80, HU33,

OL06, QU98, SC06, and TR99, representing short handles of the singers’ names and the year of

the recording. The song IDs are D911-01 to D911-24. The SWD contains a total number of 216

individual tracks. With the term track, we refer to the recording of a single song in a specific

version.

1https://zenodo.org/record/3968389#.X93yY9hKiUk
2Musical Instrument Digital Interface, symbolic representation of musical data
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3. DATASETS

Figure 3.1. Schematic representation of the number and IDs of songs and versions contained in each
dataset. a) For SWD. b) For BSD.

In the context of this thesis, we use the term version as a descriptor of the different performances.

While some of the modalities—such as recording quality and setting, individual tempo, dynamics,

or global keys—might differ between the performances, all of them are musically similar and

follow the score closely. This makes them comparable on a musical time axis, allowing for

cross-version analysis. Furthermore, the instrumentation is always the same, consisting of one

singer and one piano.

Table 3.1 shows an exemplary excerpt from the score-aligned chord annotations included in

the SWD. The chord labels are given in different granularities, the start and end points are

denoted in measure positions. In the latter, the decimals represent musically linear, precise

positions within a measure, i.e., the decimals describe different musical beats, depending on the

current musical time signature. As an example, in a 4/4 time measure, “10.000” would denote

beat 1 of measure 10, “10.500” would denote beat 3. By utilizing manually created measure

annotations, the score-aligned chord annotations were aligned to each version’s audio using a

sophisticated synchronization pipeline. For further insights into the synchronization process and

general information about the SWD, we refer to the accompanying journal paper [38]. Table 3.2

shows an example of the audio-aligned chord annotations, specifying start and end time of each

chord label in the corresponding version’s audio in seconds.
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3.1 SCHUBERT WINTERREISE DATASET (SWD)

Start End Shorthand Extended Major/minor Major/minor+inversion

... ... ... ... ... ...

9.000 9.999 D:hdim7/C D:([3,[5,[7)/C D:min D:min/C

10.000 10.499 C:min C:([3,5) C:min C:min

10.500 10.750 C:min/G C:([3,5)/G C:min C:min/G

... ... ... ... ... ...

Table 3.1. Example of score-aligned chord annotations from D911-01. The global key corresponds to
the original score. Start and end point of the chord segments are given as measure positions.

Start End Shorthand Extended Major/minor Major/minor+inversion

... ... ... ... ... ...

19.74 22.08 C:hdim7/A] C:([3,[5,[7)/A] C:min C:min/A]

22.08 23.3 A]:min A]:([3,5) A]:min A]:min

23.3 23.86 A]:min/F A]:([3,5)/F A]:min A]:min/F

... ... ... ... ... ...

Table 3.2. Example of audio-aligned chord annotations from D911-01 in version QU98. Note that the
global key of this particular version deviates from the original score. Start and end point of the chord
segments are given in seconds, corresponding to the audio recording.

AL98 FI55 FI66 FI80 HU33 OL06 QU98 SC06 TR99

1.55 4.20 3.86 2.99 1.75 1.31 4.87 2.51 0.38 [dB]

Table 3.3. Sound intensity difference between sung and instrumental parts for each version in D911-01.
Higher values indicate a louder singing voice compared to the piano accompaniment. The highest and
lowest values are marked.

Table 3.3 shows a quantification of how loud the singing voice is recorded in comparison to the

piano accompaniment. For this, we evaluate the average sound intensity of the audio recordings

of D911-01 for each version. We compare the sound intensity of audio segments containing piano

and singing voice to the sound intensity of segments only containing piano notes. This results

in some kind of “SNR”3 value for each version. The higher the value, the louder the singing

voice is compared to the piano accompaniment. It can be seen that the loudness difference is

biggest in version QU98, with a value of 4.87 dB. The smallest difference is found in version TR99,

with a value of 0.38 dB. It has to be noted that we computed these values using a quite simple

approach and only for one out of the 24 songs. Therefore, they might not perfectly represent the

actual intensities throughout the complete dataset. Nevertheless, the evaluation offers a rough
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indication of the differences between versions. It also corresponds to our subjective impression

when listening to the different recordings.

The SWD represents an effort to create an extensive, precisely annotated, classical music dataset.

Despite it being published recently, numerous researchers have used the underlying data for

their publications, further developing and contributing to the SWD. We refer to the harmonic

analysis by Absil [1], providing the basis for the annotations. Further, we refer to Koops [16],

Grohganz [10], and Brütting [2], exploring harmonic and structural characteristics of the SWD.

3.2 Beethoven Piano Sonatas Dataset (BSD)

The German composer Ludwig van Beethoven wrote 32 piano sonatas between the years 1795

and 1822. These works represent highly influential pieces of classical piano music literature. In

contrast to Schubert’s Winterreise, the sonatas have been composed over a period of 27 years

and are therefore more musically heterogeneous. While the first pieces can be classified as typical

examples of sonatas from the Classical period, later works exhibit harmonical and structural

similarities with music from the Romantic period. The Beethoven piano sonatas dataset (BSD)

comprises audio recordings and annotations for six different performances of the first movements

of all 32 sonatas. This means that the BSD includes a total of 192 individual tracks. Figure 3.1

b) shows an overview of the songs and versions contained within the BSD. While denoting the

movements as “songs” is inaccurate from a musicological standpoint, we use the term to achieve

a consistent terminology. The version IDs are Ashkenazy, Barenboim, BilsonEtAl, Brendel,

Gulda, and Jando, named after the performing pianists. The song IDs are No-01 to No-32. The

song IDs are in chronological order.

The BSD is not publicly available in its entirety. For the audio recordings and measure annotations

we refer to Jiang et al. [14]. The score-based chord annotations are published by Chen et al. [4]

and can be accessed freely.4 The latter were used to create the audio-aligned chord annotations

used in in our experiments. The synchronization process was similar to the one used for the

SWD. The annotation style is the same for both datasets, an example is given in Tables 3.1 and

3.2.

In contrast to the SWD, some of the versions contain a different number of repetitions in certain

songs, namely No-01, No-02, and No-06. This makes the comparison of versions on a musical

time axis more complicated for these songs. Apart from that, all versions follow the same

structure in the remaining songs. The instrumentation is always the same, consisting of a solo

piano. The total duration of the audio recordings of all versions combined amounts to roughly

23 hours, which is over double the duration of the SWD at roughly eleven hours. The average

3Signal-to-noise ratio
4https://github.com/Tsung-Ping/functional-harmony
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playtime of a single track in the BSD is 7 min 4 s, the average track duration in the SWD is

2 min 58 s.

3.3 Chord Annotations and Vocabularies

For this thesis, we use the chord annotations described above as a ground truth for the evaluation

of different chord recognition methods. As labels, we are using the “Extended” and “Major/minor”

columns in the annotations, as seen in Tables 3.1 and 3.2. To provide an insight into the annotation

styles which are included in the datasets, we also show the remaining columns. We process

the annotations in three different granularities, resulting in references for three different chord

vocabularies. We refer to these vocabularies as major/minor, triad, and seventh from here on

out. For the major/minor vocabulary we use the “Major/minor” column, for triad and seventh

we use the “Extended” column. The “Major/minor” style is mostly derived from the third note

of the “Extended” column, but in some cases no third note is present. In these cases, further

musical context was used to assign the chord quality for the “Major/minor” column. With the

term quality, we refer to the chord type, such as, e.g, major, minor, or diminished.

The major/minor vocabulary contains 24 different chords, comprised of one major and one minor

chord for each of the twelve different root notes from C to B. We denote major chords with

the suffix capital M, e.g., a C major chord is referred to as CM. We symbolize minor chords

with a small m. The triad vocabulary contains 40 different chords, extending the major/minor

vocabulary with diminished and augmented chords. It contains twelve additional diminished

chords, denoted by the suffix dim. Since there are only four distinguishable augmented chords

when utilizing enharmonically equivalent pitch classes,5 we include only the augmented chords

for the root notes C, C], D, and D] in the vocabulary. We denote them with the suffix aug.

The seventh vocabulary is the largest and most complex vocabulary we use in our experiments,

containing 91 different chords. Within it, we include the complete triad vocabulary and extend it

with 51 different 7th chords, split up in five different qualities. The first quality is the dominant

seventh chord, denoted by the suffix M7. It consists of a major triad with an added minor

seventh note. Next is the minor seventh chord, consisting of a minor triad with an added

minor seventh note. We symbolize it with the suffix m7. By adding a major seventh note to

a major triad, the major seventh chord is obtained. We denote it with the suffix maj7. The

half-diminished seventh chord is constructed by adding a minor seventh note to a diminished

triad. We symbolize it with the suffix hdim7. The last chord quality we include in the seventh

vocabulary is the diminished seventh chord, constructed by adding a diminished seventh note on

top of a diminished triad. It can also be obtained by stacking three minor triads on the root

note. We denote it with the suffix dim7. There are only three distinguishable dim7 chords,6 so

5e.g., Caug contains the same notes as Eaug and G]aug
6e.g., Cdim7 contains the same notes as D]dim7, F]dim7, and Adim7
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Figure 3.2. Distribution of chord quality annotations for SWD. a) Major/minor vocabulary. b) Triad
vocabulary. c) Seventh vocabulary. d) Seventh vocabulary without any mapping or reduction.
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Figure 3.3. Distribution of chord quality annotations for BSD. a) Major/minor vocabulary. b) Triad
vocabulary. c) Seventh vocabulary. d) Seventh vocabulary without any mapping or reduction.
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Figure 3.4. Different levels of chord reduction and mapping we apply for our three chord vocabularies.
An annotated “D:(b3, b5, [7)” chord is mapped to Dm for major/minor, reduced to Ddim for triad, and
represented accurately as Dhdim7 for seventh vocabulary.

we only include the dim7 chords for the root notes C, C], and D. Note that in the major/minor

and triad vocabulary, we use only triads, i.e., chords consisting of three different notes. The

additional chords we use in the seventh vocabulary comprise four different notes. For creating

the reference chord labels for the triad and seventh vocabulary, we parse the “Extended” column

from the annotations. It specifies the chords as described by Harte et al. [11]. The root note

is directly given and the quality is implied by denoting the included chord notes in terms of

intervals. As an example, a Cdim7 chord is given as “C:(b3, b5, [[7).”

