
Friedrich-Alexander-Universität Erlangen-Nürnberg

Master Thesis

DNN-Based Matrix Factorization
with Applications to Drum Sound Decomposition

submitted by

Edgar Andrés Suárez Guarnizo

submitted

April 6, 2020

Supervisor / Advisor

Prof. Dr. Meinard Müller
Dr. Christian Dittmar

Michael Krause

Yiğitcan Özer

Reviewers

Prof. Dr. Meinard Müller

International Audio Laboratories Erlangen
A joint institution of the

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
the Fraunhofer-Institut für Integrierte Schaltungen IIS.

Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen
oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem
Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Erlangen, April 6, 2020

Edgar Andrés Suárez Guarnizo

i

Acknowledgements

I would like to express my gratitude to those who supported me during this project.

To Prof. Dr. Meinard Müller, the person who conceived the idea of this work and took the
first step to make it a reality, thank you for allowing me to work with you in a topic I am so
passionate about. Most importantly, thanks for considering my work valuable and for always
motivating students to work harder and perform better.

To my supervisor Michael Krause, thank you for your guidance and for sharing with me your
knowledge in the field of machine learning and programming. Thanks for being receptive and
open to questions and comments, and for being curious and formulate interesting questions, that
have lead to interesting results in this work. I wish you a very successful PhD career.

Thanks to my supervisors Christian Dittmar and Yiğitcan Özer making me a part of their group
and for their valuable help and recommendations. Your good research has been the foundation
of this thesis. I am looking forward to work with you in the future.

Special thanks to the Friedrich Alexander Universität, Fraunhofer IIS and the International Audio
Laboratories Erlangen, which have provided me with the necessary resources and knowledge to
complete this work. This place has allowed me to meet people with vast experience and friendly
attitude, that share my interest for music and engineering. Working in this environment is a
privilege and a dream come true.

To my ASC friends, Ahmad, Mohamed, Adela, Andy, Junseong, Sebastian, David, Slavica and
Satnam, with whom I have shared the experience of studying to Erlangen. Thanks for your
support, for your company, your opinions and for being my teachers as well as my classmates.
I am grateful to have met people with such a high level of skill and talent, and who share my
enthusiasm for learning and openly discussing ideas no matter how crazy they seem. The doors
of my home will always be open for you.

Finally, to my family and to God, now and always. Without you, none of this would have been
possible. This work is also yours.

iii

Abstract

Non-negative matrix factorization (NMF) is an iterative optimization algorithm based on update

rules that preserve non-negativity. NMF generates a low-rank approximation of a non-negative

input matrix by the combination of a small set of non-negative vectors. Due to the absence of

negative elements, these vectors act as parts that are put together to approximate the input

instead of cancelling each other out. In the context of music processing, NMF has been extensively

applied to sound decomposition, a source separation problem where the goal is to retrieve the

sound sources present in the magnitude spectrogram of an input sound mixture. By incorporating

prior musical knowledge at the initialization stage, one can guide the NMF algorithm to converge

to factor matrices with explicit musical meaning.

In recent years, deep neural network (DNN) architectures have also been used for sound decom-

position tasks. In particular, the non-negative autoencoder (NAE) also performs a low-rank

approximation of its input, indirectly learning essential features of the different sound sources.

In NAE models, non-negativity is enforced through the use of rectifier activation functions.

Moreover, prior musical knowledge can be integrated in the learning process of NAEs through

the use of weight constraints and structured dropout in its hidden layers.

This thesis draws a detailed comparison between various NMF and NAE approaches. By doing

so, the aim is to discover the musical meaning behind DNN parameters and outputs, contributing

to the development of musically informed DNN configurations. The comparison is made in the

context of drum sound decomposition, where the sound sources correspond to drum strokes

present in tracks from the publicly available “IDMT-SMT-Drums” dataset. The results show

that NMF and NAEs perform similarly, both qualitatively and in terms of the signal-to-distortion

ratio (SDR) of the reconstructed sound source audio signals.

v

Contents

Erklärung i

Acknowledgements iii

Abstract v

1 Introduction 3

1.1 Structure of this Thesis . 4

1.2 Main Contributions . 5

2 Matrix Factorization for Spectral Decomposition 7

2.1 Overview . 7

2.2 Multiplicative Updates . 8

2.3 NMF-Based Spectral Decomposition . 11

2.4 Non-negative Matrix Factor Deconvolution (NMFD) 21

3 DNN-Based Non-negative Matrix Factorization 25

3.1 Non-negative Autoencoders (NAE) . 26

3.2 NAE-based Spectral Decomposition . 29

3.3 Score Information in NAE architectures . 36

3.4 Non-negative Convolutional Autoencoders (CAEs) 41

4 Drum Sound Decomposition Evaluation 47

4.1 The Dataset . 47

4.2 The Sound Decomposition Pipeline . 48

4.3 Sound Decomposition Evaluation Experiments 50

5 Conclusions 55

A Onset Models 57

1

CONTENTS

B Convolution schemes 63

C NAE Performance comparison 67

C.1 NAE Performance Comparison . 67

C.2 Score-Information Strategies Performance Comparison 68

D Source Code 71

Bibliography 77

2 Master Thesis, Edgar A. Suarez G.

Chapter 1

Introduction

A music recording can be considered a combination of sound sources interacting to express a

cohesive, unified musical idea. In music processing, sound decomposition seeks to reverse this

process by identifying the behavior of the individual sound sources that make up a recording.

Sound decomposition is a particular case of source separation for music information retrieval

(MIR) [25]. Sound decomposition is the baseline of multiple MIR tasks such as singing voice

extraction [10], audio mosaicing [11] and music transcription [38], among others.

Non-negative matrix factorization (NMF) [18] and non-negative factor deconvolution (NMFD) [30]

are two machine learning algorithms that have been extensively used for sound decomposition,

being applied to the magnitude spectrogram of music signals [41]. NMF and NMFD are based

on two main principles: First, they generate a low-rank approximation of their input by the

combination of a small set of non-negative vectors. This forces the algorithm to learn the most

important features of the input data in order to minimize the approximation error. Second, they

enforce non-negativity, making the vectors act as parts that are put together to approximate the

input, instead of cancelling each other out.

Furthermore, it has been shown that incorporating prior musical score information in the initial-

ization stage of NMF and NMFD leads to the learning of musically meaningful features [12] [19].

For example, one may initialize the factor matrices such that one of them corresponds to the

approximated frequency content of each sound source, while the other contains the estimated

time intervals where each of the sources are active throughout the music piece. This initialization

scheme guides the optimization process, making the algorithm build upon the given initial

structure to approximate the input matrix.

A good example of the use of score-informed matrix factorization models can be found in the

work by Dittmar et.al [9]. This work sets a standard on the evaluation of informed sound

decomposition algorithms, by comparing various initialization approaches using the Signal-to-

3

1. INTRODUCTION

distortion ratio performance measure (SDR) [37] to evaluate the decomposition quality. All

the above in the context of drum sound decomposition using multiple drumset recordings that

make up the “IDMT-SMT-Drums” data set [8]. Drum sound decomposition is a particularly

challenging task in music processing. The sounds generated by drums and cymbals usually have

a broadband, noise-like spectrum, with no identifiable harmonic structure. Additionally, the

different elements of the drumset are often played simultaneously. This means the drum sounds

are usually overlapped in both time and frequency, which leads to audible cross-talk artifacts in

the decomposition results [40].

The wide variety of implementations and the effectiveness of NMF and NMFD, added to

the increasing use of deep neural networks (DNN) and deep learning models in MIR [3], has

motivated the development of DNN architectures that emulate matrix factorization properties.

For instance, Smaragdis et.al [31] and Venkataramani et.al [34] have proposed the use of non-

negative autoencoders (NAE) as a DNN-based matrix factorization model. NAEs explicitly

incorporate the low-rank approximation and non-negativity characteristics of NMF, and combine

them with the flexibility and scalability of DNN models.

These works suggest that NAEs can perform better than their matrix factorization counterparts,

but the results in [31] and [34] are mostly focused on the separation of speech mixtures and not

in sound decomposition. To account for this, Ewert et.al [13] uses NAEs in a musical context,

and also outlines various ways of incorporating score information into the NAE learning process.

The results in [13] also suggest a better performance of DNN-based methods, but were obtained

using a data set containing only 10 classical piano pieces, and lacks generality.

Consequently, this thesis intends to bring together the NAE models in [31] and [34] and the

score-informed configurations in [13] into the drum sound decomposition scenario described in [9],

to compare them with the NMF and NMFD algorithms. By doing so, the aim is to discover

the musical meaning behind DNN parameters and outputs, in hopes of contributing to the

development of musically informed DNN configurations.

1.1 Structure of this Thesis

Chapter 2 formally introduces the concept of NMF and NMFD, and describes the multiplicative

update approach to generate non-negative factor matrices. The chapter also illustrates how NMF

and NMFD are used for sound decomposition, and how music information from music scores can

be introduced.

Chapter 3 introduces the Non-negative autoencoder (NAE), the main DNN architecture used

throughout this work. The chapter describes the functionalities of the autoencoder and shows

how its configuration relates to NMF. The chapter analyses multiple NAE variants, such as score-

4 Master Thesis, Edgar A. Suarez G.

1.2 MAIN CONTRIBUTIONS

informed models and NAEs using convolutional layers, and compares their sound decomposition

results with the NMF and NMFD results in Chapter 2.

Using the methods and results from the two previous chapters, Chapter 4 presents a quantitative

performance comparison NMF and DNN approaches, by applying them to the “IDMT-SMT-

Drums” data set.

Chapter 5 summarizes the main results of this thesis and outlines future work.

1.2 Main Contributions

The main contributions of this work are as follows:

First, this thesis provides a qualitative analysis of the implementation of NMF and NMFD

algorithms in the context of sound decomposition, additionally showing the effect of introducing

music score information into the decomposition process.

Second, this thesis evaluates the use of NAEs as a NMF-based DNN architecture, and its potential

use in sound decomposition. This work explores different NAE models, and provides a deeper

understanding of different methods for introducing music score information, finding common

ground with the NMF results of the previous chapter. The implementation of the described NAE

architectures, configurations and visualization tools constitute the main technical contribution of

this thesis.

Third, both NMF and NAE models are compared in a sound decomposition scenario by computing

the SDR (signal-to-distorsion ratio) of the generated source signals, using the “IDMT-SMT-

Drums” public data set.

Finally, this work proposes several ways in which the models and methods described can be

further extended to tackle more complex tasks.

5 Master Thesis, Edgar A. Suarez G.

Chapter 2

Matrix Factorization for Spectral

Decomposition

This chapter introduces the reader to the concept of non-negative matrix factorization (NMF) and

its use in sound decomposition. Section 2.1 is an overview of the most important theory of NMF,

followed by a description of its implementation as an iterative algorithm using multiplicative

updates in Section 2.2. Section 2.3 will show the use of NMF in sound decomposition by using

two concrete running examples. Section 2.4 describes the non-negative factor deconvolution

(NMFD) method, and its implication on the sound decomposition results.

The theory introduced in this chapter closely follows [18] and Section 8.3 of [25].

2.1 Overview

Non-negative matrix factorization [18] is a type of matrix factorization algorithm where a non-

negative matrix i.e. a matrix with only real, non-negative elements, is approximated by the

product of two non-negative matrices. Formally, given a non-negative matrix V ∈ RK×M≥0 , NMF

aims to find non-negative matrices W ∈ RK×R≥0 and H ∈ RR×M≥0 such that

V ≈WH. (2.1)

In NMF, each data vector column vm ∈ V for m ∈ [1 : M] is approximated by a linear

combination of columns in matrix W. This linear combination is defined by a row vector

hm ∈ H, hence vm ≈W · hm. NMF can be seen as the projection of the vectors in V into a

new dimensional space spanned by the vectors in W. The parameter R ∈ N corresponds to the

rank of the approximation. In practice, this parameter is given or deduced from the input data,

7

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

depending on the application. In this work it is assumed that R� min(K,M). In this case, the

matrix V̂ = WH can be seen as a low-rank approximation of matrix V.

At first glance, NMF seems rather similar to other matrix factorization methods such as

Principal component analysis (PCA) [7]. However, the non-negativity constraint prevents

linear combinations of the vectors in matrix W from canceling each other out. Instead, the

vectors can be seen as parts which combine to build an approximation of the original data matrix.

For this reason NMF is regarded as a “parts of a whole” approach [17], where the vectors in W

are directly interpreted as features of the input data.

The non-negative factor matrices W and H are obtained by solving the following optimization

problem:

min
W,H

D(V||WH),

subject to W ∈ RK×R≥0 ,H ∈ RR×M≥0 ,
(2.2)

where the cost function D(·||·) : R(K×M)2 → R is a measure of divergence or similarity between

two matrices. In the following, D is a modified version of the Kullback-Leibler divergence (KLD),

defined as follows: Let A,B ∈ RK×M be two matrices with coefficients aij and bij for i ∈ [1,K]

and j ∈ [1,M]. The divergence between matrix A and B, denoted D(A||B), is defined as:

D(A||B) :=
K∑
i=1

M∑
j=1

(
aij ln

(
aij
bij

)
− aij + bij

)
,

= ‖A� ln (A�B)−A + B‖2F .

(2.3)

The function ‖ · ‖F denotes the Frobenius or matrix norm, and � and � are element-wise

multiplication and division operators, respectively.

The simplicity of the formulation of NMF can be deceiving. Despite choosing a convex cost

function and dealing only with inequality constraints, Problem (2.2) is a non-convex problem

for W and H simultaneously. There is no algorithm that guarantees convergence to a global

optimum [33], but numerical schemes in continuous optimization may achieve stationary point

convergence.

2.2 Multiplicative Updates

Given that Problem (2.2) is non-convex, a simple approach would be to relaxing one of its

constraints, generating a convex relaxation of the problem. This is done by fixing the values

of one of the factor matrices, and use them to optimize the values of the other. For example,

8 Master Thesis, Edgar A. Suarez G.

2.2 MULTIPLICATIVE UPDATES

considering matrices V ∈ RK×M≥0 and H ∈ RR×M≥0 to be fixed, the convex relaxation problem for

matrix W is formulated as follows:

min
W

D(V||WH),

subject to W ∈ RK×R≥0 .
(2.4)

Convex relaxations can be solved using known numerical optimization methods. Nevertheless,

to ultimately find optimal values for the original problem, the procedure must be done in two

steps: First, optimal values for one of the factor matrices must be calculated; second, the values

obtained are used to optimize the other factor matrix. This procedure is repeated until a certain

stop criterion is reached e.g. a certain number of iterations. This alternating approach is known

as block coordinate descent [39], and constitutes a common framework in NMF algorithms.

A common optimization method such as gradient descent can be used for approximating the

minimum point of a given convex relaxation. Let W(`) be the values of matrix W at iteration (`).

Gradient descent seeks to find values for W(`+1) such that the cost function decreases. Because

the chosen cost function in Equation (2.3) is differentiable, it decreases faster in the direction of

the negative gradient, so for W(`+1) the gradient descent update rule can be written as:

W(`+1) :=W(`) − γ(`) �
(
∇W(`)D

(
V||W(`)H

))
,

=W(`) + γ(`) �
((

V �W(`)H
)

H> − 1H>
)

,
(2.5)

where 1 ∈ RK×M denotes an all-one matrix. Matrix γ(`) ∈ RK×R contains the step sizes of the

elements of W at iteration (`). The step sizes determine the magnitude of the variation of the

values of W(`) in the descent direction.

For gradient descent, it can be shown that D
(
V||W(`+1)H

)
≤ D

(
V||W(`)H

)
and the condition

D
(
V||W(`+1)H

)
= D

(
V||W(`)H

)
is met when a stationary point can be reached if the step

size is chosen properly. If the step size is too large, the update might miss the stationary point,

making the optimization process diverge; if it is too small, the optimization will take more

iterations to reach it. Choosing the right values for γ(`) becomes critical for convergence, so they

must be properly scaled down or up at each iteration.

