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Abstract

Abstract

In recent years, we have witnessed the creation of large digital music collections, accessible, for

example, via streaming services. Efficient retrieval from such collections, which goes beyond

simple text searches, requires automated music analysis methods. Creating such methods is a

central part of the research area Music Information Retrieval (MIR). In this thesis, we propose,

explore, and analyze novel data-driven approaches for the two MIR analysis tasks tempo and key

estimation for music recordings. Tempo estimation is often defined as determining the number of

times a person would “tap” per time interval when listening to music. Key estimation labels

music recordings with a chord name describing its tonal center, e.g., C major. Both tasks are

well established in MIR research.

To improve tempo estimation, we focus mainly on shortcomings of existing approaches, particularly

estimates on the wrong metrical level, known as octave errors. We first propose novel methods

using digital signal processing and traditional feature engineering. We then re-formulate the

signal-processing pipeline as a deep computational graph with trainable weights. This allows us

to take a purely data-driven approach using supervised machine learning (ML) with convolutional

neural networks (CNN). We find that the same kinds of networks can also be used for key

estimation by changing the orientation of directional filters. To improve our understanding

of these systems, we systematically explore network architectures for both global and local

estimation, with varying depths and filter shapes, as well as different ways of splitting datasets for

training, validation, and testing. In particular, we investigate the effects of learning on different

splits of cross-version datasets, i.e., datasets that contain multiple recordings of the same pieces.

For training and evaluation the proposed data-driven approaches rely on curated datasets covering

certain key and tempo ranges as well as genres. Datasets are therefore another focus of this

work. Additionally to creating or deriving new datasets for both tasks, we evaluate the quality

and suitability of popular tempo datasets and metrics, and conclude that there is ample room

for improvement. To promote better, transparent evaluation, we propose new metrics and

establish a large open and public repository containing evaluation code, reference annotations,

and estimates.
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Zusammenfassung

Zusammenfassung

In den vergangenen Jahren sind große digitale Musiksammlungen entstanden, die – beispielsweise –

über Streaming-Dienste einfach zugänglich sind. Ein effizientes Retrieval aus solchen Sammlungen,

das über die simple Textsuche hinausgeht, erfordert automatisierte Musikanalysemethoden. Das

Erforschen solcher Methoden ist ein zentraler Bestandteil des Forschungsgebiets Music Information

Retrieval (MIR). In dieser Arbeit stellen wir neue datengetriebene Ansätze für die beiden MIR-

Analyseaufgaben Tempo- und Tonart-Schätzung für Musikaufnahmen vor und analysieren sie.

Dabei wird Tempo-Schätzung oft definiert als das Zählen der Male, die eine Person beim Hören

von Musik pro Zeitintervall “klopfen” würde. Tonart-Schätzung weist Musikaufnahmen einen

Akkordnamen zu, der den Klangmittelpunkt beschreibt, z.B. C-Dur. Beide Aufgaben sind in der

MIR-Forschung fest verankert.

Um die Tempo-Schätzung zu verbessern, konzentrieren wir uns hauptsächlich auf Defizite beste-

hender Ansätze, insbesondere Schätzungen auf der falschen metrischen Ebene, den sogenannten

Oktavfehlern. Dazu schlagen wir zunächst neue Methoden vor, die sich der digitalen Signalver-

arbeitung und des traditionellen Feature-Engineerings bedienen. Anschließend formulieren wir

die Signalverarbeitungspipeline in eine tiefe, graphenartige Rechenstruktur mit trainierbaren

Parametern um. Dies ermöglicht uns einen rein datengetriebenen Ansatz unter Verwendung

von überwachtem maschinellem Lernen (ML) mit neuronalen Netzen – insbesondere Convo-

lutional Neural Networks (CNN). Wir stellen fest, dass durch das Ändern der Orientierung

von gerichteten Filtern, die gleichen Arten von Netzwerken auch für die Tonart-Schätzung

verwendet werden können. Um unser Verständnis dieser Systeme zu vertiefen, untersuchen wir

systematisch Netzwerkarchitekturen für die globale und lokale Schätzung mit unterschiedlichen

Tiefen und Filterformen sowie verschiedenen Datensatz-Splits für Training, Validierung und Test.

Insbesondere betrachten wir, welche Auswirkungen das Lernen auf verschiedenen Splits von

Cross-Version-Datensätzen hat. Dies sind Datensätze, die mehrere Aufnahmen derselben Stücke

enthalten.

Für Training und Evaluation stützen sich die vorgeschlagenen datengetriebenen Ansätze auf

kuratierte Datensätze, die bestimmte Tonart- und Tempobereiche sowie Genres abdecken. Ein

weiterer Schwerpunkt dieser Arbeit liegt daher auf den Datensätzen selbst. Zusätzlich zum

Erstellen oder Ableiten neuer Datensätze für beide o.g. Aufgaben evaluieren wir die Qualität

und Eignung gängiger Tempo-Datensätze und -Metriken und kommen zu dem Schluss, dass es

iii



Zusammenfassung

Raum für Verbesserungen gibt. Um eine bessere, transparentere Evaluation zu fördern, schlagen

wir daher neue Metriken vor und etablieren ein großes, offenes und öffentliches Repository mit

Evaluationscode, Referenzannotationen und Schätzungen.
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1. Introduction

A little more than a quarter century ago, in 1992, the world of music was changed forever. The

audio coding standard MPEG-1, Layer III—later known as MP3—had been approved just a

few months ago [120] and was now presented in a publication by Stoll and Brandenburg [178].

This event marked the beginning of a new digital music era, in which music became ubiquitously

accessible to everyone. A few years later, in 1995, the now iconic filename extension .mp3 was

chosen and the Fraunhofer Society released the first MP3 software encoder named l3enc. In the

same year, the first real-time software MP3 player followed (WinPlay3), and in April of 1997,

Nullsoft released the now legendary MP3 player Winamp. By itself, this might not have been a

remarkable event, but it coincided with the exponential growth of the Internet. Between 1990

and 1997, the number of Internet hosts grew exponentially from just 313 thousand to 26 million.1

The availability of a suitable audio format, a cheap, world-spanning communication platform,

and free music player software made CD-ripping and file-sharing possible. For the first time in

history, music was truly at the users’ fingertips.2 This development gave rise to a new class of

software: personal music library systems. While the ubiquitous Winamp initially did not offer any

library functions, other music players like Microsoft’s Windows Media Player 7 (WMP7, released

7/2000) and Apple’s iTunes3 (released 1/2001) quickly added browse and search functionalities.

They did so by exploiting basic metadata tags, which had been embedded into MP3 files using

the initially informal ID3 standard [83].

Just before the appearance of iTunes and WMP7, another important event happened. In 1998, the

virtual DJ solution MJ was released [26, 190]. Besides ID3 tag support, it already featured pitch

change, scratching, mixing, and basic content analysis in the form of automatic beat detection.

MJ’s developers later joined Native Instruments, the developer of the still successful DJ software

Traktor.4

By the middle of the 2000s, digital music aficionados had thousands of tracks on their personal

computers and portable music players, but little support for building playlists, or—more generally—

determining song- or artist-similarity. Even though online services like Last.fm,5 which has

1Source: Internet Systems Consortium (ISC), archived at https://web.archive.org/web/20120518101749/

https://www.isc.org/solutions/survey/history
2Bill Gates [54]: “information at your fingertips”
3Based on SoundJam MP (1999)
4https://www.native-instruments.com/
5https://www.last.fm/
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Figure 1.1.: Selection of important events and publications in beat tracking, tempo estimation, music research,
and music software development. The tempo and beat tracking publications dated 2014 and later
use DNNs as their main component.

pioneered collaborative filtering in the music domain, were already available, querying a local

music library for tracks relevant to an information need more complex than a simple genre or

artist search, was still very difficult. The desktop software beaTunes6 ["bi:tu:nz] released by

tagtraum industries7 in 7/2006 attempted to fill this niche (Appendix D). It supported users

in correcting erroneous textual metadata (artist, title, genre, . . . ) and computing additional

content-based annotations (tempo, timbre, key, . . . ). The resulting rich metadata could then be

used as input to a user-customizable song-similarity function, which allowed building playlists of

matching songs, thus attempting to solve a classic Music Information Retrieval (MIR) problem.

Parallel to the developments in the commercial world, digital music processing started to attract

scientific attention. In the 1990s, early automatic beat tracking and tempo estimation methods

were published [2, 60, 150], and before the turn of the millennium, an academic community

formed around the intersection of library and information science, cognitive science, digital signal

processing, and musicology. This led to the foundation of the International Society for Music

Information Retrieval (ISMIR)8 in 2000 [35]. To this day, the society is an international forum

for research on the organization of music-related data. Many of the tasks beaTunes attempted to

solve emerged as its core research topics—among them music recommendation, similarity, tempo

estimation, and key estimation. During the 2000s, the MIR research community approached

these tasks mostly using signal-processing techniques, handcrafted features, heuristics, and

shallow machine learning (ML) methods [76]. Then, like many other scientific disciplines, MIR

experienced a fundamental shift from feature engineering to automatic feature learning. Recent

6https://www.beatunes.com/
7Owned and operated by the author of this thesis.
8http://www.ismir.net/

6

https://www.beatunes.com/
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1.1. Structure of this Thesis

solutions increasingly rely on deep ML architectures [119], and by now, deep neural networks

(DNN) have become a widely accepted tool in MIR research.

The described commercial as well as scientific developments (see also Figure 1.1) form the context

of this thesis. It revolves in particular around the tasks of automatic tempo estimation and, to

a lesser degree, automatic key estimation for MIR systems like beaTunes. We loosely define

tempo estimation as the attempt to determine the number of times a listener would “tap” to

a beat with his or her foot per time interval [150, 33]. Key estimation tries to find “a set of

pitch relationships that establish a note—or, better, a chord—as a tonal center” [142, p. 43], e.g.,

C major or D minor.

This thesis reflects the larger developments described in the brief history outline above in the

sense that it starts out with using engineered features and simple models, and then moves

towards straightforward signal representations and deeper ML models, showcasing data-driven

approaches. Concretely, we first lay some digital signal-processing foundations and discuss

how to build and improve conventional tempo estimation systems using onset signal strength

functions and periodicity detection. Then we explore how such systems can be built using

convolutional neural networks (CNN) and proceed to apply the same techniques to the related

task of musical key detection. Of central importance for all presented approaches is data. It

drives both training and evaluation of ML models, and helps us overcome the main challenges of

automatic tempo estimation, in particular, non-constant local tempi, metrical estimation errors

also known as octave errors, and the limitless variety of music genres, rhythms, and playing

techniques. Therefore, dataset creation, analysis, and improvement constitute a large part of

this work.

Using ML techniques and suitable data, we can build ever better estimation systems until we

have to ask ourselves if we have “solved” the task. But since use cases often play a minor role in

publications about new MIR methods, it is difficult to determine what constitutes a solution.

Part of this thesis is therefore dedicated to critically discuss tempo estimation system evaluation.

After all, we seek to better understand how to build systems that are relevant and useful to the

user.

1.1. Structure of this Thesis

This thesis consists of eight main chapters.

In Chapter 2, we begin with explaining some fundamentals of digital signal processing (DSP) for

music recordings. We then proceed with describing a basic tempo estimation system built on a

spectral novelty function, which is analyzed for periodicities using the discrete Fourier transform,

and then interpreted with special emphasis on harmonics. The presented system illustrates the
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Chapter 1. Introduction

task of tempo estimation itself and serves as a baseline for the following chapters. We further

introduce the two main evaluation metrics used throughout this thesis and provide an informal

overview of important datasets.

In Chapter 3, we present two different approaches to correcting the metrical level of tempo

estimates, also known as fixing the octave error. The first method, presented in Section 3.1,

exploits a simple, approximately linear relationship between a single global feature, average

spectral novelty, and listener perception of musical tempo. The second method, presented in

Section 3.2, uses more sophisticated means and approaches the problem from a different direction.

Using supervised learning with random forests [14] we predict algorithm-specific tempo estimation

errors. In a post-processing step, these predictions can then be used to correct an algorithm’s

tempo estimates. While being straightforward and relying only on a small number of features,

our proposed method significantly increases accuracy.

Leaving the world of traditional digital signal processing, we present a single-step tempo estimation

system based solely on a convolutional neural network (CNN) in Chapter 4. Contrary to other

systems, which typically first identify onsets or beats and then derive a tempo, the tempo is

estimated directly from a conventional mel-spectrogram. This is achieved by framing tempo

estimation as a multi-class classification problem using a network architecture that is inspired by

DSP approaches. The system’s CNN has been trained with the union of three datasets covering

a large variety of genres and tempi using problem-specific data augmentation. Two of the three

datasets are novel and have been released for research purposes. As input the system requires only

11.9 s of audio and is suitable for local as well as global tempo estimation. When used as a global

estimator, it performs as well as or better than other state-of-the-art algorithms. Especially the

exact estimation of tempo without tempo octave confusion is significantly improved. As local

estimator it can be used to identify and visualize tempo drift in musical performances.

We cannot further improve the state of the art without proper evaluation, which in the case of

tempo estimation relies on correctly annotated datasets. In Chapter 5, we therefore investigate

a peculiarity: relative to other datasets, state-of-the-art tempo estimation algorithms perform

poorly on the GiantSteps Tempo dataset for electronic dance music (EDM). To investigate

why, we conducted a large-scale, crowdsourced experiment. In the collected data we observed

significant tempo ambiguities, which we attribute to annotator subjectivity and tempo instability.

As a further contribution, we constructed new annotations consisting of tempo distributions for

each track. Using these annotations, we re-evaluated three recent tempo estimation systems

achieving significantly improved results. The main conclusions of this investigation are that

current tempo estimation systems perform better than previously thought and that evaluation

quality needs to be improved.

As the logical next step, we present a thorough evaluation of current tempo estimation evaluation

practices in Chapter 6. We discuss presumed and actual applications for global tempo estimation,

8



1.1. Structure of this Thesis

the pros and cons of commonly used metrics, and the suitability of popular datasets. To guide

future research, we present results of a survey among domain experts that investigates today’s

applications, their requirements, and the usefulness of currently employed metrics. To aid future

evaluations, we present a large public repository containing evaluation code as well as estimates

by many different systems and different ground truths for popular datasets.

Next, in Chapter 7, we broaden the scope with respect to MIR tasks. Concretely, we explore

how the different semantics of spectrograms’ time and frequency axes can be exploited for

musical tempo and key estimation using CNNs. By addressing both tasks with the same network

architectures ranging from shallow, domain-specific approaches to deep variants with directional

filters, we show that axis-aligned architectures perform similarly well as common VGG-style

networks developed for computer vision, while being less vulnerable to confounding factors and

requiring fewer model parameters.

In Chapters 8 and 9 we put the network architectures from Chapter 7 to practical use on two

tasks we have not paid much attention to so far: local key and tempo estimation. We also switch

our object of investigation from popular to Western classical music. In Chapter 8, we begin with

local tempo estimation. Remarkably, even though local tempo estimation promises musicological

insights into expressive musical performances, it has never received as much attention in the

MIR research community as either beat tracking or global tempo estimation. One reason for this

may be the lack of a generally accepted definition. In this chapter, we discuss how to model and

measure local tempo in a musically meaningful way using a dataset of multiple performances

(versions) of five Frédéric Chopin’s Mazurkas as a use case. In particular, we explore how tempo

stability can be measured and taken into account during evaluation. Comparing existing and

newly trained systems, we find that CNN-based approaches can accurately measure local tempo

even for expressive classical music, if trained on the target genre. Furthermore, we show that

different training–test splits have a considerable impact on accuracy for difficult segments.

Finally, in Chapter 9, we address local key estimation. While global key and chord estimation

for both popular and Western classical music recordings have received a lot of attention, little

research has been devoted to estimating the local key for classical music, which may be due to its

inherent ambiguity and subjectivity. We approach local key estimation on a cross-version dataset

comprising nine performances (versions) of Schubert’s song cycle Winterreise. We compare a

Hidden Markov Model with a CNN-based approach. For both models, we employ a similar

training procedure including the optimization of hyperparameters on a validation split. We

systematically evaluate the model predictions and provide musical explanations for key confusions.

As our main contribution, we explore how different training–test splits affect the models’ efficacy.

Splitting along the song axis, we find that both methods perform similarly well. Splitting along

the version axis leads to clearly higher results for both approaches, but especially for the CNN,

9



Chapter 1. Introduction

which seems to effectively learn the harmonic progressions of the songs (“cover song effect”) and

successfully generalizes to unseen performances.

Supplemental material for this thesis is provided in the appendices. Appendix A describes how

to obtain and use implementations of tempo estimation systems proposed in this work. Similarly,

Appendix B describes key estimation systems. Appendix C adds a measure-wise evaluation of

local key estimation errors that went beyond the scope of Chapter 9. Finally, in Appendix D, we

give a brief overview of the main features of the consumer MIR system beaTunes.

Throughout the thesis, you will find notices like the following to highlight aspects of reproducibility.

Reproducibility

See Appendix X.1 for information about an open-source implementation.

The dataset for this experiment is available at DOI YYYYY.XXXXX.

1.2. Contributions

The main contributions of this thesis can be summarized as follows.

• Two novel techniques for correcting octave errors of global tempo estimators (Chapter 3).

• A CNN-based system capable of estimating local and global tempo directly from conven-

tional mel-spectrograms (Chapter 4).

• Global tempo annotations for the MTG Key dataset [45] (Section 4.1.2).

• Free and open global tempo annotations featuring multiple annotations per track, modeling

perceptual tempo ambiguity for the GiantSteps Tempo dataset (Chapter 5).

• A thorough evaluation of global tempo estimation evaluation, critically discussing use cases

and the suitability of metrics and datasets, finding potential for improvement in every

aspect (Sections 6.1 to 6.4).

• A survey among domain experts regarding applications and metrics for global tempo

estimation (Section 6.5).

• A large open repository containing both reference annotations for popular global tempo

datasets as well as estimates by many tempo estimation systems along with evaluation

code (Section 6.6).

• Global key and tempo annotations for previews of the Lakh Midi Dataset (LMD) [136]

(Section 4.1.1 and Chapter 7).

10
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• Exploration of using directional filters in different deep and shallow CNN-architectures for

tempo and key estimation (Chapter 7).

• A deepened understanding of how to model local tempo and tempo stability, establishing

the coefficient of variation for inter-beat intervals as suitable measure (Chapter 8).

• An in-depth exploration of the effects of different training–test splits on local key and

tempo estimation for cross-version datasets (Chapters 8 and 9).

• CNN-based local key estimation for classical Western music (Chapter 9).

1.3. Main Publications

The main contributions of this thesis are based on the following publications, which either

appeared in peer-reviewed conference proceedings in the fields of audio signal processing and

MIR or have been submitted to conferences or journals and are currently under review. ISMIR is

widely considered the main conference for MIR, while ICASSP is the main conference for signal

processing.

[158] Hendrik Schreiber and Meinard Müller. Exploiting global features for tempo octave correction. In Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 639–643,

Florence, Italy, 2014.

[160] Hendrik Schreiber and Meinard Müller. A post-processing procedure for improving music tempo estimates

using supervised learning. In Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), pages 235–242, Suzhou, China, 2017.

[161] Hendrik Schreiber and Meinard Müller. A single-step approach to musical tempo estimation using a

convolutional neural network. In Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), pages 98–105, Paris, France, 2018.

[162] Hendrik Schreiber and Meinard Müller. A crowdsourced experiment for tempo estimation of electronic dance

music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),

pages 409–415, Paris, France, 2018.

[163] Hendrik Schreiber and Meinard Müller. Musical tempo and key estimation using convolutional neural

networks with directional filters. In Proceedings of the Sound and Music Computing Conference (SMC),

pages 47–54, Málaga, Spain, 2019.

[166] Hendrik Schreiber, Christof Weiss, and Meinard Müller. Local key estimation in classical music recordings:

A cross-version study on Schubert’s Winterreise. In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020.

[167] Hendrik Schreiber, Frank Zalkow, and Meinard Müller. Modeling and estimating local tempo: A case

study on Chopin’s Mazurkas. In Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), Montreal, Quebec, Canada, October 2020.
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[165] Hendrik Schreiber, Julián Urbano, and Meinard Müller. Music tempo estimation: Are we done yet?

Transactions of the International Society for Music Information Retrieval (TISMIR), 2020.

1.4. Additional Publications

The following peer-reviewed publications by the thesis author are also related to MIR, but are

not considered in this thesis.

[164] Hendrik Schreiber, Peter Grosche, and Meinard Müller. A re-ordering strategy for accelerating index-based

audio fingerprinting. In Proceedings of the International Conference on Music Information Retrieval (ISMIR),

pages 127–132, Miami, Florida, USA, 2011.

[159] Hendrik Schreiber and Meinard Müller. Accelerating index-based audio identification. IEEE Transactions

on Multimedia, 16(6):1654–1664, 2014.

[154] Hendrik Schreiber. Improving genre annotations for the Million Song Dataset. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), pages 241–247, Málaga, Spain,

2015.

[155] Hendrik Schreiber. Genre ontology learning: Comparing curated with crowd-sourced ontologies. In

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages

400–406, New York City, NY, USA, 2016.

[37] Jonathan Driedger, Hendrik Schreiber, Bas de Haas, and Meinard Müller. Towards automatically correcting

tapped beat annotations for music recordings. In Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), pages 200–207, Delft, The Netherlands, 2019.

[12] Dmitry Bogdanov, Alastair Porter, Hendrik Schreiber, Julián Urbano, and Sergio Oramas. The Acous-

ticBrainz genre dataset: Multi-source, multi-level, multi-label, and large-scale. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), pages 360–367, Delft, The

Netherlands, 2019.
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2. Fundamentals

In this chapter, I introduce some digital signal processing fundamentals,

closely following work by Meinard Müller [117]. Furthermore, I introduce

a standard tempo estimation pipeline as basis for the following chapters,

which is based on my work in [158] and [160].

Music can be represented in many different ways. Symbolically, for example as Music Instrument

Digital Interface (MIDI) file. Visually, as printed sheet music (Figure 2.1a) or even as image of an

engraving (Figure 2.1b). Or as audio, i.e., as representation of acoustic sound waves (Figure 2.2).

In this thesis we will work exclusively with audio representations. For a detailed overview of

other representations, we refer to [117, Chapter 1].

2.1. Audio Signal

An audio signal can be described as a signal that transports acoustic information. It encodes

the sonic waves that we perceive as sound and thus allows transmission, broadcast, storage, and

analysis. Closely following [117, Section 2.2.1], we define a continuous-time (CT) signal to be a

function f : R→ R, that assigns an amplitude value f(t) ∈ R to each point in time t ∈ R. Such

a CT-signal can represent an arbitrary sound, regardless of how loud, quiet, short, or long it is.

Because of the inherent constraints of digital systems, we cannot process CT-signals using such

systems directly. The signal first has to be discretized, i.e., converted into a finite representation.

This is also called digitization and typically involves two steps: sampling and quantization.

The most common sampling method is equidistant sampling. Given a CT-signal f : R→ R and a

positive real number T > 0, one defines a function x : Z→ R by setting

x(n) := f(n · T ) (2.1)

for n ∈ Z. Since x is only defined on a discrete set of points in time, it is also referred to as

discrete-time (DT) signal. The value x(n) for some sample index n ∈ Z is called a sample taken

at time t = n · T of the analog signal f . This procedure is also known as T -sampling, where the
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Chapter 2. Fundamentals

(a) Ludwig van Beethoven’s Für Elise
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(b) Second Delphic Hymn to Apollo

Figure 2.1.: Sheet music now and then. (a) The first few bars of Ludwig van Beethoven’s Für Elise for piano.
(b) Photograph of a stone at Delphi containing the second of the two Delphic Hymns to Apollo.
The music notation is the line of symbols above the main, uninterrupted line of Greek lettering.
© Public Domain.

number T is the sampling period. Its inverse

Fs = 1/T (2.2)

is called the DT-signal’s sampling rate, measured in Hertz (Hz). Figure 2.2b shows individual

samples of a short section of a recording of Ludwig van Beethoven’s Für Elise, a classical piece for

piano. In this particular example the sampling rate is 22,050 Hz. For high quality audio signals

one typically uses the higher sampling rate Fs = 44,100 Hz. The Nyquist-Shannon-Kotelnikov

theorem states that this rate is high enough to perfectly represent sounds with frequencies up to

Ω =
Fs

2
= 22,050 Hz. (2.3)

Ω is also referred to as Nyquist frequency . Because human hearing is limited to 20− 20,000 Hz,

sampling rates much higher than 44,100 Hz cannot improve the sound quality noticeably. Despite

this, studio technicians often use higher sampling rates of 96 kHz or even 192 kHz in order to
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2.1. Audio Signal

(a) Waveform
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Figure 2.2.: Visualization of a discrete time audio signal. (a) Waveform of a performance of the first two seconds
of Ludwig van Beethoven’s Für Elise. Individual samples are not visible. An enlarged version of
the section marked in red � is shown in (b). At this magnification, individual samples are clearly
visible.

create so-called high-definition audio recordings. The commercial Blu-ray format, for example,

supports sampling rates of 48 kHz, 96 kHz, and 192 kHz for uncompressed audio.