When parsing the annotations, we implement different types of musical mapping and reduction

of chord labels. For the major/minor vocabulary, we classify all chords containing a major third

note as major, all chords containing a minor third note as minor. This means, chords constructed

of diminished triads are mapped to minor quality and chords constructed of augmented triads

are mapped to major quality. For the triad vocabulary, the triad quality of a chord is classified

accurately, but we reduce additional chord notes. In the seventh vocabulary, we reduce any chord

notes except triad notes and the 7th interval, such as 9th or 11th intervals. In Figure 3.4 we show

an example for a “D:(b3, b5, [7)” chord.

In Figures 3.2 and 3.3, we show statistics of the distribution of different chord qualities within

each vocabulary and dataset. Subfigures a) show the distribution in the major/minor vocabulary,

b) the distribution for the triad vocabulary, and c) the distribution for the seventh vocabulary.

The percentages show the share of each chord quality in terms of the total duration of the

dataset, not the occurrences of each label in the annotated segments (which differ in duration).

Subfigures d) show the “strict” distribution of all considered chord qualities when there is no

mapping or reduction applied. We classify chords as “other,” which are not labeled specifically as

one of the qualities we consider within the three vocabularies. This means that the comparison

of Subfigures a), b), and c) with d) shows the corresponding level of mapping or reduction we

implement. In Appendix A, we show statistics of the occurrence of each individual chord in each

dataset.
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Chapter 4

Chord Recognition Approaches

In the following, we give a technical description of the different approaches for automatic

chord recognition we use in our experiments. We introduce the underlying methods, important

parameters, and evaluation metrics. The structure of this chapter is inspired by the order of

implementation.

4.1 Feature Extraction

As a first step, we extract feature vectors from the audio recordings. In Section 2.3, we give

an overview of commonly used feature types. For this thesis, we implement and compare six

different chroma feature types, denoted as CCQT, CSTFT, CIIRT, Cdeep, Cscore, and Cannot. The

first four are “real” features, actually extracted from the audio recordings. The latter two are

baseline features, taken from symbolic representations of the input data and used for comparison.

CCQT, CSTFT, and CIIRT are based on log-frequency spectrograms extracted with traditional

signal processing methods, obtained by using the time-frequency transforms STFT, CQT, and

a transformation based on infinite impulse response filterbanks (IIRT). These log-frequency

spectrograms capture spectral energy according to the MIDI pitches of the twelve-tone equal

temperament. The center frequency fpitch(p) of a MIDI pitch {p ∈ N | 0 ≤ p ≤ 127} is

fpitch(p) = 2(p−69)/12 · 440 Hz. (4.1)

For a time frame n ∈ Z, P(n, p) describes the salience of a pitch band in the audio recordings. It

can be obtained from CQT and IIRT directly, as these transforms use logarithmic frequency axes.

For STFT, which produces linearly spaced frequency coefficients, we have to bin the coefficients

accordingly. Note that for lower pitch bands, fewer STFT coefficients are available. For a more

detailed description of the transforms we refer to [27, 28]. We refer to the pitch-like features
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Figure 4.1. Normalized chroma features of the first five seconds of song D911-22, version AL98. a) CCQT.
b) CSTFT. c) CIIRT.
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Figure 4.2. Normalized chroma features of the first five seconds of song D911-22, version AL98. a) Cdeep.
b) Cscore. c) Cannot.
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obtained from the CQT, STFT, and IIRT as PCQT, PSTFT, and PIIRT, respectively. For all

three transforms we use a hop size of 2048 samples, resulting in a feature rate of roughly 10.8 Hz

for the input sample rate of 22 050 Hz. We need to choose a power of two as hop size for the

CQT, for comparability we use the same hop size for all three variants. For STFT and IIRT

we use a window size of 4096 samples. The window size for CQT is chosen automatically as a

function of the respective pitch bands. To account for a possible deviation from the standard

tuning at 440 Hz, we perform tuning estimation to adjust the frequency coefficients of the three

transforms accordingly. We choose a number of three bins per semitone for the CQT to achieve

better pitch band separation. For both CQT and IIRT we restrict the MIDI pitches to a range

of 24–108, which corresponds to a range of 7 octaves from C1 to C8 in Western pitch notation.

With STFT we set all frequency coefficients corresponding to pitch bands outside this range to

zero.

While the pitch-like features represent the salience of individual pitch bands in the audio, chroma

features sum up this information for the set of twelve individual pitch classes {C, C], ..., B}
by discarding the octave information. For this, we sum up the values of all pitch coefficients

corresponding to the same pitch class. Doing this for all time frames n results in the chromagram

C(n, c) with pitch class {c ∈ N | 0 ≤ c ≤ 11}. Analogously to the pitch-like features, we

refer to the chroma features obtained from STFT, CQT, and IIRT as CCQT, CSTFT, and CIIRT,

respectively. For the extraction of CCQT, CSTFT, and CIIRT from the audio data, we use the

Python implementation of librosa [25].

Cdeep are chroma features extracted by means of deep-learning techniques. The architecture

is based on a musically motivated CNN, which uses a Harmonic CQT (HCQT) of the audio

recordings as input data. It is trained with over 150 hours of classical music data. The training

data comprises the Saarland Music Data [30], the MusicNet database [36], the MAPS dataset [8],

a dataset featuring three versions of Wagner’s Der Ring des Nibelungen [20], and unpublished

solo piano recordings. Additionally, both the SWD and the BSD are used for training. For the

extraction of chroma features for the SWD, the SWD itself is omitted from the training data.

The same is true for the BSD. For training Cdeep, symbolic, binary chroma features are used,

similar to Cscore. A detailed description of the chroma extractor and training strategies is given

in Zeitler [40], which is based on the work of Zunner [41]. Cdeep for both datasets is available to

us with a feature rate of 10 Hz.

The two baseline feature types we use next to the audio-based chroma features are denoted as

Cscore and Cannot. We compute Cscore from the audio-aligned pitch annotations that are included

in the datasets, generated from symbolic scores. Cscore can be seen as a baseline “perfect” chroma.

We compute Cannot by converting the chord annotations into chroma vectors. For this, we use

the labels from the “Extended” annotation style (see Table 3.2), root note and interval notes

indicate the corresponding pitch classes. Note that we do not implement mapping or reduction

of the annotations for the computation of Cannot. This means that Cannot differs from the ground
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truth we use for the evaluation of each chord vocabulary. We use Cannot to evaluate how well

our chord recognizers can derive the chord labels of each vocabulary from the exact “Extended”

annotations. We parse both baseline chromas with a feature rate of 10 Hz, the same as Cdeep.

The annotation data for Cscore is given with feature rate of 50 Hz in the dataset. To avoid aliasing

issues, we apply moving mean filtering prior to the downsampling to 10 Hz. This means that

Cscore does not maintain its binary form after processing. All six chroma types are `2-normalized

to eliminate dynamic differences between time frames.

Figures 4.1 and 4.2 show a comparison of all six chroma types for the first five seconds of song

D911-22 in version AL98. Figure 4.1 shows a comparison of the three signal processing chromas.

We can see that CIIRT seems to provide the best separation between pitch classes and is least

prone to noisy components. It is similar to the perfect chroma Cscore. CCQT and especially CSTFT

seemingly contain more noise components, but still capture the correct notes. In Figure 4.2

we can see that Cdeep is highly similar to Cscore. Subfigures 4.2 b) and c) show the effect of

normalizing chroma vectors with a different number of equally valued entries. Cscore and Cannot

do not maintain their initial, binary form after processing.

4.2 Pre-Filtering

Pre-filtering refers to various enhancement methods that we use to improve the features. For our

experiments, we implement and adjust three different pre-filtering strategies. The three methods

are logarithmic compression, pitch weighting, and median filtering.

As the name suggests, logarithmic compression is a signal processing method to compress the

dynamic range of feature values. The motivation of applying compression is similar to the idea

of using normalization to eliminate dynamic differences between feature vectors of different time

frames. For chord recognition, it is not relevant how loud a certain note is played in the audio,

but only which notes are played at all. We apply logarithmic compression by computing

P log(n, c) = log (1 + γ · P(n, c)) (4.2)

Clog(n, c) = log (1 + γ · C(n, c)) (4.3)

with γ ∈ R>0, for pitch or chroma features, respectively. For CCQT, CSTFT, and CIIRT, we apply

logarithmic compression to the pitch features, for Cdeep we apply it to the chroma features directly.

The variable γ is the parameter controlling the level of compression. Higher γ means stronger

compression, reducing relative differences between strong and weak components in the features.

We weight the pitch-like features in our range from MIDI pitch 24–108 with a Gaussian window,

centered at MIDI pitch 60 (C4) with a standard deviation of 15 pitches. The idea is to

emphasize the frequency range where the main harmonic content is expected to be located, while

attenuating frequencies at the extremes of the considered pitch range. We apply pitch weighting
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Figure 4.3. Examples of the three different chord models: binary templates, averaged templates and
mean vectors of the Gaussian models. a) Normalized tCM

b . b) Normalized tCM
a . c) µCM. We acquired b)

and c) from the SWD with major/minor vocabulary, CCQT, and γ = 106.

after logarithmic compression for CCQT, CSTFT, and CIIRT.

As a last pre-filtering step, we implement temporal smoothing by means of moving median

filtering. The idea behind this is the reduction of irrelevant short-time fluctuations in the chroma

features, such as signal processing or recording artifacts. We apply the moving median filter

Cfilt(n, c) = median {C(i, c), C(i+ 1, c), ..., C(j, c)} , (4.4)

i = n−
⌊
lfilt − 1

2

⌋
, j = n+

⌈
lfilt − 1

2

⌉
directly to the chroma features, with filter length lfilt ∈ Z. Finally, we normalize all chroma

features with respect to the `2-norm.

We discuss the effect of the individual pre-filtering strategies in Section 5.1, including variation

and optimization of the parameters for logarithmic compression γ and median filtering lfilt.