Lee and Seung [18] propose using following step size to guarantee convergence to a stationary

point:

γ(`) = W(`) � 1H>. (2.6)

Given this step size, the update rule for W(`+1) then becomes:

W(`+1) = W(`) �
((

V �W(`)H
)

H>
)
� 1H>. (2.7)

9 Master Thesis, Edgar A. Suarez G.

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

Algorithm 1: NMF using Multiplicative Updates

Input : Data matrix V ∈ RK×M≥0 .

Output : Factor matrices W ∈ RK×R≥0 and H ∈ RR×M≥0 , such that V ≈WH.

Low rank approximation matrix V̂ ∈ RK×M≥0 .

1 Set parameter R;

2 Initialize matrices W(0) and H(0);

3 Define L (number of iterations);

4 ` = 0;
while ` < L do

5 W(`+1) = W(`) �
((

V �W(`)H(`)
) (

H(`)
)>)� 1 (H(`)

)>
;

6 H(`+1) = H(`) �
((

W(`+1)
)> (

V �W(`+1)H(`)
))
�
(
W(`+1)

)>
1 ;

7 ` = `+ 1;

end

8 W = WL, H = HL, V̂ = WH .

This update rule contains only multiplication and division operations, and is therefore called a

multiplicative update rule. The update rule for matrix H(`+1) is derived by fixing W(`+1) and

using a similar step size value (with the role of H(`) and W(`+1) inverted). The update rule

obtained is:

H(`+1) = H(`) �
((

W(`+1)
)> (

V �W(`+1)H(`)
))
�
(
W(`+1)

)>
1. (2.8)

To apply these updates in Problem 2.2, they must be computed in an alternating fashion,

following the block coordinate descent approach. An example procedure for NMF optimization

using multiplicative updates is shown in Algorithm 1. By default, the values of matrices W(0)

and H(0) are randomly generated, following a uniform or normal probability distribution over

the non-negative subspace. The algorithm is stopped after L iterations.

Multiplicative updates are a simple way of guaranteeing convergence and enforcing non-negativity

at the same time; if the initialization values are non-negative, the updates will remain non-

negative, as only multiplicative operations are computed in each iteration. At the same time,

any zero values in W(0) and H(0) will remain zero throughout the optimization process. These

properties will prove to be important for sound decomposition tasks, and will be further discussed

in Section 2.3.3.

10 Master Thesis, Edgar A. Suarez G.

2.3 NMF-BASED SPECTRAL DECOMPOSITION

2.3 NMF-Based Spectral Decomposition

As introduced in Chapter 1, a music recording can be thought of as the superposition of multiple

sound sources. Formally, let x : Z→ R be a real-valued, discrete time-domain signal corresponding

to a music recording made up of R ∈ N sound sources. The goal of sound decomposition is to

extract the sound sources present in the input signal and generate separate audio signals xr, for

r ∈ [1 : R], such that x =
∑R

r=1 xr.

A common first step in sound decomposition tasks is to first generate a time-frequency represen-

tation of the input signal [25]. This representation provides information about the behavior of

the frequency content of the signal through time. In Section 2.1, NMF was defined as a “parts of

a whole” approach. Therefore, applying NMF to the time-frequency representation of a music

signal could retrieve information about the frequency content of the sound sources that make up

the input signal, and their presence in time.

In this work, to obtain a time-frequency representation of x, the discrete version of the Short-time

Fourier transform (STFT) is used. This is done by defining a window function w : [0 : N−1]→ R
of even block size N , a hop size parameter H ∈ N, and applying

X (m, k) :=
N−1∑
n=0

x(n+mH)w(n)exp(−2πikn/N), (2.9)

where X (m, k) ∈ C denotes the complex valued time-frequency coefficient of X for the k-th

spectral bin at time frame m, for k ∈ [1 : K] and m ∈ [1 : M]. The magnitude spectrogram of X ,

obtained by setting

V := |X |>, (2.10)

will be the input non-negative matrix for NMF.

In the magnitude spectrogram V ∈ RK×M≥0 , K stands for the number of frequency bins and M

for the number of time frames1. If the original audio signal is made up of R sound sources, the

columns in the factor matrix W ∈ RK×R≥0 computed using NMF would contain an approximated

frequency spectrum of each sound source. Consequently, the rows of matrix H ∈ RR×M≥0 would

encode the time frames when the sound sources are active. The approximated magnitude

spectrogram for a particular sound source V̂r for r ∈ [1 : R] would be calculated by computing

1All magnitude spectrograms in this work were computed using a Hann function window w of block size
N = 2048 and hop size H = 512. For a signal sampled at Fs = 44100 Hz, there will be a frequency resolution of
Fs/N ≈ 21.5 Hz and time resolution of H/Fs ≈ 11.6 ms.

11 Master Thesis, Edgar A. Suarez G.

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

the inner product of its corresponding column and row of the factor matrices:

V̂r := wrhr, (2.11)

with wr ∈ W being the r-th column vector of W and hr ∈ H the r-th row vector of H.

NMF is therefore performing a spectral decomposition of the input magnitude spectrogram

V, generating individual magnitude spectrograms for each of the sound sources from a single

input. Nonetheless, generating an approximated component time-domain audio signal x̂r from its

magnitude spectrogram V̂r is less trivial, and requires applying signal reconstruction techniques.

This problem will be addressed in Section 4.2.

The remaining part of this section is organized as follows: First the audio running examples used

throughout this work are presented in Section 2.3.1. Next, the NMF algorithm is applied to the

presented examples in Section 2.3.2. The use of score information and onset models is discussed

in Section 2.3.3.

2.3.1 Running Examples

Throughout this work, two main running examples will be used in order to illustrate the

performance of spectral decomposition algorithms.

The first running example is a monophonic piano recording, consisting of three notes played with

the same intensity. The piece is played at a tempo of 60 bpm, such that the duration of each

note is exactly half a second. The music score, time domain signal, magnitude spectrogram and

ground truth annotations for this example are shown in Figure 2.1.

The music score in Figure 2.1(a) indicates that the notes A4, C5 and E5 are first played one after

the other, followed by groups of two notes at a single time (also called intervals), and finally all

three notes played simultaneously forming the A minor chord. The amplitude of the time domain

waveform in Figure 2.1(b) is proportional to the number of notes being played at a given time.

The magnitude spectrogram in Figure 2.1(c) shows the start of each note is marked by the

presence of a vertical line, which in the frequency domain represents a flat, noise-like spectrum.

This structure is called an onset, and physically corresponds to the instant when the hammer of

the piano hits the string that produces the sound. The horizontal lines observed after the onset

correspond to the fundamental frequency of each note and its harmonics, which are generated by

the vibration modes of the piano string. There is also a noticeable overlap between the decay of

the previous note and the start of the next one.

The magnitude spectrograms used in this work, such as the one in Figure 2.1(c), are max-

12 Master Thesis, Edgar A. Suarez G.

2.3 NMF-BASED SPECTRAL DECOMPOSITION

(a)

(b)

(c)

(d)

Figure 2.1. Representations for the piano running example. (a) Time-aligned music score. (b) Audio
signal in the time domain. (c) Magnitude spectrogram, max-normalized and log-compressed. The vertical
axis for the piano running example is limited to the [0 : 2500] Hz range to focus on the lower part of the
frequency spectrum. (d) Ground truth annotations.

normalized, i.e.

Vmax-norm = V/max(V), (2.12)

with max(·) : RK×M → R denoting the maximum values of all elements in V. This operation is

performed such that the values of V lie within the [0 : 1] range. Additionally, and solely for the

sake of better visualization of the spectrogram, logarithmic compression [25] is applied:

Vlog-comp = log(1 + γVmax-norm), (2.13)

with γ ≥ 1 being a parameter used to adjust the compression rate.

13 Master Thesis, Edgar A. Suarez G.

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

Note Number 69 76 72 69 76 69 72 72 76 69 72 76

Start Time 0 0.5 1 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.0

End Time 0.5 1 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 3.5

Table 2.1. Ground truth annotations table for the piano example in Figure 2.1. The note number 69, 72
and 76 correspond to notes A4, C5 and E5 respectively.

For music recordings such as this piano example, ground truth annotations are usually available

in the form of a table, where one axis corresponds to sound events, and the other to different

characteristics of each event such as start time, end time, or MIDI note number. The ground

truth annotations for the piano example are shown in Table 2.1.

Figure 2.1(d) displays the annotations in Table 2.1 in the form of a piano roll representation, and

illustrates the start and duration of each note by the location and width of the rectangles over a

grid. The grid rows correspond to the notes present in the music piece. Both the spectrogram

and ground truth annotations will be the main reference for qualitatively evaluating spectral

decomposition results.

The above piano example will be helpful when explaining certain spectral decomposition details

which are easier to visualize using the clear frequency structures of the piano notes. However,

the main focus of this thesis is drums sounds. Therefore the main running example used

throughout this work will be a monophonic drums recording which includes the three core

drumset components: kick drum (KD), snare drum (SD), and hi-hat (HH). The music score,

time domain signal, magnitude spectrogram and ground truth annotations for this example are

shown in Figure 2.2.

First of all, the drums score in Figure 2.2(a) is different from the piano music score in Figure 2.1(a).

Lines and spaces do not represent pitch (indicated by the absence of a clef), but strokes on

different drumset components. The space above the fifth line of the staff (counting down to up)

corresponds to HH; the fourth space corresponds to SD; the first space, to KD. The (×) symbol

replacing the note head means that HH is meant to be played closed.

The time domain representation in Figure 2.2(b) shows impulse-like signals with short decay times,

which in the magnitude spectrogram (Figure 2.2(c)), are represented as broadband spectra. In

particular, KD presents strong low frequency content, and noticeable frequency overtones above

18 kHz (possibly due to a compression artifact enhanced by the logarithmic compression). SD is

also present in the low frequencies, but has longer decay times and slightly above the frequency

range of KD. HH is spread across the entire spectrum, centered around the [2500 : 12500] Hz

range. There are clear frequency overlaps between the components and no visible tonal or

harmonic structure. For example, it is difficult to distinguish the SD stroke in second 1.0 from

the simultaneous HH and SD strokes in second 2.5. This makes the spectrogram decomposition

task even more challenging for this type of instrument.

14 Master Thesis, Edgar A. Suarez G.

2.3 NMF-BASED SPECTRAL DECOMPOSITION

(a)

(b)

(c)

(d)

Figure 2.2. Representations for the drums running example. (a) Time-aligned music score. (b) Audio
signal in the time domain. (c) Magnitude spectrogram. (d) Ground truth annotations.

The ground truth annotations in Figure 2.2(d) represent the presence of each component by

vertical lines instead of the rectangles in Figure 2.1(d). This is because the duration of the sound

in percussive instruments is short, but and also (usually) not controllable. Therefore, only the

stroke event is relevant.

2.3.2 NMF with Random Initialization

As mentioned at the beginning of this section, the magnitude spectrogram is used as the input

matrix V to perform spectral decomposition using NMF. The decomposition is performed at a

note level. This means that, for both running examples, the sound sources denote different sounds

produced by an instrument (piano or drumset), rather than representing multiple instruments in

15 Master Thesis, Edgar A. Suarez G.

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

(a) (b) (c)

Figure 2.3. Randomly initialized NMF for the piano running example in Figure 2.1. (a) Learned
template matrix W. (b) Learned activations matrix H with reference ground truth annotations (below).

(c) Low rank approximation matrix V̂ = WH with reference ground truth annotations (below).

a recording. The components in the piano example are the notes being played i.e. A4, C5 and

E5; in the drums example, KD, SD and HH. Consequently, for both running examples R = 3.

NMF was implemented following Algorithm 1. Matrices W(0) and H(0) was initialized following

a uniform distribution in the interval [0, 1] for both examples. As a stop criterion, the algorithm

was set to run for L = 1000 iterations. The output of the NMF algorithm for the piano example

is shown in Figure 2.3. The ground truth annotations from Figure 2.1(d) are plotted underneath

matrices H and V̂ (Figures 2.3(b) and 2.3(c)) for reference.

The high values in the columns of W from Figure 2.3(a) coincide with the tonal structure of each

note, and can be regarded as frequency templates for each of the notes of the recording. Matrix

W is hence called the template matrix. On the other hand, the high values on the activation

matrix H in Figure 2.3(d) coincide with the time instants where the frequency templates in the

columns of W are active in the spectrogram. Matrix H is hence called the activation matrix.

The activation matrix should fairly match the ground truth annotations below it.

For a better visualization of factor matrix plots, the columns wr of the resulting matrix W and

their corresponding rows hr in H are scaled in the following way:

wr =
wr

max (wr)
, hr = hr ·max (wr) , (2.14)

for r ∈ [1 : R]. This way matrix H also encodes the dynamics of the different components 2.

A closer look at the resulting template matrix W in Figure 2.3(a) reveals the frequency content of

Note 2 (corresponding to C5 according to the annotations) contains some frequencies that belong

to Note 1 (A4) and Note 3 (E5). This interference or leakage between frequency templates is

2 The same scaling is used in all factor matrix plots in Chapters 2, 3 and A.

16 Master Thesis, Edgar A. Suarez G.

2.3 NMF-BASED SPECTRAL DECOMPOSITION

(a) (b) (c)

Figure 2.4. Randomly initialized NMF for the drums running example in Figure 2.2. (a) Learned
template matrix W. (b) Learned activations matrix H with reference ground truth annotations (below).

(c) Low rank approximation matrix V̂ = WH with reference ground truth annotations (below).

also known as cross-talk, and is one of the most common artifacts found in sound decomposition

or source separation in general.

Another noticeable artifact can be seen in the frequency content of note 3 (E5), where noise-like

frequency components are present outside the harmonic intervals, forming a grey area that

surrounds the tonal structure of the note. In the activation matrix, Note 3 presents sharp vertical

lines every time any note event occurs. This means that Note 3 is encoding not only the harmonic

structure of note E5, but also the onset information of all the notes in the piece.

Turning now to the drums running example, the NMF results using the magnitude spectrogram

in Figure 2.2(c) are shown in Figure 2.4. Although in this case the frequency distribution of the

components in the template matrix W (Figure 2.4(a)) looks close to the frequency distribution

observed in the input spectrogram, the activations in matrix H (Figure 2.4(b)) present a more

evident case of cross-talk between the components. This has derived in false detections, where

components are shown as active at a given time instant but when the ground truth annotations

do not. For example, the HH activations (Component 3) show that the HH was present at every

half-second interval, when the ground truth annotations show HH is active only every second,

except for the last stroke. The same phenomenon is noticeable in KD (Component 1) and SD

(Component 2) to a lesser extent.

For both piano and drums examples, the approximated magnitude spectrograms V̂ in Fig-

ures 2.3(c) and 2.4(c) fairly resemble the original spectrograms in Figures 2.1(c) and 2.2(c).

However, the amplitude ranges of the V̂ are considerably higher than in V. In summary, this

first NMF results show that, although successfully approximating the input spectrogram, the

factor matrices W and H still do not provide a clear representation of the frequency content and

temporal evolution of the components from the running examples in Figures 2.1(c) and 2.2(c),

and do not constitute successful spectral decomposition. Cross-talk artifacts are expected due

17 Master Thesis, Edgar A. Suarez G.

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

to the noticeable frequency overlaps between the different components, specially for the drums

example, and are expected become more noticeable if the number of components increases.

2.3.3 Informed Initialization

The music scores in Figures 2.1(a) and 2.2(a) show that the components are present only at

certain time intervals during the recording. An ideal activation matrix would consequently have

non-zero values only in the frames where a certain component is active. For the piano example,

each note triggers only a specific set of frequencies (the fundamental frequency and harmonics

of the note). An ideal template matrix columns should therefore have non-zero values only in

certain frequency ranges. The work in [12] suggests incorporating score information from the

running examples into the factor matrices improves the spectral decomposition results, as it

guides the NMF optimization process to more musically meaningful factor matrices.