Because a DT-signal is discrete in time, but not necessarily in amplitude, we need to quantize

each real-valued sample, before we can work with it in a digital environment. Oftentimes, a

uniform quantizer is used for this. It is characterized by the fact that continuous values are

rounded to some precision level specified by a step size ∆. Given such a quantization step size, a

uniform quantizer Q : R→ Γ for an amplitude a ∈ R and Γ ⊂ R can be defined by

Q(a) := sgn(a) ·∆ ·
⌊
|a|
∆

+
1

2

⌋
. (2.4)

An example for a uniformly quantized audio signal is the audio CD format. Each audio CD

sample has a storage size of 16 bits and can therefore encode 216 = 65,536 different values

(steps). Assuming that we want to represent amplitudes between −1 and +1, this means that

for CDs the quantization step size is ∆ = 2−15. Higher bit-depths, like 24 bits/sample or even

32 bits/sample, are possible and used in recording studios, for high-definition audio formats, and

even by music streaming services (e.g., Amazon Music Ultra HD). While 24 bits are a sensible

choice during production to keep quantization noise at a minimum when sequentially applying
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Chapter 2. Fundamentals

many audio effects, it is questionable whether humans are capable of distinguishing a downmixed

24-bit recording that has been converted to 16 bits from one that is left in the original 24-bit

format [116].

Note that there are alternatives to uniform quantization. An example for non-uniform quantization

is the µ-law companding1 algorithm, used by low bandwidth telecommunication systems in North

America and Japan.

Sampling and quantization allow us to discretize a CT-signal, and convert it to a DT-signal. To

easily process such a DT-signal with the finite resources of a digital computing environment, we

still need to address one last issue: CT-signals have infinite length by definition, which means

that the corresponding DT-signals also have infinite length. Fortunately, digital audio recordings

are finite and only have L ∈ N≥0 number of samples, which can be processed digitally. When

modeling a DT-signal mathematically, we typically set x(n) = 0 for n ∈ Z \ [0 : L − 1] where

[0 : L− 1] := {0, 1, . . . , L− 1}, thus we obtain a signal x : Z→ R. This lets us avoid boundary

cases in the mathematical equations.

2.2. Discrete Fourier Transform

The Fourier transform, named after the French mathematician Jean-Baptiste Joseph Fourier

(b21 March 1768, d16 May 1830), is probably the most important mathematical tool in digital

signal processing (DSP). In a nutshell, it allows us to decompose a signal into its constituent

frequencies. Since in this thesis, we work exclusively with DT-signals, we will only introduce the

discrete Fourier transform (DFT). Other definitions for Fourier transforms and comprehensive

discussions of their properties can be found in [117, Chapter 2.3].

Given a DT-signal x of length L, the DFT X of x is defined as

X(k) =
L−1∑
n=0

x(n) · e−
2πi
L

kn, (2.5)

for k ∈ [0 : L− 1]. The complex Fourier coefficient X(k) encodes the magnitude and the phase

of the signal’s sinusoidal component with frequency

Fcoef(k) =
k · Fs

L
. (2.6)

The distance between frequency bins, i.e., the frequency resolution, is ∆f = Fcoef(1).

To illustrate the DFT’s application, Figure 2.3 shows a magnitude spectrum, i.e., |X|, for the

Für Elise recording introduced above. Clearly visible are the spikes at distinct frequencies

1Portmanteau of the words compressing and expanding.

18



2.2. Discrete Fourier Transform

0 500 1000 1500 2000 2500
0

50

100

150

Frequency (Hz)

M
ag
n
it
u
d
e

Figure 2.3.: Magnitude Fourier spectrum for the first two seconds of Beethoven’s Für Elise

corresponding to the fundamental frequencies of the played notes and their harmonics. What

we cannot see in this depiction is when the notes are played. This makes the unmodified DFT

unsuitable as a basis for MIR tasks involving temporally local structures like chords.

A solution to this problem is the short-time Fourier transform (STFT) [52]. Its main idea is

to apply the transform only to short parts of the signal, which are also known as frames. This

effectively allows determining in which of these frames which frequencies occur. The STFT is

defined as

X(t, k) =

N
2
−1∑

n=−N
2

w(n) · x(n+ tH) · e−
2πi
N

kn, (2.7)

where t ∈ Z is the frame index, k ∈ [0 : N − 1] is the frequency index, w is a window function

centered around time position zero, N is the frame length, and H is the hopsize, i.e., the distance

between two consecutive frames in samples. Similar to the DFT (Eq. 2.6), the frequency index k

corresponds to the frequency band with center frequency

Fcoef(k) =
k · Fs

N
. (2.8)

Since the STFT is time-dependent, its magnitude is referred to as spectrogram rather than

simply as spectrum. It is denoted by

Y = |X|. (2.9)

To illustrate, Figure 2.4a shows a magnitude spectrogram for our recording of Für Elise using

N = 1024, H = 512, and a Hann window function.2 Clearly visible are dark horizontal lines,

which correspond to the fundamental frequency of the played notes, as well as very soft parallels

referred to as overtones or harmonics. A common procedure to enhance these hardly visible

overtones is logarithmic compression [117, Section 3.1.2.1]. It serves as an alternative to using

the decibel scale and is achieved by applying a compression function Γγ : R≥0 → R≥0 to each of

the spectrogram’s values. Concretely, Γγ is defined as

Γγ(v) := ln (1 + γ · v) (2.10)

2Named after the Austrian meteorologist Julius Ferdinand von Hann (b23 March 1839, d1 October 1921).
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(a) Magnitude spectrogram
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(b) Logarithmically compressed magnitude spectrogram
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(c) Logarithmically compressed power spectrogram
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Figure 2.4.: Spectrograms for the first two seconds of Beethoven’s Für Elise. The fundamental frequency of the
third note is framed in red �, its second and third harmonics are framed in black �. (a) STFT-based
magnitude spectrogram. (b) STFT-based logarithmically compressed magnitude spectrogram with
γ = 1000. (c) STFT-based logarithmically compressed power spectrogram with γ = 1000.

with a positive constant γ ∈ R>0. Figure 2.4b shows a magnitude spectrogram that has been

enhanced using logarithmic compression with γ = 1000. We can now clearly see the overtones.

However, the spectrogram does not have a lot of contrast, i.e., instead of white we see a lot of

gray in areas between the harmonics that should be low energy. Another method to obtain a

contrast-rich spectrogram is to use the signal’s power instead of its magnitude. We define the

power spectrogram Yp as the squared magnitude spectrogram:

Yp = Y 2 = |X|2. (2.11)
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Figure 2.5.: Schematic of the ADSR envelope

As an example, Figure 2.4c shows a power spectrogram enhanced with logarithmic compression

(γ = 1000). Compared to the enhanced magnitude spectrogram (Figure 2.4b), the main

frequencies of the played notes are more easily recognizable. Note that this does not mean that

using a power spectrogram is always the better choice. Choosing a different γ for the magnitude

spectrogram may also have led to better results. In fact, it has been shown that a well-chosen

γ-value has a considerable impact on MIR tasks like chord recognition [81].

2.3. Basic Tempo Estimation

Describing its speed, tempo is one of the most relevant descriptors for a piece of music. It

can be defined as the number of times a listener “taps” a beat with his or her foot per time

interval [150, 33]. As unit of measurement for tempo serves beats per minute (BPM). Automatic

tempo estimation or induction is commonly used to estimate the general tempo of a musical

piece. Unlike beat tracking [2, 60], tempo estimation does not attempt to determine the exact

location of individual beats. Knowing the tempo can be useful for a wide variety of applications

including music retrieval, score alignment, playlist generation, and DJ techniques like beatmixing.

Because of its usefulness, the automatic extraction of tempo is a traditional task in MIR and has

received a lot of attention over the years [60, 150, 201, 64].

In order to determine beats per minute of a musical piece from audio, it is intuitively useful to

locate beats in the audio signal. But what is a beat? It can be described as a perceived pulse

position. Being a construct of perception, it is related but not identical to an onset event , i.e.,

the start time of a note, drum beat or other musical event. Contrary to beats, onset events are

physical phenomena that can be measured and detected in the audio signal. To define onsets, it

is helpful to model what happens when a note is played, e.g., a single piano key. Figure 2.5 shows

a schematic depiction of the ADSR model [129, p. 59], which describes the amplitude or energy

envelope of the audio signal we can observe when playing a single note (see also [117, p. 27]). It

consists of the attack (A), decay (D), sustain (S), and release (R) phases. The attack is usually

characterized by a wide range of frequencies also described as noise or transients. During the
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(a) Energy-based (O)ADSR annotations
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(b) Spectral-based (O)ADSR annotations
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Figure 2.6.: Onset, attack, decay, sustain, and release for the third note of our running example. The sustain/re-
lease phases overlap with the beginning of the fourth note. (a) Energy-based (O)ADSR annotations.
(b) Spectral-based (O)ADSR annotations.

decay phase the sound of the musical tone stabilizes. In the sustain phase we can clearly hear the

tone, i.e., periodic patterns rather than noise, and the energy stays relatively constant. Finally,

during the release phase, the energy gradually decreases to zero. The onset event for such an

idealized note occurs right at the beginning of the attack. It is instantaneous and marks the

earliest point in time at which the transient can be detected [117, p. 305].

Moving from the ideal world to the phyiscal world, Figure 2.6a shows the framewise energy, in

this case the framewise sum of a logarithmically compressed Yp, for an excerpt of our example.

Based on this energy-curve, we manually added (O)ADSR-annotations, labeling the third note of

our running example. While onset, attack, and the beginning of the decay are easily identifiable,

we cannot say with certainty when the decay ends and the release begins. In fact, we cannot say

anything about the release phase, because it is masked by the attack of the fourth note. Even

in a monophonic music signal, like the given example, we have difficulties labeling all parts of

the ADSR model correctly, when relying on just one energy-curve. The task becomes even more

difficult for polyphonic music with simultaneously occurring sound events. Therefore, rather

than being based on a single energy feature, onset detection for polyphonic music is often based

on spectral features. They allow the detection of energy spikes in sub-bands of the signal as

well as frequency dependent pre- and post-processing. To illustrate, Figure 2.6b shows manual

(O)ADSR-annotations based on the logarithmically compressed Yp. We can determine both
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2.3. Basic Tempo Estimation

the end of the sustain phase and the release phase—not perfectly, but with more confidence.

Fortunately, for onset detection and ultimately tempo estimation, we are mostly interested

in finding onsets and not releases. To achieve this computationally, we use a spectral-based

novelty function, also referred to as spectral flux . It is typically defined as the distance between

consecutive spectral vectors (frames). When used for onset detection, it is also more generally

referred to as onset strength signal (OSS). To derive a tempo value, the OSS function is analyzed

for periodicities and the frequency of the dominant pulse is extracted in the hope that it is

identical to the frequency of the perceived periodic pulses, i.e., the beats.

Thus, traditional methods for tempo estimation usually follow a three step procedure:

1. The audio signal is transformed to a suitable representation.

2. An OSS function is derived.

3. The frequency of the OSS’s dominant pulse is determined and converted to BPM.

We now describe in detail how such a method may be implemented.

2.3.1. Representation

To construct our spectral novelty-based OSS function, we transform the signal into a suitable

representation. We do so by first converting the signal to mono with a sample rate of Fs =

11,025 Hz. The relatively low sample rate Fs has the advantage of reducing the amount of

data and thus speeding up computation. We can do this without fearing decreased overall

accuracy, because higher frequencies are known to be mostly irrelevant for tempo detection. After

resampling, we compute the power spectrogram (Eq. 2.11) using a window length N = 1024

(93 ms), a hopsize H = N
2 = 512, and a Hamming window3 w. In order to enhance weak spectral

components, we apply logarithmic compression with γ = 1000 to derive the positive logarithmic

power spectrum

Yln(t, k) = Γ1000(Yp(t, k)) (2.12)

Yln is the signal representation we base our OSS on. Its frame rate is Ff = Fs
H ≈ 21.53 Hz.
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Figure 2.7.: OSS for a 10 s segment of Adele’s Rolling in the Deep.

2.3.2. Onset Signal Strength

Similar to [85], we define the onset signal strength function (or novelty curve) OSS as the sum of

the bandwise differences between the logarithmic powers Yln(t, k) and Yln(t− 1, k) for those k

where 30 Hz ≤ Fcoef(k) ≤ 720 Hz and Y (t, k) > αY (t− 1, k):

I(t, k) =


1 if Y (t, k) > αY (t− 1, k)

and 30 ≤ Fcoef(k) ≤ 720,

0 otherwise

(2.13)

OSS(t) =
∑
k

(
Yln(t, k)− Yln(t− 1, k)

)
· I(t, k)

The indicator function I is designed to select only frequency bands in the desired frequency

range, if the energy from one frame to the next increases at least by a factor α. For α = 1 this is

equivalent to band-wise half-wave rectification. For the method proposed here, we set α = 1.76

to disregard small increases in loudness and thus reduce noise in the onset strength signal. Just

like the used frequency range, α was found experimentally. A depiction of the resulting signal

can be seen in Figure 2.7.

2.3.3. Dominant Pulse

There are different ways to determine the dominant pulse of an OSS, most importantly the

autocorrelation function (ACF) [28, 40, 125, 170, 128], comb filter banks [86, 150, 6], and the

discrete Fourier transform (DFT) [66, 198]. Furthermore, tempograms [197] and inter-onset

interval (IOI) histograms [169] have been used.

3Named after the American mathematician Richard Wesley Hamming (b11 February 1915, d7 January 1998).
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(a) Beat spectrum B
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(b) Enhanced beat spectrum BE
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Figure 2.8.: (a) Regular and (b) enhanced beat spectrum for Rolling in the Deep by Adele.

For the method proposed here, we use the DFT to analyze the OSS with length T = 8192:4

B(k) =

∣∣∣∣∣
T−1∑
t=0

OSS(t) · e−
2πi
T

kt

∣∣∣∣∣ . (2.14)

Given the frame rate Ff and the OSS length T , we can determine the frequency resolution

∆f = Ff
T ≈ 0.00263 Hz, which is equivalent to ∆f · 60 ≈ 0.156 BPM. The peaks of the resulting

beat spectrum B represent the strength or salience of BPM values in the signal [48]. Näıvely, we

could now determine the highest peak and derive a tempo value in BPM using

TMP = F (arg max
k

B(k)) · 60. (2.15)

As an example, Figure 2.8a shows B for the recording Rolling in the Deep by Adele, which

has a tempo of 104 BPM. Clearly visible are peaks at 104 BPM and its multiples, with the

highest peak at 208 BPM. These peaks at multiples of the fundamental frequency are also called

tempo harmonics. A 104 BPM peak usually implies a 208 BPM peak, one at 312 BPM, and so

4To ensure this length, our implementation either zero-pads or truncates the OSS.
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on [126, 68]. But which peak is the “right” one? To boost frequencies that are supported by

harmonics, we derive an enhanced beat spectrum BE:

BE(k) =
2∑
i=0

B (bk/2i + 0.5c) . (2.16)

Similar to computing a spectral sum [3] or an enhanced beat histogram [186], BE incorporates

harmonics by simply adding to each bin the magnitudes of the bins denoted by half and by

a quarter of its own frequency—or, if not available—the closest available bin. We choose to

use fractions instead of multiples for modeling harmonics and thus essentially model the fourth

harmonic, not the first. This allows us to easily take advantage of the full DFT resolution without

oversampling, as each first harmonic bin is mapped to four different fourth harmonic bins. Also,

because most popular western music is in 4/4-time, and most octave errors are by factor 2 [201],

we purposefully leave out the third harmonic. To calculate the estimated tempo TMPbase, we

determine the highest value of BE, divide its frequency by 4 to find the first harmonic, and finally

convert its associated frequency to BPM:

TMPbase = F (arg max
k

BE(k)) · 60

4
. (2.17)

Thus we arrive at a final tempo estimate TMPbase. In the following chapters we will refer

to this system as base. For our example Rolling in the Deep, the enhanced beat spectrum

is depicted in Figure 2.8b. The highest BE-peak is at 415.26 BPM, which corresponds to

TMPbase = 103.82 BPM, the correct result (with some rounding).

Note that using arg max on BE is by far not the only possible approach. The decision for a tempo

can been made in many different ways. Other strategies take advantage of simple heuristics,

genre classification [168, 75], the discrete cosine transform (DCT) of inter-onset interval (IOI)

histograms [43], or feature-based learning approaches like Gaussian mixture models (GMM) [127],

support vector machines (SVM) [56, 128], k-nearest neighbor classification (k-NNC) [197], and

neural networks [42]. Furthermore, we will explore two novel approaches to picking the correct

tempo in Chapter 3.

2.4. Metrics

Throughout this thesis, we will evaluate the performance of different estimation systems. We will

usually do so, using two established metrics: accuracy 1 and accuracy 2 , denoted as ACC1 and

ACC2 [64]. ACC1 is defined as the percentage of estimates that are within 4% of the ground

truth tempo, and ACC2, as the percentage of estimates that are within 4% of 1/3, 1/2, 2, or 3
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times the ground truth tempo. Note that we refer to estimates that are integer multiples or

fractions of the true value as octave errors. Attempting to avoid them is a recurring theme in

this work (Chapters 3 and 4). While ACC1 and ACC2 are widely accepted metrics, they are not

without alternative. An in-depth discussion about tempo estimation evaluation can be found in

Chapter 6.

2.5. Datasets

There can be no tempo estimation system evaluation without datasets. Throughout this thesis,

we will test our systems against popular and/or publicly available datasets like GTzan [185], ACM

Mirum [127], or Ballroom [64]. But that is not the only function we need datasets for. The move

from pure DSP towards machine learning and data-driven approaches is an arc encompassing this

work. For the used methods we also require sizable training and validation datasets. Selecting

and creating these datasets is therefore a recurring theme in this thesis.

All datasets are introduced and properly cited, when they are first used. To give an informal

overview, we present an alphabetically ordered list here.

ACM Mirum Tempo dataset. Used for testing in Chapters 3, 4, and 6.

Ballroom Tempo dataset. Used for testing in Chapters 3.

Extended Ballroom Tempo dataset used for training and validation in Chapters 3, 4,

and 7.

GiantSteps Key Key dataset. Used for testing Chapter 7.

GiantSteps Tempo † Tempo dataset. Used for testing in Chapters 4, 5, 6, and 7.

GTzan Tempo Tempo dataset. Used for testing in Chapters 3, 4, 6, and 7.

GTzan Key Key dataset. Used for testing in Chapter 7.

Hainsworth Tempo dataset. Used for testing in Chapters 3, 4, and 6.

ISMIR04 Songs Tempo dataset. Used for testing in Chapters 3, 4, and 6

LMD Tempo ∗ Tempo dataset. Based on LMD . Used for training, validation,

and testing in Chapters 4 and 7. Mentioned in Chapter 6.

LMD Key ∗ Key dataset. Based on LMD . Used for training, validation, and

testing in Chapter 7.

Mazurka-5 Local tempo dataset. Based on beat annotations used in Chap-

ter 8.

27



Chapter 2. Fundamentals

MIREX Tempo dataset suitable for P-Score evaluation. Mentioned in

Chapter 6.

MTG Key Key dataset. Used for training and validation in Chapter 7.

MTG Tempo ∗ Tempo dataset. Based on MTG Key . Used for training and

validation in Chapters 4 and 7.

RWC Classic tempo datasets. Mentioned in Chapter 6.

SMC Tempo dataset. Originally meant for beat-tracking, used for

testing in Chapters 3, 4, and 6.

Winterreise Local key dataset. Used in Chapter 9.

∗ Newly derived or created for this work.
† Revised annotations have been created in this work.

Page numbers to usages of specific datasets can also be found in the Index.
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In this chapter, we discuss how to address the so called octave error in

tempo estimation using global features and linear regression as well as

random forests. It is based on my work in [158] and [160].

Probably the biggest problem with global tempo estimation, apart from fluctuating tempi, is

the so-called octave error , which occurs when estimates are integer multiples or fractions of the

reference tempo. To understand how this problem has been approached so far, we recapitulate

how a traditional tempo estimation system works:

1. Via an OSS or novelty curve, beat candidates are found.

2. One or more periodicities are extracted from the OSS.

3. A single periodicity is chosen as tempo.

As mentioned in Section 2.3.3, the final decision for a tempo—i.e., a BPM value—is often based

on simple heuristics, genre classification, etc. Making the right choice, arguably fixes the octave

error.

In the following two sections, we propose two novel approaches to improve this decision. The

first is based on a global feature and linear regression, the second on algorithm-specific error

estimation and correction using random forests [14].

3.1. Octave Correction with Global Features and Linear Regression

In this section we combine the basic method for tempo estimation from Section 2.3 with a

simple method for tempo octave estimation based on a single global feature. We strongly

emphasize simplicity, but are nevertheless able to show that this approach leads to convincing

results. In Section 3.1.1 we start with deriving a global feature for rough tempo estimation, then,

in Section 3.1.2, we describe the algorithm and how it estimates a dominant pulse, a tempo

octave, and ultimately a BPM value. In Section 3.1.3, we evaluate the algorithm comparing it

with other methods using a large dataset. Finally, in Section 3.1.4, we present our conclusions.
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Reproducibility

See Appendix A.1 for an implementation of the method presented in this section.

3.1.1. Feature Selection

Inspired by [72] we collected a number of global song features via the consumer application

beaTunes (Appendix D). For each song we retrieved Last.fm’s most popular tags and selected

those songs associated with the tags slow or fast , but not both. For the genres Rock, Pop, Jazz,

Alternative, Industrial, Heavy Metal, Soul, and Dance the dataset contained 8517 songs, 1296

(15.2%) of which labeled as fast . Because of the obvious imbalance between slow and fast songs

also observed in [103], we grouped the data by genre, each group with an equal number of songs

labeled as slow or fast . We did so by randomly removing songs of the overrepresented tempo

class. We then classified the songs into slow and fast using one feature at a time. This turned

out to be most successful for the feature mean spectral novelty (SNM).

SNML is calculated by building a self-similarity matrix S, using the cosine of the angle between

two spectral vectors Y (t) (as defined in Eq. 2.11 with parameters from Section 2.3.1) as similarity

score. The novelty score SNL is calculated with a square Gaussian checkerboard kernel CL with

length L = 64 [47]. Considering the given sample rate and window overlap, this is equivalent to

a 2.97 s kernel. We choose to normalize the score SNL by dividing by the sum of the absolute

values of all kernel elements (Eq. 3.1). To obtain the mean SNML, we average SNL(t) for

t ∈
[
L
2 : T − L

2

]
.

SNL(t) =

L
2
−1∑

m=−L
2

L
2
−1∑

n=−L
2

CL(m,n) · S(t+m, t+ n)

L
2
−1∑

m=−L
2

L
2
−1∑

n=−L
2

|CL(m,n)|
(3.1)

To illustrate SNML, Figure 3.1 shows spectral novelty values computed with a 3.81 s long kernel

for a slow (Figure 3.1a) and a fast song (Figure 3.1b). It appears that the fast song is noisier

over the length of the kernel and therefore its novelty scores are lower than the slow song’s.

With an overall correct slow/fast classification rate of 85% (Table 3.1), SNM64 can obviously

help estimating the perceived tempo of music. But since our dataset did only contain few values

for genres other than Rock, Pop, and Jazz, the validity of this statement is clearly limited

to those genres. Also, a perceived slow tempo does not guarantee a certain BPM range. For

example, a Viennese Waltz may be perceived as slow, but its tempo is typically 174 to 180 BPM.
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(a) Come Away With Me
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Figure 3.1.: Spectral novelty SN82 of excerpts of Norah Jones’ slow Come Away With Me, and of Blink-182’s
fast The Rock Show. The mean is shown as horizontal line.

Genre Songs Correct SNM64 Threshold

Rock 1706 87.86% 0.034
Pop 262 88.17% 0.036
Jazz 330 86.06% 0.040
Alternative 72 81.94% 0.034
Industrial 68 80.88% 0.023
Heavy Metal 54 83.33% 0.032
Soul 36 77.78% 0.032
Dance 36 83.33% 0.027

All 2564 85.02% 0.036

Table 3.1.: Classification results for different genres using SNM64 and a threshold that was calculated using a
decision tree. Last.fm labels slow and fast served as ground truth.
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Figure 3.2.: Strength of linear relationship between SNML and ground truth BPM of songs in GTzan measured
with correlation coefficient r depending on kernel length L. A maximum of r = 0.44 is reached at
L = 82.

Furthermore, the kernel length L = 64 was chosen before the relationship to the perceived tempo

class was discovered.