4.3 Chord Models

Algorithms for chord recognition rely on models that describe the chords to be recognized in the

feature space. The exact representation is usually influenced by the form of features that are used.

It is possible to use hand-crafted, musically informed chord templates as well as data-driven,

trained templates. In this thesis, we implement three different chord models.

The first variant are binary templates. They are hand-crafted, twelve-dimensional vectors that

each describe a specific chord. The individual entries represent the twelve pitch classes and are

set to 0 or 1, according to the respective chord notes. As an example, the template vector

tCM
b = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0)ᵀ (4.5)
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Figure 4.4. Visualization of ΣCM for different chroma features and datasets. a) SWD with CCQT. b)
SWD with CSTFT. c) SWD with CIIRT. d) BSD with CCQT. e) BSD with CSTFT. d) BSD with CIIRT.
The covariance matrices are trained for the major/minor vocabulary with γ = 106.

describes the binary template for the C major chord, containing ones for the C, E, and G pitch

classes. We denote the binary templates as t
(chord)
b . Figure 4.3 a) shows a visualization of the

tCM
b template. Before calculating the similarity measure which we describe in the following

section, the binary templates are normalized with respect to the `2-norm.

Secondly, we use averaged templates. They rely on labeled training data and present a

data-driven approach. We obtain the averaged templates by calculating the mean of each pitch
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class of all feature vectors that are labeled as the same chord. Instead of training the templates

for each chord individually, we only train the C chord model for each quality. Accordingly, we

cyclically shift all feature vectors labeled with that quality to the root note C. After training, we

again cyclically shift the C chord template to obtain the templates for the remaining root notes.

This strategy ensures that each chord template of the same quality receives the same amount

of training, indifferent of occurrences within the training data. It also augments the training

data for individual chords. The templates are trained on the already normalized feature vectors.

We denote the averaged templates as t
(chord)
a . Figure 4.3 b) shows a visualization of the tCM

a

template. Before calculating similarity measures, the averaged templates are normalized with

respect to the `2-norm.

As a third method, we implement Gaussian models. While the averaged templates are trained

with the mean statistics of the feature vectors, Gaussian models additionally describe their

variance statistics. Each chord model is represented by a twelve-dimensional, multivariate

Gaussian distribution, characterized by a mean vector µ(chord) ∈ R12
>0 and a covariance matrix

Σ(chord) ∈ R12×12. We acquire the mean vectors in the same way as the averaged templates.

For CCQT, CSTFT, CIIRT, Cdeep they are in fact identical. In both cases, we train on the already

normalized feature vectors. Cscore and Cannot both contain a large number of zero entries, which

leads to numerical problems when computing the covariance matrix. For that reason, we add a

small random value to the chroma features before training the Gaussian models. This means that

the averaged templates and the Gaussian mean vectors slightly differ for Cscore and Cannot. We

obtain the covariance matrix Σ(chord) for each model by computing the covariance of all 12 pitch

classes across the entire training data, treating each pitch class as a random variable and each

feature vector as an observation. Again, we do this only once for the C chord of each quality,

followed by a cyclic shift to acquire the chord models for the remaining root notes. Figure 4.3

c) shows a visualization of µCM. In contrast to the binary and averaged templates, the mean

vectors and covariance matrices of the Gaussian models are not normalized. Figure 4.4 shows a

visualization of ΣCM for different chroma features and datasets, trained for the major/minor

vocabulary with γ = 106.

4.4 Pattern Matching, Post-Filtering and Output

As the final step of most chord recognition pipelines, a pattern matching stage is implemented,

combined with metrics to pick the final output for each time frame. During or after the matching

stage, we use temporal smoothing strategies, referred to as post-filtering.

For pattern matching, we use two different implementations for our experiments. These are

inspired by the chord model that is used for the respective method. For the approach with

binary and averages templates, we use a similarity measure based on the inner product of

normalized vectors. For each time frame, we compute the similarity of each considered chord
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template with the current feature vector. For the approach with Gaussian models, we evaluate

the probability density function of the Gaussian distribution defined by the respective chord

model. This results in a value for each chord model and feature vector of each time frame. For

both metrics, higher values signify a higher similarity between respective model and feature

vector.

To decide upon the final output of the chord recognition, an intuitive approach would be to simply

pick the chord corresponding to the model with the maximum similarity for each time frame.

We also implement this method, but only use it as a baseline comparison. It does not include any

consideration of the relationships between time frames. Our main approach is based on HMMs,

describing chords as latent state variables, with Viterbi decoding to directly determine the

output chord label sequence. In the HMM approach, we use the feature vectors as observation

sequence. We model the underlying chords as hidden states. As initial state probabilities, we

use a uniform distribution across all considered chords. The similarity values we acquire in

the pattern matching stage are seen as emission probabilities. For the transition probabilities,

which model the likelihood of transitioning from one chord to another, we use uniform, diagonal

enhanced matrices, following the findings of Cho and Bello [5]. These matrices contain constant,

high values on the main diagonal, which represent the self-transition probability of each state.

We set the remaining transition probabilities to a constant, low value. Each row and column in

the self-transition probability matrix sums up to 1. The parameter {pself ∈ R | 0 ≤ pself ≤ 1}
describes the self-transition probability and controls the likelihood of each state transitioning to

itself. In our scenario, this represents the tendency of our chord recognition system to stay on

the same output for successive time frames. Finally, we use Viterbi decoding to find the chord

(state) sequence, that fits the features (observation sequence) in the best way. This sequence

contains a chord for each time frame. We use the corresponding chord labels as output. For an

in-depth description of HMMs in the context of chord recognition, we refer to [5, 28].

The use of HMMs and Viterbi decoding introduces a relationship between successive time frames

and can be seen as a form of post-filtering. To denote this variant, we use HMM(chordmodel), jointly

describing the chord model, pattern matching, and output decision. With HMMb, we describe

the use of binary templates, inner product as similarity measure, and Viterbi decoding. HMMa

describes the same with averaged templates. Furthermore, we use HMMG to denote the method

using Gaussian models, probability density function as similarity measure, and Viterbi decoding.

With BT we describe the baseline method, using binary templates, inner product, and maximum

similarity without HMMs.

4.5 Evaluation

To assess the effectiveness of our chord recognition methods, we compare the recognition results

with the chord annotations. To ensure comparability, we parse the audio-aligned annotations
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Figure 4.5. Frame-wise evaluation measures, with the recognition result from HMMG for the first five
seconds of D911-22 in version AL98.

(given with start and end time in seconds) on a frame level with the same sample rate as the

input features. For each frame, we classify a correctly identified chord label as true positive

(TP), wrongfully identified labels as false positive (FP), and we classify reference labels that

are not identified by the recognizer as false negative (FN). Figure 4.5 shows an example of

the frame-wise evaluation, with the recognition result from HMMG, using CCQT. We show the first

five seconds of D911-22 in version AL98.

The chord recognition methods we use do not implement a “no chord” label. This means that

time frames, where no chord label is annotated, by default produce a FP, but not a FN. We can

see an example for this at the beginning of the plot in Figure 4.5. The first chord is annotated

with a start time of 0.22 s, corresponding to the silence at the beginning of the recording. Since

our main interest lies in the correct identification of actually annotated chords, we implement a

recall measure R for evaluation on a higher level. It is calculated after

R =
#TP

#TP + #FN
, (4.6)

dividing the number of TP by the total number of annotated frames. This way, we only evaluate

the quality of our chord recognition system for annotated time frames. The recall measure allows

for an evaluation exceeding the time frame level, e.g., on a track or even dataset level.
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Chapter 5

Experiments and Results

In this chapter, we present the results of our practical experiments. In Section 5.1, we focus on

the influence of algorithmic parameters on the features and the recognition results. Section 5.2

describes the relationships and interplay between the different parameters. In Section 5.3, we

describe different ways to split the datasets for training data-driven methods and the influence

on recognition quality. Furthermore, we describe the impact of using the three different chord

vocabularies and show results for each of them. Section 5.5 combines the previous variations with

different choices of feature types. We compare the results for each chroma type to discuss musical

and technical challenges involved in chord recognition. Finally, in Section 5.6, we describe the

previous findings on a track and measure level, across versions and songs. When considered as

useful, we discuss the results for our two datasets BSD and SWD in parallel.

5.1 Effect of Individual Parameters

Section 4.2 describes the various pre-filtering methods we apply to enhance the feature repre-

sentations. In the following, we focus on the influence of the algorithmic parameters for pitch

weighting, moving median filtering, and logarithmic compression. We use pitch weighting to

put emphasis on the center of the pitch range. For this we weight the pitches with a Gaussian

window, centered at pitch 60 (C4). Figure 5.1 visualizes the impact of this pre-filtering method.

Subfigure a) shows an example of PCQT for D911-22 without pitch weighting, b) shows the

example with weighting. The features are averaged across all time frames of the song, smoothed

with a filter length of 1.5 octaves, and max-normalized. We visualize the features across all

versions of the SWD. Even without weighting we can see that the most energy of harmonic

content is located roughly in the middle of our considered pitch range. The figure shows a

decrease towards both extremes of the range for all versions. Since all versions closely follow the
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Figure 5.1. Influence of weighting on the pitch features. We show PCQT for D911-22, averaged across all
time frames, smoothed with a filter length of 1.5 octaves. The values for each version are max-normalized.
a) No pitch weighting. b) Weighted with a Gaussian window, centered at pitch 60.

score,1 we can assume that the differences in harmonic content are mostly caused by differences

in timbre and the individual recording situations. Since our interest for chord recognition lies in

the correct identification of notes that are played, regardless of acoustic characteristics, we want

to reduce these differences. In Subfigure b) we can see that our weighting procedure reduces

1apart from small global key differences, maximum 1 whole tone
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Figure 5.2. Influence of pre-filtering on the chroma features. Normalized CCQT of the first five seconds of
song D911-22, version AL98. a) No pre-filtering. b) With median filtering, lfilt = 11. c) With logarithmic
compression, γ = 100.

the differences of harmonic content between the individual versions. It also further reduces the

values towards the ends of the pitch range. Overall, our experiments showed consistently better

results with pitch weighting, so we applied it for all further experiments shown in this thesis.