Score information can be introduced using an important property from the NMF multiplicative

updates discussed in Section 2.2: A value in matrices W(0) or H(0) set to zero will remain zero

throughout the optimization process. Exploiting this property, all values in matrix H(0) can

be set to zero except in time frames when a given component is active, using the ground truth

annotations as a reference. In the case of the piano example, the values of matrix W(0) can be

set to zero, except in the regions near the fundamental frequency and harmonics of each note,

following the harmonic series [25].

It is important to clarify that setting the values of W(0) and H(0) to zero will cause division-

by-zero errors when using the multiplicative updates in Equations 2.7 and 2.8. In practice, this

can be avoided by replacing zero values by a very small positive number (machine epsilon), or

adding a small number to the denominator expressions. As noted by Lin [20], this modification

does not affect convergence of the algorithm to a stationary point.

Figures 2.5(a) and 2.5(b) show the score-informed initialization matrices for the piano example.

Both matrices were generated using the ground truth annotations in Figure 2.1(d) with the help

of the FMP notebooks tool [26]. The informed template initialization matrix W(0) was generated

assuming a piano tuned to a 440 Hz reference, and computing the fundamental frequency from

the note number p in Table 2.1, using the following formula:

F (p) = 2(p−69)/12 · 440[Hz]. (2.15)

Matrix W(0) in Figure 2.5(a) shows a clear harmonic structure, where each column has non-zero

values around the fundamental frequency and harmonics of each of the notes. The informed

template matrix columns also exploit the fact that the high frequency harmonics contain less

energy, and assigns them a lower initial value. The activation initialization matrix H(0) in

18 Master Thesis, Edgar A. Suarez G.

2.3 NMF-BASED SPECTRAL DECOMPOSITION

(a) (b)

(c) (d) (e)

Figure 2.5. Score-informed NMF for the piano running example. (a) Pitch-based matrix W(0). (b)
Score-based Matrix H(0) with reference ground truth annotations (below). (c) Learned template matrix
W. (d) Learned activations matrix H with reference ground truth annotations (below). (e) Low rank

approximation matrix V̂ = WH with reference ground truth annotations (below).

Figure 2.5(b) is a binary matrix, generated using the start and end times of each note. The

duration of each note was configured a bit longer as in the annotations, taking into account the

overlapped transition observed between the end of each note and the beginning of the next one

in the original spectrogram.

The learned matrices in Figure 2.5(c) and 2.5(d) show cleaner and defined templates and

activations, as a result of the score-informed initialization. The templates are very effective in

guiding the learning process of NMF, with the zero values remaining zero in the output factor

matrices. However, the approximation V̂ in Figure 2.5(e) shows only the horizontal structure of

the note harmonics, leaving out the onset information of the notes. This means the informed

initialization model has oversimplified the structure of its components, discarding the transients

of the note events. To include the onset information, a more refined initialization scheme is

required. This initialization scheme particular for piano recordings is called onset models, and is

further explained in Appendix A.

19 Master Thesis, Edgar A. Suarez G.

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

(a) (b)

(c) (d) (e)

Figure 2.6. Score-informed NMF for the drums running example. (a) audio-based matrix W(0) from
the NMF Toolbox. (b) Score-based Matrix H(0) with reference ground truth annotations (below). (c)
Learned template matrix W. (d) Learned activations matrix H with reference ground truth annotations

(below). (e) Low rank approximation matrix V̂ = WH with reference ground truth annotations (below).

Figures 2.6(a) and 2.6(b) show the score-informed initialization matrices for the drums example.

Matrix H(0) in Figure 2.6(b) is similar to the one generated for the piano example Figure 2.5, but

with slightly shorter duration set for each activation. On the other hand, since there is only a

vague idea of the frequency content distribution of the drumset components and such distribution

has no fixed harmonic structure, matrix W(0) cannot be set using the same procedure as in the

piano example. Matrix W(0) in Figure 2.6(a) was generated using audio-based templates. These

templates were previously obtained from perfectly isolated samples of each instrument, and were

taken from the NMF Toolbox [24], successfully implemented in [9] for drum-related applications.

The resulting template matrix W in Figure 2.6(c) looks fairly similar to the randomly-initialized

template matrix in Figure 2.4(a); however, there is a noticeable improvement in the learned

activation matrix H in Figure 2.6(d). There is no longer false activations, meaning no components

are active in time instants where they are not supposed to. The value range of Figure 2.4(e) is

now much closer to the value range of the input spectrogram in Figure 2.2(c).

Leakage is still present in the decomposition, and can be observed in the component dynamics. All

20 Master Thesis, Edgar A. Suarez G.

2.4 NON-NEGATIVE MATRIX FACTOR DECONVOLUTION (NMFD)

W(0) U
(0)
r W

(0)
τ

Figure 2.7. NMFD score-informed tensor W(0) for the drums running example with T = 5. Matrix

U
(0)
r represents the temporal evolution of the frequency content of component r, while W

(0)
τ is the initial

template matrix for the temporal frame τ .

component strokes were played at the same amplitude, but the components in H show different

values in different strokes. For example, in Figure 2.6(d) seconds 1.5,2 or 3 the KD stroke

(Component 1) is noticeably weaker than in second 0. This also happens in SD (Component 2).

These lower amplitudes coincide with the time instants where HH (Component 3) is active. This

implies that, because of the wide frequency spectrum of HH in this example, some of the energy

from the KD or SD strokes is being assigned to HH.

From this results it can be concluded that the use of score information from ground truth

annotations for NMF is an important step towards obtaining better spectral decomposition

results, but it is certainly not definitive, as the factorization model is still simple and prone to

component leakage.

2.4 Non-negative Matrix Factor Deconvolution (NMFD)

Given the NMF results for the piano example in Figure 2.3, it is clear that the frequency content of

a sound source is not stationary. For the piano example, the frequency content of a note transitions

from an onset to a structured harmonic spectrum. The spectral decomposition algorithm should

also account for this temporal dimension. Non-negative matrix factor deconvolution (NMFD) [30]

was developed precisely as an extension of NMF to include the temporal evolution of the frequency

content of each component.

Instead of the single template matrix W used in NMF, NMFD uses a set of matrices Wτ ∈ RK×R≥0
for τ ∈ [1 : T]. The parameter T ∈ N denotes the total amount of templates desired. Each

template matrix Wτ is used for a different temporal frame τ ∈ [1 : T], having T templates

available for a single sound source. An example of an informed initialization W(0) for the drums

21 Master Thesis, Edgar A. Suarez G.

2. MATRIX FACTORIZATION FOR SPECTRAL DECOMPOSITION

example is shown in Figure 2.7. The templates Wτ can be grouped in a tensor W ∈ RK×R×T≥0 ,

where matrices Wτ correspond to slices of W along the T dimension. The evolution of the

frequency content of each of component can be found in matrices Ur ∈ RK×T for r ∈ [1 : R],

which are slices of W along R. Matrix W
(0)
τ can be obtained by taking columns of the matrices

of Ur for a given τ . NMF can be hence considered a particular case of NMFD for T = 1.

Instead of a matrix product, in NMFD the approximation matrix V̂ is the result of a convolution

operation between W and H, denoted W ∗H :

V̂ :=

T∑
τ=1

Wτ

τ→
[H], (2.16)

where
τ→
[·] denotes the right shift operator, which shifts the columns of a matrix to the right τ

times. The shift operator allows the different templates to be activated by a single frame of matrix

H 3. The approximation matrix V̂ is in this case the result of the sum of the approximations

computed for all τ ∈ [1 : T].

As in NMF, NMFD seeks to find optimal matrices Wτ , τ ∈ [1 : T] and H such that the function

D(V||V̂) is minimized. The optimization problem in NMFD is very similar to the optimization

in NMF:

min
W,H

D
(
V||V̂

)
,

subject to W ∈ RK×R×T≥0 ,H ∈ RR×M≥0 .

(2.17)

The multiplicative updates 2.7 and 2.8 are consequently reformulated to fit this new framework

by incorporating the shift operator, as follows:

W(`+1)
τ = W(`)

τ �

(V � V̂
)(τ→[

H(`)
])>� 1(τ→[

H(`)
])>

∀τ ∈ [1 : T], (2.18)

H(`+1) = H(`) �

((
W(`+1)

τ

)> ←τ[
V � V̂

])
�
(
W(`+1)

τ

)>
1, (2.19)

where
←τ
[·] denotes the left shift operator. The updates retain the properties of the NMF

multiplicative updates, enforcing non-negativity while preserving convergence.

As in NMF, score information can be introduced in the initialization step of NMFD using

audio-based initialization templates as the ones shown in Figure 2.7. For matrix H(0), the

same NMF initialization matrix can be used (see Figure 2.6(b)). Algorithm 1 can be used

to compute NMFD, replacing the corresponding multiplicative updates. The approximated

3For a more detailed explanation on the convolution operation, refer to Appendix B

22 Master Thesis, Edgar A. Suarez G.

2.4 NON-NEGATIVE MATRIX FACTOR DECONVOLUTION (NMFD)

(a) (b) (c)

Figure 2.8. Score-informed NMFD for the drums running example. (a) Learned template matrices
W. (b) Learned activation matrix H with reference ground truth annotations (below). (c) Low-rank

approximation matrix V̂ =
∑T
τ=1 Wτ

τ→
[H] with reference ground truth annotations (below).

magnitude spectrogram for a particular source V̂r for r ∈ [1 : R] in this case can be calculated

by computing the convolution of its component matrix Ur and its corresponding row from the

activation matrix hr, as follows:

V̂r =

T∑
τ=1

(Ur)τ
τ→
[hr], (2.20)

where (Ur)τ stands for column τ of matrix Ur.

The resulting NMFD matrices using score-informed initialization matrices for the drums running

example is shown in Figure 2.8. Following the implementation by Dittmar et.al in [9], the number

of iterations was set to L = 30 and the number of temporal frames to T = 5.

The obtained templates W in Figure 2.8(a) now include the temporal evolution of the frequency

content for each of the drumset components. A faster decay is observed in the amplitude of the

frequency components of HH (Component 3) compared to those of KD (Component 1) and SD

(Component 2). In the case of SD, the upper frequencies have a lower amplitude and decay faster

than the lower ones. Cross-talk effects similar to those observed in Figure 2.6 are also present in

the activation matrix H in Figure 2.8(b). This means that including the temporal dimension in

the template matrix of the components is still not enough to cancel cross-talk artifacts, as there

is still frequency overlaps in between the component matrices. From the resulting approximation

matrix V̂ it is not clear whether there is an improvement on the reconstruction. For a quantitative

analysis on the sound decomposition quality of NMFD, refer to Section 4.3.

Successful implementations in [9] and [23] show that NMFD is a powerful tool for spectral

decomposition, in particular for automatic drum transcription [8] and sound decomposition

tasks.

23 Master Thesis, Edgar A. Suarez G.

Chapter 3

DNN-Based Non-negative Matrix

Factorization

This chapter introduces various neural network concepts used in the implementation of deep

neural networks, and closely follows the work of Goodfellow [14] and Nielsen [27]. The author

suggests referring to this material for a detailed review on neural networks and deep learning

concepts.

The field of Artificial Intelligence (AI) has been developed as a way of using computers to tackle

problems that humans solve intuitively, but which are difficult to define or describe [14]. Tasks

such as identification, classification or prediction are performed by humans in a way that feels

automatic, but that can be difficult to emulate from an engineering point of view .

The simplest form of AI comes in the form of an artificial neuron. An artificial neuron is

essentially a mapping of a set of input values, described by the following equation:

y = g

(
b+

L∑
i=1

wiai

)
,

where the neuron output y ∈ R represents a sum of its inputs ai ∈ R weighted by a set of

coefficients or weights wi ∈ R for i ∈ [1 : L]. The function g : R → R is called the activation

function establishes a linear or non-linear relation between input and output. Parameter b is

called the bias, and controls how easy or difficult it is to get a high value at the output. An

artificial neuron can work e.g. as a logic gate when g is chosen to be the unit step function and

the parameter b ∈ R is set to a desired threshold value.

Neurons can be used to compute more complex operations when grouped into layers. Neurons in

a layer are not connected between them, but to their inputs. Given a set of input values arranged

as a vector a ∈ RL, and a matrix W ∈ RN×L representing the weighted connections between L

25

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

inputs and N neurons, the layer output vector ŷ ∈ RN is defined as:

ŷ = g (b + W · a) ,

where function g is applied element-wise. This type of layer, where every neuron is connected to

every input value, is called a fully connected or dense layer.

In AI problems, it is usual to have only an input vector a and a desired or reference output

y ∈ RN as given. In this case, the task is to find the layer weights W and biases b such that the

neuron layer output ŷ coincides with the desired output y. This process is called training, and

can be summarized by the following optimization problem:

min
W,b

L (y, ŷ) , (3.1)

with L : RN2 → R being a loss function which is used as an error measure between y and ŷ.

A neural network consists of various layers stacked sequentially, in order to compute multiple

operations for more complex problems. The depth of a network refers to the amount of layers it

contains. A neural network with two or more layers is called a Deep neural network (DNN) [27].

With proper training processes, DNNs can become powerful tools for solving complex AI problems.

This chapter explores the use of neural network models in spectral decomposition. The lessons

learned in the implementation of NMF in Chapter 2 will prove to be essential in the configuration

of these networks, and in achieving meaningful spectral decomposition results. The chapter is

organized as follows: Section 3.1 introduces the reader to the Non-negative autoencoder (NAE),

which will be the neural network model used in this thesis to perform spectral decomposition, and

establishes its relation with the NMF algorithm. The NAE spectral decomposition results are

presented in Section 3.2. Various methods for including score information in the training process

of NAEs are explained in Section 3.3. Finally, Section 3.4 describes the use of convolutional

layers in NAEs and their effect on spectral decomposition.

3.1 Non-negative Autoencoders (NAE)

An autoencoder is a DNN architecture built to learn data coding models by attempting to

reconstruct its input in its output [14]. In an autoencoder topology, the input data is first fed into

the encoder stage E , which outputs a set of features that build up a representation of the input

signal, also called the code. This representation is the input of the decoder stage D, intended to

reverse the encoding process to reconstruct the original input data from the code. Autoencoders

are hence trained using their own input data as reference, trying to generate the output that

better resembles the original input. The difference between the input and output data of the

26 Master Thesis, Edgar A. Suarez G.

3.1 NON-NEGATIVE AUTOENCODERS (NAE)

autoencoder is called the reconstruction error.

Figure 3.1. Diagram of a shallow autoencoder architecture.

Figure 3.1 illustrates a shallow autoencoder architecture. The name shallow is given because

encoder and decoder are each built using a single, fully connected layer. The input matrix

V ∈ RK×M is fed into the encoder layer E with weights WE ∈ RK×M and activation function

gE : RR×M → RR×M . The encoder layer outputs the code matrix H ∈ RR×M . The reconstructed

input matrix V̂ ∈ RK×M is then computed in the decoder layer D with weight matrix WD ∈
RK×R and activation function gD : RK×M → RK×M . The influence of bias parameters will is

not taken into account for the derivations in this chapter.

The shallow autoencoder architecture can be summarized as follows:

1. Encoder(E): H = gE(WE ·V),

2. Decoder(D): V̂ = gD(WD ·H).
(3.2)

In the training process of autoencoders, the goal is to obtain optimal values of WE and WD such

that the reconstruction error is minimized. This can be formulated as the following optimization

problem:

min
WE ,WD

L
(
V, V̂

)
, (3.3)

where the function L : R(K×M)2 → R is defined as the reconstruction error between input matrix

V reconstructed output V̂ = gD (WD · gE(WE ·V)). Functions such as the KLD loss function

in Equation (2.3) can be used as reconstruction error functions.