Therefore we investigated the relationship between SNM and the ground truth of the tempo

annotated GTzan genres dataset [185]. GTzan consists of 1000 songs, 100 from each genre. As a

simple measure of relationship we computed Pearson’s correlation coefficient r between ground

truth BPM and SNML for the kernel lengths 32 to 128 and found the maximum of r = 0.44 at
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Genre r MAE RMSE

Blues 0.22 22.56 27.50
Classical 0.16 22.13 27.92
Country 0.42 17.18 21.46
Disco 0.30 12.33 17.35
Hiphop 0.34 7.51 11.00
Jazz 0.60 15.35 19.44
Metal 0.29 20.95 24.44
Pop 0.61 12.37 15.32
Reggae 0.22 13.41 17.48
Rock 0.23 20.54 24.25

All 0.44 17.50 21.86

Table 3.2.: Genre-specific correlation r between GTzan ground truth BPM and SNM82 along with mean absolute
errors (MAE) and root mean squared errors (RMSE) in BPM for genre-specific linear regressions.

L = 82, covering 3.81 s (Figure 3.2). The low correlation coefficient indicates that this is not a

strong linear relationship—at least not for the whole collection. In fact, the results in Table 3.2

suggest, that the relationship between SNM and BPM is genre-dependent. With r = 0.61 and

0.60 it is very promising for Pop and Jazz, and less so for Blues, Classical, or Reggae with

r = 0.22, 0.16, and 0.22. But considering that we just want to estimate the tempo octave rather

than the precise BPM, mean absolute errors (MAE) of less than 23 BPM and root mean squared

errors (RMSE) of less than 28 BPM for genre-specific linear regressions (Table 3.2), make a

linear model suitable enough for our purposes.

3.1.2. Algorithm

We are dividing the problem of tempo estimation into three separate tasks:

1. Compute a dominant pulse while largely ignoring the tempo octave.

2. Determine a rough estimate of the perceived tempo and thus the tempo octave.

3. Combine the two results in a meaningful way.

To solve the 1st task we re-use the basic tempo estimation method from Chapter 2, in particular

Equation (2.17). The 2nd and 3rd task are solved as follows.

3.1.2.1. Estimating the Tempo Octave

Since we have found a somewhat linear relationship between SNM and BPM, all we have to

do to estimate the rough tempo TMPoct, is to find the kernel length L that leads to SNML

values that correlate well with a training ground truth and then perform a linear regression.
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(a) ACC1

Dataset Size gflr base marsyas gkiokas zplane echonest ibt qm vamp

ACM Mirum 1410 76.1 70.3- 71.6- 72.6- 70.2- 73.8 63.0- 63.9-
ISMIR04 Songs 465 73.1 61.9- 58.5- 56.8- 56.1- 57.0- 46.7- 42.8-
Ballroom 698 66.3 65.5 63.3 62.9- 66.5 56.6- 63.8 65.3
Hainsworth 222 70.7 68.9 66.7 64.4 69.8 66.7 72.5 72.5
GTzan 1000 77.0 69.2- 74.6 71.1- 68.5- 67.8- 60.4- 57.9-

Dataset Avg 759 72.7 67.2 66.9 65.6 66.2 64.4 61.3 60.5

Combined 3795 73.9 68.0- 69.0- 68.0- 67.3- 66.6- 61.0- 60.5-

(b) ACC2

Dataset Size gflr base marsyas gkiokas zplane echonest ibt qm vamp

ACM Mirum 1410 96.0 96.5 96.0 97.8+ 93.8- 92.8- 92.8- 92.3-
ISMIR04 Songs 465 91.8 92.0 83.2- 90.8 82.4- 78.5- 76.8- 77.9-
Ballroom 698 96.3 97.6 91.6- 97.7 94.4 86.1- 89.8- 87.8-
Hainsworth 222 86.9 84.7 82.0 84.7 82.4 85.6 82.0 83.8
GTzan 1000 92.6 92.6 90.8 92.9 88.6- 86.7- 86.2- 85.8-

Dataset Avg 759 92.7 92.7 88.7 92.8 88.3 85.9 85.5 85.5

Combined 3795 94.1 94.4 91.4- 94.9 90.5- 87.8- 87.9- 87.5-

Table 3.3.: Tempo results for (a) ACC1 and (b) ACC2 in percent. The + and − signs indicate a statistically
significant difference between an algorithm and gflr. Bold numbers mark the best-performing
algorithm(s) for a dataset. Dataset Avg is the mean of the algorithms’ results for each dataset.
Combined is the accuracy over all datasets combined.

Because the time complexity of computing SNML is quadratic, we prefer smaller L. We found

that the value determined for GTzan, L = 82, represents a good tradeoff between correlation

and runtime behavior. To compute the linear regression with WEKA [71], we use the combined

five datasets [103, 127, 64, 70, 185] also used in [186], but a ground truth improved by Percival.

Thus, we arrive at Equation (3.2) for the rough perceived tempo estimate TMPoct:

TMPoct = −851.144 · SNM82 +137.623 (3.2)

3.1.2.2. Combining Tempo and Tempo Octave

As mentioned above, most octave errors are by factor 2 [201], therefore, to compute the final

tempo TMPgflr
1, we divide/multiply TMPbase (defined in Eq. 2.17) with/by 2 until it is closest

to TMPoct. Formally:

TMPgflr = 2i · TMPbase (3.3)

1Named after the estimation method used in this section, Global Feature-based Linear Regression.
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Algorithm ×1/2 ×2 ×1/3 ×3 other

gflr 11.7 8.5 0.0 0.1 5.9
base 10.8 14.6 0.4 0.7 5.6

marsyas 11.7 9.6 0.7 0.5 8.6
gkiokas 10.4 14.6 1.3 0.5 5.1
zplane 8.9 13.9 0.0 0.4 9.5
echonest 8.2 12.2 0.6 0.3 12.2
ibt 6.8 19.6 0.0 0.6 12.1
qm vamp 4.7 21.4 0.0 0.8 12.5

Table 3.4.: Percentages of the reported results for the combined datasets that are equal to X times the ground
truth (4% tolerance).

with i ∈ Z such that

0.75 · TMPoct < 2i · TMPbase < 1.5 · TMPoct. (3.4)

3.1.3. Evaluation

We evaluate the proposed method gflr with the best performing algorithms [57, 122, 121, 28] 2,3

discussed in [186] and the baseline method base from Chapter 2 using the same five datasets,

with the aforementioned improved ground truth.4 As measures of accuracy we employ ACC1 and

ACC2 (Section 2.4). We test for statistical significance with McNemar’s test and a significance

value of p < 0.01 [201]. Table 3.3 shows the results computed with data kindly made available by

Tzanetakis and Percival. For ACC1, gflr performs either as well or better, often significantly, than

all other algorithms. In particular, ACC1 for the combined datasets is with 73.9% significantly

higher. For ACC2, gflr reaches values similar to the best performing algorithm gkiokas. With

an ACC2 of 94.1% for the combined datasets, gflr performs significantly better than all other

algorithms except the much more complex gkiokas and base.

When analyzing why gflr scored better in ACC1 than its closest contenders, it becomes clear,

that marsyas [186] scores lower, because of slightly more factor 2 errors (1.1 percentage points, pp)

and 2.7 pp more other errors (Table 3.4). This hints at room for improvements in pulse estimation.

gkiokas [57] on the other hand, has 6.1 pp more factor 2 errors, hinting at possible improvements

in octave correction—something they addressed for ballroom genres in [56]. Compared to the

baseline method base, gflr scores significantly higher in ACC1, mostly because of much fewer

factor 2 errors (6.1 pp) and hardly any factor 3 or 1/3 errors. This more than makes up for slight

increases in factor 1/2 and other errors.

2zplane [aufTAKT] V3, http://www.beat-tracking.com/
3Dev build v3.2, http://developer.echonest.com/
4Therefore the results are not identical to [186].
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3.2. Error Classification and Correction with Random Forests

3.1.4. Conclusions

We have presented a very simple and effective tempo estimation algorithm that combines standard

pulse detection with a continuous tempo octave estimation using the single global feature SNM82.

Broad experimental evaluation shows that our method performs as well or significantly better

than other state-of-the-art algorithms for a large, mixed-genre dataset. This indicates that

perceptual global features can play an important role in tempo octave estimation.

3.2. Error Classification and Correction with Random Forests

As a second novel method for tempo octave error correction, we propose a supervised learning

approach, which re-frames error correction as a classification problem. We are able to demonstrate

that the proposed method performs better or as well as state-of-the-art algorithms when combined

with the simple tempo estimation method from Section 2.3. Furthermore, because our error

correction approach can be trained for any tempo detection method, we are able to show

improvements in ACC1 for previously published algorithms via post-processing.

The remainder of this section is structured as follows. In Section 3.2.1, we describe the tempo

estimation algorithm, test datasets, measures, and investigate common estimation error classes.

Then, in Section 3.2.2, we explain our post-processing procedure, which corrects tempo estimates

using supervised learning based on a small number of audio features. In Section 3.2.3 we evaluate

the proposed features, and then compare our results with those from other methods. Finally, in

Section 3.2.4, we present our conclusions.

Reproducibility

See Appendix A.2 for an implementation of the method presented in this section.

3.2.1. Tempo Estimation

To lay the groundwork for our error correction method, we first describe the used tempo estimation

algorithm, then introduce several test datasets and discuss common pitfalls. In Section 3.2.1.5,

we introduce performance metrics and describe observed errors.
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Figure 3.3.: Tempo distributions for the test datasets.

3.2.1.1. Algorithm

To estimate the dominant pulse we follow the approach taken in Section 2.3, which is similar

to [186, 128]. To ensure meaningful results for most kinds of Western music, we constrain

TMPbase, defined in Eq. 2.17, to [40, 250] by halving or doubling its value, if necessary.5

5Which is why base-results are not identical to Table 3.3.
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Dataset Sweet Octave (BPM) Coverage (%) 90% (BPM) 95% (BPM)

ACM Mirum 69− 138 72.8 50− 152 50− 170
Ballroom 71− 142 71.1 84− 204 82− 204
Hainsworth 79− 158 82.4 58− 150 57− 167
GTzan 66− 132 80.9 55− 130 52− 138
ISMIR04 Songs 59− 118 74.1 48− 131 36− 136
SMC 51− 102 68.7 32− 115 32− 143

Combined 69− 138 72.9 40− 150 50− 180

GiantSteps 91− 182 88.1 85− 175 80− 180

Table 3.5.: Sweet octaves and their respective coverage in percent for the test datasets (left). Shortest BPM
intervals required to achieve a test set coverage of 90% or 95% (right).

3.2.1.2. Test Datasets

It has become customary to benchmark tempo estimation methods with results reported for a

small set of well known datasets. These are ACM Mirum [103, 127], Ballroom [64], GTzan [185],

Hainsworth [70], ISMIR04 Songs [64], and SMC [74]. The latter was specifically designed to be

difficult for beat trackers. Where applicable, we used the corrected annotations from [128]. We

refer to the union of these six datasets as the Combined dataset. Additionally, we test against the

recently published GiantSteps dataset for electronic dance music (EDM) [88]. It is not included

in Combined to allow direct comparisons with older literature.

Not surprisingly, all mentioned datasets differ in their composition (Figure 3.3). The mean tempo

ranges from 78 BPM (SMC ) to 137 BPM (GiantSteps) and the standard deviation spans from

24 (GTzan) to 40 (Ballroom). Furthermore, the tempo distributions of Ballroom and GiantSteps

contain some distinct spikes, while the other datasets more closely resemble normal distributions.

None of the datasets have uniformly distributed tempi.

3.2.1.3. Octave Bias

If a dataset’s tempo distribution is not uniform and most values fall into a relatively small

interval, constraining results to this interval may lead to fewer octave errors. We call deliberately

choosing such an interval octave bias.

To illustrate this, assume an algorithm for the GiantSteps dataset with 50% ACC1, but 100%

ACC2. Further assume that all errors are by a factor of 2 or 1/2. 88.1% of all tempi in GiantSteps

happen to be in [91, 182). If we constrained results to this interval by halving and doubling,

ACC1 would increase from 50% to 88.1%.

Each described dataset has such a sweet octave, i.e., a tempo interval [j, 2j) that contains more of

the dataset’s songs than any other octave (Table 3.5). In the absence of a uniform test set, it is
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Dataset E0 E1 E2 E1/2 E3 E1/3 E4 E1/4 E3/2 E2/3 E5/4 E4/5 E4/3 E3/4

ACM Mirum 0.7 73.5 16.0 7.0 0.8 0.0 0.1 0.0 1.8 0.1 0.0 0.0 0.0 0.1
Ballroom 0.4 64.3 1.0 29.7 0.0 1.1 0.0 0.7 0.1 2.3 0.0 0.0 0.0 0.3
Hainsworth 8.6 64.4 1.4 19.4 0.0 0.5 0.0 0.0 1.8 1.8 0.9 0.5 0.5 0.5
GTzan 4.0 72.2 15.7 5.1 0.4 0.1 0.0 0.0 1.0 0.4 0.1 0.4 0.5 0.1
ISMIR04 Songs 4.3 64.7 19.4 6.3 1.1 0.2 0.0 0.0 2.4 0.4 0.4 0.2 0.2 0.4
SMC 29.0 37.8 6.0 10.6 0.0 2.3 0.0 0.0 5.1 2.3 0.5 2.3 0.9 3.2

Combined 3.9 68.1 12.3 11.2 0.5 0.4 0.0 0.1 1.5 0.8 0.1 0.3 0.2 0.4

GiantSteps 7.1 63.1 4.1 21.5 0.0 0.0 0.0 0.0 0.6 0.3 0.8 0.9 0.5 1.2

Table 3.6.: Error class distribution for tempo estimates TMPbase (given in BPM) for different datasets in percent.

therefore important to test the same algorithm against datasets with different sweet octaves, thus

revealing the effects of octave bias. On the positive side, a specialized or genre-aware algorithm

may benefit from exploiting knowledge about the test dataset (e.g., EDM-specific tempi [75]).

Additionally to sweet octaves, Table 3.5 lists the shortest BPM intervals required to achieve

a certain test set coverage. For example, to cover 90% of the tempi in the ACM Mirum test

set, one only needs to look at the interval [50, 152] and not at the considerably larger interval

[37, 257] required for full coverage.

3.2.1.4. Genre Bias

While octave bias describes how algorithms can exploit constraining results to certain tempo

intervals, genre bias describes a technique for algorithms to constrain their output to a relatively

small set of distinct tempi that are characteristic for the genres in the dataset.

A good example for this is the Ballroom dataset. Even though the dataset contains 698 songs, only

63 different tempi occur. Assuming an unbiased algorithm with integer precision is constrained

to the [40, 250] BPM interval, it solves a task equivalent to choosing one out of 210 classes. An

algorithm trained on the Ballroom dataset using k-fold cross validation “knows” that there are

only 63 classes and therefore has a considerably easier task to solve.

3.2.1.5. Measures

As mentioned above, tempo estimation algorithms are usually evaluated with the metrics ACC1

and ACC2 (Section 2.4). Because we aim to correct estimation errors, we need to test our tempo

estimation method against the test datasets and record not just accuracies, but also the kinds

of errors. To do so, we define the error classes E2, E3, E4, E3/2, E5/4, E4/3 and their reciprocals

with the index indicating the error factor. Just like ACC1 and ACC2 we allow a 4% tolerance.

Since not all estimates are wrong and some errors are not covered by the mentioned classes, we
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3.2. Error Classification and Correction with Random Forests

define E1 for correct estimates (equivalent to ACC1) and E0 for errors not described otherwise.

This leads to a total of 14 classes forming the label set E := {E0, E1, . . .}. Table 3.6 shows

the distribution of estimated tempi over E for the test datasets using the tempo estimation

method from Section 3.2.1.1. For Combined , 12.3% of all tempi are in E2, while 11.2% are in

E1/2. Only 3.9% of all estimated values cannot be explained by one of the defined factors and

thus are collected under the label E0. This implies an upper bound of 96.1% ACC1 for any error

correction scheme based on E w.r.t. the Combined datasets.

3.2.2. Tempo Error Correction

As we have seen, most wrong tempo estimates are off by a limited number of factors. Therefore

the correction of TMPbase can be re-framed as a classification problem, which is solvable using

supervised machine learning. Knowing the error class for an estimate then allows us to calculate

the true tempo. In the following subsections we describe the features used for classification, the

training dataset, and the tempo correction procedure.

3.2.2.1. Features

In order to keep the algorithm simple, we use as features only TMPbase and a very small set

of audio features. While not attempting to specifically model genres, the features we use aim

at characterizing rhythm, tonality, and beat intensity. Combined, we expect them to capture

essential information about a musical piece.

Log Beat Spectrum The tempi corresponding to the most common estimation classes E1/2, E1,

and E2 fall onto a logarithmic scale. To mirror this, we use a logarithmic beat spectrum (LBS) to

describe the different periodicities in the signal. LBS is computed by resampling/interpolating

the beat spectrum B (Section 2.3.3, Eq. 2.14) into 10 logarithmically spaced bands representing

tempi ranging from 40 to 500 BPM. Subsequently it is normalized so that its highest value is 1.

While LBS provides a more complete picture of the periodicities than just the dominant tempo

TMPbase, it does not add any information about the frequency bands these periodicities stem

from. As a second modification to B, we create different versions of LBS based on the five slightly

overlapping bands [30, 110], [100, 220], [200, 440], [400, 880] and [800, 1600] Hz. Combined, these

spectra form the multiband logarithmic beat spectrum (LBSM). For a given song, LBSM consists

of 5× 10 = 50 features.
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Spectral Flatness To represent tonality we use spectral flatness (SF), also known as Wiener

entropy. It is defined as the ratio between the geometric and the arithmetic mean of the power

spectrum (Eq. 2.11):

SF(t) =

(
K−1∏
k=0

Yp(t, k)

) 1
K

1

K

K−1∑
k=0

Yp(t, k)

(3.5)

To determine SF(t), we re-use the power spectra Yp(t, k) defined in Section 2.3.1, Eq. 2.11. For

increased robustness against low sample rates, we limit k to Fcoef(k) ∈ [30, 3000]. As the two

features for a given song we use both the mean and the variance of all its SF(t).

Temporal Flatness To represent onset intensity we use a feature called temporal flatness (TF).

Instead of calculating the Wiener entropy along the frequency axis of Yp(t, k), as we did for SF,

we calculate it over a window of length ` along the time axis:

TF(t, `, k) =

(
`−1∏
i=0

Yp(t+ i, k)

) 1
`

1

`

`−1∑
i=0

Yp(t+ i, k)

(3.6)

To compute TF values, we again re-use Yp and limit k to Fcoef(k) ∈ [30, 3000]. Yp is split into

non-overlapping windows with length ` = 100. For each bin k in a given window we compute TF.

We then calculate the average TFW(t, `) over all k. As the two features for a song we use the

mean and the variance of all its TFW(t, `) values.

3.2.2.2. Training Dataset

To avoid learning the test datasets, we use a dataset for training the classifier that has been

created separately. Train is the union of an annotated, private music collection and the Extended

Ballroom dataset [105] minus the 354 songs also occurring in the regular Ballroom set. Genre

labels are available for 71% of the recordings. The genre as well as the tempo distribution are

shown in Figure 3.4.
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Figure 3.4.: Distribution of genres and tempi for Train.

3.2.2.3. Correcting the Tempo Estimate

Differences between the training dataset’s true tempo values and the estimated tempo values

let us derive error class labels. With those and the proposed features, we can train a classifier.

Using the classifier, we are then able to predict an estimated error class E ∈ E for any song

for which we also have features and a tempo estimate. Note that this estimate does not have

to stem from our own algorithm introduced in Chapter 3.2.1.1. One main idea of this method,

indeed, is that the classification model is algorithm-specific. In other words, the classifier must

be trained for each tempo estimation algorithm. Once trained, it can be used to correct octave

errors inherent to the given tempo estimation algorithm. For the prediction process itself, we use

a random forest [14] with 300 trees and a maximum depth of 25.

Given the estimated tempo TMPbase and the predicted error E the calculation of the corrected

tempo TMPoerf is straight forward:
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Features ACC1 ACC2

base 68.10- 92.54

LBS 74.89- 92.54
LBS + SF 75.66 92.37
LBS + TF 76.43 92.47
LBS + SF + TF 76.28 92.32
LBSM 75.61 93.87
LBSM + SF 74.81- 92.59
LBSM + TF 76.33 92.37
LBSM + SF + TF 75.11 92.52

Table 3.7.: ACC1 and ACC2 for different feature combinations trained on Train and tested against Combined .
The ‘−’ signs indicate a statistically significant difference between the marked results and LBS + TF.

J(TMPbase, E) =

{
1 if E = E0

i for Ei
(3.7)

TMPoerf = TMPbase · J(TMPbase, E)

3.2.3. Evaluation

In a first evaluation step, we compute ACC1 for different feature combinations. We then compare

the best combination with publicly available algorithms as well as other simple correction schemes.

3.2.3.1. Feature Evaluation

We trained the classifier using the dataset Train with different combinations of the proposed

audio features and measured the performance against the dataset Combined . All tested feature

combinations clearly outperformed the baseline algorithm base (TMPbase without correction)

by at least 6 pp (percentage points) for ACC1 (Table 3.7). As was to be expected, ACC2

didn’t change significantly. The best performing feature combination was LBS + TF with an

ACC1 of 76.43%. When testing for significance with McNemar’s test and a significance level of

p < 0.01 [201], we found that LBS + TF performed significantly better w.r.t. ACC1 than LBS,

LBSM + SF, and base. In the following we refer to the error classifier trained with LBS + TF as

post. If no tempo estimation algorithm is explicitly mentioned, the method from Section 3.2.1.1

is otherwise implied.
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Dataset base base+post stem stem+post böck böck+post gflr gflr+post

(oerf)

ACM Mirum 73.5 81.6+ 73.6 79.0+ 74.0 75.6+ 76.0 81.0+
ISMIR04 Songs 64.7 68.1 58.8 61.0 55.0 58.0+ 73.0 69.6-
Ballroom 64.3 85.0+ 63.2 80.8+ 84.0 89.5+ 66.8 84.7+
Hainsworth 64.4 73.0+ 67.1 72.0+ 80.6 81.5 70.7 73.9
GTzan 72.2 77.2+ 76.1 75.1 69.7 70.3 77.1 75.4
SMC 37.8 33.2 21.2 21.7 44.7 43.8 35.0 31.3-

Dataset Avg 62.8 69.7 60.0 65.0 68.0 69.8 66.5 69.3
Combined 68.1 76.4+ 67.5 72.8+ 71.2 73.3+ 71.8 75.8+

GiantSteps 61.1 62.7 44.4 62.2+ 58.9 68.7+ 56.6 58.6
GiantSteps
+ Combined 67.4 74.5+ 64.2 71.3+ 69.5 72.6+ 69.7 73.4+

Table 3.8.: Tempo results for ACC1 (with 4% tolerance) in percent. The ‘+’ and ‘−’ signs indicate a statistically
significant difference between an algorithm and the same algorithm enhanced with post. Bold numbers
mark the best-performing algorithm(s) for a dataset. Dataset Avg is the mean of the algorithms’
results for each dataset except GiantSteps.
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50

60

70

80

90

100

68
.1

67
.5 71
.2

71
.876
.4

72
.8

73
.3

75
.8

Tempo estimation algorithm

A
C
C

1
(%

)

algorithm algorithm+post

Figure 3.5.: ACC1 for Combined for different algorithms with and without post error correction. All algorithms
reach significantly higher scores when combined with post.

3.2.3.2. Comparative Evaluation

We compared our method base+post6 to its baseline base and the three publicly available

algorithms böck, stem, and gflr (Section 3.1) using the test datasets described in Section 3.2.1.2.

böck7 is the algorithm published by Böck et al. in [6], but trained with different datasets—

among them our test data, i.e., the algorithm is “familiar” with the test sets. According to

the authors, this configuration participated in MIREX 2016. stem is an algorithm aiming for

low computational complexity published by Percival et al. [128]. We used the implementation

6In later chapters base+post is referred to as oerf, Octave Error correction with Random Forests.
7https://github.com/CPJKU/madmom/
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Figure 3.6.: ACC1 for Combined using no error correction, constraint-based correction, and post correction for
various tempo estimation algorithms.

contained in Marsyas 0.5.0.8 Lastly, gflr is the system described in Section 3.1. Since our error

estimation and correction method can be used as a post-processor for any tempo estimator, we

also trained the classifier for each of these three tempo estimation algorithms to investigate

potential improvements.

Figure 3.5 shows the ACC1 results for the four algorithms when tested against Combined , both

with and without post-processing. All of them score significantly higher values when combined

with post than in their plain form (McNemar, p < 0.01). The algorithms base (76.4%, increase

of +8.3 pp) and stem (72.8%, +5.3 pp) clearly benefit the most, but also böck (73.3%, +2.1 pp)

and gflr (75.8%, +4.0 pp) gain several percentage points.