Next, wo focus on the influence of moving median filtering to apply temporal smoothing to

the chroma features. With the parameter lfilt we specify the filter length as a number of time
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Figure 5.3. Recall values for complete SWD as a function of lfilt. We used BT and HMMG as chord
recognition methods with CCQT and major/minor chord vocabulary.

frames. In Figure 5.2, we visualize the effect of median filtering chroma features. It shows a

comparison of the first five seconds of song D911-22, version AL98, with CCQT. Subfigure a)

shows the unfiltered version, b) shows the median filtered chroma features with lfilt = 11. The

idea of temporal smoothing for chord recognition is the elimination of irrelevant local fluctuations,

such as transitional or melodic notes, which do not belong to the underlying chord. In our

example we can see a clear reduction of short notes in the chroma features. The chord notes

are emphasized.2 Obviously, median filtering also reduces chord notes if they appear for a short

time. Additionally, temporal smoothing can blur the timing of note onsets. Therefore, a suitable

value for lfilt has to be found to achieve a good trade-off. In Figure 5.3, we show a sweep of lfilt

from 5 to 25. We use the recall measure to show recognition results evaluated on the complete

SWD dataset. Furthermore, we compare the results with BT and HMMG, both using CCQT and

major/minor vocabulary. We can see a maximum gain in recall of approximately six percent

points for BT with lfilt = 15 and a maximum gain of only approximately one percent point for

HMMG with lfilt = 5. These results are in line with the findings of Cho and Bello [5], who reported

no significant gain from pre-filtering in combination with post-filtering.

As the final pre-filtering parameter, we focus on the impact of logarithmic compression with

parameter γ. We use it to reduce the dynamic range of the feature vectors. Figure 5.2 shows the

impact of logarithmic compression on the chroma features. We again use our running example

of the first five seconds of song D911-22, version AL98, with CCQT. Subfigure a) shows the

uncompressed chroma vectors, c) shows the chroma features with compression, γ = 100. The

comparison shows a clear reduction of dynamic range. Furthermore, we see that logarithmic

compression also enhances low values that might correspond to noise. While the compressed

2annotated chords can be seen in Figure 4.5
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Figure 5.4. Recall values for complete SWD as a function of γ. We used BT and HMMG as chord recognition
methods with CCQT and major/minor chord vocabulary.

features seem less descriptive to a human observer, logarithmic compression is a common pre-

filtering strategy for chord recognition tasks, as the enhanced components can be beneficial for

the pattern matching. In Figure 5.4 we again show the evaluation of the recognition results for the

complete SWD, using BT and HMMG. We sweep γ from 10 to 106. It can be seen that logarithmic

compression has a strictly positive influence on the results of both methods. Especially for HMMG,

the figure shows a gain of approximately eight percent points for γ = 106 as compared to no

logarithmic compression. The impact for BT is lower, with a maximum gain of approximately 1.5

percent points for γ = 103. This shows that the enhanced components from compression can be

utilized especially well by the Gaussian models.

In our experiments, we apply post-filtering in the form of HMMs with Viterbi decoding. As

the controlling parameter, we use the self-transition probability pself of the uniform transition

matrix. The higher the value is, the higher is the likelihood of our chord recognizer returning

the same chord label in consecutive time frames. It can be seen as a control for the recognizer’s

“stiffness.” Since a chord usually lasts longer than one frame in the audio recordings, we expect

high values for pself to be beneficial for the chord recognition task. In Figure 5.5 we show the

recognition results for the complete SWD with HMMb and HMMG, using CCQT. We sweep the

parameter pself from 10% to 90% in steps of ten percentage points. The results show that HMMG

seems to benefit from a high value of pself . In fact, we obtain best results with a self-transition

probability close to 100%, as we show in Section 5.2. Surprisingly, the results for HMMb show the

reverse behavior. The recall drops from approximately 69% at pself = 10% to approximately 58%

at pself = 90%. One possible explanation for this behavior might be a lack of discriminating

power of the binary templates. The similarity values might be too low to “overcome” the high

self-transition probability, resulting in the chord recognizer staying on the same chord erroneously.
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Figure 5.5. Recall values for complete SWD as a function of pself . We used HMMb and HMMG as chord
recognition methods with CCQT and major/minor chord vocabulary.

The results we presented so far were obtained with methods that use either binary templates or

Gaussians as chord models. We acquired all previously presented results for HMMG with training

on the neither split, which we discuss in Section 5.3. In general, we consistently achieved the

best results using Gaussian models in combination with HMMs and Viterbi decoding. When

using averaged templates, we achieved the worst results. Thus, the capacity of the Gaussian

models to capture the statistics of the training data seems to outperform the capacity of the

averaged templates. Even without the benefit of any training, the use of binary templates with

HMMs can achieve results close to the Gaussians, when suitable pre-filtering and post-filtering

strategies are applied. In the following, we focus on presenting the results obtained with HMMG.

5.2 Interplay Between Different Parameters

In the previous chapter we presented the influence of individual parameters on the chord

recognition process and quality. Figures 5.3, 5.4, and 5.5 showed the quality of different

recognition methods as a function of lfilt, γ, and pself , respectively. For each figure, we set the

values of the remaining parameters to a fixed value. To acquire a better understanding of the

interplay between the different parameters, we move away from the one-dimensional approach of

sweeping a single parameter individually. Instead, we jointly sweep two parameters, implementing

a two-dimensional grid search. As mentioned before, we focus on the method HMMG. The two most

influential parameters for this method are γ and pself , the parameters controlling the strength of

logarithmic compression and post-filtering through HMMs, respectively.

Figure 5.6 shows the results for a grid search of γ and pself , evaluated on the SWD. We use HMMG

with Cdeep as features. We sweep the values of γ in a range from 10 to 106, and also include
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the results without logarithmic compression. We sweep pself in a non-linear fashion, ranging

from 93% to 99.99999999%. Each cell in the grid search matrix represents a recall value for the

complete SWD. We underline each cell with a grayscale value that represents the recall value.

Additionally, we show the values as text, rounded to the nearest integer percentage. The cell

with the highest recall value is highlighted with white border lines. Subfigure a) shows the results

with the major/minor vocabulary, b) shows the results with the triad vocabulary, and c) shows

the results for the seventh vocabulary.

The figure shows that the best values with CCQT for the SWD are achieved with large values for

both γ and pself . With all three vocabularies, the optimal value for logarithmic compression is

γ = 106. The optimal value for pself shows a minor change across vocabularies, but is located

at pself > 99.9999% in all three cases. We can also see that the chord recognition quality is

insensitive to small deviations from the optimal parameter values. The grayscale difference

between the cell with the optimal value and neighboring cells is practically imperceptible. The

figure shows a clear drop in recognition quality for the more complex vocabularies, especially for

the seventh vocabulary. We discuss these findings in more detail in Section 5.4.

Figure 5.7 shows the results for the BSD, again for CCQT. We can see that the optimal values

for pself for each vocabulary are lower than for the SWD. For major/minor, we obtained the

best results for pself = 93%. Again, we can see that the recognition quality is robust to small

deviations from the optimal values for both pself and γ. For the more complex vocabularies, this

seems to change. While the results are robust across variations of pself , they exhibit a strong

dependency on the strength of logarithmic compression. Additionally, lower values for γ achieve

better results with an optimal value of γ = 100 for the triad vocabulary and γ = 10 for the

seventh vocabulary. For both datasets, our experiments revealed a similar behavior for CSTFT

and CIIRT, compared with the results we show for CCQT.

In Figure 5.8 we can see the grid search results for the SWD with Cdeep, the feature type acquired

with deep-learning techniques. Again, we show the results for the three vocabularies in Subfigures

a), b), and c). We can see that the use of Cdeep seems to enable a higher overall chord recognition

quality. We discuss this finding in more detail in Section 5.5. With respect to the parameters,

the results show an overall small sensitivity to parameter changes. With the exception of using

no logarithmic compression at all, the recall values lie within a range of approximately four

percent points across the whole parameter range, for each vocabulary respectively. The optimal

parameter values stay the same for all three vocabularies at γ = 10 and pself = 99.99999999%.

As our final grid search example, Figure 5.9 shows the results for the BSD with Cdeep. We

can see that the optimal values for pself are again in a lower region than for the SWD. For the

major/minor and triad vocabularies the optimal value is pself = 93%, for the seventh vocabulary

it is pself = 99%. For all three vocabularies, we can see little variation of the results across

parameter changes, except for using no logarithmic compression at all. In both datasets, we can

see overall better results and a higher robustness for Cdeep, compared to CCQT. For both chroma
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Figure 5.6. Grid search of the parameters γ and pself . We show the results for SWD with HMMG and
CCQT. The recall text values are rounded to the nearest integer, the underlying grayscale values accurately
represent the numerical recall values. The highest value is highlighted. a) With major/minor vocabulary.
b) With triad vocabulary. c) With seventh vocabulary.
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Figure 5.7. Grid search of the parameters γ and pself . We show the results for BSD with HMMG and
CCQT. The recall text values are rounded to the nearest integer, the underlying grayscale values accurately
represent the numerical recall values. The highest value is highlighted. a) With major/minor vocabulary.
b) With triad vocabulary. c) With seventh vocabulary.
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Figure 5.8. Grid search of the parameters γ and pself . We show the results for SWD with HMMG and
Cdeep. The recall text values are rounded to the nearest integer, the underlying grayscale values accurately
represent the numerical recall values. The highest value is highlighted. a) With major/minor vocabulary.
b) With triad vocabulary. c) With seventh vocabulary.
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Figure 5.9. Grid search of the parameters γ and pself . We show the results for BSD with HMMG and
Cdeep. The recall text values are rounded to the nearest integer, the underlying grayscale values accurately
represent the numerical recall values. The highest value is highlighted. a) With major/minor vocabulary.
b) With triad vocabulary. c) With seventh vocabulary.
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feature types, the results for the SWD show a better overall chord recognition quality than for

the BSD. The recall differences between the two datasets consistently lie within a range of five

to ten percent points.