As in Section 2.2, the gradient descent method can be used to estimate optimal values of the

layer weight matrices. Let W
(`)
E and W

(`)
D denote the values of the encoder and decoder weight

27 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

matrices at iteration `. The gradient descent updates for each weight matrix can be written as:

W
(`+1)
E := W

(`)
E − η

(l)
E �

(
∇WEL

(
V, V̂

))
,

W
(`+1)
D := W

(`)
D − η

(l)
D �

(
∇WDL

(
V, V̂

))
.

(3.4)

The values of matrices W
(0)
E and W

(0)
D can be initialized randomly using a probability distribution.

Typically, a zero-mean normal distribution is used. The computation of the gradient operations

∇WEL
(
V, V̂

)
and ∇WDL

(
V, V̂

)
is done efficiently using back propagation.

Matrices η
(l)
E and η

(l)
D contain the so-called learning rates of the network. As the step sizes in

Equation (2.5), the learning rates will determine the convergence of the algorithm and therefore

the success of the training process. Due to their importance, multiple algorithms have been

developed to effectively choose learning rates that lead to faster convergence. In this work the

RMSProp algorithm [14] is used. RMSProp is a commonly used algorithm for neural networks,

which scales the learning rates inversely proportional to the square root of a decaying average of

its gradients. This scaling lowers the values of matrices η
(l)
E and η

(l)
D as the loss function L

(
V, V̂

)
decreases. The details of the RMSProp and back propagation algorithms and equations are

beyond the scope of this thesis; for further information, refer to the works in [27] and [14].

Notice that the decoder layer equation in (3.2) is similar to the NMF approximation of Equa-

tion (2.1). In fact, Smaragdis [31] suggests the autoencoder architecture has a direct relation

with the NMF algorithm, and it could be thought of as a DNN-based matrix factorization model.

A series of parameters can be set in order to bring the autoencoder closer to a NMF scenario.

First, a suitable code dimension R must be chosen. When the code dimension R is chosen such

that R � K, the autoencoder is unable to perfectly reconstruct the input signal. This forces

the autoencoder to generate a code with the most characteristic features of the data in order to

minimize the reconstruction error. By doing so, the autoencoder is performing dimensionality

reduction on the input data [16], and matrix V̂ becomes a low-rank approximation of V. In

this case the autoencoder is said to be undercomplete. Additionally, the activation function gE

and gD should be chosen to be a non-linear function that yields non-negative outputs, such

that the code matrix H and the low rank approximation output matrix V̂ are non-negative.

The Rectified linear unit (ReLU) function g(x) = max(x, 0) can be used for this purpose, when

applied element-wise over the input matrix values.

From an NMF perspective, choosing ReLU for the activation functions gE and gD, the code

matrix H would play the role of the activation matrix1, and V̂ the low-rank approximation of

V. The decoder weight matrix WD would correspond to the template matrix. Finally, the code

dimension R would play the role of the NMF rank. If R is set such that the autoencoder is

1The terms activation matrix and code matrix is hereafter used to refer to matrix H indistinctly.

28 Master Thesis, Edgar A. Suarez G.

3.2 NAE-BASED SPECTRAL DECOMPOSITION

undercomplete, this configuration is called a non-negative autoencoder (NAE). NAEs are the

main focus of this chapter.

3.2 NAE-based Spectral Decomposition

Having established the relation between NAE and NMF from a theoretical perspective, it is

pertinent to use NAEs to perform spectral decomposition on the piano and drums running

examples of Section 2.3.1, the same way as it was done for NMF in Section 2.3, in order to

perform a practical comparison between the two approaches.

A shallow NAE architecture following Equations (3.2) was implemented using the Keras API [4]

and the Tensorflow backend [1]. Both gE and gD were chosen to be ReLU functions, and the

loss function L was chosen to be the KLD loss function in Equation (2.3) defined in Section 2.1.

The bias values for both layers were set to zero to focus our attention solely on the learned

weights. The neural network was trained for 1000 epochs using a full-batch approach, following

the implementations in [31] and [13]. This means the whole matrix V was used as a unique

training example, instead of training the network using single vectors or groups of vectors of V.

No other neural network parameters were set, such that the NAE configuration was as similar to

the NMF configurations as possible, in order to focus on the differences between NMF and NAE

results, given that both models are trained following different approaches. A summary of the

NAE architecture implementation is shown in Table 3.1.

Layer Output Shape Parameters

Input (1,K,M)

Encoder (E)
Dense + ReLU (1, R,M) R×K

Decoder (D)
Dense + ReLU (1,K,M) K ×R

Table 3.1. NAE network architecture. The first dimension in the values of the Output Shape column
indicates the network is trained using a full-batch training approach.

3.2.1 NAE using Random Initialization

As a first spectral decomposition experiment, the encoder and decoder layer weight values W
(0)
D

and W
(0)
D were initialized using a random uniform distribution in the interval [0, 0.1]. The

resulting decoder weight matrix WD, the code matrix H and the low-rank approximation matrix

V̂ using NAE for the piano running example are shown in Figure 3.2.

The code matrix H in Figure 3.2(b) does not match the ground truth annotations, but rather

shows multiple notes active in almost every frame. This behavior can be explained by looking at

29 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

(a) (b) (c)

Figure 3.2. randomly-initialized NAE for the piano running example in Figure 2.1. (a) Learned decoder
weight matrix WD. (b) Learned code matrix H with reference ground truth annotations (below). (c)

Low-rank approximation matrix V̂ with reference ground truth annotations (below).

the weight matrix WD in Figure 3.2(a). The decoder weight matrix WD is a mixture of positive

and negative values (even though it was initialized as non-negative). The matrix is plotted using

a red-blue color map to better observe the distribution of positive (red) and negative values

(blue), centered around zero (white). In each of the decoder matrix columns, a set of positive

values approximates the harmonic structure seen in the NMF template matrix of Figure 2.3.

However, for each noticeable positive value in a column of WD, a negative counterpart can be

found in one of the other two columns. The low rank approximation matrix V̂ in Figure 3.2(c)

resembles the input matrix, but is the result of the cancellation between positive and negative

terms of the columns in WD, so all components are active in every frame. The NAE output

matrices for the drums running example shown in Figure 3.3 present a similar behaviour.

This NAE configuration is not strictly speaking the closest it can be to a NMF scenario; in fact,

it is closer to a variant of NMF called semi NMF [7], where no constraint is enforced on the

template matrix W. Just like the template matrix in NMF, the NAE requires the decoder layer

weights WD to be non-negative to avoid the cancellation between its columns.

3.2.2 NAE with Non-negative Decoder

In [31], Smagagdis et.al. propose indirectly enforcing non-negativity on the decoder layers weights

by using a penalty term in the loss function, also called regularizer. A regularizer is a term

added to the loss function which penalizes a certain behavior by making the loss function increase.

This way the network will be optimized trying to avoid solutions that increase the value of the

regularizer term and affect the total loss.

30 Master Thesis, Edgar A. Suarez G.

3.2 NAE-BASED SPECTRAL DECOMPOSITION

(a) (b) (c)

Figure 3.3. Randomly-initialized NAE for the drums running example in Figure 2.2. (a) Learned
decoder weight matrix WD. (b) Learned code matrix H with reference ground truth annotations (below).

(c) Low-rank approximation matrix V̂ with reference ground truth annotations (below).

Smaragdis et.al propose a regularizer term which promotes sparsity in matrix H, to indirectly

penalize the unnecessary activation of multiple columns of WD. The regularizer is added to the

original autoencoder loss function as follows:

L′
(
V, V̂

)
= D

(
V, V̂

)
+ λ‖H‖1. (3.5)

The loss function L′ increases whenever if the L1 norm of H is too large, therefore promoting

solutions where H is sparse. The regularization parameter λ determines the influence of the

regularization term in the total loss.

The resulting decoder weight matrix WD, the code matrix H and the low-rank approximation

matrix V̂ using the regularized NAE model for the drums running example are shown in

Figure 3.4. The parameter λ was chosen in order to increase the non-negativity percent of WD

(Figure 3.4(a)), which also generates a matrix H closer to the ground truth annotations. However,

when λ is increased further, the activations of Component 2, which still has non-negative values,

would be deactivated in all frames.

The regularized NAE in [31] considers only examples where each of the components is isolated

in the input spectrogram, and fails to account for the fact that there can be music examples

where the three components are simultaneously active, so an sparsity constraint would still

not be enough to enforce non-negativity in all elements of WD. Additionally, the value of the

regularization parameter λ would also become an additional parameter to optimize. Therefore,

this method is not suitable for generating non-negative decoder weight matrices.

As an alternative approach, the work in [5] proposes directly constraining layer weights WD

31 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

(a) (b) (c)

Figure 3.4. Regularized NAE output for the drums running example, with λ = 20 (above) and λ = 21
(below). (a) Learned decoder weight matrix WD. (b) Learned code matrix H with reference ground truth

annotations (below). (c) Low-rank approximation matrix V̂ with reference ground truth annotations
(below).

to be non-negative, claiming it would not only improve the performance of the network (as it

reduces the range of values over which it optimizes), but also lead to learning more meaningful

parameter values. Given the results in Figures 3.3 and 3.4, constraining the decoder weights

matrix WD is a strategy worth applying if results closer to NMF are expected.

To directly enforce non-negativity in the decoder weights, it suffices to set all negative weights of

WD to zero in each epoch during training. For the training process described by Equation (3.4),

this would mean adding a step to the computation of W
(`+1)
D . Let W

(`+1)
D (k, r) for k ∈ [1 : K],

r ∈ [1 : R] denote the elements of matrix W
(`+1)
D . The non-negativity constraint can be applied

using the following operation:

W
(`+1)
D+ (k, r) := max

(
W

(`+1)
D (k, r), 0

)
. (3.6)

Constraining the decoder weights to be non-negative can be seen as using a rectifier function over

32 Master Thesis, Edgar A. Suarez G.

3.2 NAE-BASED SPECTRAL DECOMPOSITION

(a) (b) (c)

(d) (e) (f)

Figure 3.5. Randomly-initialized NAE with non-negative decoder, for the drums running example.
(a) Learned non-negative decoder weight matrix WD+ . (b) Learned code matrix H, with reference

ground truth annotations (below). (c) Low-rank approximation matrix V̂, with reference ground truth
annotations (below). (d) Learned encoder weight matrix W>

E . (e) Matrix WEV with reference ground
truth annotations (below). (f) Matrix WD+H with reference ground truth annotations (below).

its values. It can also be seen as projecting the elements of WD into the non-negative subspace.

This modified training process is in fact close to projected gradient methods [21]. The superscript

+ in WD+ will hereafter denote non-negative weight matrices. With this additional constraint,

the decoder layer can be written as V̂ = gD(WD+ ·H). Since WD+ and H are non-negative,

choosing a ReLU function for gD would have no effect on the output, and a linear activation

function could be chosen instead.

As a second experiment, a NAE architecture constraining the decoder weights to be non-negative

is used to perform spectral decomposition on the drums running example. The trained decoder

parameters WD+ , the code matrix H, and approximation V̂ are shown in Figure 3.5. In this

33 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

(a) (b) (c)

Figure 3.6. Comparison of the Encoder, pseudoinverse and decoder matrices from the randomly-initialized
NAE with non-negative decoder for the drums running example. (a) Trained encoder layer weight matrix

W>
E . (b) Decoder Moore-Penrose inverse

(
W†

D+

)>
(c) Trained non-negative decoder weight matrix

WD+ .

second experiment, both the decoder weights WD+ and the code matrix H in Figures 3.5(a) and

3.5(b) resemble the NMF factor matrices from Figure 2.4 more closely, with similar cross-talk

artifacts between the components. The value range of matrix V̂ is also closer to the value

range of the original input spectrogram, as opposed to the low-rank approximation matrix in

Figure 2.4(c).

To observe the training process of the NAE more closely, additional matrices are plotted in

Figures 3.5(e), 3.5(f) and 3.5(g). Figure 3.5(e) shows matrix WEV, which corresponds to the

code matrix H before the activation function gE . This matrix is scaled the same way as the code

matrix in Figure 3.5(b), using Equation (2.14) according to the values of WD+ . The matrix

is almost entirely non-negative, showing that the autoencoder is compelled to output positive

values, as the negative values are filtered out by the activation function. As noted earlier, matrix

WDH in Figure 3.5(f) is already non-negative, so a linear function for gD can be used.

The most interesting matrix is the encoder weight matrix W>
E in Figure 3.5(d). In the work by

Smaragdis [31], matrix WE is regarded as a pseudoinverse of WD+ . Given that V ≈WD+H, and

solving for H, then H ≈W†
D+V, with (·)† being the Moore-Penrose inverse operator. Replacing

W†
D+ by WE would result in the encoder layer equation in (3.2), without taking the activation

function into account. To take a closer look at the relation between WE , W†
D+ and WD+ , the

values for the three matrices are shown Figure 3.6.

The encoder matrix in Figure 3.6(a) resembles the decoder Moore-Penrose inverse in Figure 3.6(b),

presenting a similar distribution of positive and negative values. Judging by this result, there is

no motivation for enforcing non-negativity in the encoder weight matrix WE . However, as it will

be discussed in Section 3.2.3, the non-negative encoder reveals an interesting property of the

NAE training process.

34 Master Thesis, Edgar A. Suarez G.

3.2 NAE-BASED SPECTRAL DECOMPOSITION

(a) (b) (c)

(d) (e) (f)

Figure 3.7. Randomly-initialized NAE with non-negative encoder and decoder, for the drums running
example. (a) Learned non-negative decoder weight matrix WD+ . (b) Learned code matrix H, with

reference ground truth annotations (below). (c) Low-rank approximation matrix V̂, with reference
ground truth annotations (below). (d) Learned non-negative encoder weight matrix W>

E+ . (e) Matrix
WE+V with reference ground truth annotations (below). (f) Matrix WD+H with reference ground truth
annotations (below).

3.2.3 NAE with Non-negative Encoder

Figure 3.7 shows the effect of using non-negative encoder and decoder weight matrices in the

NAE. Now both matrices WDH in Figure 3.7(f) and matrix WEV in Figure 3.7(e) are now

non-negative, meaning a linear function can be chosen for gE .

Matrix W>
E+ in Figure 3.7(d) is now naturally sparse. There are no frequency overlaps in

between its columns, meaning no element of one column is present in any of the others. This

is a remarkable difference between the encoder and decoder weights, as frequency overlaps

35 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

should be allowed in the decoder weights WD to account for possible frequency overlaps between

components.

In fact, the frequencies in each column of W>
E+ coincide with the frequency content description of

the drumset components back in Section 2.3.1: KD (Component 1) is identified by strong values

in the lower part of the spectrum, and the high frequency artifact above 18 kHz; SD (Component

2) and HH (Component 3), by their presence in the low and medium range, respectively. The

non-negative constrained encoder contains a set of frequencies that distinguishes a particular

component from the rest. This means that each column WE is acting as a matched-filter [34]:

For a given input matrix V, the encoder outputs a high value whenever the frequency spectrum

of a given frame matches that of a column in W>
E+ . This is how the code matrix H is generated.

Despite the evident differences between WE+ and WE , the decoder weight matrix, the code

and low-rank approximation matrices in Figures 3.7(a), 3.7(b) and 3.7(c) resemble those of the

non-negative decoder NAE in Figure 3.5(a), 3.5(b) and 3.5(c). Therefore, Having a non-negative

matrix WE+ does not have a negative impact on the spectral decomposition result, and instead

represents an advantage in terms of convergence speed and interpretability, as originally stated

in [5].