As discussed in Section 3.2.1.3, a simple error correction scheme can be based on octave bias

exploiting statistical properties of the test dataset. We therefore compared our method with

such a constraint-based scheme, where tempi below a lower interval bound are doubled and

above an upper bound are halved. For intervals we used the sweet octave and those listed in

Table 3.5 with 90% and 95% coverage. Results are shown in Figure 3.6. Except for böck, none

of the algorithms benefitted much from the simple correction—perhaps a certain bias is already

built-in. When comparing böck+post and böck +90% we were not able to observe a significant

difference. It appears, as if böck’s octave errors are harder to predict and correct than those of

the other algorithms, perhaps because they are less systematic in nature.

Table 3.8 provides a detailed overview of ACC1 results for each of the test algorithms for all test

datasets.9 As mentioned, base+post reaches the highest score for the Combined dataset (76.4%).

To the best of our knowledge, this is the highest ACC1 score reported for Combined to date.10

For four of the six Combined datasets, base+post reaches significantly higher values than base

8http://marsyas.info/
9Results differ from [160], because in [160] erroneously an 8% tolerance was used instead of 4%.

10At the time, when this work was originally published.
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(indicated by ‘+’ signs in Table 3.8). The largest improvement was achieved for the Ballroom test

set. The score for base+post is more than 20 pp higher than base’s. The fact that 29% of Train

consists of ballroom tracks certainly plays a role here. While the base+post score for ISMIR04

Songs is 3.4 pp higher than base’s, the improvement is not significant. Similarly, the change for

the SMC dataset (−4.6 pp) is not significant, but noteworthy. We believe that both octave and

genre bias may play a role here. Tracks in SMC are very different in style from those in Train.

And compared to SMC , Train contains relatively few examples for slow tracks with 60 BPM or

less. Informal tests confirm that choosing a different training dataset leads to better results.

Dataset-specific scores for böck+post are all higher than those for böck—more than half of them

significantly. The largest increase can be observed for the GiantSteps dataset. Plain böck scores

58.9%—combined with post it reaches 68.7% (+9.8 pp). To the best of our knowledge, this is

the highest reported value for an unbiased, non-commercial algorithm to date.11,12

Dataset Avg is the mean of the results for each of the six datasets in Combined . Because it is an

unweighted average, it is not dominated by the larger datasets. But just like for Combined , we

can observe higher scores for all algorithms when combined with post. With 69.8% (+1.8 pp)

böck+post reaches the highest score, closely followed by base+post with 69.7% (+6.9 pp). stem

(65.0%, +5.0 pp) and gflr (69.3%, +2.8 pp) benefitted as well.

Though not the topic of this section, we also measured ACC2. As expected, the results did not

surprise and stayed stable.

3.2.4. Conclusions

We have shown that the proposed error correction method based on supervised learning of tempo

estimation errors is capable of significantly improving ACC1 results for existing tempo estimation

algorithms. It does so in an algorithm-specific post-processing step. Combined with a simple

tempo estimation algorithm, it outperforms other state-of-the-art algorithms for most of the

tested datasets. We believe the error correction method can be enhanced even further by carefully

selecting and incorporating other genre-related features.

We also discussed different kinds of biases that can have a large influence on the accuracy of

tempo estimation algorithms. Ideally, evaluations of general purpose tempo estimators should

be based on datasets with a mostly uniform tempo and genre distribution. Because better

training data potentially leads to better results, training datasets should be an integral part

of the comparison to make fair benchmarking possible. Defined train/test splits for existing

datasets could be a first step in this direction.

11http://www.cp.jku.at/datasets/giantsteps/
12At the time, when this work was originally published in [160].
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4. CNN-Based Tempo Estimation

In this chapter, we propose a method for local and global tempo estimation

that works without an explicit OSS or other mid-level representation us-

ing solely a convolutional neural network. It is based on my work in [161].

Many different approaches to tempo estimation have been taken in the past. Early tempo

estimation methods often combined signal processing with heuristics. Scheirer [150] for example

used bandpass filters, followed by parallel comb filters, followed by peak picking. Klapuri et

al. [86] replaced the conventional bandpass approach with STFTs, producing 36 band spectra. By

differentiating and then half-wave rectifying the power in each band, they created band-specific

onset strength signals (OSS), which were then combined into four accent signals and fed into

comb filters in order to detect periodicities. Instead of processing an OSS with comb filters,

several other methods have been proposed. Among them autocorrelation [4, 117], clustering of

inter-onset intervals (IOI) [33, 169], and the discrete Fourier transform (DFT) [126, 117].

Recent approaches put emphasis on finding not just a periodicity, but on finding one corre-

sponding to the perceived tempo, trying to avoid so-called octave errors (Chapter 3) [64]. The

methods used range from genre classification (e.g., obtained by a genre classification compo-

nent) [168, 75], secondary tempo estimation (Section 3.1), and the discrete cosine transform of

IOI histograms [43], to machine learning approaches like Gaussian mixture models (GMM) [127],

support vector machines (SVM) [56, 128], k-nearest neighbor classification (k-NNC) [197, 196],

neural networks [42], and our own method using random forests (Section 3.2).

Another area of active research aims at creating a better OSS through the use of neural networks.

Elowsson [42] uses harmonic/percussive source separation and two different feedforward neural

networks to classify a frame as beat or non-beat. Böck et al. [6] use a bidirectional long short-term

memory (BLSTM) recurrent neural network (RNN) to map spectral magnitude frames and

their first order differences to beat activation values. These are then processed further with

comb filters. For their dancing robot application, Gkiokas et al. [55] use a convolutional neural

network (CNN) to derive a beat activation function, which is then used for beat tracking and

tempo estimation.
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Figure 4.1.: Tempo distribution for the Train dataset consisting of LMD Tempo, MTG Tempo, and EBall .

What all these methods have in common is the multi-step approach of decomposing the signal

into sub-bands, deriving some kind of OSS, detecting periodicities, and then trying to pick

the best one. As Humphrey et al. [76] point out, this can be described as a deep architecture

consisting of multiple components (“layers”) that has evolved naturally. But to the best of our

knowledge, nobody has replaced the traditional multi-component architecture with a single deep

neural network (DNN) yet. In this chapter we describe a CNN-based approach that estimates

the local tempo of a short musical piece or excerpt based on mel-scaled spectrograms in a single

step, i.e., without explicitly creating mid-level features like an OSS or a beat activation function

that need to be processed further by another, separate system component. Using averaging, we

can combine multiple local tempi into a global tempo. Please note that in this thesis we are not

going to introduce basics of deep learning, but refer to [58].

The remainder of this chapter is structured as follows: Section 4.1 introduces our training

datasets. Then, Section 4.2 describes the signal representation, network architecture, network

training, and how we combine multiple local estimates into a global estimate. In Section 4.3 we

evaluate our global tempo estimation approach quantitatively by benchmarking against known

datasets and state-of-the-art algorithms. Then we discuss local tempo estimation qualitatively

using samples from different genres and eras. Finally, in Section 4.4 we present our conclusions.

Reproducibility

See Appendix A.3 for an implementation of the method presented in this section.

Training dataset annotations are available at DOIDOI 10.5281/zenodo.355359210.5281/zenodo.3553592 .

4.1. Training Datasets

Our goal is to create a general purpose system that does not suffer from strong genre bias.

Therefore we avoid cross-validation on small datasets and instead created a large, multi-genre

training dataset, consisting of three smaller datasets: One derived from a subset of the Lakh
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Figure 4.2.: Genre distribution in LMD Tempo.

MIDI dataset (LMD) [136], a subset of the GiantSteps MTG key dataset (MTG Key) [45]1, and

a subset of the Extended Ballroom [105] dataset. Two of the derived ground-truths have been

newly created for this work.

4.1.1. LMD Tempo

LMD is a dataset containing MIDI files that have been matched to 30 s audio excerpts. While

some of the MIDI files contain tempo information, none of the audio files are annotated, and

there is no guarantee that associated MIDI and audio files have the same tempo. Our idea is

to create a sub-dataset, called LMD Tempo, that can be used for training supervised tempo

induction algorithms. To this end, we estimated the tempo of the matched audio previews using

the algorithm from Section 3.2. Then the associated MIDI files were parsed for tempo change

messages. If the value of more than half the tempo messages for a given preview were within 2%

of the estimated tempo, we assumed the estimated tempo of the audio excerpts to be correct

and added it to LMD Tempo. This resulted in 3,611 audio tracks. We were able to match more

than 76% of the tracks to the Million Song Dataset (MSD) genre annotations from [154]. Of the

matched tracks 29% were labeled Rock, 27% Pop, 5% R&B, 5% Dance, 5% Country, 4% Latin,

and 3% Electronic. Less than 22% of the tracks were labeled Jazz, Soundtrack, World and others

(Figure 4.2). Thus it is fair to characterize LMD Tempo as a good cross-section of popular music.

4.1.2. MTG Tempo

The MTG Key dataset was created by Faraldo [45] as a ground-truth for key estimation of

electronic dance music (EDM), a genre that is very much underrepresented in LMD Tempo.

Each two-minute track in MTG Key is annotated with one or more keys and a confidence value

1https://github.com/GiantSteps/GiantSteps-mtg-key-dataset
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c ∈ {0, 1, 2} for the key annotation. We annotated those tracks that have an unambiguous key

and a confidence of c = 2 with a manually tapped tempo, which makes it one of the very few

datasets that is suitable for key and tempo estimation. The resulting dataset size is 1,159 tracks.

In the following we will refer to this new ground-truth as MTG Tempo. The detailed genre

distribution is depicted in Figure 4.3.

4.1.3. Extended Ballroom

The original Ballroom dataset [64] is still used as test dataset today, which is why we exclude it

from training. Better suited is the recently released and much larger Extended Ballroom dataset.

Because it contains some songs also occurring in Ballroom, we use the complement Extended

Ballroom \ Ballroom. We refer to the resulting dataset as EBall . It contains 3,826 tracks with

30 s length each. EBall contributes tracks from genres that are underrepresented or simply absent

from both MTG Tempo and LMD Tempo, like Waltz and Foxtrot. The exact genre distribution

is depicted in Figure 4.4.

4.1.4. Combined Training Dataset

Combined, LMD Tempo, MTG Tempo, and EBall have a size of 8,596 tracks with tempi ranging

from 44 to 216 BPM (Figure 4.1). In the following we will call it Train. The sweet octave (i.e., the

tempo interval [τ, 2τ) that contains the most tracks; see Section 3.2.1.3) for Train is 77−154 BPM,

covering 84.4% of the items. The shortest interval that covers 99% of the items is 65− 204 BPM.

Even though many different tempi are represented, Train is not tempo-balanced. More than

30% of its tracks have tempi in the [120, 130) interval. Its mean is µ = 121.32 and the standard
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Figure 4.4.: Genre distribution in EBall .

deviation σ = 30.52. And while covering many different genres, Train is not genre-balanced,

either. Genres like Jazz and World only have relatively few representatives. But despite these

shortcomings, Train is a very rich, multi-faceted dataset and completely independent from the

test datasets we are going to use for evaluation in Section 4.3.1.

4.2. Method

Our proposed method for estimating a local tempo consists of a single step. Using a suitable

representation we classify the signal with a CNN, which produces a BPM value. We extend the

system for global tempo estimation by averaging the softmax activation function over different

parts of a full track.

4.2.1. Signal Representation

Although we believe that it is possible to build a system like ours with raw audio as input [30, 99],

we choose to represent the signal as mel-scaled magnitude spectrogram to reduce the amount of

data that needs to be processed by the CNN. The mel-scale as opposed to a linear scale was

chosen for its relation to human perception and instrument frequency ranges.

To create the spectrogram, we convert the signal to mono, downsample to 11,025 Hz and use

half-overlapping windows of 1,024 samples. This is equivalent to a frame rate of 21.5 Hz, which

(according to the Nyquist-Shannon-Kotelnikov sampling theorem) suffices to represent tempi up

to 646 BPM—well above the tempi we usually find in music. Each window is transformed into a

40 band mel-scaled magnitude spectrum covering 20− 5,000 Hz by applying a Hamming window,
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Figure 4.5.: Schematic overview of the network architecture. Three convolutional layers are followed by four
mf mod modules, which in turn are followed by four dense layers.

the DFT, and a suitable filterbank. Since musical tempo is not an instantaneous quantity, we

require a spectrogram of a musically sufficient length. As such we choose 256 frames, equivalent

to ≈ 11.9 s.
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Figure 4.6.: Each multi-filter module mf mod consists of a pooling layer, batch normalization, six different
convolutional layers, a concatenation layer, and a bottleneck layer. The activation function for all
convolutional layers is ELU.

4.2.2. Network Architecture

Even though tempo estimation appears to be a regression problem, we are approaching it as

a classification problem for two reasons. First, a probability distribution over multiple classes

allows us to judge how reliable a given estimate is. Additionally, such a distribution is naturally

capable of representing tempo ambiguities [110], allowing for the estimation of a second best

tempo. Second, in informal experiments we found that a classification-based approach led to more

stable results compared to a regression-based approach. So instead of attempting to estimate a

BPM value as decimal number, we are choosing one of 256 tempo classes, covering the integer

tempo values from 30 to 285 BPM.

The proposed network architecture (Figure 4.5) is inspired by the traditional approach of first

creating an OSS, which is then analyzed for periodicities. In our approach, we first process the

input with three convolutional layers with 16 (1× 5) filters each. All filters are oriented along

the time axis using padding and a stride of 1. Using these fairly short filters, we hope to match

onsets in the signal.

These three layers are followed by four almost identical multi-filter modules (mf mod , Figure 4.6)

each consisting of an average pooling layer (m× 1), parallel convolutional layers with different

filter lengths ranging from (1× 32) to (1× 256), a concatenation layer and a (1× 1) bottleneck

layer for dimensionality reduction. With each of these modules we are trying to achieve two

goals: 1) Pooling along the frequency axis to summarize mel-bands, and 2) matching the signal
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Figure 4.7.: Scale-&-crop data augmentation. During training, the mel-spectrogram is first stretched or com-
pressed along the time axis, which requires an adjustment of the ground-truth label, and then
cropped to 256 frames at a randomly chosen offset.

with a variety of filters that are capable of detecting long temporal dependencies. Using parallel

convolutional layers with different filter lengths has been inspired by [130, 184]. In a traditional

system, this could be regarded as some sort of comb filterbank.

To classify the features delivered by the convolutional layers, we add two fully connected layers

(64 units each) followed by an output layer with 256 units. The output layer uses softmax as

activation function, while all other layers use ELU [24]. Each convolutional or fully connected

layer is preceded by batch normalization [78]. The first fully connected layer is additionally

preceded by a dropout layer with p = 0.5 to counter overfitting. As loss function we use categorical

cross-entropy. Overall, the network has 2,921,042 trainable parameters.

4.2.3. Network Training

We use 90% of Train for training and 10% for validation. To counter the tempo class imbalance

and, at the same time, augment the dataset during training, for each epoch, we use a scale-&-

crop-approach borrowed from image recognition systems (see e.g., [174]). Contrary to regular

images, the two dimensions of spectrograms have very different meaning, which is why we cannot

simply scale-&-crop indiscriminately. Instead, we have to be careful to either not change the

labeled meaning of a sample or change its label suitably (Figure 4.7). In our case this means

that we have to preserve the properties of the frequency axis, but may manipulate the time axis.

Concretely, we scale the time axis of the samples’ mel-spectrograms with a randomly chosen

factor ∈ {0.8, 0.84, 0.88, . . . , 1.16, 1.2} using spline interpolation and adjust the ground-truth
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(a) ACC0

Dataset oerf böck cnn

ACM Mirum 45.2+ 29.4- 40.6
ISMIR04 Songs 39.0 27.2- 34.1
Ballroom 60.9- 33.8- 67.9
Hainsworth 48.6 33.8 43.2
GTzan 43.7+ 32.2- 36.9
SMC 14.3 17.1 12.4
GiantSteps 52.1- 37.2- 59.8

Combined 46.3 31.2- 44.8

Dataset Avg 43.4 30.1 42.1

(b) ACC1

oerf böck cnn

81.8 74.0- 79.5
66.8+ 55.0 60.6
85.5- 84.0- 92.0
73.0 80.6 77.0
77.4+ 69.7 69.4
35.0 44.7+ 33.6
62.2- 58.9- 73.0

74.6 69.5- 74.2

68.8 66.7 69.3

(c) ACC2

oerf böck cnn

97.3 97.7 97.4
91.6 95.0 92.2
98.0 98.7 98.4
85.1 89.2+ 84.2
93.2 95.0+ 92.6
53.9 67.3+ 50.2
88.7 86.4- 89.3

92.1 93.6+ 92.1

86.8 89.9 86.4

Table 4.1.: Accuracies in percent. The ‘+’ and ‘−’ signs indicate a statistically significant difference between
either oerf or böck, and cnn. Bold numbers mark the best-performing algorithm(s) for a dataset.
Dataset Avg is the mean of the algorithms’ results for each dataset.

tempo labels accordingly. This substantially increases the number of different samples we can

present to the network. Since the full mel-spectrogram for a sample is longer than the network

input layer (e.g., covering 60 s vs. 11.9 s), we crop each scaled sample at a randomly chosen

time axis offset to fit the input layer. This again drastically increases the number of different

samples we can offer to the network. After scaling and cropping, the values of the resulting

sub-spectrogram are rescaled to [0, 1]. In order to ensure comparability, time-axis augmentations

are skipped during validation.

We define ACC0 as the fraction of estimates that are correct when rounding decimal ground-truth

labels to the nearest integer. To avoid overfitting, we train until ACC0 for the validation set

has not improved for 20 epochs using Adam [84] (with a learning rate of 0.001, β1 = 0.9, β2 =

0.999, ε = 1e−8) as optimizer, and then keep the model that achieved the highest validation

ACC0 (early stopping).

4.2.4. Global Tempo Estimation

Since the input layer is usually shorter than the mel-spectrogram of a whole track, it estimates

merely a local tempo. To estimate the global tempo for a track, we calculate multiple output

activations using a sliding window with half-overlap, i.e., a hop size of 128 frames ≈ 5.96 s. The

activations are averaged class-wise and then—just like in the local approach—the tempo class

with the greatest activation is picked as the result.
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4.3. Evaluation

For evaluation, we trained three models and chose the one with the highest ACC0 measured

against the validation set as our final model. As metrics we used ACC0 as well as ACC1 and

ACC2.

4.3.1. Global Tempo Benchmarking

It has become customary to benchmark tempo estimation methods with results reported for a

small set of datasets: ACM Mirum [127], Ballroom [64], GTzan [185], Hainsworth [70], ISMIR04

Songs [64], GiantSteps Tempo [88], and SMC [74]. The latter was specifically designed to be

difficult for beat trackers. Where applicable, we used the corrected annotations from [128]. A

detailed description of the datasets is given in Section 3.2.1.2. We refer to the union of these seven

datasets as Combined . Unweighted averages of results for all seven datasets will be referred to as

Dataset Avg . We benchmarked our approach cnn with the algorithms by Böck et al. (böck) [6]2

and our own approach from Section 3.2 (oerf). Table 4.1 shows the results.3

Overall, cnn achieves results similar to oerf’s when tested against Combined with the strict

metrics ACC0 (44.8 %) and ACC1 (74.2 %).4 Both accuracy values are slightly lower when

summarized as Dataset Avg . Here, cnn reaches the highest ACC1 value (69.3 %) of the compared

systems. When testing with octave-error tolerance, i.e., ACC2, böck reaches 93.6 % for Combined ,

versus 92.1 % reached by oerf, and 92.1 % reached by cnn. In essence, cnn and oerf are better

than böck at estimating the tempo octave correctly, while böck achieves a slightly higher accuracy

when ignoring the metrical level. This may be due to the fact that böck first and foremost

attempts to identify individual beats instead of looking at the larger picture.

When inspecting the dataset-specific results, we find that cnn’s ACC1 is particularly high for

Ballroom (92.0 %) and GiantSteps (73.0 %). In fact, they are significantly higher than böck’s

(+8.0 pp/+14.1 pp) or oerf’s (+6.9 pp/+10.8 pp) results. Both the Ballroom and GiantSteps

values can be explained through our training dataset. They clearly correspond to EBall and MTG

Tempo, therefore high values are not surprising. To us these results indicate that a genre-complete

training set may lead to better results for the other datasets as well. This hypothesis is supported

by the fact that GTzan contains genres like Reggae, Classical, Blues, and Jazz, and Hainsworth

contains the genres Choral, Classical, Folk, and Jazz—none of which are well represented in

2madmom-0.15.1, default options, available at https://github.com/CPJKU/madmom
3Due to a (now fixed) programming error in the public oerf package (Appendix A.2), we have erroneously

reported lower values for oerf in [161].
4Similar ACC1 results are also reported in the recent work by Foroughmand and Peeters [49], but a significant

difference has not been shown.
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(a) Honky Tonk Women by The Rolling Stones

(b) Rolling in the Deep by Adele
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Figure 4.8.: Tempo class probabilities for tracks from different genres and eras. (a) The tempo drift of the
performance is clearly visible: the track starts with 108 BPM and ends with 125 BPM. (b) Very
stable tempo of a modern pop music production. (c) Dubstep track with several no beat passages,
a very active middle section, and halve tempo intro and outro.

Train. A similar connection may exist for böck and GiantSteps—as far as we know, böck has

not been trained on EDM.

4.3.2. Local Tempo Visualization

To illustrate the system’s performance for continuous local tempo estimation, we analyzed several

tracks from different genres using overlapping windows with a relatively small hop size of 32

frames, i.e., e ≈ 1.5 seconds. For clarity, we cropped the images at 50 and 150 BPM. Figure 4.8a

beautifully reveals the tempo drift in The Rolling Stone’s 1969 performance of Honky Tonk

Women, starting out at 108 BPM and ending in 125 BPM. In contrast, Adele’s relatively recent
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studio production Rolling in the Deep (Figure 4.8b) stays very stable at 105 BPM. A more

complicated picture is presented by the dubstep track Typhoon by Foreign Beggars/Chasing

Shadows (Figure 4.8c). After several seconds of weather noises, the intro starts with 70 BPM.

The main part’s tempo is clearly 140 BPM interrupted by two sections with no beat. The outro

again feels like 70 BPM followed by a fade out.

4.4. Conclusions

We have presented a single-step tempo estimation system consisting of a convolutional neural

network (CNN). With a conventional mel-spectrogram as input, the system is capable of estimating

the musical tempo using multi-class classification. The network’s architecture consolidates

traditional multi-step approaches into a single CNN, avoiding explicit mid-level features such as

onset strength signals (OSS) or beat activation functions. Consequently and contrary to many

other systems, our approach does not rely on handcrafted features or ad-hoc heuristics, but is

completely data-driven. The system was trained with samples from the union of several large

datasets, two of which were newly created. To aid training, we applied problem-specific data

augmentation techniques. For global tempo estimation, we have shown that our single network,

data-driven approach performs as well as other more complicated state-of-the-art systems,

especially w.r.t. ACC1. Furthermore, by visualizing examples for local tempo estimations, we

have demonstrated qualitatively how the system can aid music analysis, e.g., to identify tempo

drift.

We believe that the system can be improved even further by training with a more balanced dataset

that contains tracks for all tested genres. Notably missing from the current training set are Jazz,

Classical, or Reggae tracks. Another area of potential improvement is the network architecture.

Shorter filters, dilated convolutions, residual connections, and a suitable replacement for the

fully connected layers might be used to reduce the number of parameters and thus the number

of operations needed for training and estimation.
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5. Electronic Dance Music: A Crowdsourced

Experiment

In this chapter we describe an online experiment that aimed at investigating

the reason for low accuracy scores for the GiantSteps Tempo dataset and

report its results . It is based on my work in [162].

A necessary precondition for successful global tempo estimation is the existence of a stable tempo

as it often occurs in Rock, Pop, or Dance music. To evaluate a tempo estimation system one

needs the system itself, a dataset with suitable tempo annotations, and one or more metrics. One

such dataset, named GiantSteps Tempo, has been released by Knees et al. in 2015 [88]. It was

created by scraping a forum that lets listeners discuss Beatport1 songs with wrong tempo labels.

Scraping was done via a script and 15% of the labels were manually verified. All 664 tracks

in the dataset belong to the umbrella genre electronic dance music (EDM) with its subgenres

Trance, Drum-and-Bass, Techno, etc. Since its release, several academic and commercial tempo

estimation systems have been tested against the dataset (e.g., Sections 3.2.3.2 and 4.3). As is

common for datasets annotated with only a single tempo per track, the two metrics ACC1 and

ACC2 were used. The highest results reported for the GiantSteps dataset are 77.0% ACC1 by

the applications NI Traktor Pro 22 (with octave bias 88− 175) and 90.2% ACC2 by CrossDJ3

(with octave bias 75 − 150).4 These results are surprisingly low—the highest reported ACC2

values for other commonly used datasets like ACM Mirum [127], Ballroom [64], and GTzan [185]

are greater than 95% [6]. Since EDM is often associated with repeating bass drum patterns and

steady tempi [106, 15], it should be comparatively easy to estimate the tempo for this genre. We

hypothesize that relatively low accuracy values were achieved for multiple possible reasons. Since

the annotations were scraped off a forum for disputed tempo labels, the dataset may contain

many tracks that are especially hard to annotate for humans. And if not difficult for humans to

annotate, it is conceivable that the tracks are particularly hard for algorithms to analyze. Lastly,

if neither humans nor algorithms fail, perhaps some of the scraped annotations are simply wrong.