Let us summarize. While it is important to set meaningful ranges for the different algorithmic

parameters, we cannot report a substantial gain in chord recognition quality for micro-adjustments

of the parameters. This indicates a high robustness of our chord recognition methods. Generally,

the performance always seems to benefit from applying logarithmic compression. Furthermore,

the values for pself should be set to a high level, especially for the SWD. For the BSD, slightly

lower self-transition probabilities provide better results. A possible explanation for this finding

might be the slower tempo and harmonic rhythm of Schubert’s Winterreise. Individual chords

tend to last longer than in the BSD. This translates to a higher number of consecutive time

frames with the same chord label in our scenario, suggesting higher values for pself . If we compare

the results for the different vocabularies, we can see that the highest optimal value for pself can

be found for the seventh vocabulary. This is the case for all four figures. A likely explanation

for this finding is the high number of chords in the vocabulary. It contains more chords which

are similar to the one that is actually annotated. A high self-transition probability can prevent

the chord recognizer from oscillating between these similar chords. The results of this section

were all acquired with a neither split for training the Gaussian models, which we explain in the

following section.

5.3 Cross-Validation Splits

In the following, we present the different dataset splits we used to train, optimize, and evaluate

the chord recognizers. Since we mostly use the same dataset for simultaneously training and

testing the recognition methods, we have to implement suitable data splits. Additionally, the

different splits can offer insights into the generalization of our methods across songs, versions, or

both, as well as across entirely different datasets.

Figure 5.10 shows a schematic visualization of the variants we used to split the datasets. We

denote them version, song, neither, and cross-dataset split. For each variant, we split the data

into three subsets, denoted training, validation, and test set. As the name suggests, for the

version split we split the dataset along the version axis. This means that each subset contains

the full number of songs, but only a restricted, non-overlapping number of versions. For the SWD,

the training set contains five different versions, the validation set contains one version, and the

test set contains three different versions. For the BSD, the training set contains three different

versions, the validation set contains one version, and the remaining two versions are used for

the test set. To acquire test results for the complete datasets, we use three-fold cross-validation,

shuffling the versions contained in the subsets for each fold. As an example, in the BSD version
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Figure 5.10. Schematic representation of the four data splits we used to train, validate, and test within
and across datasets [37]. We denote them version, song, neither, and cross-dataset split.

split we use the versions Ashkenazy and Barenboim in the first fold to get test results for the

method we trained and optimized using the remaining versions in the training and validation

sets. In the second fold, we use versions BilsonEtAl and Brendel for testing and the remaining

versions for training and validation. In the final fold, we test on versions Gulda and Jando,

finally obtaining test results for the complete dataset. The version split can used to test the

generalization of the chord recognizers across versions. In each split variant, we choose the

subsets for each fold so the combined test sets cover the complete datasets in a non-overlapping

fashion. The training data in the different folds may overlap. The order of the data included in

the individual folds is chosen alphabetically. An exception for this is the song split of the BSD,

where we randomly assigned the order of the songs for the subsets. We did this to create training

diversity across the early and late sonata movements.

For the song split, we split the datasets across the song axis. This means that each set contains

all versions, but only a subset of the songs. For the SWD, the training set contains 13 different

songs, the validation set contains three different songs, and the test set contains eight different

songs. We again use three-fold cross-validation to acquire results for the complete dataset. For

the BSD, the training set contains 13 different songs, the validation set contains three different

songs and the test set contains 16 different songs. This allows for only a two-fold cross-validation.

We use the song split to test the generalization across unknown songs.

41 Master Thesis, Florian Schuberth



5. EXPERIMENTS AND RESULTS

Version Song Neither Cross-dataset

Split

50%

55%

60%

65%

70%

75%

80%

R
ec

al
l

a)

Version Song Neither Cross-dataset

Split

50%

55%

60%

65%

70%

75%

80%

R
ec

al
l

b)

Figure 5.11. Recall values across the different split variants. We show the results for HMMG with CCQT,
major/minor chord vocabulary, and optimized parameters. a) For SWD. b) For BSD.

In the neither split, we split the datasets across both axes simultaneously. This ensures that

our test set neither contains any of the songs, nor any of the versions we used for training and

validation. Therefore, the neither split represents the strictest separation between training and

test data within each dataset. In the SWD, the training set of the neither split contains 19 songs

in four different versions. The validation set contains two songs in two different versions, and the

test set contains three songs in three different versions. For the BSD, the training set contains

24 songs in three versions, the validation set contains four songs in one version, and the test

set contains four songs in two versions. For both datasets, the neither split allows for a 24-fold

cross-validation. It represents the most general scenario for training and testing within the same

dataset.

In addition to the three splits within each dataset, we used a cross-dataset split to evaluate

the generalization from one dataset to another. As shown in 5.10, we split the first dataset into

training and validation set and then use the complete second dataset as test set. The split of the

training dataset corresponds to the neither split, but we add the former validation set to the

training set and use the former test set as validation set. We again use 24-fold cross-validation

on the training dataset and then evaluate the results for the whole test set at once. When we

report results for the cross-dataset split for SWD, we refer to the results with training on the

BSD and testing on the SWD, vice versa for the cross-dataset results for BSD.

For all splits, we use the training set to train the Gaussian chord models with a given set of

parameters. The trained Gaussians are then used to perform chord recognition on the validation

set. Subsequently, we use the results of the validation set to optimize our method parameters.
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We jointly optimize the three parameters lfilt, γ, and pself . For each parameter, we consider three

different values within a suitable range. This amounts to a total number of 27 different parameter

combinations. We evaluate each of the combinations on the validation set and pick the parameter

combination which produces the best results. Subsequently, we use the optimal parameters to

train the Gaussians on both the training and the validation set combined. Finally, we use the

trained Gaussians and the optimal parameters to perform chord recognition on the test set. For

the cross-dataset split, the procedure is slightly different, since we have an optimal parameter

combination for each of the 24 folds, but only one fixed test set. Hence, we use the parameter

combination that was picked most often. The considered parameter values are {1, 11, 21} for lfilt,

and
{

10, 104, 106
}

for γ. For the SWD, we used the values {99%, 99.99%, 99.9999%} for pself ,

for the BSD we used the values {93%, 99%, 99.99%}. These parameter values are based on the

findings we presented in the previous sections. The results we showed there were acquired with

the neither split, but without any optimization. We used the given parameters to train the

Gaussians on the combined training and validation set.

In Figure 5.11 we show a comparison of the results obtained with the different data splits for both

datasets. The recall values are obtained from HMMG with CCQT, major/minor chord vocabulary,

and optimized parameters. For both datasets, we can see that the cross-dataset split led to the

lowest chord recognition quality with a recall of approximately 64% for SWD and 63% for BSD,

which is the result we expected. The difference in results between the three inner-dataset splits

lies within a range of approximately two percent points for both datasets, respectively. For the

SWD, we report the best results for the version split with a recall of approximately 72%, with

song and neither split at approximately 71% and 70%, respectively. The results for the BSD

show a smaller gap between the cross-dataset split and the other three splits. Here, the song

split achieves a slightly higher recall value of approximately 66%, as compared to the version and

neither split with a recall of just over 65%. In the following sections, we report results across

different splits, feature types, and vocabularies. In Section 5.6 we give possible explanations for

the differences in recognition quality between the splits.

5.4 Comparison of Different Chord Vocabularies

In this section, we show a comparison of the chord recognition results with different chord

vocabularies. In our experiments, we use three different vocabularies, the major/minor, triad,

and seventh vocabulary. Recapitulating our definition from Section 3.3, the major/minor

vocabulary contains 24 different chords, twelve major and twelve minor chords for each root

note. The triad vocabulary contains 40 different chords, twelve major, minor, and diminished

chords as well as four different augmented chords for root notes C, C], D, and D]. The seventh

vocabulary is the largest vocabulary, containing 91 different chords. It comprises all chords from
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Figure 5.12. Recall values across the different vocabularies and split variants for SWD. We show the
results for HMMG with CCQT and optimized parameters. a) For major/minor vocabulary. b) For triad
vocabulary. c) For seventh vocabulary.

the triad vocabulary, with twelve additional chords for M7, m7, maj7, and hdim7, respectively.

Additionally, it contains three dim7 chords for root notes C, C], and D. For the evaluation of

the results with different chord vocabularies, the chord labels from the annotations are parsed

accordingly, with varying levels of mapping and reduction. A detailed description of this process

was given in Section 3.3.
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Figure 5.13. Recall values across the different vocabularies and split variants for BSD. We show the
results for HMMG with CCQT and optimized parameters. a) For major/minor vocabulary. b) For triad
vocabulary. c) For seventh vocabulary.

In Figure 5.12 we show a comparison of the results for the three vocabularies. The recognition

results are obtained with HMMG and CCQT on the SWD. The parameters are optimized as described

previously. We report individual recall values for each of the four different splits. Subfigure a)

shows the results for major/minor, which we already discussed in the previous section. For the

inner-dataset splits we achieve results of 70–72%, with the cross-dataset the chord recognition
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quality drops to approximately 64%. In Subfigure b) we can see similar relationships between

the split variants for the triad vocabulary. Overall, the quality of the chord recognition decreases

by roughly one to three percent points for each split. The version split again provides the

best result with a recall of just over 70%. The reduction in recognition quality for the triad

vocabulary in comparison to the major/minor vocabulary corresponds to our expectations, since

the higher number of chords increases the overall complexity of the chord recognition task. Still,

the difference in quality is relatively small. In Section 5.6 we show that the song-wise recall

actually increases in some cases when using the triad vocabulary.

In Subfigure c), we show the results for the seventh vocabulary. Compared to the other

vocabularies, we can see a prominent decrease in recognition quality. The recall values for

the version and song split drop by approximately twelve to 13 percent points compared to the

triad vocabulary results. The decrease for the neither and cross-dataset split is slightly lower

at approximately nine to ten percent points. Here, the neither split slightly outperforms the

other split variants. We are not surprised by the decrease in quality when we use the seventh

vocabulary. With a number of 91 chords it is larger than the other two vocabularies, which

signifies a large increase in complexity for the chord recognition task.