3.3 Score Information in NAE architectures

Figures 3.5 and 3.7 show that the spectral decomposition of NAEs with random initialization

suffers from the same issues as the randomly initialized NMF results in Section 2.3.2. However,

Section 2.3.3 has shown that the use of score information can lead to obtain more meaningful

factor matrices. In neural networks, this problem is usually addressed by using a labeled data

set for training. However, the only data the NAE uses for training is its own input matrix,

and the score-informed matrices generated from ground truth annotations only provide coarse

information on how the frequency spectrum or the activations of the input should be.

Using the same idea behind the multiplicative updates, introducing score information into the

NAE models requires setting some of the values of the code matrix H and the decoder weight

matrix WD to zero, and guarantee that they remain zero throughout the training of NAEs. The

challenge is doing so for the optimization process of NAEs, which uses no multiplicative updates.

3.3.1 Score-informed Weight Matrices

Introducing score information in the decoder weight matrix WD can be done by simply initializing

its values with a score-informed W
(0)
D instead of using a random distribution. Figure 3.8 shows the

effect of an informed initialization of the NAE for the piano example, using the scored-informed

36 Master Thesis, Edgar A. Suarez G.

3.3 SCORE INFORMATION IN NAE ARCHITECTURES

(a) (b) (c)

Figure 3.8. NAE with informed initialization, for the drums running example. (a) Trained decoder
weight matrix WD with informed initialization. (b) Learned code matrix H, with reference ground truth

annotations (below). (c) Low-rank approximation matrix V̂, with reference ground truth annotations
(below).

matrix in Figure 2.5(a) as W
(0)
D . The informed initialization also brings the code matrix H in

Figure 2.5(b) closer to the NMF activation matrix in Figure 2.5(d) and to the ground truth

annotations. However, there is nothing in the NAE model that fixes the zero-valued coefficients

of WD after being initialized as such. Therefore, the decoder weight matrix WD contains some

values (mostly negative) outside the harmonic regions.

When enforcing non-negativity on the decoder weight matrix WD in Section 3.2.2, all the negative

values of matrix WD were set to zero in each iteration, by adding the non-negative projection

step in Equation (3.6) to the gradient descent update in (3.4). Following the same idea, one

additional step can be added to the NAE gradient descent update, this time to constrain the

values of WD according to the information in W
(0)
D . This can be done by generating a binary

mask from the values of W
(0)
D to filter out the values of WD every iteration.

Let W
(0)
D (k, r) for k ∈ [1 : K], r ∈ [1 : R] denote the elements of matrix W

(0)
D , and let MW(k, r)

be the elements of the binary mask MW ∈ RK×R given by:

MW(k, r) =

1, if W
(0)
D (k, r) > 0,

0, if W
(0)
D (k, r) = 0.

(3.7)

The generated mask is multiplied element-wise with WD in each iteration, setting to zero

all values of WD that are not part of the score-informed frequency template. Note that the

masked values W′
D = WD �MW are not necessarily non-negative. It is possible to enforce both

constraints during training by sequentially computing the informed constraint step, followed by

37 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

(a) (b)

(c) (d) (e)

Figure 3.9. NAE with score-informed constrained decoder, for the piano running example.(a) Score-
informed template matrix W(0) from Figure 2.5(a). (b) Generated binary mask MW. (c) Trained
decoder weight matrix W′

D = WD �MW. (d) Learned code matrix H, with reference ground truth

annotations (below). (e) Low-rank approximation matrix V̂, with reference ground truth annotations
(below).

the non-negativity constraint step. To the author’s knowledge, this technique has not been used

before to introduce musical score information into NAE models.

Figure 3.9 shows the use of informed constraints in the decoder weight matrix WD for the piano

example. The binary mask MW in Figure 3.9(b) is generated from the informed template matrix

W(0) in Figure 3.9(a) using Equation (3.9). The trained matrix W′
D in Figure 2.5(c) is almost

entirely non-negative, and shows high positive values in the harmonic regions similar to the NMF

template matrix in Figure 2.5(c), although it still presents negative values in the high frequency

harmonics of two of its templates. The use of the non-negative constraint would get rid of these

negative values and output the results in Figure 2.5. As discussed in Section 2.3.3, the piano

example requires a more sophisticated initialization approach to include onset information. For

more information, the reader can refer to Appendix A.

38 Master Thesis, Edgar A. Suarez G.

3.3 SCORE INFORMATION IN NAE ARCHITECTURES

Figure 3.10. Overview of a shallow autoencoder architecture with structured dropout layer, as proposed
in [13].

3.3.2 Score-Informed Code Matrices

The code Matrix H is the output of the encoder stage, but not a proper training parameter.

Therefore, the procedure described in Section 3.3.1 cannot be used to generate score-informed

activations.

Figures 3.2 and 3.3 show that randomly-initialized, unconstrained NAEs are able to generate a

low-rank approximation matrix V̂ that resembles the input matrix V, but fail at generating a

musically meaningful code matrix. This is to be expected, since the network was trained using a

single spectrogram and no additional information was introduced in the training process to meet

this condition. In this context, regularization is a way of guiding the DNN learning process, by

giving preference to a certain solution over another [14]. Taking regularization as a starting point,

Ewert et.al [13] propose two strategies to generate score-informed code matrices: Structured

dropout and a regularizer. These strategies will be discussed in detail in this section.

As a first strategy, the work in [13] proposes the addition of a non-trainable layer between the

encoder and decoder stages. The new layer will disable certain encoder weights by element-wise

multiplication of the code matrix H with a binary mask MH ∈ RR×M . This binary would

contain the score information regarding the activity of the sound sources over time e.g. the

score-informed H(0) in Section 2.3.3. The modified NAE architecture is shown in Figure 3.10.

This strategy can be compared to stochastic dropout, which consists of adding an intermediate,

non-trainable layer which sets a percentage of its output values to zero [27]. The disabled outputs

are randomly selected at each iteration. In contrast, the proposed modification in [13] works as

a form of structured or deterministic dropout, since the disabled connections are fixed by the

zero values of matrix MH throughout the entire training process. During back propagation, the

39 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

(a) (b) (c)

Figure 3.11. Structured dropout layer matrices, with reference ground truth annotations (below).
(a) Code Matrix H. (b) Binary mask MH generated from ground truth annotations. (c) Matrix
H′ = H�MH.

error information will be focused on the weights of the encoder matrix WE , which are directly

linked to the non-zero values of MH. The resulting matrix H′ = H�MH can be interpreted as

a score-informed activation matrix in the NMF context.

Figure 3.11 shows the effect of the structured dropout layer on the NAE code matrix for the drums

example. The mask MH is the same score-informed activation matrix H(0) used to compute

the NMF factor matrices in Figure 2.5(b). Matrix H′ in Figure 3.7(c) shows no cross-talk in

between the different templates, compared to matrix H in Figure 3.7(a). As a result, matrix H′

coincides with the ground truth annotations and with the score-informed NMF activation matrix

in Figure 2.6, showing similar cross-talk patterns as the ones described in Section 2.3.3.

The second strategy used to introduce score information in NAEs is using a regularizer. Given

the score-informed matrix MH, a regularizer can be added to the original autoencoder loss

function in the following way:

L′
(
V, V̂

)
= D

(
V, V̂

)
+ λ‖(1−MH)�H‖22, (3.8)

where the (1 −MH) �H term makes the loss function increase if the network presents high

values in H that coincide with the zero-valued regions of the binary mask MH.

Figure 3.12 shows how including the regularization term in the loss function affects the NAE output

matrices for the drums running example. Notice that the weight matrix WD in Figure 3.12(a) is

entirely non-negative despite the fact that there is no constraint enforced on its values. The code

40 Master Thesis, Edgar A. Suarez G.

3.4 NON-NEGATIVE CONVOLUTIONAL AUTOENCODERS (CAES)

(a) (b) (c)

Figure 3.12. NAE with regularized loss function (Eq. 3.8) with λ = 40, for the drums running example.
(a) Learned decoder weight matrix WD. (b) Learned code matrix H, with reference ground truth

annotations (below). (c) Low-rank approximation matrix V̂, with reference ground truth annotations
(below) .

matrix in Figure 3.12(b) is the same as matrix H′ in Figure 3.10(c).

To get such results, the parameter λ must usually be set to a large value, dominating over the

divergence term when applying gradient descent, and potentially causing the training process to

diverge. This is an important disadvantage, as the values of λ would have to be adapted during

training. Nonetheless, according to [13] the combination of the structured dropout layer and

the regularization term in Equation (3.8) reduces the number of epochs needed for convergence,

while allowing a more flexible setting of λ. This issue is further discussed in Appendix C.

Given the results of both score information strategies, structured dropout seems to be a more

effective way of generating score-informed NAEs, as there is no need of tuning an additional

regularization parameter.

3.4 Non-negative Convolutional Autoencoders (CAEs)

As discussed in Section 2.4, NMF can be extended to include the temporal evolution of the

frequency content for each of the sound sources when performing spectral decomposition. This

extension motivated the formulation of NMFD, which uses a convolution operation to allow the

use of multiple template matrices for multiple frames. In this section, a NAE approach to the

NMFD algorithm is considered.

In [34], Venkataramani et.al. propose a shallow autoencoder model inspired on NMFD, where

the fully connected layers of the encoder and decoder are replaced by convolutional layers.

41 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

Convolutional layers replace the layer weights by a set of convolution filters, also called kernel,

which is convolved with the input matrix. Convolution in DNN models is usually performed

along both dimensions of the input matrix. When convolution is done along a single matrix

dimension, it is called a 1D convolution operation. This operation is a particular case of 2D

convolution where one of the dimensions of the filter is the same as the dimension of the input

matrix.

Formally, given a convolutional kernel W ∈ RK×R×T , made up of T filters Wτ ∈ RK×R for

τ ∈ [1, T] (abbreviated T@K ×R), and an input matrix H ∈ RR×M , a 1D convolutional layer

would perform the following operation 2:

W ∗H =
T∑
τ=1

Wτ

τ→
[H]. (3.9)

Dimension R is common to both Wτ and H, so the convolution is performed along M , outputting

a matrix of size K ×M . Equation (3.9) is the same as the NMFD convolutive operation in

Equation (2.16), so the convolution is performed along the frame dimension, and its output

would be the approximation matrix V̂.

The Convolutional autoencoder (CAE), as proposed in [34], is described by the following equations:

1. Encoder: H = gE

(
T∑
τ=1

(WE)τ
τ→
[V]

)
,

2. Decoder: V̂ = gD

(
T∑
τ=1

(WD)τ
τ→
[H]

)
.

(3.10)

As noted earlier, the decoder layer in Equation (3.10) performs the NMFD low-rank approximation

operation, meaning WD would correspond to the NMFD template matrix tensor, and H to

the activation matrix. For spectral decomposition, the CAE might also benefit from the score

information strategies shown in Sections 3.3.1 and 3.3.2.

Additionally, as learned in Section 3.2.3, the encoder filters in WE would be seen as inverse

filters of WD. Their interpretation would be similar to that of the encoder weight matrix WE

for the NAE case, namely, a matched filter that identifies the time instants where the learned

pattern is present in the input matrix. Table 3.4 shows a summary of the CAE architecture,

which includes the intermediate structured dropout layer described in Section 3.3.2.

Figures 3.13 and 3.14 show the resulting factor matrices of a score-informed CAE architecture

with non-negative decoder, and a CAE with non-negative encoder and decoder, for the drums

running example. For the convolutional layers, the number of templates was set to T = 5 as in

2Refer to Appendix B for more information on the 1D convolution operation.

42 Master Thesis, Edgar A. Suarez G.

3.4 NON-NEGATIVE CONVOLUTIONAL AUTOENCODERS (CAES)

Layer Output Shape Parameters

Input (1,K,M)

Encoder (E)
Conv1D + ReLU (1, R,M) T@R×K

Structured Dropout (1, R,M)

Decoder (D)
Conv1D + ReLU (1,K,M) T@K ×R

Table 3.2. CAE network architecture, with structured dropout layer. The first dimension of the output
shape column values indicates the network is trained using a full-batch training approach.

the NMFD implementation, to be able to compare the CAE matrices to the NMFD results in

Figure 2.8.

The decoder weight matrix WD+ of in Figures 3.13(a) and 3.14(a) resemble the NMFD templates

W in Figure 2.8(a). However, all U component matrices present a gap in their frequency content

around 17 kHz. The gap is also noticeable in the reconstructed spectrogram of Figure 3.13(c).

This reconstruction artifact is not observed in the NMFD decomposition, and its presence might

imply that the CAE requires more than L = 1000 epochs. The value range of the approximation

matrix in Figure 3.13(c) also differs from the one of the original spectrogram (see Figure 2.2(c)).

Matrices WE ∗V (matrix H before the activation function gE) in Figures 3.13(e) and 3.14(e),

illustrate how potential cross-talk values are set to zero or negative values, that are later masked

out by the activation function and matrix MH. In particular, Figure 3.14(e) resembles the

uniform NMF activation matrix H from Figure 2.4(b). After the structured dropout layer, the

code matrices H in Figures 3.13(b) and Figure 3.14(b) coincide with the ground truth annotations

and Figure 2.8(d).

The code matrix in Figure 3.14(b) is in fact close to an ideal activation matrix, as it has none of

the cross-talk artifacts observed in previous NMFD or NAE results, and shows strokes of uniform

amplitude and duration. This result implies that having a non-negative encoder matrix WE+ such

as the one observed in Figure 3.14(d) might contribute to obtaining better sound decomposition

results, compared to the unconstrained encoder in Figure 3.13(d). For a quantitative comparison

between such approaches, refer to Section 4.3.4.

Finally, it is worth mentioning that the 1D-convolution operation performed by the Tensorflow

package [1] does not exactly coincide with Equations in (3.10), so some practical issues were

encountered during the implementation of the CAE. A detailed explanation of these issues,

among other considerations, can be found in Appendix B.

43 Master Thesis, Edgar A. Suarez G.

3. DNN-BASED NON-NEGATIVE MATRIX FACTORIZATION

(a) (b) (c)

(d) (e) (f)

Figure 3.13. Score-informed CAE with non-negative decoder, for the drums running example. (a)
Learned decoder matrices WD+ . (b) Learned code matrix H, with reference ground truth annotations

(below). (c) Low-rank approximation matrix V̂, with reference ground truth annotations (below). (d)
Learned encoder matrices WE . (e) Matrix WE ∗V with reference ground truth annotations (below). (f)
Matrix WD+ ∗H with reference ground truth annotations (below).

44 Master Thesis, Edgar A. Suarez G.

3.4 NON-NEGATIVE CONVOLUTIONAL AUTOENCODERS (CAES)

(a) (b) (c)

(d) (e) (f)

Figure 3.14. Score-informed CAE with non-negative encoder and decoder, for the drums running
example.(a) Learned decoder matrices WD+ . (b) Learned code matrix H, with reference ground truth

annotations (below). (c) Low-rank approximation matrix V̂, with reference ground truth annotations
(below). (d) Learned encoder matrices WE+ . (e) Matrix WE+ ∗V with reference ground truth annotations
(below). (f) Matrix WD+ ∗H with reference ground truth annotations (below).

45 Master Thesis, Edgar A. Suarez G.

Chapter 4

Drum Sound Decomposition

Evaluation

This chapter presents a quantitative comparison between the several of the the NAE models

described in Chapter 3, and their NMF counterparts from Chapter 2, in order to formulate

conclusions about their performance and suitability for sound decomposition.

This Chapter is organized as follows: Section 4.1 briefly describes the dataset used for performing

sound decomposition evaluation. Section 4.2 describes the overall signal reconstruction pipeline

use to generate the estimated sound source signals from their magnitude spectrograms. Finally,

Section 4.3 presents and analyses the sound decomposition evaluation results obtained.