1https://www.beatport.com/, an online music store
2https://www.native-instruments.com/en/products/traktor/dj-software/traktor-pro-2/
3https://www.mixvibes.com/cross-free-dj-software/
4More benchmark results are available at http://www.cp.jku.at/datasets/giantsteps/
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Chapter 5. Electronic Dance Music: A Crowdsourced Experiment

In this chapter, we investigate why tempo estimation systems perform so poorly for GiantSteps

Tempo. To this end, we conducted a large, crowdsourced experiment to collect new tempo

data for GiantSteps Tempo from human participants. The experiment is described in detail in

Section 5.1. The data is analyzed in Section 5.2 and used to create a new ground-truth. This

ground-truth is then compared to the original ground-truth and used to evaluate three recent

algorithms. The results are discussed in Section 5.3. Finally, in Section 5.4, we summarize our

findings and draw conclusions.

Reproducibility

All collected data and derived annotations are available at DOIDOI 10.5281/zenodo.355362510.5281/zenodo.3553625 .

5.1. Experiment

In order to generate a new ground-truth for the GiantSteps Tempo dataset, we set up a web-based

experiment in which we asked participants to tap along to audio excerpts using their keyboard or

touchscreen. The user interface for this experiment is depicted in Figure 5.1. Since most tracks

from the dataset are 2 min long and tapping for the full duration is difficult, we split each track

into half-overlapping 30 s segments. Out of the 664 tracks we created 4,640 such segments (in

most cases 7 per track). To measure tempo, it is not important for tap and beat to occur at the

same time. In contrast to experiments for beat tracking, phase shifts, input method latencies,

or anticipatory early tapping—known as negative mean asynchrony (NMA)—are irrelevant, as

long as they stay constant (see [140] for an overview of tapping and [25, 74] for beat tracking).

Therefore participants were asked to tap along to randomly chosen segments as steadily as

possible, over the entire duration of 30 s without skipping beats. To encourage steady tapping,

the user interface gave immediate feedback in the form of the mean tempo µ in BPM, the median

tempo med in BPM, the standard deviation of the inter-tap intervals (ITI) σ in milliseconds,

as well as textual messages and emojis (Figure 5.1). When calculating the standard deviation,

the first three taps were ignored, as those are typically of low quality (users have to find their

way into the groove). When the standard deviation σ stayed very low, smilies, thumbs up and

textual praise were shown. When σ climbed above a certain threshold, the user was shown sad

faces and messages like “Did you miss a beat? Try to tap more steadily.” To prevent low quality

submissions, users were only allowed to proceed to the next track, once four conditions were met:

1. 20 or more taps

2. Taps cover at least 15 s

3. ITI standard deviation: σ < 50 ms

4. Median tempo: 50 ≤ med ≤ 210 BPM
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5.1. Experiment

Figure 5.1.: Illustration of the web-based interface used in our experimental user study.

While the first three conditions were not explicitly communicated, the instructions made par-

ticipants aware that the target tempo lies between 50 and 210 BPM. Once all four conditions

were met, a large red bar turned green and the Next button became enabled. For situations in

which the user was not able to fulfill all conditions, the user interface offered a No Beat checkbox.

Once checked, it allowed users to bypass the quality check and proceed to the next song. It must

be noted that there is a tradeoff between encouraging participants to tap well (i.e., steadily)

and a bias towards stable tempi. We opted for this design for two reasons. 1) tempo in EDM

is usually is very steady [106, 15]. 2) the bias is limited to individual tapping sessions at the

segment level, i.e., we can still detect tempo stability problems on the track level by aggregating

segment level annotations.

Participants were recruited from two distinct groups: Academics and people interested in the

consumer-level music library management system beaTunes (Appendix D). We refer to the former

group as academics and the latter as beaTunes. While members of the academics group were

asked to help in this experiment via relevant mailing lists without offering any benefits, members

of the beaTunes group were incentivized by promising a reward license for the beaTunes software,

if they submitted 110 valid annotations. While it was not explicitly specified what a “valid
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annotation” is, we attempted to steer people in the right direction using instructions and the

instant feedback mechanisms described above (Figure 5.1).

5.2. Data Analysis

Over a period of 21/2 months 266 persons participated in the experiment, 217 (81.6%) belonging

to beaTunes and 49 (18.4%) to academics. Together they submitted 18,684 segment annotations

(avg = 4.03/segment). We made sure that all segments were annotated at least twice. Since

some segments are harder to annotate than others, we monitored submissions and ensured that

segments annotated by participants as very different from the original ground-truth—exceeding

a tolerance of 4%—were presented to participants more often than others. The vast majority

of annotations was submitted by the beaTunes group (95.1%). Overall 7.5% of all submissions

were marked with No Beat. With 7.6% the No Beat-rate was slightly higher among members of

the beaTunes group. Members of academics checked No Beat only for 5.2% of their submissions.

Since the experiment was run in the participant’s web-browser, the browser’s user-agent for each

submission was logged by the web-server. Among other information the user-agent contains the

name of the participant’s operating system. 17,012 (91.1%) of the submissions were sent from

desktop operating systems that are typically connected to a physical keyboard. 1,672 (8.9%)

were from mobile operating systems that are usually associated with touchscreens. Participants

interested in a reward license, also had to enter name and email. Both datapoints have been

removed from the collected data to ensure anonymity.

We analyzed the submitted data to find out whether we can find quality differences between

submissions from different participant groups (Section 5.2.1). Section 5.2.2 introduces metrics

for ambiguity and stability. In Section 5.2.3, we measure to which extent participants agree on

one or multiple tempi for the same segment. Then, in Section 5.2.4, we take a look at segment

annotations aggregated on the track-level. Finally, in Section 5.2.5, we investigate whether tempo

ambiguity is a genre-dependent phenomenon.

5.2.1. Submission Quality

We wondered how steadily participants tapped and whether some groups of participants tapped

more steadily than others. Specifically, are the beaTunes submissions as good as the academics

submissions? We can use the coefficient of variation5

cvar =
σ

µ
(5.1)

5Also known as CV or relative standard deviation (RSD).
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5.2. Data Analysis

Dataset Split + − p-value

±academics 0.0074 0.0090 3.11× 10−29

±keyboard 0.0088 0.0095 9.74× 10−7

beaTunes±keyboard 0.0089 0.0099 6.71× 10−10

academics±keyboard 0.0074 0.0073 8.68× 10−1

Table 5.1.: Average coefficients of variation cvar for dataset splits, academics or not, keyboard or not, and keyboard
or not for either beaTunes or academics. The low p-values indicate a significant difference between
the dataset splits.

of each submission’s ITIs as a normalized indicator for how steadily a participant tapped. To

remove tapping outliers within a segment, we sort each submission’s ITIs and only keep the

central 10 before calculating the cvar. This has the effect of reducing cvar for all submissions.

The average cvar for all submissions is cvar = 0.0089. Assuming a normal distribution, this means

that on average 99.7% of all central 10 ITIs lie within ±2.67% (≡ 3σ) of their submission’s mean

value. Using cvar as a measure for the submission quality of different dataset splits, we found

that members of academics tapped significantly more steadily (cvar = 0.0074) than members

of beaTunes (cvar = 0.0090) (Table 5.1). To test for significance we used Welch’s t-test. Also,

submissions from desktop operating systems that are typically installed on devices connected

to a physical keyboard (i.e., no touchscreen) are of significantly higher quality (cvar = 0.0088)

than submissions from devices using iOS or Android as operating system (cvar = 0.0095).

Despite the differences, we found that even the ITIs from the group with the highest cvar, i.e.,

beaTunes without keyboard, still lie within only ±2.97% (≡ 3σ) of their mean value 99.7% of the

time—again assuming a normal distribution. This is well below the tolerance of 4% allowed by

ACC1.

We conclude that the data submitted by academics with keyboard is of the highest quality with

regard to tempo stability, but find that the data submitted by members of beaTunes without

keyboard is still acceptable, because the difference in cvar is not very large. This may be a direct

result of the experiment’s design which did not permit participants to submit highly irregular

taps.

5.2.2. Tempo Distribution Metrics

How steadily participants tapped does not say anything about whether they tapped along to

the true tempo. But since the purpose of the experiment is to create a new ground-truth, we

cannot easily verify submissions for correctness. What we can do though, is to measure annotator

(dis)agreement both for a segment and for all segments belonging to the same track. To this end,

we define some metrics based on tapped tempo distributions. To create such a tapped tempo

distribution for a segment, we combine the 10 central ITIs from each of its submissions in a

histogram T with a bin width of 1 BPM and then normalize so that
∑n

i=1 T (xi) = 1, with n as

63



Chapter 5. Electronic Dance Music: A Crowdsourced Experiment

60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

Tempo (BPM)

S
al
ie
n
ce

Segment 6 Whole Track

Figure 5.2.: Tempo salience distribution for segment 6 of track Neoteric D&B Mix by Polex (Beatport id 4397469).
Measured values are: P (Ttrack) = 4, P (Tseg6) = 2, A(Ttrack) = 0.30, A(Tseg6) = 0.40, and JSD = 0.24.

the number of bins and xi as the corresponding BPM values. For T we define local peaks as

the highest non-zero T (xi) for all intervals [xi − 5, xi + 5]. This may include very small peaks.

We interpret the BPM values xi of the histogram’s local peaks as the perceptually strongest

tempi and their heights equivalent to their saliences. Per-track tempo distributions are created

simply by averaging the 7 segment histograms belonging to a given track. For an example, please

see Figure 5.2.

As a first, very simple indicator for annotator disagreement, we define P (T ) as the number

of histogram peaks we find in a given tempo distribution T . A high peak count for a single

segment P (Tseg) indicates annotator disagreement for that segment. This is not necessarily true

for the peak count for a track P (Ttrack), since it may also be a sign of tempo instability, i.e.,

tempo changes or no-beat-sections. Because the peak count P does not say anything about the

peaks’ height or salience, it is a relatively crude measure. Therefore we define as second metric

the salience ratio between the most salient and the second most salient peak as a measure for

ambiguity. More formally, if s1 is the salience of the highest peak and s2 the salience of the

second highest peak, then the ambiguity A(T ) is defined as:

A(T ) :=


1, for P (T ) = 0

0, for P (T ) = 1

s2/s1, for P (T ) > 1

(5.2)

A value close to 0 indicates low and a value close to 1 high ambiguity. This definition is inspired

by McKinney et al. [110] approach to ambiguity, but not identical. Just like P , we can use A

for both segment and track tempo distributions. Again, for tracks we cannot be sure of the

ambiguity’s source.

Finally, we introduce a third metric that focuses more on tempo instability within tracks. Obvious

indicators for instabilities are large differences between the tempo distributions of segments

belonging to one track. Since we create tapped tempo distributions for each segment in a
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way that lets us interpret them as probability distributions, we can use the Jensen-Shannon

Divergence (JSD) for this purpose, which is based on the Shannon entropy H. With the JSD we

measure the difference between the tempo distribution’s entropy for the whole track and the

average of the the individual segment tempo distributions’ entropies.

H(T ) := −
n∑
i=1

T (xi)logbT (xi) (5.3)

JSD(T1, ..., Tm) := H

(
m∑
j=1

1

m
Tj

)
−

m∑
j=1

1

m
H(Tj) (5.4)

To allow an easy interpretation of JSD-values, we choose an unusual base for the entropy’s

logarithm. By setting b = n in Equation (5.3), we ensure that 0 ≤ JSD ≤ 1. This means, that

a JSD-value near 0 indicates a small difference between the tempo distributions for a track’s

segments. Correspondingly, a JSD-value closer to 1 means that the tempo distributions of a

track’s segments are very different. To avoid detecting small tempo changes due to annotator

disagreements, we convert the segment tempo distributions T to a bin width of 10 BPM before

calculating JSD.

5.2.3. Segment Annotator Agreement

How much do participants agree on a tempo for a given segment? Recall that we have 4,640

segments (and 18,684 annotations for these segments) coming from 664 tracks. As depicted

in Figure 5.3 top, the submissions for more than half the segments (2,500 or 53.9%) have just

one peak, i.e., P (Tseg) = 1. For 1,514 or 32.6% of all segments we were able to find two peaks,

indicating some ambiguity. For 432 segments (9.3%) we found 3 peaks and for 184 segments

(4.0%) 4 peaks or more. 10 segments have no peak at all, because they have been marked as

No Beat in all their submissions. When interpreting these numbers one has to keep in mind

that some segments have been annotated by very few participants (Figure 5.3 bottom). To give

an example, while the segments annotated with one peak are based on 3.64 submissions on

average, the segments annotated with 6 peaks are annotated with 9.42 submissions per segment.

This reflects the fact that we presented difficult segments to participants more often, but could

also be caused by increased variability introduced by a higher number of submissions. Because

submissions marked as No Beat do not show up in this overview unless all submissions for a

segment were No Beat, we counted the segments for which a majority of submissions were marked

with No Beat. That was the case for 118 segments (2.5%).

As mentioned in Section 5.2.2, the peak count does not say anything about the peaks’ height or

salience and is therefore a relatively crude measure. We found that the average ambiguity for
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Figure 5.3.: (top) Segments per peak count. (bottom) Average number of submissions per segment by peak
count.
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Figure 5.4.: (top) Tracks per peak count. (bottom) Average number of submissions per track by peak count.

all segments is A(Tseg) = 0.25 (with standard deviation σ = 0.32), meaning that on average the

highest peak is four times more salient than the second highest peak. In other words, we can

often observe a peak that is much more salient than others. At the same time, there may also be

a second peak with considerable salience.

5.2.4. Track Annotator Agreement

Just like for the segments, we looked at the number of tracks per peak count. We found only 81

tracks (12.2%) with one peak and 582 tracks (87.8%) with two or more peaks (Figure 5.4 top).

66



5.2. Data Analysis

60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

Tempo (BPM)

S
al
ie
n
ce

Segments 1-3 Segment 4 Segments 5-7

Figure 5.5.: Tempo salience distributions for segments of the track Rude Boy feat. Omar LinX Union Vocal
Mix by Zeds Dead (Beatport id 1728723). The track’s tempo changes in segment 4, leading to four
distinct peaks. With JSD = 0.44 its Jensen-Shannon divergence is high.

The largest group among the multi-peak tracks are tracks with two peaks (178 or 26.8%). These

numbers are much more reliable than the segment peak counts as they are based on at least 25

submissions per track (Figure 5.4 bottom). Compared to the segments’ peak counts we see a

larger proportion of tracks with more than one peak. But this does not necessarily mean that

the ambiguity A is much higher than for the segments, because peak counts do not account for

salience and even small local peaks are counted. In fact, we measured an average ambiguity

of A(Ttrack) = 0.26 (with standard deviation σ = 0.27)—almost the same average as for the

segments. Therefore we attribute the shift towards more peaks to the much higher number

of submissions per item and possible tempo instabilities in the tracks themselves. By tempo

instability we mean for example a tempo change in the middle of the track, a quiet section, or

no beat at all. Any of these cases inherently lead to more peaks. A typical example for a track

with a tempo change is shown in Figure 5.5.

In an attempt to quantify tempo instabilities in the submissions we calculated the JSD introduced

in Section 5.2.2. The histogram in Figure 5.6 shows the distribution of tracks per JSD interval

with a bin width of 0.05. The average divergence for the whole dataset is µJSD = 0.15, the

standard deviation is σJSD = 0.11. To test whether a high JSD correlates with tempo instabilities,

we considered all tracks with JSD > µJSD + 2σJSD = 0.375, resulting in 39 tracks. Performing an

informal listening test on these tracks revealed that 3 had no beat, 10 contained a tempo change

(e.g. Figure 5.5), 7 had sections that felt half as fast as other sections (metrical ambiguity), 8

contained larger sections with no discernible beat, 9 were difficult to tap, and 2 had a stable

tempo through the whole track. From this result one may conclude that a high JSD is connected

to tempo instabilities, but it may also just indicate that a track is difficult to tap. Nevertheless,

using JSD helped us find tracks in the GiantSteps Tempo dataset that exhibit tempo stability

issues. Since 2.5% of the segments were annotated most often with No Beat, we wondered

whether any tracks have a majority of segments that have predominantly been annotated with

No Beat, hinting at the absence of not just a local beat (e.g., a sound effect or a silent section),

but the lack of a global beat. This is true for 6 tracks, i.e., 0.9% of the dataset. All 6 of them
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Figure 5.6.: Distribution of tracks in the dataset per JSD interval with a bin width of 0.05. The blue line shows
µJSD and the red line shows µJSD + 2σJSD.

Genre A(Tseg) A(Ttrack)
All 0.25 0.26

Techno 0.12 0.10
Trance 0.17 0.12

Drum & Bass 0.37 0.39
Electronica 0.36 0.38
Dubstep 0.35 0.43

Table 5.2.: Average ambiguity for the top five genres.

0 10 20 30 40 50 60 70 80 90 100

Drum-and-Bass
Dubstep

Electronica
Techno
Trance

Segments (%)

0 10 20 30 40 50 60 70 80 90 100

Drum-and-Bass
Dubstep

Electronica
Techno
Trance

Tracks (%)

No Peak 1 Peak 2 Peaks
3 Peaks 4 Peaks 5 or more

Figure 5.7.: Percentage of segments (top) and tracks (bottom) with a given number of peaks by genre. Drum-
and-Bass, Dubstep, and Electronica suffer much more from tapped tempo ambiguity than Techno
and Trance.

are among the 39 tracks with very high JSD and either have no beat, are very difficult to tap or

contain large sections without a beat.
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Figure 5.8.: Accuracies measured when comparing GSNew with GSOrig .

5.2.5. Ambiguity by Genre

We wondered whether we can confirm findings by McKinney and Moelants [111] that the amount

of tempo ambiguity depends on the genre or musical style. To ensure meaningful results, we

considered only the 5 most often occurring genres in the dataset with 54 or more tracks each. We

found that the genres Techno and Trance do not seem to be very affected by ambiguity. More

than 65% of their segments are annotated with just one peak. In contrast to that, fewer than 38%

of all segments in the genres Drum-and-Bass, Dubstep, and Electronica are annotated with just

one peak (Figure 5.7 top). A similar picture presents itself when looking at the average segment

ambiguity A(Tseg). As shown in Table 5.2, it is 0.12 for Techno segments and thus much lower than

the overall average of 0.25. The same is true for Trance (0.17). Contrary to that, the ambiguity

values for Drum-and-Bass (0.37), Electronica (0.36) and Dubstep (0.35) are all well above the

average. We found similar relations for peak counts on the track level (Figure 5.7 bottom) and the

average track ambiguity A(Ttrack) (Table 5.2). This strongly supports McKinney and Moelants’

finding that tapped tempo ambiguity is genre-dependent. Perhaps it is even an inherent property.

5.3. Evaluation

The tempo histograms for tracks can easily be turned into single tempo per track or two

tempi+salience labels. This provides us the opportunity to evaluate the original ground-truth

for the GiantSteps Tempo dataset by treating it like an algorithm. Since the original annotations

are single tempo per track only, we are using ACC1 and ACC2 as metrics. To obtain one tempo

value per track from a distribution, we are using just the tempo value with the highest salience.

The three tracks without a beat have been removed. We refer to these new annotations as GSNew

and to the original ones as GSOrig . Figure 5.8 shows the accuracy results for the comparison of

GSOrig with GSNew and reveals a large discrepancy between the two. Only 81.5 of the labels

match when using ACC1, and only 91.1% match when using ACC2.

Coming back to the original motivation for this chapter—the poor performance of tempo

estimation systems for GiantSteps Tempo —we evaluated the three state-of-the-art algorithms

oerf (Section 3.2), cnn (Chapter 4),6 and böck [6] with both the old and the new annotations.

6The evaluation with cnn was added after the original publication in [162] to paint a more complete picture.
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Figure 5.9.: Accuracies for the algorithms böck, oerf, and cnn measured against both GSOrig and GSNew .

The algorithms were chosen for their proven performance and conceptual dissimilarity. While oerf

implements a conventional onset detection approach followed by an error correction procedure,

cnn implements a single convolutional neural network (CNN), and böck’s core consists of a

bidirectional long short-term memory (BLSTM) recurrent neural network (RNN). Despite their

conceptual differences, all three algorithms reach considerably higher accuracy values when

tested against GSNew (Figure 5.9). ACC1 increases for böck by 5.9 pp (58.9% to 64.8%), for

oerf by 6.6 pp (62.4% to 69.0%), and for cnn by 9.0 pp (73.5% to 82.5%). ACC2 shows similar

increases, 7.6 pp (86.4% to 94.0%) for böck, 6.5 pp (88.7% to 95.6%) for oerf, and 8.1 pp (89.5%

to 97.6%) for cnn. Remarkably, all three systems reach higher ACC2 values for GSNew than the

original annotations reached, when compared with GSNew . The increased results for GSNew are

much more in line with values reported for other tempo datasets. We therefore believe that this

increase and the discrepancy between GSOrig and GSNew are hardly coincidences, but strong

indicators for incorrect annotations in GSOrig .

5.4. Discussion and Conclusions

In this chapter we described a crowdsourced experiment for tempo estimation. We collected

18,684 tapped annotations from 266 participants for electronic dance music (EDM) tracks

contained in the GiantSteps Tempo dataset. To analyze the data, we used multiple metrics and

found that half of the annotated segments and more than half of the tracks exhibit some degree
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of tempo ambiguity, which may either stem from annotator disagreement or from intra-track

tempo instability. This refutes the assumption that it is always easy to determine a single

global tempo for EDM. We were able to identify tracks with no tempo at all, no-beat-sections

or tempo changes, which raises questions about the suitability of parts of the dataset for the

global tempo estimation task. Furthermore, we provided additional evidence for genre-dependent

tempo ambiguity. Based on the user-submitted data we derived the new annotations GSNew .

The relatively low agreement with the original annotations GSOrig indicates that one of the

two ground-truths contains incorrect annotations for up to 8.9% of the tracks (ignoring octave

errors). We re-evaluated three recent tempo estimation algorithms against both ground-truths

and measured considerably higher accuracies when testing against GSNew . This leads us to

the following conclusions: GSOrig contains incorrectly annotated tracks as well as tracks that

are not suitable for the global tempo estimation task. The accuracy of state-of-the-art tempo

estimations systems is considerably higher than previously thought. And last but not least, as

a community, we have to get better at evaluating tempo algorithms in the sense that we need

verified, high quality datasets that represent reality with tempo distributions instead of single

value annotations. If we cannot accurately measure progress, we have no way of knowing when

the task is done.
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6. Reflections on Global Tempo Estimation and

Evaluation

In this chapter, we reflect on the current state of global tempo estimation

evaluation. It is based on [165], which is currently under review. The

Dataset Size section (Section 6.3.1) is based on computations, insights,

and editing by Julián Urbano, who also made valuable suggestions for the

rest of this chapter. My contributions are the main idea, the remaining text,

all visualizations, and programming as well as the tempo eval repository.

Estimation of a music recording’s global tempo is a classic MIR task. It is often defined as

estimating the frequency with which humans tap along to the beat [150, 33]. In contrast to

beat-tracking [2, 60] or local tempo estimation [125], successful global tempo estimation requires

the existence of a stable tempo as it often occurs in Rock, Pop, or Dance music. To conduct a

basic evaluation of a global tempo estimation system one needs the system itself, test recordings

with globally stable tempo, suitable annotations, and at least one metric. Starting with the work

of Goto and Muraoka [60] and Scheirer [150], the MIR research community has been conducting

such evaluations for 25 years. Acknowledging the importance of making results comparable, the

first systematic evaluation with a defined set of metrics and datasets was conducted in 2004 [64].

One year later, the 2005 Music Information Retrieval Evaluation eXchange (MIREX) [36]

established an automatic tempo extraction task, which has been conducted almost every year

ever since. Through both the datasets and metrics established in 2004 and for MIREX, we have

seen global tempo estimation systems mature and have been able to track their performance. In

the meantime, new datasets have been published and another large-scale evaluation has been

conducted [201], but neither applications nor metrics have been fundamentally questioned or

updated. This is why recent near-perfect MIREX results by Böck et al. [6] and our CNN-based

method from Chapter 4 beg the question: Are we done yet?

In this chapter, we critically discuss the evaluation of global tempo estimation systems. We

do so based on the idea that applications lead to use cases that define who the users are, how

they use the system, in what context and for what purpose [148]. The combination of these
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Application

Use Case

Metric Dataset

Figure 6.1.: Dependencies between application, use case, metric, and dataset (depends on: → ).

elements determines the success criteria to evaluate systems and judge whether the task is indeed

solved [183, 182].