Figure 5.13 shows the results for the BSD, obtained with the same methods and for the same

vocabularies. In Subfigure a) we see the results discussed in the previous section. When we

compare the results for the triad vocabulary in b) with the major/minor results, we again see a

decrease in chord recognition quality. Compared to the SWD, the drop in recall is larger for the

BSD with approximately five percent points for the inner-dataset splits and approximately eight

percent points for the cross-dataset split. Furthermore, we see a similar decrease in quality when

comparing triad and seventh vocabulary for both SWD and BSD. The drop in recall values ranges

from ten to 13 percent points across all four split variants. Across all three vocabularies, the

song split provides the highest recall values for the BSD, especially for the seventh vocabulary.

5.5 Comparison of Chroma Feature Types

In this section we show the chord recognition results with different feature types. We compare

three chroma features obtained with traditional signal processing methods, CCQT, CSTFT, and

CIIRT. Additionally, we report the results with Cdeep, where the features are extracted by means

of deep-learning with a CNN [40]. Furthermore, we show the results for the two baseline features

Cscore and Cannot. Cscore is based on the audio-aligned MIDI representation of the score, which is

part of the datasets. It can be seen as a perfect chroma, exclusively containing entries for all

notes that are played. Cannot is based on the “Extended” column of the chord annotations. All

annotated chord notes for each chord label are converted to chroma vectors. We implement no

mapping or reduction of chords, so the notes contained in Cannot differ from the chord annotations
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we used for our three vocabularies. Visual examples of all six chroma types can be seen in Figures

4.1 and 4.2.

In Figures 5.14–5.21 we show the results for the different feature types on the dataset level. All

values were acquired with HMMG and optimized parameters, as discussed in Section 5.3. In each

figure, Subfigure a) shows the results for the major/minor vocabulary, b) shows the results for

the triad vocabulary, and c) shows the results for the seventh vocabulary. We show the results

for SWD and BSD next to each other on double pages, with the results for SWD on the left

hand side and the results for BSD on the right hand side. We consecutively show the results for

our four different data split variants. This means, Figures 5.14 and 5.15 show the results for

the version split, Figures 5.16 and 5.17 show the results for the song split, Figures 5.18 and 5.19

show the results for the neither split, and finally, Figures 5.20 and 5.21 show the results for the

cross-dataset split. In these eight figures, we combine all modalities that we discussed previously.

They represent our final discussion of chord recognition results on the dataset level, before we

move on to an in-depth discussion on more detailed levels in Section 5.6.

Let us first focus on the differences between the three signal processing chroma types CCQT,

CSTFT, and CIIRT. Across all split variants, vocabularies, and both datasets we can see that the

chord recognition quality with these chroma types is lower than the quality with Cdeep and the

two baseline chromas. For the SWD, the best results between the three signal processing chromas

were obtained with CCQT. This is the case across all three vocabularies and all four data splits.

The overall best value for CCQT for SWD is obtained with the major/minor vocabulary in the

version split, with a recall of approximately 72%. The results across vocabularies were already

discussed in the previous section, with a small decrease in recall for the triad vocabulary and

a larger drop for the seventh vocabulary. The lowest value for CCQT for the SWD is obtained

with cross-dataset split and seventh vocabulary, with a recall of approximately 54%. For the

major/minor vocabulary, all three signal processing chromas produce comparable results. With

the higher complexity of the triad and seventh vocabulary, the results for CIIRT show a larger

decrease than CCQT and CSTFT for the SWD. The recall drops from approximately 71% with

version split and major/minor vocabulary to approximately 43% with cross-dataset split and

seventh vocabulary. The results from CSTFT exhibit a stability across vocabularies that is

comparable with CCQT, but provide overall slightly lower results for the SWD. The best recall

value for CSTFT is approximately 70% with version split and major/minor vocabulary, the lowest

value of approximately 53% is obtained with seventh vocabulary and neither and cross-dataset

split.

For the BSD, the three signal processing chromas also provide lower recall values than the

remaining three chroma types. In contrast to the SWD, CSTFT consistently outperforms CCQT

and CIIRT. This is true for all modalities, except for the cross-dataset split, where CCQT produces

marginally better results. This indicates that features from CCQT possess a large discriminating

power for the audio recordings of the SWD. The best values for the BSD are generally lower than
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Figure 5.14. Recall values across the different feature types for SWD, version split. We show the
results for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary. c)
For seventh vocabulary.
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Figure 5.15. Recall values across the different feature types for BSD, version split. We show the
results for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary. c)
For seventh vocabulary.
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Figure 5.16. Recall values across the different feature types for SWD, song split. We show the results
for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary. c) For
seventh vocabulary.
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Figure 5.17. Recall values across the different feature types for BSD, song split. We show the results
for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary. c) For
seventh vocabulary.
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Figure 5.18. Recall values across the different feature types for SWD, neither split. We show the
results for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary. c)
For seventh vocabulary.

52 Master Thesis, Florian Schuberth



5.5 COMPARISON OF CHROMA FEATURE TYPES

CCQT CSTFT CIIRT Cdeep Cscore Cannot

Feature type

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

R
ec

al
l

a) major/minor

CCQT CSTFT CIIRT Cdeep Cscore Cannot

Feature type

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

R
ec

al
l

b) triad

CCQT CSTFT CIIRT Cdeep Cscore Cannot

Feature type

40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

R
ec

al
l

c) seventh

Figure 5.19. Recall values across the different feature types for BSD, neither split. We show the
results for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary. c)
For seventh vocabulary.
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Figure 5.20. Recall values across the different feature types for SWD, cross-dataset split. We show
the results for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary.
c) For seventh vocabulary.
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Figure 5.21. Recall values across the different feature types for BSD, cross-dataset split. We show
the results for HMMG with optimized parameters. a) For major/minor vocabulary. b) For triad vocabulary.
c) For seventh vocabulary.
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for the SWD, with a recall of approximately 67% for version and song split with major/minor

vocabulary and CSTFT. CCQT and CIIRT produce comparable results for the BSD, which are

consistently lower than for CSTFT. Like in the SWD, CSTFT produces the most consistent results

across vocabularies and splits for the BSD, with a range of 53–67% recall from best to worst

result. The overall worst result for the BSD is 43% recall for CIIRT, seventh vocabulary, and

cross-dataset split.

In both datasets, chord recognition with Cdeep consistently outperforms the results with the three

signal processing chromas. In some cases, it even outperforms the results with the symbol-based

chroma Cscore. For the SWD, the highest recognition quality with Cdeep at approximately 77%

recall can be obtained with the version split and major/minor vocabulary. Interestingly, the

worst overall result for Cdeep of approximately 61% is also acquired with the version split, with

the seventh vocabulary. Especially for the more complex vocabularies, remarkable results can be

achieved with Cdeep. Across all split variants, the recognition quality for the triad vocabulary

decreases only slightly, compared to the major/minor vocabulary. The maximum recall difference

is approximately two percent points. Even for the seventh vocabulary, a recall value of 64% can

be achieved for the song and cross-dataset splits. For the BSD, the use of Cdeep also produces

higher recall values than the signal processing chromas. Here, the cross-dataset split provides the

best results. The overall highest recall value for the BSD with Cdeep is approximately 72% for

the cross-dataset split with major/minor vocabulary. Furthermore, for the seventh vocabulary a

maximum value of 64% recall can be achieved, similar to the SWD. The lowest overall recall value

for Cdeep in the BSD is 57% for the song split with seventh vocabulary. Generally, a gain in chord

recognition quality can be achieved with Cdeep, compared to the signal processing chroma types.

This comes at the cost of a much higher implementational effort. Additionally, the network for

the deep chroma extractor has to be trained extensively. We presented the datasets used for

training the chroma extractor in Section 4.1.

The results for Cscore provide insight into chord recognition from symbolic data for both of our

datasets. By using MIDI-based features, we eliminate the technical challenge of extracting chroma

features from the actual audio recordings. We are still left with the musical challenge of assigning

a chord label for the notes that are played. Hence, the difference in chord recognition quality

between using Cscore and the previously discussed feature types reveals the impact of the challenge

of extracting pitch class content on the recognition process. For the SWD, Cscore consistently

provides better results than the three signal processing chroma features. The highest overall

result is a recall of 79% for the version split with major/minor vocabulary. For the major/minor

and triad vocabularies, the results for Cscore are consistently five to ten percent points higher than

with the signal processing chromas. For the seventh vocabulary, the difference is slightly lower

with approximately five percent points. The exception here is the cross-dataset split, where Cscore

provides overall good results, similarly to the previously discussed Cdeep. Generally, there is only

a slight difference between the results with Cdeep and Cscore. Since the deep chroma extractor
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was trained with Cscore (of different datasets), this similarity is not surprising. In some cases,

Cdeep even provides better results. This reinforces the potential of chroma features obtained with

deep-learning methods. For the BSD, Cscore also provides better results than the signal processing

chromas, but the difference is smaller. Across all vocabularies and splits, the maximum difference

in recall is approximately two to five percent points. Again, the cross-dataset split provides

an exception with a substantially larger recall difference. In general, the use of Cscore increases

the chord recognition quality up to approximately ten percent points in recall as compared to

the signal processing chroma features. Still, the best result reached only 79% for major/minor

vocabulary, leaving substantial room for improvement. From these results we can infer that the

musical challenge of deriving correct chord labels from the played notes outweighs the technical

challenge of acquiring feature vectors and the imperfections that come with it.

Going one step further, the use of Cannot provides a substantial reduction in musical complexity

for the chord recognition task. By utilizing only the annotated chord notes, we further eliminate

“musical noise” for the chord recognition, such as figurational notes. We are still left with the

challenge of reducing and mapping the accurately annotated chord notes to the respective chord

labels of our three different chord vocabularies. Across all splits, vocabularies, and both datasets

we can see that the results for Cannot are substantially better than for all other feature types. The

recall is consistently above 85%, reaching values up to approximately 99%. For both datasets,

the figures show an increase in recognition quality when using the triad vocabulary as compared

to the major/minor vocabulary. This result is most likely caused by the lower level of chord label

mapping that is necessary for the triad vocabulary. For the seventh vocabulary, the recall reaches

values of approximately 99% for the BSD with all three inner-dataset splits. Conversely, the

recognition quality decreases for the SWD when using the seventh vocabulary. This discrepancy

is most likely produced by the difference in harmonic language between the two datasets. As we

show in Figures 3.2 and 3.3, parsing the chord annotations involves a lower level of reduction

for the BSD than for the SWD. This can be seen in the amount of “other” chords, which we

show in Subfigure d). The chords we include in the seventh vocabulary are better suited for the

harmonic language of the BSD than for the SWD. Note that the chord annotations for the SWD

tend to provide more detail than the annotations for the BSD. This could also influence our

results. Overall, the experimental results with Cannot offer an interesting insight into the musical

challenge of chord recognition and the influence of the chosen chord vocabulary.