4.1 The Dataset

The spectral decomposition evaluation was performed on the publicly available dataset “IDMT-

SMT-Drums” [8]. The dataset consists of 64 drum tracks of 14-17 second duration on a 16-bit

PCM WAV format, sampled at 44.1 kHz. The dataset contains tracks made up by the three

core components (KD, SD and HH) recorded with different types of drumkits and performing

different drum patterns. This means there is variety in both the spectral content of the sound

sources and their activity through time.

Besides the mixture signal (MIX), Each drum track includes a perfectly isolated KD, SD and HH

track. Annotations for all recordings are available for all MIX tracks in a MusicXML format1.

The MIX audio signal was used as input of the drum sound decomposition algorithm, described

in Section 4.2.

1More information at https://www.musicxml.com

47

4. DRUM SOUND DECOMPOSITION EVALUATION

Figure 4.1. Diagram of the sound decomposition pipeline used for the signal reconstruction experiments.
The spectral decomposition block is highlighted as the heart of the sound decomposition process.

4.2 The Sound Decomposition Pipeline

As explained in Section 2.3, spectral decomposition is the core part of the sound decomposition

process, but not its only step. This section briefly describes the sound decomposition pipeline,

closely following the work by Dittmar et.al [9].

Figure 4.1 shows the overall process followed to perform sound decomposition on an input mixture

signal x (MIX, presented with a black arrow in Figure 4.1). From the dataset, we know that x is

made up by R = 3 sound sources (KD, SD , HH). The goal of the sound decomposition pipeline

is to generate estimate component signals x̂r for r ∈ [1 : R] using only the information from the

input signal x.

As done with the running example signals in Chapters 2 and 3, the first step is to generate

a time-frequency representation X from signal x using STFT, following Equation (2.9). This

representation can be written in exponential form as X = V> � exp(iΦ). Matrix Φ corresponds

to the phase information or phase spectrogram of X , with elements Φ(m, k) ∈ [0, 2π) for

m ∈ [1 : M], k ∈ [1 : K]. The phase information in Φ will be used in a later stage of the

reconstruction process.

From X , the magnitude spectrogram V = |X |> is obtained. Matrix V is the input of the

spectral decomposition algorithm (either NMF, NMFD, or a NAE or CAE model). The low rank

approximation matrix V̂r for a particular sound source is calculated following Equation (2.11)

for NMF and NAEs, and Equation (2.20) for the NMFD and CAE convolutional approaches.

As already discussed in Section 2.3, a time domain signal must be generated from the low-rank

approximation matrices. To achieve this, signal reconstruction techniques must be used. However,

because the matrices are a low-rank approximations, not all spectral information of the original

spectrogram is captured. To cope with this, a mask Mr can be generated from the low-rank

48 Master Thesis, Edgar A. Suarez G.

4.2 THE SOUND DECOMPOSITION PIPELINE

approximation, to be applied over the original spectrogram V. This mask is computed as follows:

Mr :=
(
V̂r

)α
�

(
R∑
r=1

(
V̂r

)α)
. (4.1)

The mask Mr represents the contribution of the low-rank approximation matrix of component

r ∈ [1 : R] to the input signal V. The parameter 0 ≤ α ≤ 2 controls the balance between

suppression of other components and reconstruction artifacts. The power operation (·)α is applied

element-wise.

The final component magnitude spectrogram V̂r is calculated by setting

V̂r = V �Mr. (4.2)

This ratio-masking procedure is also called Alpha Wiener filter [22].

Since the spectral decomposition is performed over the magnitude spectrogram, there is no

component phase information to transform the spectrogram back to the time domain. However,

it is common practice to use the mixture phase information from X , i.e. X̂r = V̂>r � exp(iΦ).

Having X̂r, the estimated time domain signal x̂r is computed using the reconstruction method of

LSEE-MSTFT [15]. This method computes a time domain signal from a modified spectrogram

(MSTFT stands for modified STFT), using the same forward STFT parameters (w,N ,H). Signal

x̂r is generated by computing an inverse DFT of spectrogram for each spectral frame. This

generates a set of time domain signals ym(n) for m ∈ [1 : M] calculated by:

ym(n) :=

 1
N

∑N
k=0 X̂r(m, k)exp(2πikn/N) if n ∈ [1 : N],

0 otherwise.

The Least squares error estimation (LSEE) to obtain the time domain estimate x̂r is computed

as follows:

x̂r(n) :=

∑
m∈Z ym(n−mH)w(n−mH)∑

m∈Zw(n−mH)2
, n ∈ Z.

In parallel, the perfectly isolated tracks xr for KD, SD and HH are also processed in the same way

as the MIX signal (STFT, magnitude spectrogram, Wiener Filter and LSEE-MSTFT), except

that they do not go through the spectral decomposition process. The resulting signals x̃r are

reconstructions from the isolated tracks that include the artifacts and distortions introduced

during the reconstruction process. These signals are used as Oracle signals for the sound

decomposition evaluation experiments in Section 4.3.

49 Master Thesis, Edgar A. Suarez G.

4. DRUM SOUND DECOMPOSITION EVALUATION

4.3 Sound Decomposition Evaluation Experiments

This section presents a quantitative comparison between the NMFD and CAE models. This

comparison will give the reader an insight on how close NMFD and CAE are in terms of

sound decomposition quality, and of the sound decomposition capabilities of DNN-based sound

decomposition models.

4.3.1 Specifications

The test specifications were set following the work by Dittmar et. al. in [9]. The STFT and

LSEE-MSTFT parameters were set as in Section 2.3, i.e. using a Hann window function w of

block size N = 2048, with hop size H = 512. The alpha Wiener filter parameter was set to

α = 1. The frame depth parameter was set to T = 5 for all experiments. Because the signal

reconstruction operations require that the factor matrices are non-negative, only CAEs with

non-negative decoder layer weights were used.

Four different initialization cases were considered, as shown in Table 4.3.1. Case 0 will always

correspond to the oracle signals evaluation results.

Test Case Templates Activations

Case 1 Audio-based Score-informed

Case 2 Audio-based Random

Case 3 Random Score-informed

Case 4 Random Random

Case 0 (Oracle)

Table 4.1. Score information cases evaluated.

For NMFD, random initialization factor matrix values were generated using a uniform distribution

in the range [0 : 1]. Score information was introduced as described in Section 2.3.3. The score-

informed tensor W(0) was generated using the drumset templates of the NMF Toolbox [24]. The

score information was introduced by using a binary initialization matrix H(0) generated from the

ground truth annotations of each track. The algorithm was run for L = 30 iterations.

For the CAE models, random initialization weight matrix values were generated using a uniform

distribution in the range [0 : 0.1]. Score information for decoder weight matrix was introduced

through an informed initialization tensor W
(0)
D . The decoder matrices were constrained using a

binary mask MW, following the method described in Section 3.3.1. The score information for

the code matrix H was introduced by generating a binary mask MH from the annotations of

each track, and using it in the structured dropout layer, as explained in Section 3.3.2. All CAEs

were trained for 500 epochs, disabling bias parameters in their layers.

50 Master Thesis, Edgar A. Suarez G.

4.3 SOUND DECOMPOSITION EVALUATION EXPERIMENTS

To make a fair comparison, the score-informed matrices used for matrix factorization and DNN-

based approaches were generated in the same way. Matrix W(0) for NMFD is the same as W
(0)
D

used for CAEs, and matrix H(0) for NMFD is the same MH used for CAEs. Matrices H(0) and

MH were generated using a template duration of 500 ms.

4.3.2 Source Separation Evaluation Measure

For source separation evaluation, the performance of the sound decomposition algorithms was

evaluated using the Signal-to-distortion ratio (SDR) [36]. Given a discrete, real-valued time

domain signal x made up by R sound sources xr for r ∈ [1 : R], a reconstructed sound source

signal x̂r can be defined as:

x̂r = xr + xinterferencer + xartifactsr ,

meaning that each reconstruction signal x̂r is assumed as a version of the original sound source

signal xr with added interference (or cross-talk) from the leakage from other components, and

artifacts resulting from the imperfect signal reconstruction process. With this definition, the

SDR for x̂r is calculated as:

SDR = 10 · log10

(
‖xr‖2

‖xinterferencer + xartifactsr ‖2

)
. (4.3)

For Case 0, the SDR values were computed by comparing the perfectly isolated signal xr with

their respective oracle signal x̃r. For Cases 1 to 4, xr the SDR values were computed by comparing

xr with their estimated signal x̂r.

4.3.3 NMFD - CAE audio decomposition

Figure 4.2 shows the sound decomposition evaluation results for NMFD and CAE in terms SDR.

SDR was computed for the KD, SD and HH components individually, for each of the 64 tracks

in the dataset, for each of the 4 initialization cases. To present these results, The graph displays

the component SDR values averaged over all tracks in the dataset, plus a global average. Case 0

(Oracle) is plotted on both NMFD and CAE graphs for comparison.

All cases present an uneven structure, where the SDR of KD is considerably higher than for SD

and HH. For Case 0, this is caused partly by the Wiener filter, which introduces artifacts from

the other components into the the estimated magnitude spectrograms. In general, as discussed

in section 2.3.1, KD has a frequency spectrum concentrated on the lower frequencies, meaning

the frequency overlap with the other components is considerably less.

51 Master Thesis, Edgar A. Suarez G.

4. DRUM SOUND DECOMPOSITION EVALUATION

Figure 4.2. SDR evaluation results for NMFD (left) and CAE (right) for the cases described in Table 4.3.1,
showing separation quality for KD, SD and HH, plus average (Avg) and standard deviation (in red).

Besides Case 0, the case with the highest SDR values is Case 1, which combines score-informed

templates and activation matrices. For NMFD, the use of score-informed templates (Case 2)

seems to have a higher impact on the score than the score-informed activations (Case 3). This

behavior is opposite to the CAE results, where the SDR values of Case 3 are higher than for

Case 2, and only slightly lower than those in Case 1. For CAE, the absence of score information

(Case 4) leads to a considerably lower performance compared to NMFD.

It can be observed that the NMFD values are at least 5 dBs apart from the Case 0 values, for all

components and cases tested. This means that a difference of a few dBs is considerable in terms

of sound decomposition quality. Since the CAE scores are 1 to 4 dBs lower than the NMFD

scores, it can be concluded that the performance of the CAE in these tests is lower than the

performance of NMFD. As stated in [9], it is pertinent to listen to the reconstructed signals

of both methods for multiple tracks to get an idea of what the SDR values mean in terms of

perceptive sound quality.

During the tests, it was observed that the maximum template duration parameter, set to generate

the score-informed activation matrices, also influenced the results of the evaluations. For times

shorter than 500 ms, the CAE scores would increase around 2 to 3 dBs. This means the CAE

sound decomposition quality might benefit from score-informed activations with shorter template

52 Master Thesis, Edgar A. Suarez G.

4.3 SOUND DECOMPOSITION EVALUATION EXPERIMENTS

Figure 4.3. SDR evaluation results for a non-negative decoder CAE (left) and a non-negative encoder
and decoder CAE (right) for the cases described in Table 4.3.1, showing separation quality for KD, SD
and HH, plus average (Avg) and standard deviation (in red).

duration.

The NMFD evaluation results differ from the NMFD baseline experiment results from by Dittmar

et.al in [9]. This is mainly because the score-informed activation matrix used in this case is

binary, while the score-informed matrix in [9] aims to approximate the decaying envelope of each

component.

4.3.4 Non-negative encoder CAE

A second experiment is based on the results observed in Section 3.2.3, where the activation

matrix of the score-informed CAE looked cleaner and closer to the ground truth annotations

when both encoder and decoder layers were non-negative (Figure 3.14), compared to the results

obtained when non-negativity was enforced in the decoder layer only (Figure 3.13).

Figure 4.3 shows the obtained SDR scores for both CAE approaches. The SDR values are

considerably higher for the non-negative encoder CAE. For Case 2, the difference is only of

approx. 0.5 dBs, but it goes up to almost 2 dBs for Cases 1 and 3, which use score-informed

activations. This means that the decomposition quality of the CAE is indeed increased when

53 Master Thesis, Edgar A. Suarez G.

4. DRUM SOUND DECOMPOSITION EVALUATION

Figure 4.4. SDR evaluation results for a non-negative decoder CAE (left) and a non-negative decoder
CAE with activated biases (right) for the cases described in Table 4.3.1, showing separation quality for
KD, SD and HH, plus average (Avg) and standard deviation (in red).

both its layers are constrained to be non-negative. The SDR values approach the NMFD results

for Case 3, but are still 1 or 2 dBs below the NMFD results for Cases 1 and 2.

4.3.5 Effect of Bias in CAE performance

So far, the bias parameters of the NAE and CAE models have been disabled, to focus solely

on the training of encoder and decoder weight matrices. This experiment aims to observe the

impact of including the bias parameters in the CAE architecture. All layer biases were initialized

with zero values, and trained alongside the encoder and decoder weighs.

Figure 4.4 shows the obtained SDR values for the CAE and the biased CAE, trained with bias

values enabled. The results show a 0.6 dB improvement for Cases 1 and 3, but a 0.2 dB decrease

for Cases 2 and 4. This could imply the use of biases is enhancing the separation quality when

the structured dropout layer is used, although its impact is not as considerable as the one of the

non-negative encoder in Section 4.3.

54 Master Thesis, Edgar A. Suarez G.

Chapter 5

Conclusions

In this thesis, a seires of DNN-based matrix factorization models were implemented and used to

perform sound decomposition in drum recordings. It was observed that the randomly-initialized

shallow NAE is not suitable for sound decomposition, as the decoder layer weights are not

constrained to be non-negative. The regularization approach suggested by Smaragdis in [31] is

not a useful workaround to solve this problem. The implementation of non-negative constraints

in the decoder layer weights allows the generation of NMF-like results.

Enforcing non-negativity in the encoder layer of the NAE or CAE models revealed that the

encoder layer acts as a matched filter. The non-negative constrained encoder contains a set of

frequencies that distinguishes a particular component from the rest, and outputs a high value

whenever the input spectrogram frames match the frequency content of one of its columns. Using

a non-negative encoder layer also leads to an improvement in the sound decomposition results.

There are various methods that can be used to introduce score information in NAE and CAE

models. The use of score-informed NAEs is shown to improve the spectral and sound decomposi-

tion results for NAEs and CAEs as it does for NMF and NMFD. The proper configuration of the

binary masks MW and MH plays an important role on the final sound decomposition results.

NMFD has overall better SDR scores than CAEs when applied in the IDMT-SMT-Drums

database. The difference is between 0.5 dBs and 3 dBs.

There are several other tests left to perfrom on NAEs, such as evaluating their performance

in other datasets, use recordings with a larger number of sound sources, and trying different

combinations of constraints, biases, regularizers and DNN features to assess their effect on

the sound decomposition quality. The use of 2D convolutional layers, resembling the NMF2D

algorithm in [29] is a good example.

The methods shown in this document only comprise the use of single channel inputs. Nevertheless,

55

5. CONCLUSIONS

stereo mixes also contain valuable information that sound decomposition algorithms can benefit

from, as the sound sources in a stereo sound mix are usually panned such that the listener has the

sensation the sounds come from different directions. NMF and NMFD can be further extended for

stereo or multi-channel audio inputs using techniques similar to non-negative tensor factorization,

as proposed by Ozerov et.al. in [28]. Cashebeer et.al [2] propose an autoencoder architecture for

multi-channel inputs, which is a natural extension to the NAE and CAE architectures, and can

be easily implemented with the tools developed in this thesis.

Throughout this work, the magnitude spectrogram computed using STFT has been the starting

point of the spectral decomposition analysis, being complemented by alpha Wiener filtering and

LSEE-MSTFT techniques for signal reconstruction. These methods are commonly used and

rather easy to implement, but also introduce artifacts and affect the sound decomposition quality.