We start our investigation in Section 6.1 with discussing presumed and actual applications. To

evaluate how well an application’s success criteria are met, datasets and metrics are used which

must fulfill a central condition: both have to match the use case (Figure 6.1). With this in mind,

we review metrics in Section 6.2 and datasets in Section 6.3. In Section 6.4, we describe how

applications, metrics, and datasets fit into the MIR research cycle.

In order to learn what tempo estimation is used for and how the community measures success, we

conducted a small survey among domain experts, which is presented in Section 6.5. In Section 6.6,

we propose a public repository for reference annotations, estimates, and metrics to help with

future evaluations. Finally, in Section 6.7, we draw conclusions.

Throughout this chapter we will illustrate some observations with tempo estimates produced

by three systems: perc� [128], böck � [6]1, and cnn � (Chapter 4). They were chosen for

illustrative purposes, their conceptual differences, and availability, not because they necessarily

represent the state of the art.

6.1. Applications

Even though tempo estimation is a well established MIR task, the existing research rarely

discusses in depth why tempo estimation is relevant and what the application requirements are.

1Estimates produced using madmom TempoDetector 2016 version 0.17.dev0. Results differ from the original
publication, which used cross-validation for Ballroom, which may have introduced a strong genre bias (see
Section 3.2.1.4).
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6.1.1. Research Justifications

Dixon [33] identifies four main application types: performance analysis, perceptual modeling,

audio content analysis for retrieval, and performance synchronization. Most applications described

in later work fall into these four broad categories. Alonso et al. [3] mention automatic rhythmic

alignment of audio, indexing for retrieval, and synchronized computer graphics. Peeters [126]

explicitly adds automatic playlist generation, DJ applications like beat-mixing and looping,

and further beat-synchronous analysis (e.g., cover song identification, Ellis and Poliner [41]).

Tzanetakis and Percival [186] list applications such as music similarity and recommendation, semi-

automatic audio editing, automatic accompaniment, polyphonic transcription, beat-synchronous

audio effects, and computer assisted DJ systems. Böck et al. [6] add to this the contribution

tempo estimation can make to beat-tracking, such that beats are aligned to a previously estimated

tempo. Elowsson and Friberg [43] consider tempo annotations useful for automated mixing,

e.g., for beat-synchronous delay and compressor release settings. Similarly, Font and Serra [46]

mention remixing and browsing as potential applications.

In publications focused on new methods, most application descriptions serve a motivational

purpose justifying the conducted research. Often they are presented in a casual, anecdotal fashion.

To the best of our knowledge, no formal application survey for tempo estimation has ever been

conducted. Neither are we aware of a published user-study with tempo as topic (like, e.g., Lee

and Waterman [98]). Therefore we simply do not know how relevant tempo estimation is for any

of the mentioned applications and what requirements these applications have. Rephrased in terms

of commercial engineering: for the past 25 years we have largely ignored the customer. Even

though this work focuses on tempo estimation, this failure is hardly specific to this particular

task. As Salamon [143] recently observed, “There is a disconnect between MIR research and

potential users of MIR technologies.” This is not to say that the MIR community has conducted

the wrong kind of research. After all, it is the privilege of basic research to not require an

immediate application, and prefacing each science project with a market study is not expedient.

But as tempo estimation and MIR as a whole mature, one might want sound justifications as to

why and what for research is conducted.

6.1.2. Presumed Applications

We would like to illustrate the issue with two presumed applications of tempo estimation:

similarity and recommendation [186, 128, 6]. By definition, two recordings with the same tempo

are similar, but since similarity has many facets, tempo cannot be the only feature used to predict

it. It may not even be very important. In fact, in their introduction to music similarity Knees

and Schedl [87] briefly mention tempo, but do not deem it important enough to thoroughly

discuss it. To quantify how important tempo estimation is for music similarity, we counted the
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number of MIREX submissions for the similarity task that used tempo as a feature.2 Many

submissions used low-level temporal or rhythmic features, but only 8 of 62 (13%) explicitly

used tempo [10, 11, 100, 101, 50]. One team even removed tempo as feature in a subsequent

submission [102].3

Music recommendation is another application mentioned when justifying tempo estimation

research [186, 128, 6]. But is tempo estimation really useful for recommendation? Content-

based systems certainly can take advantage of tempo annotations [191], but to the best of our

knowledge this is not a common approach. Slaney [176] points out that recommendation based on

collaborative filtering usually outperforms content-based systems, if enough usage data is available.

Merely in cold-start scenarios (e.g., lack of usage data) does content-based recommendation

play a noteworthy role. Schedl et al. [149] report that if content-based recommendation is

attempted, “almost all existing approaches rely on a number of predefined audio features that

have been used over and over again, including spectral features, MFCCs, and a great number of

derivatives.” This does certainly not exclude tempo, but in their report on current challenges for

music recommender research tempo is never mentioned. Therefore, we conjecture that global

tempo estimation is only of marginal importance for similarity and recommendation.

6.1.3. Actual Applications

On the positive side, there are plenty of existing applications that are very similar to those stated

in the literature. Tempo estimation has been used in computational ethnomusicology [25, 135].

Life science researchers who study connections between exercise and music tempo [192, 82, 39]

and athletes who want to control the tempo of their workout naturally benefit from tempo

estimation systems. Consumer applications like beaTunes (Appendix D) provide this information

via offline analysis, and streaming services like Spotify4 or Deezer5 offer playlists with narrow

BPM ranges made for runners. The music store Beatport6 labels all its tracks with global BPM

and key values to help DJs when shopping. And when performing, DJs can take advantage of

tempo analysis and beat-tracking/matching features of their DJ software (e.g., Traktor7). Thus

useful applications exist, even though they are typically not the result of user studies or other

requirements gathering processes by the MIR community.

2MIREX 2006 to 2014.
3Because some links on the MIREX website are broken, we were unable to check all 74 distinct submissions.

Some teams submitted multiple algorithms in a given year. Re-submissions were ignored.
4https://www.spotify.com/
5https://www.deezer.com/
6https://www.beatport.com/
7https://www.native-instruments.com/
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Figure 6.2.: ACC1 of tempo estimation systems depending on tolerance measured on Ballroom with a median
IMI-derived ground truth based on Krebs et al. [93].

6.2. Metrics

The exemplary evaluation during the 2004 ISMIR conference effectively established the accuracy

metrics ACC1 and ACC2 as standards. Few subsequent publications discuss the musical concept

of global tempo, but many assume that measuring ACC1 and ACC2 is identical to measuring

global tempo. De facto, the metrics have become the task definition [143]. The only popular

alternative is the P-Score metric.

6.2.1. Accuracy 1 and 2

ACC1 computes a 0 or 1 score per track, which indicates the correctness of an estimate, allowing

a 4% tolerance. This tolerance is described as “somewhat arbitrary” [64]. It was not chosen,

because someone defined an application that required a certain precision, but because it was

assumed that the test tracks have “approximately constant tempi.” This may have been a good

choice for traditionally produced music, but seems lenient for electronic music or music produced

with modern production techniques like click tracks [96], because such music rarely contains

tempo changes. Attempting to justify the tolerance with limitations of human perception, Gouyon

et al. [64] argue that according to Friberg and Sundberg [51] the Just-Noticeable Difference (JND)

for music tempi is approximately 4% and therefore “4% is probably the highest precision level

that should be considered.”

We unfortunately see problems in this argument. First, Friberg and Sundberg’s experiment

measured, whether participants were able to perceive the non-isochronous placement of the

fourth tone in a sequence of six tones. But instead of 4%, they actually found an average JND of

2.5% for tracks with tempi between 60 and 250 BPM. Secondly, and more importantly, it is not
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conclusively explained how this experiment relates to determining the tempo of a 30 s sample, as

it was the task during the ISMIR 2004 contest. We therefore do not believe that the results of the

experiment are suitable to derive the ACC1 tolerance parameter for tempo estimation metrics. In

fact, when plotting ACC1 for the tempo estimation systems böck, cnn, and perc with different

tolerances (Figure 6.2), we see that cnn still reaches 93.0% accuracy for the Ballroom [64] dataset

when reducing the tolerance from 4% to 2% (−1.7 percentage points, pp), and 80% accuracy when

reducing the tolerance even further to 0.7%. At 2% tolerance böck reaches 84.1%—only 0.4 pp

less than for 4%, and perc only loses 1.4 pp accuracy. All three systems are capable of estimating

tempo for Ballroom [64] tracks with almost the same accuracy at 2% tolerance as they are at 4%

tolerance.

This points to issues inherent to binary metrics. The threshold is usually arbitrary, because it

cannot be derived in an indisputable, objective way. Furthermore, it hides information. ACC1

does not tell us how wrong an estimate is, nor in which direction. This means that we cannot

easily characterize the quality of estimates with an error distribution or other descriptive statistics.

ACC1 is also blind to small systematic errors, i.e., it is unable to detect a systematic error of

+2%, because it lies below the threshold. At the same time, it may overemphasize differences

between systems. Systematic errors of +4.01% and +3.99% may not differ much, but their ACC1

scores could not be further apart. Specifying the tolerance for ACC1 in percent may also be

questioned. Assuming a fictional tolerance of 50%, a recording may be estimated half as fast,

but not twice as fast. Contrary to that, estimating a triple meter recording at half its tempo is

arguably less appropriate than at twice its tempo [43].

ACC2 additionally allows estimates to be wrong by the factors 2, 3, 1/2 or 1/3 (so-called octave

errors). This metrical tolerance was not motivated by application requirements either, but by

the realization that the used annotations may not match the perception of human listeners.

Unfortunately, because the meter is not taken into account, ACC2 counts some perceptually

erroneous estimates as correct [64]. Consequently, Elowsson and Friberg [43] regard it as

“inappropriate.” Peeters [126] attempted to alleviate the issue by only allowing justifiable octave

errors depending on the track’s meter. Another limitation of ACC2 is that it says nothing about

a system’s ability to distinguish between slow and fast . This reduces this metric’s usefulness

for applications like playlist generation based on tempo continuity or when searching for slow

music [127]. Gärtner [53] states: “From the perspective of the user of a DJ software, it is absolutely

mandatory that the tempo is annotated correctly. The so-called octave errors are unacceptable.”

This mismatch between metric and usefulness means that the construct validity [188] of ACC2,

i.e., the correlation between use case, success criteria, and the employed metric, is far from

perfect for the mentioned use cases.
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6.2.2. P-Score

A metric that takes metrical ambiguity into account and treats it as inherent property of

music [115] is the P-Score proposed by Moelants and McKinney for the MIREX audio tempo

extraction task in 2005.8 The original metric incorporated two metrical levels as well as a phase

estimate, and considered an estimation system’s salience estimation. In 2006 it was simplified to:

P = ST1 ∗ TT1 + (1− ST1) ∗ TT2 (6.1)

where each track is annotated with two reference tempi, T1 and T2, and T1’s relative perceptual

strength ST1 ∈ [0, 1]. T1, T2, and ST1 are the result of an expensive process involving many

annotators per track. To calculate a P-Score, TT1 ∈ {0, 1} is defined as the ability of an estimation

system to identify T1 with a tolerance of 8%. TT2 ∈ {0, 1} is defined correspondingly.9 In

addition to the P-Score, ‘One Correct’ and ‘Both Correct’ percentages are published for systems

participating in MIREX. For the ‘Both Correct’ metric it is undefined what happens when a

track exhibits no tempo ambiguity. Because P-Score accounts for ambiguity in human perception

and does not reward perceptually erroneous estimates, it is an improvement compared to ACC2,

but still has shortcomings. We were unable to find any formal justification for the used 8%

tolerance. According to McKinney, “the tolerance was derived empirically through the evaluation

of a number of excerpts, algorithms and studies. It is somewhat arbitrary [...].”10 Furthermore,

since 2006 the metric does not require an estimation system to assign a salience value to its two

estimates per track.11 This means that an application using a system with a perfect P-Score still

has to guess which of the two estimates is the more salient one. Just like ACC2, P-Score, as it is

used since MIREX 2006, does not test the ability of a system to distinguish between slow and

fast . It also is not efficient in the sense that it is relatively expensive to create the necessary

ground truth. This might explain why only one other suitable dataset has been created since the

original MIREX dataset in 2005 (Chapter 5).

6.2.3. Tempo Estimation as Classification

Instead of attempting to measure BPM, some approaches to tempo estimation have proposed

categorizing music into coarse Perceptual Tempo Classes (PTC), e.g., very slow, somewhat slow,

somewhat fast, and very fast [20, 19, 127]. Hockman and Fujinaga [72] showed that automatic

classification based on global features into just two classes slow and fast is possible, and Levy

[103] proved that humans can also distinguish between slow and fast tracks very well. While many

8http://www.music-ir.org/mirex/wiki/2005:Audio_Tempo_Extraction
9http://www.music-ir.org/mirex/wiki/2006:Audio_Tempo_Extraction

10Private correspondence.
11Confusingly, the MIREX tempo estimation task requires estimation systems to estimate the salience, but has

not used it in any evaluation since 2005.
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Dataset Recordings Tempo Ann. Beat Ann.

ISMIR04 Songs [64]1 464 BPM No
Ballroom [64, 93]1 698 BPM Yes
RWC-C [61]2 50 BPM Yes
RWC-G [62]2 100 BPM Yes
RWC-J [61]2 50 BPM Yes
RWC-P [61]2 100 BPM Yes
RWC-R [61]2 15 BPM Yes
GTzan [185, 104]3 999 BPM Yes
Hainsworth [70]1 222 BPM Yes
ACM Mirum [127]1 1,410 BPM No
SMC [74]1 217 BPM Yes
GiantSteps Tempo [88, 162]4 664 BPM/T1,T2,ST1 No
Extended Ballroom [105]1 4,180 BPM No
LMD Tempo [136, 161]5 3,611 BPM No
1 Excerpts available. 2 Requires application and purchase. 3 Excerpts have been available.

4 Beatport previews have been available. 5 7Digital previews have been available.

Table 6.1.: Popular public tempo datasets.

approaches using PTCs ultimately aim at improving ACC1, the motivation and experimental

setup for Chen et al. [19] was directly derived from the real-world applications of music navigation

and playlist generation. For navigation to the next song, correct PTC classification is desirable,

therefore precision and recall for a given collection of songs and queries was used in the evaluation.

For playlist generation, lists of songs with perceptually similar tempi were created using test

systems and presented to users who were asked to reject songs that do not fit (track-rejection

rate).

6.3. Datasets

Evaluation of tempo estimation systems relies on datasets consisting of suitable recordings and

annotations that model what we want to measure. Without claim to completeness, Table 6.1

lists popular tempo datasets. Unfortunately, some of these datasets are relatively small, focus on

a particular genre, are not freely available (anymore), or have other flaws (e.g., [180]). Salamon

[143] states generally: “Existing datasets for MIR are mostly too small, artificial or homogeneous,

[. . . ] but we use them anyway!”

6.3.1. Dataset Size

To reliably measure differences between systems, a dataset must be sufficiently large to minimize

the effect of random variation due to the sampling of tracks it contains. Generalizability

Theory (GT) offers a statistical tool to estimate the required size for performance assessments
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Figure 6.3.: Dependability index Φ̂ as function of metric and track count. Vertical dotted line: actual number of
tracks in dataset. Horizontal dotted line: Φ̂ = 0.95.
1st row: (a) ISMIR04 Songs, (b) Hainsworth (median of corresponding IBIs), (c) GTzan (median of
IBIs), (d) Ballroom (median of corresponding IBIs), Φ̂ based on estimates by Scheirer [150], Klapuri
et al. [86], Davies et al. [29], Oliveira et al. [121], Gkiokas et al. [57], Percival and Tzanetakis
[128], Schreiber and Müller [158], Böck et al. [6], Schreiber and Müller [160, 161]; echonest v3.2.1;
and zplane auftakt v3.
2nd row: (e) SMC (median of IBIs), (f) combined RWC (median of corresponding IBIs), (g)
GiantSteps Tempo [162], Φ̂ based on estimates by Davies et al. [29], Percival and Tzanetakis
[128], Böck et al. [6], Schreiber and Müller [160, 161]. (h) MIREX dataset with Φ̂ based on MIREX
2018 results.

in general [9, 17, 145, 13, 187]. Essentially, the GT framework decomposes the variability in

the observed scores into variability due to actual differences between systems (σ2
s), variability

due to differences in track difficulty (σ2
t ), and residual variability (σ2

e), which often refers to

system-track interactions. The total variance of the observed scores is therefore modeled as:

σ2 = σ2
s + σ2

t + σ2
e . (6.2)
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An evaluation with high σ2
s does not require large datasets, because the evaluated systems are

very different to begin with, but evaluations with high σ2
t or high σ2

e do require large datasets,

because systems tend to perform similarly for the given tracks.

There are several coefficients in GT, but here we will report only the dependability index Φ ∈ [0, 1],

which measures the ratio of system variance to itself plus error variance:

Φ =
σ2
s

σ2
s +

σ2
t+σ2

e

N

, (6.3)

where N is the size of the dataset. A high Φ-value means that the dataset can reliably separate

actual differences among systems from random variation due to sampling of tracks. Φ-values

greater than 0.95 are generally considered high enough, but because this is rather arbitrary we

focus more on qualitative comparisons among datasets and metrics.

We estimated Φ through an Analysis of Variance (ANOVA) for the datasets ISMIR04 Songs,

Hainsworth, GTzan , and Ballroom using scores from 12 different systems.12 To determine how

many songs would be necessary for a reliable evaluation, we show Φ̂ as a function of the number

of songs N . The actual number of songs in the respective dataset is indicated by a vertical dotted

line. Figure 6.3(a-d) shows Φ̂ for ACC1 and ACC2 as well as the metrics OE1, OE2, AOE1, and

AOE2, which we will describe in Section 6.6.3. The graphs show that when using ACC1 for

evaluation, ISMIR04 Songs and GTzan are barely large enough to reach a reliability level ≥ 0.95.

For Hainsworth Φ̂ is 0.87. Only the Ballroom dataset crosses the 0.95 line by a good margin. For

ACC2, Φ̂-values are generally a little higher, but Hainsworth again reaches only 0.87. Except

for Ballroom, OE1 lets us better recognize performance differences between systems than ACC1.

OE2 on the other hand leads to less reliable results, indicating that the OE2 distributions for the

tested systems are very similar.

Figure 6.3(e-g) shows Φ̂-curves for the datasets SMC , RWC (here, the union of RWC-C , RWC-G ,

RWC-J , RWC-P , and RWC-R), and GiantSteps Tempo and estimates by seven different systems.

Just like Hainsworth, SMC and the RWC datasets are not large enough to reach the 0.95 level for

ACC1. With Φ̂ = 0.97 for SMC and Φ̂ = 0.96 for RWC , OE1 delivers again more reliable results.

For GiantSteps Tempo all considered metrics lead to reliable results, with P-Score requiring the

fewest tracks. Lastly, Figure 6.3(h) shows an evaluation of the MIREX dataset [112] based on the

published MIREX 2018 results.13 ‘One Correct’ reaches Φ̂ = 0.95, P-Score reaches Φ̂ = 0.92, but

‘Both Correct’ only Φ̂ = 0.67. Note that these Φ̂-values depend on the tested systems. Removing

older, worse performing systems from the evaluation may actually lower the Φ̂-value.

12We used the R package https://github.com/julian-urbano/gt4ireval/.
13Data from https://nema.lis.illinois.edu/nema_out/mirex2018/results/ate/mck/files.html. Based

on 137 tracks, since some estimates for three tracks are missing.
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Figure 6.4.: Histograms of BPM values for GTzan jazz.00053 based on (a) IBIs and (b) IMIs.

We conclude that the majority of the evaluated datasets is large enough to differentiate tempo

estimation system performance using ACC1 and ACC2. However, Hainsworth, SMC , and RWC

do not allow differentiating systems as reliably as other datasets, and the MIREX dataset is

barely large enough for P-Score, but not for ‘Both Correct.’

6.3.2. Dataset Quality

Ten years after Ballroom had been used for the first time, Percival and Tzanetakis [128] investi-

gated the accuracy of the annotations and corrected 32 (4.6%) of them. Corrections were also

made to ACM Mirum (135, 9.6%) and GTzan (24, 2.4%). Interestingly, Percival and Tzanetakis

emphasize the importance of using correct annotation, because testing systems on faulty data

may lead researchers to optimize for these errors, i.e., to introduce a bias based on the test set.

This mindset is indicative for the state of MIR at the time. Machine learning was not ubiquitous

yet and tuning hyperparameters using test sets was not perceived as the methodological faux-pas

it is seen as now. But there are other good reasons to strive for quantifiable quality in test

datasets: interpretability and comparability. If the quality of a test dataset is unknown, a metric

like accuracy can at best be used for ranking or to approximate the lower bound of a system’s

true performance. At worst it is simply useless. It is impossible to say whether any changes to

the system can still increase performance, i.e., one cannot know when a task is solved. Metrics

produced on flawed datasets can lead to ill-informed actions—e.g., an accuracy of 58% on a
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Figure 6.5.: Distributions of normalized tempi. The gray area marks the interval [0.96, 1.04]. The shown
percentage is the fraction of normalized tempi within the interval.

dataset with only 60% correct data may cause a researcher to abandon a method, if the dataset

accuracy is näıvely assumed to be perfect. Additionally to this lack of interpretability, it is

impossible to compare results for different datasets in a meaningful way, if the dataset quality is

unknown. As we have seen, when comparing the performance of böck on the original GiantSteps

Tempo annotations with the performance in the new annotations derived in Chapter 5, ACC1

jumps from 58.9% to 64.8% and ACC2 from 86.4% to 94.0%.

Because many subjects participated in the crowdsourced experiment, we were able to model

perceived tempo ambiguity and derive a P-Score-style ground truth. However, this may have

come at the price of precision. Beat annotations created by manual tapping always contain

small inaccuracies. Input method latencies and anticipatory early tapping—known as negative

mean asynchrony (NMA) [140]—lead to precision problems (see also Cornelis et al. [25]). Some

researchers (e.g., Holzapfel et al. [74]) therefore choose to annotate based on cues visible in

spectrograms using tools like SonicVisualizer by Cannam et al. [16] or other representations

derived from the waveform of the music recording. Another way to avoid annotation errors is

synthetic dataset creation.

6.3.3. Modeling Global Tempo

It is well known that some of the tracks in popular datasets have varying tempi [70, 126, 128].

To address this issue, Hainsworth defined the tempo for the tracks in his dataset as the mean of
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Figure 6.6.: Percentage of tracks with cvar(t) < τ . Values for GTzan, Ballroom, and Hainsworth are based on
IMIs, SMC values are based on IBIs (no IMIs available).

the inter-beat intervals (IBI). Percival and Tzanetakis [128] suggested using the median instead,

to counter the influence of outliers—an idea already used by Peeters [126] and Oliveira et al.

[121] to deal with non-constant tempo estimates. Böck et al. [6] followed this suggestion, and

derived annotations based on the median IBI, for all beat-annotated test sets they used, but to

the best of our knowledge did not publish their annotations. Subsequent publications still used

the original mean-based annotations (Section 3.2) or tempo values obtained in some other way.

For example, Elowsson [42] derived tempi from the peaks of smoothed IBI histograms.

In addition to changing tempi, some datasets [104, 70] contain recordings with swing. One may

argue that for such recordings neither the mean nor the median IBI is an ideal solution, because

by definition swing beats are non-isochronous, i.e., the time interval from a downbeat to the

next backbeat is not the same as from a backbeat to the next downbeat. As a result, one may

see multiple peaks in an IBI histogram. For example, the IBI-based BPM histogram for the

GTzan recording jazz.00053 (Figure 6.4a) shows distinct peaks at 186, 190 and 201 BPM even

though the tempo of the track does not change over time (beat annotations by Marchand and

Peeters [104]). Choosing the median of the IBIs (200.7 BPM) ignores the lower peaks at 186 and

190 BPM even though they are no outliers. If we know a track’s meter, we therefore may rather

use the median of the intervals between corresponding beats, i.e., an inter-measure interval (IMI),

and use it to derive the tempo, thus neutralizing swing as well as outliers (Figure 6.4b).

6.3.4. Dataset Suitability

While improving and versioning annotations is commendable, it does not ensure that the dataset

fits the use case. Obviously, if the use case focuses on Ballroom music, using a Jazz dataset for
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testing is the wrong approach. Similarly, if a metric is chosen that was designed for a certain

kind of music, one must use this kind of music. As pointed out above, a precondition for using

ACC1 and ACC2 with 4% tolerance is a stable tempo in each test track. This precondition is not

met for all tracks in SMC , Hainsworth, GTzan, and ISMIR04 Songs [128]. Additionally, Peeters

[126] remarks that both Classical and Flamenco tracks in ISMIR04 Songs have variable tempo.

We can visualize this by converting IBIs to normalized tempi and plotting their distribution.

Concretely, given a track’s IBIs b = {b0, b1, ..., bN−1} in seconds with bn ∈ R>0, we define its

(local) tempo values t = {t0, t1, ..., tN−1} in BPM as

tn =
60

bn
. (6.4)

The normalized tempi tnorm = {tnorm
0 , tnorm

1 , ..., tnorm
N−1} for each track are then defined as:

tnorm
n =

tn

1

N

N−1∑
i=0

ti

(6.5)

Figure 6.5 depicts distributions of tnorm for all tracks in SMC , Hainsworth, GTzan, and Ballroom.