5.6 In-Depth Analysis of Results

In the following, we discuss the chord recognition results on more detailed levels. In the previous

sections, we reported recall values on the dataset level. Now, we report results for the individual
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Figure 5.22. Song-wise recall values for SWD averaged across versions with HMMG and neither split.
Results for major/minor, triad, and seventh vocabulary. a) CCQT. b) CSTFT. c) CIIRT.
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Figure 5.23. Song-wise recall values for BSD averaged across versions with HMMG and neither split.
Results for major/minor, triad, and seventh vocabulary. a) CCQT. b) CSTFT. c) CIIRT.
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Figure 5.24. Version-wise recall values for SWD averaged across songs with HMMG and neither split.
Results for major/minor, triad, and seventh vocabulary. a) CCQT. b) CSTFT. c) CIIRT.

60 Master Thesis, Florian Schuberth



5.6 IN-DEPTH ANALYSIS OF RESULTS

Ashkenazy Barenboim BilsonEtAl Brendel Gulda Jando

Version ID

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
ec

a
ll

a) CCQT

major/minor

triad

seventh

Ashkenazy Barenboim BilsonEtAl Brendel Gulda Jando

Version ID

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
ec

a
ll

b) CSTFT

major/minor

triad

seventh

Ashkenazy Barenboim BilsonEtAl Brendel Gulda Jando

Version ID

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
ec

al
l

c) CIIRT

major/minor

triad

seventh

Figure 5.25. Version-wise recall values for BSD averaged across songs with HMMG and neither split.
Results for major/minor, triad, and seventh vocabulary. a) CCQT. b) CSTFT. c) CIIRT.
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songs and versions of each dataset. Subsequently, we move on to the track level and finally we

report results on the measure level of individual songs.

Figures 5.22 and 5.23 show the recall values for the individual songs of both datasets. Every

individual value is averaged across all versions of the respective dataset. It is important to note

that we use averaged track-wise recall values. The results we presented so far were frame-wise

recall values. This means that in the following figures, the recall value for each individual track

is weighted equally, although the length of each track might differ. We report the results for

CCQT in Subfigure a), CSTFT in b), and CIIRT in c). In each plot we show the values for all three

chord vocabularies as individual lines with different line styles, colors, and markers.

For the SWD, we can clearly see a high variance in chord recognition quality across the individual

songs. This is the case for all three chroma types. For some songs, such as D911-06 or D911-19,

recall values of over 80% can be achieved. The worst results are obtained for D911-18, with a

major/minor performance of approximately 50% and recall values below 30% for the seventh

vocabulary. With the exception of a small number of outliers, the results for all three chroma types

follow similar trends along the song axis. The same is true for the results for the major/minor

and triad chord vocabularies. Both lines exhibit similar trends, with slightly smaller values for the

triad vocabulary. Noteworthy exceptions are D911-01, where the triad vocabulary provides better

results across all three chroma types, and D911-16, where the results for the triad vocabulary

show an opposite trend as compared to the major/minor results. Since all three chroma types

follow similar trends for all songs and we acquired comparable results for Cscore, the recall

differences between individual songs can likely be traced back to musical characteristics. As an

example, song D911-18, Der stürmische Morgen (eng. The Stormy Morning), is a fast paced

song with a restless character. It contains a large number of broken chords and purely melodic

structures with occasional chromatic ornaments. In contrast, song D911-06, Wasserflut (eng.

Flood) is a slow and solemn song with a more melancholic character. It contains many sustained

chords in the piano accompaniment, the singing voice often exhibits broken triads containing the

underlying chord notes. Musical characteristics such as these can have a large influence on the

chord recognition quality.

For the BSD, the results across individual songs exhibit a smaller variance compared to the SWD.

Across all three chroma variants, the recall values for major/minor and triad vocabulary mostly

lie between 50–80%, the values for the seventh vocabulary mostly lie between 40–70%. Again,

the results for all three vocabularies largely follow the same trends along the song axis for all

three chroma variants. The best results are achieved for No-31, the worst results are obtained for

No-32. A likely reason for the smaller differences between songs is the longer duration and larger

musical heterogeneity of each song in the BSD, as compared to the SWD. Most of the sonata

movements contain sections of varying musical complexity and characteristics, so the difficulty
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of chord recognition might be “evened out” along the full duration of each song. In the SWD,

individual songs exhibit a more homogeneous musical character and are substantially shorter.

In Figures 5.24 and 5.25, we show the recall values for the individual versions of both datasets.

Each value is averaged across all songs of the respective dataset. We again report the values for

CCQT, CSTFT, and CIIRT in each subfigure respectively, with an individual line for each of the

three chord vocabularies. For both datasets, the results across versions exhibit more prominent

fluctuations than the results across songs. In the SWD, the average recall for AL98 is slightly

higher compared to the other versions. The lowest values are achieved for versions FI55, QU98,

and SC06. For each vocabulary type, the maximum difference across versions is approximately five

to ten percent points for each chroma variant. In the BSD, the differences between versions are

on a similarly low level. Here, the results with CCQT exhibit slightly larger fluctuations, compared

to CSTFT and CIIRT. For the latter, the maximum difference across versions for each vocabulary

is approximately five percent points, for CCQT the maximum difference is approximately ten

percent points. For all three chroma and vocabulary variants, version Jando provides slightly

higher recall values. For CCQT and CIIRT version BilsonEtAl produces the lowest recall values.

In Figures 5.26 and 5.27, we show the recall values for each individual track in both datasets for

CCQT. Additionally, we report the averaged results across each song, each version, and all tracks.

The average across rows corresponds to the song-wise recall values we showed in Subfigures

5.22 a) and 5.23 a), the average across columns corresponds to the version-wise recall values we

showed in Subfigures 5.24 a) and 5.25 a). The recall values are underlined with corresponding

grayscale values. In Appendix B, we additionally show the track-wise recall values for CSTFT,

CIIRT, and Cdeep. Previously, we reported only small differences in chord recognition quality

for different versions. While this is true for the average across all songs, the track-wise recall

values reveal larger local differences. As an example, song D911-24 in version QU98 in the SWD

produces lower recall values than the other versions of that song. This is true for all three chord

vocabularies. In the BSD, similar occurrences can be found. For instance, version BilsonEtAl

produces lower recall values for songs No-07 and No-26 than the other versions for all three

chord vocabularies. From these results we can conclude that a track-wise analysis offers deeper

insights into the local recall fluctuations between individual versions, songs, chroma variants,

and vocabularies.

For a more in-depth analysis of recognition results and common difficulties, we can analyze

individual songs on the measure level. The use of a musical time axis such as measures allows

us to compare the results obtained from different versions. In Figures 5.28, 5.29, and 5.30, we

present three short examples, two from the SWD, and one from the BSD. In Appendix C, we

show corresponding excerpts from the original score. To convert our frame-based time axis to the

measure axis, we used the audio-aligned measure annotations. We used a temporal resolution of

1/4 measures and linearly interpolated the time between measure borders, ignoring the actual
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Figure 5.26. Track-wise recall values for SWD with HMMG, CCQT, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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Figure 5.27. Track-wise recall values for BSD with HMMG, CCQT, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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musical time signature. To obtain one chord label per 1/4 measure segment, we implemented

a majority vote among all time frames falling into that temporal segment. Additionally, we

transposed the results from each individual version and the chord annotations to the global

key of the original score to obtain comparable results across versions. In the figures, we show

the ground truth annotations marked in black. Incorrect results from the chord recognition for

each version are marked in different shades of red. The darker the shade is, the more versions

commonly produced the same erroneous result. For the SWD, the darkest shade is obtained

when all 9 versions made the same mistake, for the BSD, the darkest shade is obtained for all 6

versions. This presentation enables us to simultaneously see which errors are made in the chord

recognition and if these errors were made commonly for multiple versions.

In Figure 5.28, we present the first nine measures of song D911-05, Der Lindenbaum (eng. The

Linden Tree) from the SWD for the triad chord vocabulary. The results were acquired with

CIIRT and the neither split. A common error in chord recognition is the correct recognition of

the root note but a false classification of the chord quality. Examples for this error can be seen

in measures two, four, five, and nine. It is especially prominent in measure two, where the figure

shows that all versions produced a confusion of the BM chord with a Bm chord. Generally, chord

recognizers tend to incorrectly recognize chords that share one or multiple chord notes with the

actually played chord. For instance, in measure six we can see that for all versions, the annotated

F]m chord is incorrectly recognized as a D]dim chord. The triad notes of F]m are F], A, and

C], the triad notes of D]dim are D], F], and A. Hence, both chords share two out of three triad

notes. “Musically understandable” errors such as these are among the most common mistakes in

chord recognition. The more chords a chord vocabulary contains, the more similar chords are

available which can produce such confusions.

Figure 5.29 shows measures 50–59 of song D911-22, Mut! (eng. Have Courage! ) from the SWD.

Here, we want to highlight two additional errors that commonly occurred in our evaluations.

Due to the high self-transition probability we implement when using HMMG, temporally short

chord changes are sometimes not recognized. This is especially true, when the subsequent chord

change goes back to the initial chord. An example for this can be seen in measures 51 and 58. In

both cases, the chord change to FM and DM, respectively, is not recognized. Song D911-22 is

a fast paced song with a 2/4 time signature, therefore the chord change lasts only for a single,

short beat. This mistake is made in all versions of this example. The second common error we

want to highlight can be seen in measures 55 and 56. Here, DM is recognized as Daug for some

versions. We often noticed confusions from major to augmented chords, as well as from minor to

diminished chords. A likely reason for this mistake might be the training of our chord models.