However, there are DNN models which are able to learn the transform and that best fits a given

audio input, and generate an estimated time-domain signal accordingly. Venkataramani et.al. [35]

propose the use of the so-called end-to-end systems, where the reconstruction error is computed

in the time domain between the input time-domain signal and its DNN-generated estimate, and

not between input and output magnitude spectrograms. Besides learning an optimal transform,

the use of end-to-end systems also allows the DNN to use the phase information of the input

signal for the sound decomposition process. This approach might greatly improve the sound

decomposition results obtained in this work.

This thesis is only a few steps away from state of the art sound decomposition algorithms. One

of the most well known state of the art end-to-end systems for waveform signal processing is

the Wave-U-Net [32] which uses many of the techniques described in this thesis, but for a larger

number of layers. The recently developed Demucs system [6], uses the Wave-U-Net architecture

to perform source separation of polyphonic music recordings, splitting it into four categories:

drums or percussion, bass, voice and others. The architecture of such systems is based on the

same principles as NAEs.

56 Master Thesis, Edgar A. Suarez G.

Appendix A

Onset Models

The score-informed NMF results in Figure 2.5 show that the model for matrix W(0) is oversim-

plified, as it only takes into account the harmonic part of the note spectrum, but it is unable to

successfully reconstruct its onsets.

Since each of the piano notes in the example have both onset and harmonic structure, each of

the notes can be assigned two components: one for their harmonic frequency content, and one

uniform, noise-like template, that will encode the frequency information of the onsets. This

implies the rank of the approximation must be doubled. For the piano example in Figure 2.1

the rank would be set to R = 6, to include the new onset information into the NMF algorithm.

This implies double the amount of columns and rows for the template and activation matrices,

respectively.

Figure A.1 (a) and (b) show the proposed onset model templates. The columns of W(0) are a

combination of horizontal, harmonic structures, and flat, noise-like spectra. Each note is assigned

a noise template and a harmonic template. In the activation matrix H(0), the onset templates

are active only at the beginning of each note event, with their harmonic templates activated a

few frames later. A reasonable overlap is left between both onset and harmonic activations to

ensure a smooth transition between both types of components in the final approximation.

Figure A.1 (c) and A.1(d) show the leaned NMF matrices using the onset model templates. It is

observed that the noise-like templates effectively capture the onset information and maintain the

flat spectrum assigned in W(0), although some also show high values in harmonic frequencies, as

in Note 69. This derives into a lower amplitude in the values of the harmonic template. This

has no effect in the approximation matrix V̂ in Figure A.1(e), which is now considerably more

similar to the input magnitude spectrogram than the one obtained Figure 2.5(e).

The onset models can be extended to an NMFD scenario, by incorporating note templates U
(0)
r

that contain both onset and harmonic structures. Figure A.2(a) shows an example of a possible

57

A. ONSET MODELS

(a) (b)

(c) (d) (e)

Figure A.1. Score-informed NMF for the piano running example on Figure 2.1. (a) Matrix W(0)

generated using frequency score information, with onset templates. (b) Matrix H(0) generated using
time score information, adding onset activations, with ground truth annotations (below). (c) Learned
template matrix W. (d) Learned activations matrix H with ground truth annotations (below). (e) Low

rank approximation matrix V̂ = WH with ground truth annotations (below).

template initialization of W(0) combining both onset and harmonic templates for each of the

notes. This initialization makes the learned W in Figure A.2(c) encode the frequency content

transition from onset to harmonic. The activation matrix H in Figure A.2(d) shows a high value

at the beginning of each note event (the onset), followed by a more uniform area that corresponds

to the slow decay of the fundamental frequency and the harmonics. The overlap between note

events is also noticeable.

The score-informed matrix W(0) in Figure A.1(a) can be seen as a particular case of the NMFD

W(0) for T = 2, but in the NMFD case no additional rows in the activation matrix H are needed,

and the parameter R still coincides with the number of components present in the piano piece.

Onset models can also be incorporated into NAE models, using the score-informed NAE strate-

gies presented in 3.3, generating binary masks MW and MH from matrices W(0) and H(0).

Figure A.3(a) and A.3(b) show how the NAE is able to learn a non-negative decoder weight

matrix WD and a code matrix H that resemble the score-informed NMF template and activation

58 Master Thesis, Edgar A. Suarez G.

A. ONSET MODELS

(a) (b)

(c) (d) (e)

Figure A.2. Score-informed NMF for the piano running example on Figure 2.1. (a) Matrix W(0)

generated using frequency score information, with onset templates. (b) Matrix H(0) generated using score
information, adding onset activations, with reference ground truth annotations (below). (c) Learned

template matrices W. (d) Learned activations matrix H. (e) Low rank approximation matrix V̂ with
reference ground truth annotations (below).

matrices, with the decoder matrix WD being almost entirely non-negative. It is also observed

that the use of a non-negative decoder WD+ generates cleaner and more defined templates. The

value range of the low rank approximation matrix V̂ in Figure A.3(c) is closer to that of the

original spectrogram, as the NMF low-rank approximation in Figure A.1(e).

The CAE matrices in Figure A.4 show how the CAE onset models can also be adapted to a DNN

model. However, the learned code matrix H in Figure A.4(b) shows the onsets are not present in

all notes, but are instead concentrated in note 76 (E5), which supposes a disadvantage in the

spectrogram decomposition result with respect to NMFD.

59 Master Thesis, Edgar A. Suarez G.

A. ONSET MODELS

(a) (b) (c)

Figure A.3. Scored-informed NAE (above) and score informed NAE with non-negative decoder (below),
for the piano running example.(a) Trained decoder matrices WD (above) WD+ (below). (b) Learned

code matrix H, with reference ground truth annotations (below). (c) Reconstructed input matrix V̂,
with reference ground truth annotations (below).

60 Master Thesis, Edgar A. Suarez G.

A. ONSET MODELS

(a) (b) (c)

Figure A.4. Score-informed CAE with non-negative decoder, for the piano running example.(a) Learned
non-negative decoder matrices WD+ . (b) Learned code matrix H, with reference ground truth annotations

(below). (c) Reconstructed input matrix V̂, with reference ground truth annotations (below).

61 Master Thesis, Edgar A. Suarez G.

Appendix B

Convolution schemes

The NMFD convolution operation is described by the following equation (already presented in

Section 2.4):

V̂NMFD :=
T∑
τ=1

Wτ

τ→
[H], (B.1)

To better understand this operation, we will use the toy example shown in Figure B.1 (below):

Figure B.1. Convolution operation example. The component matrices (left) are convoluted with the
activation matrix (above) according to Equation (B.1) to generate the convolution matrix (center).

In this example there are two components, identified by the colors red and blue i.e. R = 2. Each

component is made up by a matrix Ur ∈ R5×3 , with T = 3 being the number of temporal frames

chosen to describe each component. The templates Wτ ∈ R5×2 are built by stacking one column

from each component matrix together, for τ ∈ [1 : 3]. The activation matrix H is a 2× 9 matrix,

63

B. CONVOLUTION SCHEMES

where the rows correspond to the components R, and the columns to the length of the sequence.

The activation matrix sequence is also color-coded, and starts with the red component being

active at frame 0, followed by the blue component at frame 3, and finally both components active

at the same time at frame 6.

To understand how the resulting matrix V̂ is calculated, Figure B.2 shows the process of using

Equation (B.1) for each τ :

τ = 0 τ = 1 τ = 2

Figure B.2. Detailed convolution operation process for example in Figure B.1

.

Figure B.2 shows how matrix H is shifted one frame to the right for each τ , filling the remaining

values with zeros. Matrix V̂ is the sum of each of the resulting matrix products shown in

Figure B.2. Notice that only one activation every T = 3 frames is needed to make the entire Ur

component matrix appear in the final convolution matrix V̂.

Unfortunately, when computing convolution using the Tensorflow tf.nn.convolution function

(embedded in the 1D convolutional layer implemented in Section 3.4) the following result is

obtained:

Figure B.3. Convolution operation result using the Tensorflow convolution function.

Figure B.3 shows a matrix V̂ with the component matrices flipped along the vertical axis, and

shifted to the left. As a consequence, when using convolutional layers in a CAE (see Chapter 3,

64 Master Thesis, Edgar A. Suarez G.

B. CONVOLUTION SCHEMES

Section 3.4) to learn weight matrices UD given the input matrix V and the code matrix H, the

output filters would be flipped and shifted in the same way.

This phenomenon might not represent a problem in most DNN models, where location the

filter values is not relevant as long as the network performs accurately. However, when using

CAEs for sound decomposition, two main problems were found: First, when using audio-based

layer weight constraints (see Section 3.3.1) the audio-based mask MW would not match the

weight matrices Wτ , affecting the network training. Second, learning flipped or truncated weight

matrices generates counterproductive results when constructing the component spectrograms for

sound decomposition evaluation (Section 4.2), since the reconstruction is computed outside the

neural network, using the convolution operation in Equation (B.1).

Two important aspects of the convolution operation are responsible of the result in Figure B.3:

the shift operation and the padding configuration. These two configurations can be better

observed in the step-by-step convolution process for the Tensorflow convolution operation:

τ = 0 τ = 1 τ = 2

Figure B.4. Tensorflow convolution operation step by step. (a) τ = 0. (b) τ = 1. (c) τ = 2.

Figure B.4 shows the shift operator is working in the opposite direction of the NMFD convolution

operation, but the activation matrix H was not flipped, and neither was the order of the templates

Wτ . This is the reason why matrices Ur appear flipped in matrix V̂.

Chapter 9 of [14] points out that many machine learning libraries implement a type of cross-

correlation operation, but call it convolution. This is the case for the Tensorflow convolution.

Cross-correlation and convolution are similar operations, but they differ in the direction of the

shift operator.

The other important parameter to configure in the Tensorflow operation is padding. For the

NMFD convolution computation in Figure B.2, the shift operator is implicitly using a form of

padding in matrix H, adding adding zero-valued columns to the left side of H every time the

matrix is shifted to the right. This allows the convolution operation result V̂ to have the same

number of columns as the activations matrix H, adding a total of T − 1 columns to the original

matrix.

65 Master Thesis, Edgar A. Suarez G.

B. CONVOLUTION SCHEMES

However, the padding in Figure B.4 is different to that of the shift operator. For τ = 0 a

zero-valued column can be observed to the left of matrix H. A brief look into the Tensorflow

convolution source code shows it has two configurable padding options: valid and same. The

valid padding means no zero-valued columns are added to either end of matrix H. Using this

scheme, the shift operator would discard the leftmost column of H without adding any columns

to the right to compensate. This prevents the output V̂ from having the same number of columns

as H. On the other hand, the same padding option guarantees that the input and output will

have equal dimensions by adding d(T − 1)/2e zero-valued columns on both sides of matrix H.

Luckily, in the Keras 1D convolutional layer class, a third padding scheme option called causal is

also available. This padding scheme, implemented through the keras.backend.temporal padding

function, adds (T −1) columns to the left of matrix H. The use of causal padding can be observed

in the following Figure:

Figure B.5. Convolution operation result using the Tensorflow convolution function, using causal
padding.

The ’causal’ padding scheme outputs a matrix V̂ with component matrices Ur which no longer

truncated, but still flipped. A workaround solution implemented was to use the Keras 1D

convolutional layer with causal padding, but taking into account the learned templates would be

flipped. To apply the informed weight constraints described in Section 3.3.1 for the CAE, it was

necessary to flip the informed initialization tensors W
(0)
D and the binary masks MW along the

vertical axis. After training the CAE the resulting weight matrices Ur had to be flipped back

before using Equation 2.20 to compute the low-rank approximation matrices V̂r used for signal

reconstruction.

66 Master Thesis, Edgar A. Suarez G.

Appendix C

NAE Performance comparison

This chapter provides a numerical comparison on the loss function values of several NMF and

NAE implementations, to observe their convergence speed and to evaluate their performance in

terms of reconstruction error. It is important to note that the performance of the algorithms is

not a direct indicator of their spectral decomposition quality, but it gives some insight on how

the different models are working. All performance tests were made using the drums running

example from Section 2.3.1 as an input. Noth NMF and NAE algorithms were run for L = 1000

iterations / epochs.

C.1 NAE Performance Comparison

As a measure of performance, the loss function L was computed during the training of different

NAE models, and compared with the divergence in NMF. Table C.1 shows the initial and final

loss values for NMF and the three main NAE models described in Chapter 3: The randomly

initialized, unconstrained NAE; the NAE with non-negative encoder; and the NAE with both

non-negative encoder and decoder. The table shows that the NMF initial loss value is higher,

mainly because its values were randomly initialized in the [0 : 1] interval, while the NAEs were

initialized in the [0 : 0.1] interval. However, the NMF loss value ends up being lower than the

final NAE loss. All models reach a similar final loss value.

Figure C.1 shows the behavior of the loss function for each model on the first 200 iterations (in

the case of NMF), and for the first 200 epochs for the NAE models. Although the NMF loss

starts at a higher value, it drops drastically after very few iterations. For the NAEs, the loss

decays in a much smoother way, and require more iterations to approach the same loss values

after 1000 epochs. These results most likely derive from the fact that NAEs must train a higher

number of parameters. In particular, the loss of the NAE with non-negative encoder and decoder

67

C. NAE PERFORMANCE COMPARISON

Model Initial L value Final L value

NMF 194271.860 1040.121

NAE 76058.477 1123.889

NAE[D+] 76058.477 1073.836

NAE[E+,D+] 76058.477 1046.907

Table C.1. Initial and final loss function values for NMF and the NAE models described. NAE[D+]:
NAE with non-negative decoder. NAE, NAE[E+,D+]: NAE with non-negative encoder and decoder.

Figure C.1. Loss function values for the first 200 iterations (NMF) / Epochs (NAEs). NAE[D+]: NAE
with non-negative decoder. NAE, NAE[E+,D+]: NAE with non-negative encoder and decoder.

is the one that decays more slowly, but its final value is the closest to NMF.

C.2 Score-Information Strategies Performance Comparison

Due to the large amount of combinations between NAE constraints and score information

strategies, only NAE models with non-negative encoder were used for computing the performance

results in this section.

The initial values of both NMF and NAE models are considerably higher when score-informed

methods are used, mainly because the values of the initialization matrices are not uniformly

distributed and not scaled to fit the random initialization intervals. For this example, the models

with audio-based templates or weight matrices converge faster and have the lowers reconstruction

error values, showing the effectiveness of the NMF Toolbox templates for this example. In

contrast, the algorithms which use informed activations strategies or dropout do not reach the

low values of the randomly initialized algorithms. The randomly-initialized algorithms are able

68 Master Thesis, Edgar A. Suarez G.

C.2 SCORE-INFORMATION STRATEGIES PERFORMANCE COMPARISON

Model Initial L value Final L value

Random Initialization 190741.242 1040.291

Informed Templates 4423192.127 1040.114

Informed Activations 221834.147 1510.541

Informed Templates and Activations 4004946.754 1510.142

Table C.2. Initial and final loss function values of various NMF initialization schemes, for the drums
running example.

Model Initial L value Final L value

Random Initialization 76058.477 1073.836

Informed decoder weights W′
D+ 22009.172 1074.242

Dropout 43113.035 1820.819

Informed W′
D+ + Dropout 30133.668 1821.814

Dropout + Regularization (λ = 10) 97777.140 1852.251

Table C.3. Initial and final loss function values of various NAE initialization schemes, for the drums
running example.

to reconstruct the input signal with low error, but as shown in Sections 2.3.2 and 3.2.1, they do

no generate meaningful factor matrices.

As in Figure C.1, Figure C.2 shows that the score-informed NMF algorithms start at higher

values, but converge in significantly fewer iterations. The converge of the NAE models is again

slower, but reaches similar reconstruction error values after L = 1000 epochs.

Figure C.2. Loss function values for the first 200 iterations (NMF, left) / epochs (NAE, right).