For SMC , only half the normalized local tempi fall into the ±4% interval [0.96, 1.04] (shown in

gray). For Hainsworth, it is 75.6%. GTzan and Ballroom have values of 91% or more and are

thus much better suited for ACC1/ACC2.

To get an impression of how many tracks in a dataset have large tempo variability, we can use the

standard deviation of the normalized tempi σ(tnorm)—also known as the coefficient of variation

cvar defined in Equation (5.1):

cvar(t) =
σ(t)

µ(t)
= σ(tnorm). (6.6)

Figure 6.6 shows the percentage of tracks for which cvar(t) < τ with τ ∈ [0, 0.5]. Among the

shown datasets, SMC contains the highest percentage of tracks with large tempo variability.14

For only 61.3% of the tracks is cvar(t) < 0.1. In contrast, cvar(t) is less than 0.1 for 99.7% of all

Ballroom tracks. This affects accuracy. To demonstrate, we measure ACC2 using böck, cnn, and

perc for subsets of the datasets containing only tracks with cvar(t) < τ , τ ∈ [0, 0.5].15 The used

tempo annotations are based on median IMI-values for GTzan, Hainsworth, and Ballroom, and

based on median IBI-values for SMC . For SMC (Figure 6.7a), all three systems reach higher

scores at τ = 0.1 than for greater τ . Comparing ACC2 for τ =∞ to τ = 0.1, accuracy increases

for böck from 67.3% to 85.7% by 18.4 pp, for cnn from 47.9% to 59.4% by 11.5 pp, and for perc

from 45.6% to 55.6% by 10.0 pp. For Hainsworth (Figure 6.7b) the systems also achieve higher

14This is also true when calculating cvar(t) for the other datasets with IBIs.
15ACC2 is appropriate, because the question of suitability does not hinge on octave errors.

86



6.3. Datasets

(a) SMC

0.10.20.30.40.5∞40

60

80

100

A
C
C

2
(%

)

(b) Hainsworth

0.10.20.30.40.5∞85

90

95

100

A
C
C

2
(%

)

(c) GTzan

0.10.20.30.40.5∞92

94

96

98

100

A
C
C

2
(%

)

(d) Ballroom

0.10.20.30.40.5∞94

96

98

100

τ

A
C
C

2
(%

)

perc cnn böck

Figure 6.7.: ACC2 for tracks with cvar(t) < τ . Lower τ coincides with higher accuracy. Datasets: (a) SMC (b)
Hainsworth (c) GTzan (d) Ballroom. Different y-scales used for clarity.

scores at τ = 0.1, but not as much in absolute numbers. ACC2 for böck increases by +4.8 pp to

97.6%, cnn’s ACC2 increases by +5.4 pp to 93.2%, and perc’s increases by +3.6 pp to 94.1%.

For GTzan (Figure 6.7c) the increase is still a little smaller, and for Ballroom (Figure 6.7d) there

is none, because almost all tracks have small cvar(t). Using cvar(t) = 0.1 as a lenient threshold
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Figure 6.8.: IR research cycle [188]

for “stable tempo” reveals that of the four datasets only Ballroom is suitable for ACC2 (and

thus ACC1) without restriction.

6.4. Research Cycles

Evaluation allows us to acquire new knowledge and advance the field [171, p. 31], if experiments are

followed by interpretation of results, learning, system improvement, and eventually re-evaluation

or even re-definition of the task or the evaluation methodology (Figure 6.8). This is referred

to as research cycle [188, 182]. For it to succeed, we need to be able to conduct analyses of all

parts of the evaluation process: task definition, data, metrics, systems, and analysis. As has

been pointed out before [188, 179, 137, 144], this disqualifies evaluation campaigns with private

or secret data and closed source evaluation code.

Evaluation itself must follow the same cycle of learning as general MIR research. How we evaluate

must be analyzed, questioned, and improved [188, 171, p. 33]. Do datasets and metrics match

current use cases? Are there recordings for which no system estimates the correct tempo, or

recordings most systems estimate different tempi for? Does that mean the annotation is wrong,

the tempo is hard to estimate, or the recording is not suitable for the task? To become aware

of and address these issues, we need versioned annotations and publicly archived estimates to

develop better evaluation methods and conduct error analysis (see Section 6.6). This would

allow us to easily identify problematic samples as well as re-evaluate old estimation systems with

improved annotations and changed metrics.

Another learning obstacle is oversimplified evaluation metrics. Single value figures effectively

hide the complex details of success and failure behind an opaque number. For tempo estimation

it is interesting whether a system performs well for certain genres, but not for others, or always

fails for tempi below a certain threshold. And what about a cappella or violin recordings with

very soft onsets? To foster learning, we must paint a detailed picture that supports researchers

in discovering what it is that makes systems work properly for one recording but not for

another (e.g., Grosche et al. [69]).
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Figure 6.9.: Question: Given its limited usefulness for tracks with varying tempo and the good performance of
current beat trackers, is global tempo estimation as a music information retrieval task still relevant?
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Figure 6.10.: Question: Which main application is your tempo estimation system intended for (single-choice)?
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Figure 6.11.: Question: Does your tempo estimation system target specific genres?

6.5. Survey

To answer some of the questions raised in Sections 6.1 and 6.2, we have conducted a survey

among scientists and practitioners who have worked on tempo estimation. Invitations to fill

out the survey were sent to the ISMIR community mailing list, known industry players, and

MIREX tempo estimation task participants. Given that the field is very small, the presented

results must be interpreted qualitatively. All respondents have agreed to anonymized publication

of their answers. In the following we summarize the most important results. Note that not all
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Figure 6.12.: Task: Please rank the following genres by importance for your main application.

participants answered every question. Stated percentages are over the number of responses to a

question, not overall participants.

6.5.1. Participants

Of the 24 individuals who filled out the questionnaire, 17 (71%) belonged to academia� and

7 (29%) to the industry�. Most participants identified themselves as researchers (92%), and a

majority claimed to be involved in hands-on algorithm implementation (71%).

6.5.2. Relevance as MIR Task

Given its limited usefulness for tracks with varying tempo and the good performance of current

beat trackers, we asked whether global tempo estimation as an MIR task is still relevant (Fig-

ure 6.9). 16 of the 22 (73%) participants who answered the question answered with yes. Positive

arguments included: “useful input for other applications (recommenders, beat-trackers)”, “tempo

tracking at sub-decimal place”, “first step of hierarchical analysis”, and “customers require to

see a single value.” Negative reasons (doubting the relevance) included: “tempo estimation is

good enough for most industrial use cases”, “local tempo estimation is a much more useful task”,

and “beat tracking, as a more general task than tempo estimation, solves all problems.” Three
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of the six participants with doubts are from the industry. One respondent perceived the question

as leading towards a no answer and another did not agree with the premise that beat trackers

have good performance.

6.5.3. Application

When asked about the main application for their tempo estimation system, 10 participants (42%)

chose “input for other algorithms” and 5 (21%) chose “performance synchronization.” Figure 6.10

depicts answers split by academia/industry. Lending support to our argument from Section 6.1.2,

no one chose “recommendation” or “similarity” as the main application.

6.5.4. Genres

Six of seven (86%) industry members indicated that their tempo estimation system targets specific

genres in the sense that some genres are more important than others for their application (Fig-

ure 6.11). In academia only 7 of 17 (41%) respondents target specific genres. We believe this

reflects a tendency in the industry to have a more specific understanding of customer needs,

while academia often concentrates on basic research without a marketable product in mind.

We asked those who target specific genres to rank a list of 10 prechosen genres by importance,

allowing the value N/A for genres they are not interested in. Figure 6.12 depicts the results (in

this depiction N/A values were ignored and did not affect the average ranking score). Members

of academia have a preference for Classical, EDM/Disco, Hip Hop/Rap and Pop/Rock, while

industry members regard Ballroom and EDM/Disco as most important, followed by Hip Hop/Rap,

Reggae, Classical and others.

6.5.5. Slow, Fast, and Ambiguous

We asked participants how important it is for their main application to correctly distinguish

between slow and fast using a 5-point Likert response format ranging from “not at all” to

“essential” (Figure 6.13). 12 out of the 19 (63%) participants chose “essential.” Three members of

academia chose “neutral”, while all industry respondents chose “essential” or between “neutral”

and “essential”. No one chose less than “neutral.” Clearly, distinguishing between slow and fast

is important. When asked whether their application requires a single BPM value or a tempo

distribution, 5 of 7 (71%) industry respondents answered “single value”, while 6 of 14 (43%)

academic scientists answered “tempo distribution” (Figure 6.14). This is also reflected in the

usefulness participants assigned to the metrics ACC1, ACC2, and P-Score (Figure 6.15). While

ACC1 and ACC2 are somewhat more appreciated by the industry than by academia, P-Score,
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Figure 6.13.: Question: How important is it for your main application to correctly distinguish between slow and
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Figure 6.14.: Question: Does your main application require a single BPM value or a tempo distribution?

which embraces the idea of tempo ambiguity, is much less favored by the industry than by

academia. While 47% of the academics believe P-Score is “essential”, none of the industry

members believe so. Instead, 57% state it is “not useful” at all or between “not useful” and

“neutral.”

6.5.6. Accuracy Tolerances

Since the 4% tolerance of ACC1 was never justified by an application, we asked what accuracy

the participants’ applications require. Given several relative and absolute choices, and “Other”,

“Other” was most popular among academics. Answers ranged from “BPM with as small as possible

tolerance” over “no specific application yet” to “depends on the dataset and the accuracy of the

annotations.” The second most popular choices among academics were “nearest integer” and

“2% tolerance.” Industry members often chose “2 decimal places” (Figure 6.16). Interestingly,

neither “nearest integer”, “2% tolerance”, nor “2 decimal places” is commonly used in the

literature.16 Of the five participants who chose performance synchronization as their main

application regardless of affiliation, one chose “1% tolerance”, three chose “2 decimal places” and

one chose “3 decimal places”, documenting requirements far stricter than the commonly used

16With the exception of our own work presented in Chapter 4, which also uses “nearest integer.”
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Figure 6.15.: Question: How useful are the following metrics as success indicators for meeting your main
application’s requirements or reaching your research goals?

4%. Regardless of application or affiliation, no one chose 8%—the tolerance traditionally used at

MIREX.17

Additionally to our survey among scientists we conducted an informal Twitter poll among users

of the consumer application beaTunes. The poll was advertised to people interested in working

out, indoor cycling, ballroom dancing, and DJing. Participants were asked “What tempo/BPM

detection accuracy do you really need?” and given four choices ranging from 0 to 3 decimal

places. 72% of the 97 respondents answered that a 0 or 1 decimal place precision is sufficient for

their purposes (Figure 6.17). Some people commented that even a 10% precision is good enough

for their application.

17In 2018, an additional evaluation with 4% was conducted.
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Figure 6.16.: Question: What tempo estimation accuracy do you require for your main application (single-choice)?
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Figure 6.17.: Twitter poll: What tempo/BPM detection accuracy do you really need (single-choice)? Given four
choices, most of the 97 participants were content with nearest integer or 1 decimal place precision.

6.6. Proposal

To address some of the issues raised in Sections 6.2, 6.3, and 6.4, we have created a public

GitHub repository called tempo eval (https://tempoeval.github.io/tempo_eval/) that hosts

different versions of corpus annotations (Section 6.6.1), estimates for these corpora (Section 6.6.2),

and evaluation code that goes beyond single figure binary metrics (Section 6.6.3). Section 6.6.4

demonstrates how the repository can be used for evaluation.
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6.6.1. Reference Annotations

The tempo eval repository allows the continuous improvement of reference annotations without

shadowing past versions. This makes it possible to evaluate against all reference versions,

improving comparability to older published results and thus transparency as well as interpretability.

To provide easy access to reference data we converted published annotations to JAMS [77] for

which tools already exists [137].

6.6.2. Estimated Annotations

Rather than just serving as a static source of reference data, the tempo eval repository offers a

place for researchers to publish and archive their algorithms’ estimates instead of just mentioning

single value metrics in their publications. This allows re-evaluation with new reference annotations

and proper development of new metrics, which may ultimately lead to a better understanding

of tempo estimation systems and the tempo estimation task. For example, Figure 6.18 shows

values for a proposed metric (Section 6.6.3) for historic estimates measured against a ground

truth, which has been newly derived from median IMI-values. Because the repository is open and

public, contributing is easy, e.g., via pull requests. As a starting point, we have added estimates

by several recent and classic systems for commonly used datasets.

6.6.3. Formal Octave Error

We have argued in Sections 6.2.1 and 6.2.2 that the tolerances of ACC1, ACC2, and P-Score are

difficult to justify and that the binary nature of these metrics hides information. Furthermore,

using a percentage as threshold is sub-optimal. We therefore encourage the use of an alternative

metric that measures how close and in which direction an estimate is to a reference value.

Inherently, this kind of metric supports meaningful visual depiction of error distributions. Since

tempo perception and metrical levels follow a hierarchical structure, we suggest using a log2-scale,

so that the error for double- and half-tempo has the same magnitude. A metric that combines

these ideas is a formalized version of the familiar octave error and has previously been used for

illustrative purposes in [64, 126]. We formally define the octave error OE1 as

OE1(y, ŷ) = log2

ŷ

y
, (6.7)

with y, ŷ ∈ R>0 as ground truth and estimate. OE1 is designed to highlight the most important

error class, octave errors, in an intuitive way. Errors by factors k and 1/k have the same

magnitude, which means that in an OE1 visualization the octave errors 2, 1/2, 3, and 1/3, are

easily identifiable as clusters around 1, −1, 1.58, and −1.58. Figure 6.18a shows examples for OE1
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Figure 6.18.: Empirical distributions of (a)OE1, (b)OE2, (c)AOE1, and (d)AOE2 using kernel density es-
timation (KDE). Based on values measured for Ballroom using a median IMI-derived ground
truth created from beat annotations by Krebs et al. [93]. Ordered by year of publication
[150, 86, 29, 121, 57, 128, 158, 6, 160, 161].

distributions for Ballroom rendered as violin plots.18 Clearly visible is the concentration around

−1 tempo octaves (TO) for all systems but böck, cnn, and oerf. The extend of the horizontal

spread of the concentrations around 0 TO visualizes non-octave errors. OE1 distributions can

18We were unable to obtain either an implementation of the approach taken by Elowsson [42] or estimates of
his system for the Ballroom dataset.
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serve as indicator for the overall performance of a global tempo estimation system including the

capability to distinguish between slow and fast . Most importantly, one can see at a glance what

kind of errors the tested systems are prone to.

We have seen in Section 6.2.2 that taking metrical ambiguity into account is desirable, but that

suitable datasets are rare and new datasets are expensive to create. For these pragmatic reasons,

we do not attempt to solve the metrical level problem, but define OE2 similar to ACC2 as

OE2(y, ŷ) = arg min
x∈Ω

(|x|), (6.8)

with
Ω := {OE1(y, ŷ),OE1(y, 2ŷ),OE1(y, 1/2ŷ),

OE1(y, 3ŷ),OE1(y, 1/3ŷ)}.
(6.9)

OE2 (Figure 6.18b) measures accuracy on a micro level, where the most common errors on the

metrical level are ignored, i.e., it measures how close the estimate is to the nearest plausible

tempo.19 This is useful for genres with high metrical ambiguity, e.g., Dubstep (Section 5.2.5),

and for applications that require errors to be as small as possible. The latter is a use case not

currently supported by either ACC1 or ACC2, but apparently implemented by the industry

(Section 6.5.6).

While the mean of OE1 or OE2 indicates whether an algorithm is expected to over- or underesti-

mate the tempo, the absolute octave error (AOE = |OE|) can be used for a system comparison

with respect to precision. To illustrate, Figure 6.18c shows annotated AOE1-distributions.

Most older systems have an average AOE1 between 0.3 and 0.4 TO, böck managed to halve

this figure and cnn further reduced it to 0.055 TO. When ignoring octave errors by using

AOE2 (Figure 6.18d), we can see that böck and cnn perform on a similar level.

6.6.4. Evaluation

The tempo eval repository also contains evaluation code. Implemented are ACC1, ACC2, and

P-Score, along with McNemar’s test for significant differences for ACC1 and ACC2, OE1, OE2,

their corresponding absolute incarnations, and t-tests for estimates from algorithm pairs. Results

can be rendered in a publishable report (Markdown/HTML), and figures and data are exportable

in several formats. As argued in Section 6.4, reporting single value metrics is not sufficient for

an in-depth evaluation. We have therefore implemented visualizations for system performance

depending on tolerances (Figure 6.2), tempo stability (Figure 6.7), tempo range (Figure 6.19),

and—if available—genre- or free-form-tags (Figure 6.20). As an example, we will discuss tempo-

19The criticism voiced about ACC2 in Section 6.2.1 obviously applies to OE2 as well.
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Figure 6.19.: (a), (c) ACC1 and mean OE1 for T ± 10 BPM intervals. (b) Smoothed tempo distribution of
tracks in Ballroom according to the ground truth from Percival and Tzanetakis [128]. (d) OE1

predictions of generalized additive models (GAM). Shaded areas correspond to 95% confidence
intervals.

and genre-dependent evaluation using the Ballroom dataset with annotations from Percival and

Tzanetakis [128].

Figure 6.19a shows ACC1 values for subsets defined by tempo ranges [T − 10, T + 10] BPM.

Clearly visible, perc’s ACC1 drops to zero for T > 150 BPM, and böck’s ACC1 sharply decreases

to 27.3% or less for T > 190 BPM. Both systems seem to exhibit some form of octave bias

(Section 3.2.1.3), i.e., the ability to estimate the tempo appears tied to certain tempo ranges.

Figure 6.19c depicts mean OE1 values for the same scenario and shows what kind of errors

lead to the observed low accuracy. Apparently, perc suffers from octave errors of −1 TO for

T > 150 BPM. The same is true for böck and T > 190 BPM. None of the systems seem do well

for tracks with T < 66 BPM or T > 225 BPM, but as we can see in Figure 6.19b, the dataset

contains only very few songs in these tempo ranges. Figure 6.19d combines error magnitude,

error direction, and significance in a single graph. It shows the predictions and their 95%

confidence interval of generalized additive models (GAM)20 fitted on the respective systems’

OE1 results. A large confidence interval indicates tempo regions with few samples or large

variability in performance. In Figure 6.19d this can be seen for less than 75 BPM (few tracks),

20GAMs were generated using pyGAM by Servén and Brummitt [172].
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(a) OE1 distribution by genre
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(b) Genre distribution
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Figure 6.20.: (a) Per genre OE1 distributions based on kernel density estimation (KDE) for tracks from Ballroom
using the ground truth from Percival and Tzanetakis [128]. Mean OE1 values are marked in black.
(b) Genre distribution in Ballroom.

around 150 BPM (performance starts to shift), and for more than 210 BPM (few tracks, low

performance).

Because JAMS supports additional annotations like genre, tags, and beat positions, these can be

incorporated into the evaluation. As example, Figure 6.20a shows OE1 distributions by genre.

Mostly due to −1 TO octave errors, perc does poorly on Jive, Quickstep, and Viennese Waltz—

the three genres with the highest average tempo. böck faces the same issue with Quickstep. This

is noteworthy, because Jive, Quickstep, and Viennese Waltz combined make up almost 30% of

the Ballroom dataset, as shown in Figure 6.20b.
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Note that evaluation by ballroom genre is just an example. The code picks up on any tag open

annotation.

6.7. Conclusions

Our answer to the opening question, whether the task of global tempo estimation is solved yet,

is no. Not because estimation systems are not good enough—we do not really know whether

that’s the case or not, but because it is impossible to solve a task for which neither use cases

with success criteria have been well motivated and properly defined, nor the suitability of metrics

or datasets has been shown. Instead, currently used metric tolerances are somewhat arbitrary,

some popular datasets are too small, contain unsuitable tracks or are single-genre, and there is

no definite agreement on how to define a global tempo. To actually solve the task, we suggest to

first tackle these evaluation issues, i.e., clearly define use cases and success criteria (e.g., ballroom

dance tournament, 99.9% accuracy, integer precision), choose the appropriate metrics for the

use case, and curate suitable datasets. Only then an estimation system may succeed at solving

whatever the resulting task may be.
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7. Tailored CNN-Architectures for Tempo and

Key Estimation

In this chapter we discuss how directional filters can be used to steer

what a CNN might learn. To this end, we implement systems for two

different tasks using similar architectures. This chapter is based on my

work in [163].

In recent years, CNNs have been employed for various MIR tasks, such as key detection [90, 91],

tempo estimation (Chapter 4), beat and rhythm analysis [73, 38, 55], genre recognition [31, 151],

and general-purpose tagging [34, 22]. Typically, a spectrogram is fed to the CNN and then

classified in a way appropriate for the task. In contrast to recent computer vision approaches

like Oxford’s Visual Geometry Group’s (VGG) deep image recognition network [175], some of

the employed CNN architectures for MIR tasks use rectangular instead of square filters. The

underlying idea is that, while for images the axes width and height have the same meaning, the

spectrogram axes frequency and time have fundamentally different meaning. For MIR tasks

mainly concerned with temporal aspects of music (e.g., tempo estimation, rhythmic patterns),

rectangular filters aligned with the time axis appear suitable (Chapter 4). Correspondingly, tasks

primarily concerned with frequency content (e.g., chord or key detection), may be approached

with rectangular filters aligned with the frequency axis [108]. In fact, tempo and key estimation

can be seen as tasks from two different ends of a spectrum of common MIR tasks, which are

addressed by systems relying more or less on temporal or spectral signal properties (Figure 7.1).

Systems for other tasks like general-purpose tagging or genre recognition are found more towards

the center of this spectrum as they usually require both spectral and temporal information.

In [131] Pons et al. explored the role of CNN filter shapes for MIR tasks. In particular, they

examined using rectangular filters in shallow CNNs for automatic genre recognition of ballroom

tracks. Defining temporal filter shapes as 1× n and spectral filter shapes as m× 1, they showed

that using temporal filters alone, 81.8% accuracy can be reached, which is in line with a Nearest

Neighbor classifier (k-NN) using tempo as feature scoring 82.3% [63]. Using just spectral filters,

the test network reached 59.6% accuracy, and a fusion architecture with both temporal and

spectral filters performed as well as an architecture using square filters, scoring 87%. The
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Key
Estimation

Genre Recognition
General-Purpose Tagging
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Importance of
Spectral Properties
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Figure 7.1.: Several MIR tasks and their reliance on spectral or temporal signal properties.

experiments confirmed that such directional filters can be used to match either temporal or

spectral signal properties and that both may be useful for genre recognition.

Even though directional filters did not outperform square filters, there are good arguments for

using them: First, CNNs using specialized, directional filters may use fewer parameters or match

musical concepts using fewer layers [130]. Second, by limiting what a filter can match, one can

influence what a CNN might learn, thus better avoid “horses” [181] and improve explainability.

The latter is especially interesting for genre recognition systems, given their somewhat troubled

history with respect to explicit matching of musical concepts [179, 130]. To further explore how

and why directional or square filters contribute to results achieved by CNN-based classification

systems for MIR tasks, we believe it is beneficial to build on Pons et al.’s work and experiment

with tasks that explicitly aim to recognize either high-level temporal or spectral properties,

avoiding hard to define concepts like genre. Such tasks are global key and tempo estimation.

The remainder of this chapter is structured as follows: In Section 7.1 we describe our experiments

by defining both tasks, the network variants used, the training procedure, and evaluation. The

results are then presented in Section 7.2 and discussed in Section 7.3. Finally, in Section 7.4 we

present our conclusions.

Reproducibility

Code to recreate models and reproduce the reported results can be found at https://github.

com/hendriks73/directional_cnns. For ready-to-run tempo and key models presented in

this chapter, please see Appendix A.3 and B.1.

7.1. Experiments

For the purpose of comparing the effects of using different filter shapes we train and evaluate

different CNN architectures for the key and tempo estimation tasks using several datasets. In
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7.1. Experiments

this section, we first describe the two tasks, then discuss the network architectures and datasets

used, and finally outline the evaluation procedure.

7.1.1. Key Estimation

Key estimation attempts to predict the correct key for a given piece of music. Oftentimes, the

problem is restricted to major and minor modes, ignoring other possible modes like Dorian or

Lydian, and to pieces without modulation. Framed this way, key estimation is a classification

problem with NK = 24 different classes (12 tonics, major/minor). The current state-of-the-

art system is CNN-based using a VGG-style architecture with square filters [91] and a fully

convolutional classification stage, as opposed to a fully connected one. This allows training on

short and prediction on variable length spectrograms.