The feature vectors we use for training augmented and diminished chord models often contain

a strong perfect fifth note as well as the “correct” augmented or diminished fifth note. This

might be an artifact caused by the harmonics of the root note. Since major and augmented as
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Figure 5.28. Chord recognition results for CIIRT on the measure level with triad vocabulary. We present
the first nine measures of song D911-05, Der Lindenbaum (eng. The Linden Tree) from the SWD. Ground
truth annotations are marked black, incorrect chord recognition results are marked red. The shade of red
indicates, how many versions produce the same error.

well as minor and diminished chords contain the same third interval, this often led to a quality

confusion. Obviously, this was only the case when using the triad and seventh vocabulary.

In Figure 5.30, we present the first nine measures of song No-14, famously known as Mondschein-

sonate (eng. Moonlight Sonata) from the BSD for the major/minor chord vocabulary. Here, we

can again see some of the common errors we mentioned previously. In measures one, two, and

seven, a confusion from C]m to C]M occurs. In the case of measure seven, it even occurs for

all versions simultaneously. In measure three, we can see a confusion from DM to F]m. This
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Figure 5.29. Chord recognition results for CIIRT on the measure level with triad vocabulary. We present
measures 50–59 of song D911-22, Mut! (eng. Have Courage! ) from the SWD. Ground truth annotations
are marked black, incorrect chord recognition results are marked red. The shade of red indicates, how
many versions produce the same error.

confusion is understandable, since F]m contains F] and A, which are two of the three triad notes

of DM. In measure eight, an EM chord is incorrectly recognized as a G]m chord in five out of six

versions. Again, both chords share two triad notes.

In order to evaluate how often errors occur for multiple versions simultaneously, we also used

the measure-based time axis. In Figure 5.31, we show a visualization of the amount of 1/4

measure segments where errors occur for one or more versions. The occurrences are accumulated,
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Figure 5.30. Chord recognition results for CCQT on the measure level with major/minor vocabulary.
We present the first nine measures of song No-14, famously known as Mondscheinsonate (eng. Moonlight
Sonata) from the BSD. Ground truth annotations are marked black, incorrect chord recognition results
are marked red. The shade of red indicates, how many versions produce the same error.

beginning from points where all versions simultaneously produce an error. The numbers are

evaluated for the major/minor vocabulary with CCQT and the neither split. In Subfigure a) we

show the results for the SWD, in Subfigure b) we show the results for the BSD. For both datasets,

we can see that in approximately 25% of all 1/4 measure segments where an error occurs, all

versions simultaneously produce an error. It should be noted that we do not evaluate whether or

not they produce the same error. In the SWD, we can see that for approximately 22% of all

segments where an error occurs, only one version produces an error. For the BSD this is the

case for approximately 25%. These observations highlight the potential of cross-version fusion

strategies. Figure 5.31 shows that in approximately 50–60% of all segments with errors, the

majority of versions produce the correct recognition result. Fusing the results for each measure

segment across versions, using, e.g., majority voting, could help to overcome a substantial part

of errors.
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Figure 5.31. Cumulative representation of the 1/4 measure segments where errors occur. Each bar
represents the percentage, where “at least x versions produced an error simultaneously”. a) For SWD. b)
For BSD.
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Chapter 6

Conclusions

In this thesis we presented a study of automatic chord recognition in the context of audio

recordings of classical music. We analyzed two corpora of music from the late Classical and

Romantic period, the Schubert Winterreise Dataset (SWD) and the Beethoven Piano Sonatas

dataset (BSD). Since both datasets contain multiple versions of the same songs, the datasets are

well-suited for a cross-version analysis.

In our experiments, we initially focused on the influence of parameters for pitch weighting,

logarithmic compression, and moving median filtering as pre-filtering methods as well as the

influence of the self-transition probability of HMMs as post-filtering method. Our experiments

showed that logarithmic compression and a suitable choice of the self-transition probability have a

major influence on the chord recognition results. While it is important to set the parameter values

within a meaningful range, our experiments showed no prominent gain from micro-adjusting each

parameter. With a two-dimensional grid search, we showed the interplay between parameter

variations for logarithmic compression and the self-transition probability. Variations of one

parameter can cause a change of the optimal value for the other parameter. This suggests a joint

optimization of parameter values.

To train our chord models and optimize parameter values, we applied different data splits for

cross-validation. We split along the song, version, and dataset axis. For the SWD, splitting along

the version axis provided slightly better results than the other split variants, implying a better

generalization across versions than across songs. A likely reason for this is the high diversity

of musical characteristics of the individual songs of the SWD. Training on all songs therefore

provides better generalization than training on all versions. For the BSD, the song split provided

the best results, implying the opposite case. For both datasets, neither and cross-dataset split

produced the worst results.

We evaluated the chord recognition results for three different vocabularies, the major/minor,

triad, and seventh vocabulary. We reached the best recognition quality for the major/minor
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vocabulary, which corresponds to our expectations. Yet, the results for the triad vocabulary were

only slightly lower with a decrease in recall of approximately five percent points. Furthermore,

we reported a more prominent reduction in chord recognition quality for the seventh vocabulary.

The recall values decreased by approximately 15 percent points compared to the results with the

major/minor vocabulary.

The comparison of different chroma feature types constitutes one of the central contributions

of this thesis. We compared the three signal processing chromas CCQT, CIIRT, and CSTFT, the

deep-learning chroma Cdeep, and the two symbolic baseline chromas Cscore and Cannot. While all

three signal processing chromas produced comparable results, our experiments showed a slightly

higher efficiency with CCQT for the SWD and with CSTFT for the BSD. Generally, the signal

processing chromas produced maximum recall values of around 70%. With Cdeep we achieved an

increase in recall of about five percent points. This shows the potential of applying deep-learning

techniques for feature extraction in chord recognition. To examine the impact of the technical

challenge of extracting features from the audio recordings, we performed chord recognition with

the score-based chroma Cscore. The results for Cscore showed an increase in recall of approximately

five to ten percent points as compared to the signal processing chromas. Compared to Cdeep,

there was no clear increase in recognition quality and in some cases even a slight decrease. From

these results we can conclude that the musical challenge of abstracting notes to a chord label has

a larger impact on the chord recognition effectiveness than the technical challenge of extracting

the note information from the audio recordings. A further reduction of the musical challenge by

using Cannot showed a clear increase in recognition quality, with recall values close to 100% in

some selected scenarios.

The in-depth analysis of recognition results on a more detailed level revealed insights into the

cross-version and cross-song differences of both datasets. For both datasets, the analysis of recall

values for the individual songs averaged across versions showed large fluctuations. This was the

case for all three chord vocabularies. Especially in the SWD, different songs obtained highly

varying results. In contrast, the analysis of recall values for individual versions averaged across

songs revealed only slight differences. None of the versions produced prominently higher or lower

recall values than the others. While this is true when averaged across all songs, a track-wise

evaluation of recall values showed numerous cases where the results for individual songs varied

largely for different versions. With the in-depth analysis of recognition results on the measure

level, we highlighted errors that commonly occurred across different versions. In approximately

25% of the segments where errors occurred, either one version or all of the versions produced

an error, respectively. Furthermore, we showed that in approximately 50% of segments where

errors occurred, the majority of versions obtained the correct recognition result, highlighting the

potential of cross-version fusion strategies.

While our studies offered several insights into chord recognition in the context of cross-version

classical music recordings, the datasets provide broad opportunity for further research. As an
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example, the SWD can be used to study the impact of a singing voice on chord recognition.

Furthermore, our studies were mostly focused on results on a complete dataset level. Our in-depth

analysis showed that both datasets offer further potential for research on more detailed levels,

investigating characteristics of individual songs and versions.
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A. CHORD STATISTICS

Appendix A

Chord Statistics

We present statistics of the individual chords contained in the chord vocabularies for both

datasets. We give a detailed description of the chord vocabularies in Section 3.3.
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Figure A.1. SWD, statistics of the individual chords of the major/minor vocabulary.
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Figure A.2. BSD, statistics of the individual chords of the major/minor vocabulary.
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Figure A.3. SWD, statistics of the individual chords of the triad vocabulary.
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Figure A.4. BSD, statistics of the individual chords of the triad vocabulary.
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Figure A.5. SWD, statistics of the individual chords of the seventh vocabulary.
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Figure A.6. BSD, statistics of the individual chords of the seventh vocabulary.
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Figure A.7. SWD, statistics of the individual chords of the seventh vocabulary without any mapping or
reduction.
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Figure A.8. BSD, statistics of the individual chords of the seventh vocabulary without any mapping or
reduction.

83 Master Thesis, Florian Schuberth





B. TRACK-WISE RECALL VALUES

Appendix B

Track-Wise Recall Values

We present track-wise recall values with different chroma feature types for both datasets. We

give a detailed description of the plots in Section 5.6.
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Figure B.1. Track-wise recall values for SWD with HMMG, CSTFT, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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Figure B.2. Track-wise recall values for BSD with HMMG, CSTFT, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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Figure B.3. Track-wise recall values for SWD with HMMG, CIIRT, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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Figure B.4. Track-wise recall values for BSD with HMMG, CIIRT, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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Figure B.5. Track-wise recall values for SWD with HMMG, Cdeep, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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Figure B.6. Track-wise recall values for BSD with HMMG, Cdeep, and neither split. a) For major/minor
vocabulary. b) For triad vocabulary. c) For seventh vocabulary.
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C. SCORE EXCERPTS

Appendix C

Score Excerpts

We present score excerpts that correspond to the musical pieces we discuss in Section 5.6.
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C. SCORE EXCERPTS

Figure C.1. Score excerpt from song D911-05, Der Lindenbaum (eng. The Linden Tree) from the SWD.
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C. SCORE EXCERPTS

Figure C.2. Score excerpt from song D911-22, Mut! (eng. Have Courage! ) from the SWD.
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C. SCORE EXCERPTS

Figure C.3. Score excerpt from song No-14, famously known as Mondscheinsonate (eng. Moonlight
Sonata) from the BSD.
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