The NAE which combines the dropout and regularization strategies is the one with slowest

convergence and the highest reconstruction error value. This result contradicts the work in [13],

which states that the combination of both strategies drastically improves performance and makes

the algorithm converge is less epochs, although it is not claimed that this is the case in general.

For this particular example, setting the dropout parameter λ to zero, the reconstruction error

69 Master Thesis, Edgar A. Suarez G.

C. NAE PERFORMANCE COMPARISON

curve would be the same as the dropout NAE curve. A parameter λ bigger than zero increases

the total loss function and negatively affects the performance of the NAE.

70 Master Thesis, Edgar A. Suarez G.

Appendix D

Source Code

In this chapter, the headers of selected python functions created during the writing of this thesis

are reproduced. The headers contain information about the name of the described function and

its input/output behavior.

def autoencoder(V, R, mode='basic', loss_function=custom_loss, activation='relu', l1_reg=0.0,

epochs=1000):

"""Shallow autoencoder model, following the proposed architecture in [1].

References

[1] P. Smaragdis and S. Venkataramani, A neural network alternative to non-negative

audio models,in Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing(ICASSP), New Orleans, LA, USA, 2017, pp. 86{90.

Parameters

V: array-like

Input matrix (typically a magnitude spectrogram of dimension K x M)

R : int

code dimension, indicates the rank of the code matrix.

mode: str

Indicates which autoencoder mode to run.

"normalized" sets norm of the columns of the decoder weights to 1.

"non-negative" constraints the encoder and decoder matrices to be non-negative.

"nn_dec" constraints only the decoder matrix to be non-negative.

"nn_norm" constraints the encoder and decoder matrices to be non-negative,

and the norm of the decoder matrix columns to 1.

loss_function: function or class

The loss function used to train the autoencoder.

activation: str

A Keras activation function used in the encoder and decoder layers.

71

D. SOURCE CODE

l1_reg: float >= 0

L1 regularizer parameter for the encoder output, following the implementation in [1].

epochs: int

Number of epochs for training.

Returns

V_hat: array-like

Low-rank approximation matrix

W_D: array-like

Learned decoder weight matrix

W_E: array-like

Learned encoder weight matrix

H: array-like

Learned code matrix

history: array-like

A keras-generated vector, with the computation of the loss and mean squared error (MSE)

of the autoencoder at each epoch.

def dropout_autoencoder(V, R, T_W=None, T_H=None, nn=False, temp_const=False,

act_const=False, l2_reg=0.,

loss_function=custom_loss, activation='relu', epochs=1000):

"""Shallow autoencoder with structured dropout layer, following the proposed architecture in [2].

References

[2] S. Ewert and M. B. Sandler,Structured dropout for weak label and

multi-instance learning and its application to score-informed source separation,

in Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP),

New Orleans, LA, USA, 2017,pp. 2277{2281.

Parameters

V: array-like

Input matrix (typically a magnitude spectrogram of dimension K x M)

R : int

code dimension, indicates the rank of the code matrix.

T_W: array-like

Score informed template matrix from NMF

T_H: array-like

score informed activation matrix from NMF

nn: bool

When True, constrains the decoder weight matrix to be non-negative

72 Master Thesis, Edgar A. Suarez G.

D. SOURCE CODE

temp_const: bool

When True, enables the use of informed constraints in the decoder matrix

act_const: bool

When True, enables the structured dropout layer

l2_reg: float >= 0

L2 regularizer parameter for the encoder output, following the

implementation in [2].

loss_function: function or class

The loss function used to train the autoencoder.

activation: str

A Keras activation function used in the encoder and decoder layers.

epochs: int

Number of epochs for training.

Returns

V_hat: array-like

Low-rank approximation matrix

W_D: array-like

Learned decoder weight matrix

W_E: array-like

Learned encoder weight matrix

H: array-like

Learned code matrix

history: array-like

A keras-generated vector, with the computation of the loss and mean squared error (MSE)

of the autoencoder at each epoch.

"""

def cae(V, R, T, T_W=None, T_H=None, cae_params=dict()):

"""Shallow convolutional autoencoder with structured dropout layer, following the

proposed architecture in [3].

References

[3] S. Venkataramani, C. Subakan, and P. Smaragdis,Neural network

alternatives to convolutive audio models for source separation, in

Proceedings of the IEEE International Workshop on Machine

Learning for Signal Processing (MLSP), Tokyo, Japan, 2017, pp. 1{6.

Parameters

V: array-like

Input matrix (typically a magnitude spectrogram of dimension K x M)

R : int

73 Master Thesis, Edgar A. Suarez G.

D. SOURCE CODE

code dimension, indicates the rank of the code matrix.

T: int

Template temporal dimension / length of the layer filters

T_W: array-like

Score informed template tensor from NMFD

T_H: array-like

score informed activation matrix from NMF

cae_params: dict

loss_function The loss function used to train the cae

epochs Number of epochs to train the cae

reg l2 regularizer parameter, folloing strategy on [2]

act_const Enables the structured dropout layer

enc_activation Encoder activation function

enc_use_bias Enables / disables bias in encoder layer

enc_non_neg Enforces non-negativity in the encoder layer weights

enc_temp_init Enables informed initialization of encoder weights

enc_temp_const Enables informed constraints of the encoder weights

dec_activation Decoder activation function

dec_use_bias Enables / disables bias in decoder layer

dec_non_neg Enforces non-negativity in the decoder layer weights

dec_temp_init Enables informed initialization of decoder weights

dec_temp_const Enables informed constraints of the decoder weights

Returns

V_hat: array-like

Low-rank approximation matrix

W_D: array-like

Learned decoder weight tensor

W_E: array-like

Learned encoder weight tensor

H: array-like

Learned code matrix

history: array-like

A keras-generated vector, with the computation of the loss and

mean squared error (MSE) of the autoencoder at each epoch.

"""

def plot_autoencoder(V, W, H, fs, N_fft, H_fft, labels=['', '', ''], ann=[], label_keys=[],

input_type='drums', pitch_set=[], order=[0,1,2], maxnorm=True,

subplot_size=(4, 4)):

"""Autoencoder plotting function, inspired by the FMP notebooks

Parameters

V: array-like

74 Master Thesis, Edgar A. Suarez G.

D. SOURCE CODE

Low rank approximation matrix to plot

W: array-like

Template matrix / tensor to plot

H: array-like

Activation matrix to plot

fs: int

Sampling frequency

N_fft:

STFT block size

H_fft: int

STFT hop size

labels: list

List of strings, with labels for the matrices

ann: array-like

Annotation file from the FMP notebooks.

label_keys: array-like

Annotation parameter for drum annotation plots

input_type: str

"piano" or "drums", selects the type of plot desired

pitch_set: list

List of note numbers to plot

order: array-like

Array of size R which sorts the default order

of columns / rows of the template / activation matrices

maxnorm: Bool or Array

Enables max-normalization using the template matrix, or an input matrix

subplot_size: list

Sets individual subplot figure sizes

"""

75 Master Thesis, Edgar A. Suarez G.

Bibliography

[1] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

Software available from https://www.tensorflow.org/.

[2] J. Casebeer, M. Colomb, and P. Smaragdis, Deep tensor factorization for spatially-aware scene

decomposition, in 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,

WASPAA 2019, New Paltz, NY, USA, October 20-23, 2019, IEEE, 2019, pp. 180–184.

[3] K. Choi, G. Fazekas, K. Cho, and M. B. Sandler, A tutorial on deep learning for music

information retrieval, CoRR, abs/1709.04396 (2017).

[4] F. Chollet et al., Keras. https://keras.io, 2015.

[5] J. Chorowski and J. M. Zurada, Learning understandable neural networks with nonnegative weight

constraints, IEEE Transactions on Neural Networks and Learning Systems, 26 (2015), pp. 62–69.

[6] A. Défossez, N. Usunier, L. Bottou, and F. Bach, Music Source Separation in the Waveform

Domain, Tech. Rep. 02379796v1, HAL, 2019.

[7] C. H. Q. Ding, T. Li, and M. I. Jordan, Convex and semi-nonnegative matrix factorizations,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (2010), pp. 45–55.

[8] C. Dittmar and D. Gärtner, Real-time transcription and separation of drum recordings based on

NMF decomposition, in Proceedings of the International Conference on Digital Audio Effects (DAFx),

Erlangen, Germany, September 2014, pp. 187–194.

[9] C. Dittmar and M. Müller, Reverse engineering the Amen break – score-informed separation and

restoration applied to drum recordings, IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 24 (2016), pp. 1531–1543.

[10] J. Driedger and M. Müller, Extracting singing voice from music recordings by cascading audio

decomposition techniques, in Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), Brisbane, Australia, 2015, pp. 126–130.

[11] J. Driedger, T. Prätzlich, and M. Müller, Let It Bee – Towards NMF-inspired audio

mosaicing, in Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), Málaga, Spain, 2015, pp. 350–356.

[12] S. Ewert and M. Müller, Using score-informed constraints for NMF-based source separation,

in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), Kyoto, Japan, March 2012, pp. 129–132.

77

https://www.tensorflow.org/
https://keras.io

BIBLIOGRAPHY

[13] S. Ewert and M. B. Sandler, Structured dropout for weak label and multi-instance learning

and its application to score-informed source separation, in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, LA, USA, 2017,

pp. 2277–2281.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge and

London, 2016. http://www.deeplearningbook.org.

[15] D. W. Griffin and J. S. Lim, Signal estimation from modified short-time Fourier transform, IEEE

Transactions on Acoustics, Speech, and Signal Processing, 32 (1984), pp. 236–243.

[16] G. Hinton and R. Salakhutdinov, Reducing the dimensionality of data with neural networks,

Science, 313 (2006), pp. 504–507.

[17] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization,

Nature, 401 (1999), pp. 788–791.

[18] , Algorithms for non-negative matrix factorization, in Proceedings of the Neural Information

Processing Systems (NIPS), Denver, Colorado, USA, November 2000, pp. 556–562.

[19] A. Lefevre, F. Bach, and C. Févotte, Semi-supervised NMF with time-frequency annotations

for single-channel source separation, in Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), Porto, Portugal, 2012, pp. 115–120.

[20] C. Lin, On the convergence of multiplicative update algorithms for nonnegative matrix factorization,

IEEE Transactions on Neural Networks, 18 (2007), pp. 1589–1596.

[21] , Projected gradient methods for nonnegative matrix factorization, Neural Computation, 19

(2007), pp. 2756–2779.

[22] A. Liutkus and R. Badeau, Generalized Wiener filtering with fractional power spectrograms,

in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Brisbane, Australia, April 2015, pp. 266–270.

[23] P. López-Serrano, C. Dittmar, and M. Müller, Finding drum breaks in digital music

recordings, in Proceedings of the International Symposium on Computer Music Multidisciplinary

Research (CMMR), Porto, Portugal, September 2017, pp. 68–79.

[24] P. López-Serrano, C. Dittmar, Y. Özer, and M. Müller, Nmf toolbox: Music processing

applications of nonnegative matrix factorization, in Proceedings of the International Conference on

Digital Audio Effects (DAFx), Birmingham, UK, September 2019.

[25] M. Müller, Fundamentals of Music Processing, Springer Verlag, 2015.

[26] M. Müller and F. Zalkow, FMP notebooks: Educational material for teaching and learning

fundamentals of music processing, in Proceedings of the International Conference on Music Information

Retrieval (ISMIR), Delft, The Netherlands, 2019, pp. 573–580.

[27] M. A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015. http://

neuralnetworksanddeeplearning.com.

78 Master Thesis, Edgar A. Suarez G.

http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com

BIBLIOGRAPHY

[28] A. Ozerov and C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixtures.

with application to blind audio source separation, in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, ICASSP 2009, 19-24 April 2009, Taipei, Taiwan, IEEE,

2009, pp. 3137–3140.

[29] M. N. Schmidt and M. Mørup, Nonnegative matrix factor 2-d deconvolution for blind single

channel source separation, in Independent Component Analysis and Blind Signal Separation, 6th

International Conference, ICA 2006, Charleston, SC, USA, March 5-8, 2006, Proceedings, J. P. Rosca,

D. Erdogmus, J. C. Pŕıncipe, and S. Haykin, eds., vol. 3889 of Lecture Notes in Computer Science,

Springer, 2006, pp. 700–707.

[30] P. Smaragdis, Non-negative matrix factor deconvolution; extraction of multiple sound sources from

monophonic inputs, in Proceedings of the International Conference on Independent Component

Analysis and Blind Signal Separation ICA, Grenada, Spain, September 2004, pp. 494–499.

[31] P. Smaragdis and S. Venkataramani, A neural network alternative to non-negative audio models,

in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), New Orleans, LA, USA, 2017, pp. 86–90.

[32] D. Stoller, S. Ewert, and S. Dixon, Wave-U-net: A multi-scale neural network for end-to-end

audio source separation, in Proceedings of the 19th International Society for Music Information

Retrieval Conference (ISMIR), Paris, France, 2018, pp. 334–340.

[33] N. Vasiloglou, A. G. Gray, and D. V. Anderson, Non-negative matrix factorization, convexity

and isometry, CoRR, abs/0810.2311 (2008).

[34] S. Venkataramani, C. Subakan, and P. Smaragdis, Neural network alternatives to convolutive

audio models for source separation, in Proceedings of the IEEE International Workshop on Machine

Learning for Signal Processing (MLSP), Tokyo, Japan, 2017, pp. 1–6.

[35] S. Venkataramani, E. Tzinis, and P. Smaragdis, End-to-end non-negative autoencoders for

sound source separation, CoRR, abs/1911.00102 (2019).

[36] E. Vincent, N. Bertin, R. Gribonval, and F. Bimbot, From blind to guided audio source

separation: How models and side information can improve the separation of sound, IEEE Signal

Processing Magazine, 31 (2014), pp. 107–115.

[37] E. Vincent, R. Gribonval, and C. Févotte, Performance measurement in blind audio source

separation, IEEE Transactions on Audio, Speech, and Language Processing, 14 (2006), pp. 1462–1469.

[38] E. Vincent and X. Rodet, Music transcription with ISA and HMM, in Proceedings of the

International Conference on Independent Component Analysis and Blind Signal Separation (ICA),

2004, pp. 1197–1204.

[39] Y.-X. Wang and Y.-J. Zhang, Nonnegative matrix factorization: A comprehensive review, Knowl-

edge and Data Engineering, IEEE Transactions on, 25 (2013), pp. 1336–1353.

[40] C.-W. Wu, C. Dittmar, C. Southall, R. Vogl, G. Widmer, J. Hockman, M. Müller, and

A. Lerch, A review of automatic drum transcription, IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 26 (2018), pp. 1457–1483.

79 Master Thesis, Edgar A. Suarez G.

BIBLIOGRAPHY

[41] K. Yoshii, R. Tomioka, D. Mochihashi, and M. Goto, Beyond nmf: Time-domain audio

source separation without phase reconstruction, in in Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), 2013. DAFX-7, 2013.

80 Master Thesis, Edgar A. Suarez G.

	Erklärung
	Acknowledgements
	Abstract
	Introduction
	Structure of this Thesis
	Main Contributions

	Matrix Factorization for Spectral Decomposition
	Overview
	Multiplicative Updates
	NMF-Based Spectral Decomposition
	Non-negative Matrix Factor Deconvolution (NMFD)

	DNN-Based Non-negative Matrix Factorization
	Non-negative Autoencoders (NAE)
	NAE-based Spectral Decomposition
	Score Information in NAE architectures
	Non-negative Convolutional Autoencoders (CAEs)

	Drum Sound Decomposition Evaluation
	The Dataset
	The Sound Decomposition Pipeline
	Sound Decomposition Evaluation Experiments

	Conclusions
	Onset Models
	Convolution schemes
	NAE Performance comparison
	NAE Performance Comparison
	Score-Information Strategies Performance Comparison

	Source Code
	Bibliography