In our experiments we follow a similar approach. As input to the network (Section 7.1.3) we

use constant-Q magnitude spectrograms with the dimensions FK × TK = 168× 60; FK being the

number of frequency bins and TK the number of time frames. FK covers the frequency range of 7

octaves with a frequency resolution of two bins per semitone. Time resolution is 0.19 s per time

frame, i.e., 60 frames correspond to 11.1 s. Since all training samples are longer than 11.1 s, we

choose a random offset for each sample during each training epoch and crop the spectrogram to

60 frames. To account for class imbalances within the two modes, each spectrogram is randomly

shifted along the frequency axis by {−4,−3, . . . ,+6,+7} semitones and the ground truth labels

are adjusted accordingly. We define no shift to correspond to a spectrogram covering the 7

octaves starting at pitch E1. In practice, we simply crop an 8 octaves spanning spectrogram that

starts at C1 to 7 octaves. After cropping the spectrogram is normalized so that it has zero mean

and unit variance.

7.1.2. Tempo Estimation

Even though tempo estimation naturally appears to be a regression task, we have shown in

Chapter 4 that it can also be treated as a classification task by mapping BPM values to distinct

tempo classes. Concretely, our system maps the integer tempo values {30, . . . , 285} to NT = 256

classes. As input to a CNN with temporal filters and elements from [184] and [130] we use

mel-magnitude-spectrograms. Even though we work with other network architectures than we

did in Chapter 4 (Section 7.1.3), we use the same general setup. We also treat tempo estimation

as classification into 256 classes and use mel-magnitude-spectrograms with the dimensions

FT× TT = 40× 256 as input; FT being the number of frequency bins and TT the number of time

frames. FT covers the frequency range 20 − 5, 000 Hz. The time resolution is 46 ms per time

frame, i.e., 256 frames correspond to 11.9 s.
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(a) Shallow

Module

ShallowMod

ClassMod

(b) Deep

Module Size

DeepMod ` = 0
DeepMod ` = 1
DeepMod ` = 2
DeepMod ` = 2
DeepMod ` = 3
DeepMod ` = 3

ClassMod

Table 7.1.: Network architectures used. (a) Shallow architecture consisting of a variant of the ShallowMod

module and a ClassMod module. (b) Deep architecture consisting of multiple, DeepMod modules
parameterized with ` to influence the filter count and a ClassMod module.

Just like the training excerpts for key estimation, the mel-spectrograms are cropped to the

right size using a different randomly chosen offset during each epoch. To augment the train-

ing dataset, spectrograms are scaled along the time axis before cropping using the factors

{0.8, 0.84, . . . , 1.16, 1.2}. Ground truth labels are adjusted accordingly [161]. After cropping and

scaling spectrograms are normalized ensuring zero mean and unit variance per sample.

7.1.3. Network Architectures

To gain insights into how filter shapes affect the performance of CNN-based key and tempo

estimation systems we run experiments with two very different architectures: a relatively shallow

but specialized one, and a commonly used much deeper one from the field of computer vision.

Both architectures are used for both tasks.

7.1.3.1. Shallow Architectures

Our Shallow architecture, depicted in Figure 7.2 and textually outlined in Table 7.1a, consists

of two parts: the feature extraction module ShallowMod and the classification module ClassMod.

ShallowMod (Table 7.2a), is inspired by a classic signal processing approach that first attempts

to find local spectrogram peaks along one axis, averages these peaks over the other axis, and

then attempts to find a global pattern, i.e., a periodicity for tempo estimation [85] and a pitch

profile for key detection [94]. In terms of CNNs this means that our first convolutional layer

consists of short directional filters (local peaks), followed by a one-dimensional average pooling

layer that is orthogonal to the short filters, followed by a layer with long directional filters (global

pattern) that stretch in the same direction as the short filters. We use ReLU as activation

function for the convolutional layers and to avoid overfitting we add a dropout layer [177] after

each ReLU. The parameters k and pD let us scale the number of convolutional filters and set
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(a) ShallowMod

Layer Temp Spec Square

Input
Conv, ReLU k, 1× 3 k, 3× 1 n.a.
Dropout pD pD n.a.
AvgPool FT × 1 1× TK n.a.
Conv, ReLU 64k, 1× TT 64k, FK × 1 n.a.
Dropout pD pD n.a.

(b) DeepMod

Layer Temp Spec Square

Input
Conv, ReLU 2`k, 1× 5 2`k, 5× 1 2`k, 5× 5
BatchNorm
Conv, ReLU 2`k, 1× 3 2`k, 3× 1 2`k, 3× 3
BatchNorm
MaxPool 2× 2 2× 2 2× 2
Dropout pD pD pD

(c) ClassMod

Layer Temp Spec Square

Input
Conv, ReLU NT, 1× 1 NK, 1× 1 n.a.
GlobalAvgPool
Softmax

Table 7.2.: Layer definitions for the three modules ShallowMod, ClassMod, and DeepMod, describing number of
filters (e.g., k or 64k) and their respective shapes (e.g., 1× 3 or 5× 5).

dropout probabilities. ShallowMod is followed by a fully convolutional classification module

named ClassMod (Table 7.2c), which consists of a 1× 1 bottleneck layer (pointwise convolution)

with as many filters as desired classes (NK or NT), a global average pooling layer, and the

softmax activation function. Note, that because all directional filters are identically aligned,

the model has an asymmetric, directional capacity, i.e., it has a much larger ability to describe

complex relationships in one direction than in the other.

We use the same general architecture for both key and tempo estimation. The only differences

are the filter and pooling directions and dimensions. For tempo estimation we use temporal

filters with pooling along the frequency axis, and for key estimation spectral filters with pooling

along the time axis. Both architectures are named after their filter directions, ShallowTemp and

ShallowSpec, respectively. We also adjust the pooling and the long filters shape to the size of

the input spectrogram, which is different for the two tasks.
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ShallowTemp ShallowSpec

ShallowMod

ClassMod

Input

k(1 × 3)
Conv2D, ReLU

Dropout pD

(FT × 1) Max-
Pooling2D

64k(1 × TT )
Conv2D, ReLU

Dropout pD

NT (1 × 1)
Conv2D, ReLU

GlobalAvg-
Pooling2D

Softmax

Input

k(3 × 1)
Conv2D, ReLU

Dropout pD

(1 × TK) Max-
Pooling2D

64k(FK × 1)
Conv2D, ReLU

Dropout pD

NK(1 × 1)
Conv2D, ReLU

GlobalAvg-
Pooling2D

Softmax

Figure 7.2.: Conceptual overview of Shallow architectures.

7.1.3.2. Deep Architectures

The second architecture, Deep (Figure 7.3, Table 7.1b), is a common VGG-style architecture

consisting of six parameterized feature extraction modules DeepMod (Table 7.2b, Figure 7.3 right)

followed by the same classification module that we have already used in Shallow. Each of

the feature extraction modules contains a convolutional layer with 5 × 5 filters followed by a

convolutional layer with 3× 3 filters. The convolutional layers consist of 2`k filters each, with

network parameter k and module parameter `. While ` influences the number of filters in an

instance of DeepMod, k lets us scale the total number of parameters in the network. As shown

in Table 7.1b, deeper instances have more filters. The convolutional layers are followed by a

2× 2 max pooling layer. Should pooling not be possible along an axis, because the output from

the previous layer is only 1 wide or high, pooling is skipped along that axis. This happens for

example, when a tempo spectrogram with its 40 bands passes through more than 5 max pools.

Each pooling layer is followed by a dropout layer with probability pD. To counter covariate shift,

we add batch normalization [78] layers after each convolutional layer.
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Deep

DeepTemp DeepSpec DeepSquare

DeepMod (`)

ClassMod

k2`(1 × 5)
Conv2D, ReLU

BatchNorm

k2`(1 × 3)
Conv2D, ReLU

BatchNorm

(2 × 2) Max-
Pooling2D

Dropout pD

k2`(5 × 1)
Conv2D, ReLU

BatchNorm

k2`(3 × 1)
Conv2D, ReLU

BatchNorm

(2 × 2) Max-
Pooling2D

Dropout pD

k2`(5 × 5)
Conv2D, ReLU

BatchNorm

k2`(3 × 3)
Conv2D, ReLU

BatchNorm

(2 × 2) Max-
Pooling2D

Dropout pD

Input

DeepMod (0)

DeepMod (1)

DeepMod (2)

DeepMod (2)

DeepMod (3)

DeepMod (3)

NK(1 × 1)
Conv2D, ReLU

GlobalAvg-
Pooling2D

Softmax

Figure 7.3.: (left) Conceptual overview of Deep architectures with (right) different DeepMod modules.

The general structure of the Deep architecture is customized neither for the key nor for the

tempo task. However, in order to investigate how different filter shapes affect the network’s

performance, we modify the described architecture by replacing the square convolutional kernels

with directional ones, i.e., 3× 3 with 1× 3 or 3× 1, and 5× 5 with 1× 5 or 5× 1. Analogous to

the naming scheme used for shallow networks, we denote the directional variants DeepTemp and

DeepSpec. The original variant is named DeepSquare.

7.1.4. Datasets

We use the following publicly available datasets from different genres for both training and

evaluation (listed in alphabetical order). The used splits are randomly chosen and listed in

Table 7.3.
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Split Key Datasets

Training 80% of LMD Key ∪ 80% of MTG Key
Validation 10% of LMD Key ∪ 20% of MTG Key

Testing GiantSteps Key , GTzan Key , 10% of LMD Key

Split Tempo Datasets

Training 80% of EBall ∪ 80% of MTG Tempo ∪ 80% of LMD Tempo
Validation 20% of EBall ∪ 20% of MTG Tempo ∪ 10% of LMD Tempo

Testing GiantSteps Tempo, GTzan Tempo, 10% of LMD Tempo, Ballroom

Table 7.3.: Dataset splits used in key (top) and tempo (bottom) estimation experiments.

Ballroom (698 samples) 30 s excerpts with tempo annotations [64].

EBall (3,826 samples) 30 s excerpts with tempo annotations, excluding tracks also occur-

ring in the regular Ballroom dataset [105, 64, 161].

GiantSteps Key (604 samples) 2 min excerpts of electronic dance music (EDM) [88].

GiantSteps Tempo (661 samples) 2 min excerpts of EDM [88]. Revised tempo annotations

from [162].

GTzan Key (836 samples) 30 s excerpts from 10 different genres [185]. Key annotations

from [92].1 Most tracks with missing key annotations belong to

the genres Classical, Jazz, and Hip-hop.

GTzan Tempo (999 samples) 30 s excerpts from 10 different genres [185]. Tempo annotations

from [128].

LMD Key (6,981 samples) 30 s excerpts, predominantly Rock and Pop [136, 156]. Due to

a MIDI peculiarity, this dataset does not contain any tracks in

C major. Some form of data augmentation as described above is

therefore necessary.

LMD Tempo (3,611 samples) 30 s excerpts, predominantly Rock and Pop [136, 161].

MTG Tempo / MTG Key (1,158 samples) 2 min EDM excerpts annotated with both key and

tempo [45, 161]. We used only tracks that are still publicly avail-

able, have an unambiguous key, and a high key annotation confi-

dence.2

1https://github.com/alexanderlerch/gtzan_key
2https://github.com/GiantSteps/giantsteps-mtg-key-dataset
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7.2. Results

7.1.5. Evaluation

Since the proposed network architectures are fully convolutional, we can choose at prediction

time to pass a track either in one long spectrogram or as multiple shorter windows through the

network. In the latter case, predictions for all windows would have to be aggregated. Informal

experiments did not show a remarkable difference. For this work we choose to predict values for

whole spectrograms.

When evaluating key estimation systems either a simple accuracy or a score is used that assigns

additional value to musically justifiable mistakes, like being off by a perfect fifth.3 For this work,

we choose to only report the percentage of correctly classified keys. Tempo estimation systems

are typically evaluated using the metrics ACC1 and ACC2 [64]. We choose to report only ACC1.

For training we use Adam [84] as optimizer with a learning rate of 0.001, a batch size of 32, and

early stopping once the validation loss has not decreased any more during the last 100 epochs.

In this work, one epoch is defined as having shown all training samples to the network once,

regardless of augmentation. We choose k so that we can compare architectures with similar

parameter counts. Shallow is trained with k ∈ {1, 2, 4, 6, 8, 12} and Deep with k ∈ {2, 4, 8, 16, 24}.
Additionally, DeepSquare is trained with k = 1. For both architectures we apply various dropout

probabilities pD ∈ {0.1, 0.3, 0.5}. Each variant is trained 5 times and mean validation accuracy

along with its standard deviation is recorded for each variant. In total we train 420 models with

84 different configurations.

For testing, we pick the dropout variant of each network class that performed best on the

validation set and evaluate it against the test datasets. Again, we report the mean accuracies for

5 runs along with their standard deviations.

7.2. Results

Figure 7.4 shows mean validation accuracies of 5 runs for each configuration, using their best

performing dropout probability pD. The dashed black line is the accuracy a random classifier

achieves, and the dotted black line shows the accuracy of the algorithm that always outputs the

class that most often occurs in the validation set. With accuracy values slightly above random,

ShallowSpec and ShallowTemp perform worst of all architectures, when used for the task they

were not meant for. But when used for the task they were designed for, both perform well. A

higher number of parameters leads to slightly better results. When training ShallowTemp with

k = 1 for the tempo task, the network performed very poorly in one of the five runs, which is

the cause for the very large standard deviation of 32.2 shown in Figure 7.4. The mean accuracy

3https://www.music-ir.org/mirex/wiki/2018:Audio_Key_Detection
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Figure 7.4.: Mean validation accuracies for the various network configurations depending on their number of
network parameters. Only the best dropout configuration is shown. Whiskers represent the standard
deviation based on five runs.

for the 4 successful runs was 85.2%. When comparing with the Deep architectures, we see that

DeepTemp performs just as well as ShallowTemp with k > 1 on the tempo task, and DeepSpec

clearly outperforms ShallowSpec on the key task. Surprisingly, the DeepSpec architecture

reaches fairly high accuracy values (up to 63%) on the tempo task when increasing the model

capacity via k, even though it only has convolutional filters aligned with the frequency axis. We

can make a similar observation for the DeepTemp architecture. It too reaches relatively high

accuracy values on the key task (up to 57%) when increasing k. The unspecialized DeepSquare

is by a small margin the best performing architecture for the tempo task, and comes in as a close

second for key detection with k > 1. But for k = 1, DeepSquare performs considerably worse

than DeepSpec with k = 2 (42% compared to 64%), even though both have similar parameter

counts of ca. 5 000.

We selected the dropout variant for each architecture and parameter setting with the best

validation accuracy and ran predictions on the test sets. Detailed results are shown in Figure 7.5.

The general picture is very similar to validation: Deep architectures tend to perform slightly

better than Shallow architectures on the tasks they are meant for and Shallow architectures

perform poorly on the task they were not meant for. In fact, ShallowTemp performs no better on

GTzan Key and GiantSteps Key than the random baseline. For both key and tempo DeepSquare

performs as well or better than any other architecture, except when drastically reducing the model

capacity for the key task (k = 1). Then accuracy decreases well below DeepSpec’s performance

with similar parameter count: 33% compared to 50% for GTzan Key , and 21% compared to 51%

for GiantSteps Key .

To provide an absolute comparison, we chose the best performing representative from each

architecture (based on validation accuracy, regardless of dropout configuration or capacity), and
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(a) Tempo

Architecture GiantSteps GTzan LMD Ballroom

ShallowTemp 86.5 1.5 60.3 2.7 94.0 1.0 87.9 2.3

DeepTemp 88.7 0.6 63.1 0.6 94.5 0.7 88.2 2.4

ShallowSpec 4.5 1.9 11.5 1.3 9.4 2.1 16.7 5.7

DeepSpec 49.6 2.5 40.2 1.4 73.0 2.4 59.6 9.1

DeepSquare 88.1 1.3 64.7 2.1 96.2 0.4 92.4 1.7

Literature 82.5 [161] 78.3 [128] — 92.0 [161]

(b) Key

Architecture GiantSteps GTzan LMD

ShallowTemp 1.7 0.4 4.9 0.7 11.0 3.7

DeepTemp 46.8 4.3 38.4 2.4 60.7 0.4

ShallowSpec 50.8 3.8 43.8 1.4 67.1 0.9

DeepSpec 55.4 2.7 44.8 2.0 71.3 0.2

DeepSquare 58.5 3.9 49.9 2.0 68.9 2.5

Literature 67.9 [91] ≈45 [92] —

Table 7.4.: Mean estimation accuracies of 5 runs with standard deviation (small font). Best results per test are
set in bold. Model variants chosen based on validation performance (ignoring parameter count).

calculated accuracies for each test set (Table 7.4, incl. reference values from the literature). In

5 out of 7 test cases DeepSquare reaches the highest accuracy score among our architectures.

The other two are reached by DeepTemp for GiantSteps Tempo and by DeepSpec for LMD Key .

For both tasks we observe that the margin by which the best performing network is better

than the second best for a given dataset differs considerably. DeepSquare reaches an accuracy

of 92.4% for the Ballroom tempo dataset, which is 4.2 pp (percentage points) better than the

second best network (DeepTemp, 88.2%). The differences between best and second best accuracy

are considerably lower for the other datasets: 1.7 pp (LMD Tempo), 1.6 pp (GTzan Tempo),

and 0.6 pp (GiantSteps Tempo). For the key task, DeepSquare reaches an accuracy of 49.9% on

GTzan Key , which is 5.1 pp better than the second best network (DeepSpec, 44.8%), while the

differences between best and second best for the other datasets are 3.1 pp (GiantSteps Key), and

2.4 pp (LMD Key).

7.3. Discussion

The results show that simple shallow networks with axis-aligned, directional filters can perform

well on both the key and tempo task. Conceptually, both tasks are similar enough that virtually

the same architecture can be used for either one, as long as the input representation and the

filter direction are appropriate. Using the wrong filter direction, e.g., ShallowSpec for the tempo

task, leads to very poor results close to the random baseline. Together, this strongly supports
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Figure 7.5.: Mean test accuracies for various network configurations and datasets depending on their number
of network parameters. Whiskers represent one standard deviation based on 5 runs. Dropout was
chosen based on performance during validation.
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the hypothesis that the Shallow architecture indeed learns what we want it to learn, i.e., pitch

patterns for key detection or rhythmic patterns for tempo detection, but not both.

This stands in contrast to the standard VGG-style network (DeepSquare). Because of its square

filters, we cannot be certain what it learns, just by analyzing its static architecture. It is designed

to pick up on anything that could provide a hint towards correct classification, be it rhythm and

pitch patterns, or timbral properties like instrumentation. And indeed our experiment shows

that without being specialized for either key or tempo estimation in any way, DeepSquare works

very well for both tasks. In Section 7.2 we noted that DeepSquare achieved the greatest tempo

accuracy for Ballroom and the greatest key accuracy for GTzan Key by a considerable margin of

4.2 pp and 5.1 pp, respectively. This margin may be a result of the fact that key and tempo are

related to genre [75, 168, 199, 44]. Specifically, in Ballroom there is a strong correlation between

genre and tempo, and GTzan Key is the key test set with the greatest genre diversity and

therefore stands to benefit the most from an architecture that can distinguish genres based on both

temporal and timbral properties. Consequently, square filters should improve accuracy results for

these datasets. But this does not conclusively show that only the network’s ability to measure

specifically key or tempo is reflected by these results, as the system is by design vulnerable to

confounds [181]. By using directional filters in DeepSpec and DeepTemp we intentionally limit

the standard VGG-style architecture in a way that seeks to lessen this vulnerability as well as

reduce the number of required parameters.

The results for DeepSpec and DeepTemp show that a VGG-style network with directional filters

can perform very well on either task. For networks with a large number of parameters test results

are similar to DeepSquare, with a tendency towards a slightly worse performance. Interestingly,

the situation is different for low-capacity networks with k = 2 for DeepSpec, and k = 1 for

DeepSquare. Here, DeepSpec clearly outperforms DeepSquare, even though the parameter count

is similar. Perhaps with ca. 5 000 parameters DeepSquare simply does not have enough capacity

aligned in the right direction to still perform well on the task.

The fact that DeepSpec and DeepTemp with k = 2 perform very poorly on the tasks they are

not meant for, supports the hypothesis that they only learn the intended features for the tasks

they are meant for. For k > 2 we cannot be quite as certain, as both architectures reach higher

accuracy scores on the tasks they were not meant for for greater values of k. We believe this

effect may be a result of the 2× 2 max pooling in the DeepMod modules.

7.4. Conclusions

We have shown that shallow, signal processing-inspired CNN architectures using directional filters

can be used successfully for both tempo and key detection. By using shallow networks designed
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for key detection on the tempo task and vice versa, we were able to experimentally support the

hypothesis that these networks are incapable of matching information from the domain they

were not meant for, which would make them less susceptible to confounds.

We further demonstrated that a standard VGG-style architecture can be used for tempo estimation,

as it has been shown before for key detection [91]. By replacing square filters with directional

filters, we derived a musically motivated, directional VGG-variant that performs similarly well as

the original one, but is less vulnerable to confounds, especially when used for key detection with

low capacity models. In such scenarios we were also able to observe efficiency gains, i.e., better

performance than the standard VGG-style network with similar parameter counts.
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8. Chopin Mazurkas: A Cross-Version Study on

Local Tempo Estimation

In this chapter, we discuss local tempo and its stability. It is based on

my work in [? ], which is currently under review. Jonathan Driedger

and Frank Zalkow contributed in preliminary discussions about tempo

modeling, Frank Zalkow also helped with editing.

While global tempo is well defined for music with little or no tempo variability [64], this is less

so the case for local tempo, especially for expressive classical music. Composer markings like

rubato (expressive, local tempo change) or ritardando (slow down) indicate continuous or even

abrupt tempo changes, leading to one or more segments with stable tempi and segments of tempo

instability in between. Figure 8.1, for example, shows tempo markings for Frédéric Chopin’s

Mazurka Op. 68, No. 3 (details are discussed in Section 8.1). Näıvely, one may model local tempo

for such a piece as one of two extremes: at the micro level, as an instantaneous value, e.g., as

the inter-beat interval (IBI) between two consecutive beats, or at the macro level, by averaging

the number of beats over a longer period of time. For expressive music, both approaches have

disadvantages. IBIs exhibit a large variance, and averaging beat counts may underestimate the

tempo, because expression leads more often to longer than shorter IBIs [138]. Repp therefore

attempts to find a definition for the basic tempo [139], i.e., the implied tempo the instantaneous

tempo varies around. In [138] he suggests to derive the basic tempo from the first quartile of

eighth-note inter-onset intervals (IOIs). Similarly, Dixon [33] proposes IOI clustering, using

centroids as tempo hypotheses. Grosche et al. [67] propose yet another approach by defining

local tempo as the mean of three consecutive IBIs, which is identical to using inter-measure

intervals (IMIs) for pieces in 3/4 time. In summary, local tempo is usually modeled by aggregating

local pulse information, but there appears to be no clear consensus on how. Even though local

tempo estimates are popular intermediate features for beat trackers (e.g., [40, 57]), few works

explicitly estimate and evaluate local tempo estimates. Peeters [125] simply measures whether

75% of the estimated local tempi match the annotated global tempo. In subsequent work [126],

he compares the median of local tempi with a global ground truth. A similar approach is taken

in [121]—after beat tracking, the median IBI is used as global tempo and then evaluated. Similar
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Figure 8.1.: Local reference tempo depending on (a) selection and (b) aggregation functions for Op. 68, No. 3 (Co-
hen, 1997) with part boundaries and score tempo markings.

to global tempo evaluation, Grosche et al. [67] compute the accuracy of their IMIs allowing a 4%

tolerance and certain integer factors. Our own method, proposed in Chapter 4, only provides

visualizations for local tempo estimates. Apparently, there is no commonly accepted evaluation

procedure. Even less researched than local tempo is tempo stability. Grosche et al. [69] mention

that beat trackers tend to have problems with the first and last few beats of Mazurkas due to

boundary problems, and observe increased error-levels caused by sudden tempo changes, but as

far as we know no measure for local tempo stability has been proposed.

In this chapter we investigate how to model local tempo (Section 8.1) and tempo stability (Sec-

tion 8.2) for expressive music using Mazurkas by Chopin. As our main contribution, we estimate

local tempi using state-of-the-art neural network-based approaches, adapt these approaches to

our use case, and explore their behavior and potential (Section 8.3). In our evaluation, we focus

on identifying error classes and sources, and in particular the effect of stability. In Section 8.4 we

discuss our findings and draw conclusions.

Reproducibility

Please see Appendix A.3 for trained and ready-to-run versions of models presented in this chapter.
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8.1. Local Tempo

Work Measures Beats Recordings

Op. 17, No. 4 132 396 62
Op. 24, No. 2 120 360 64
Op. 30, No. 2 65 193 34
Op. 63, No. 3 77 229 88
Op. 68, No. 3 61 181 50

Table 8.1.: Mazurka-5 dataset overview: Number of measures, beats, recordings for five Chopin Mazurkas.

8.1. Local Tempo

When modeling local tempo, we are interested in a musically meaningful, single-value description

of a segment of limited length. We can describe this length musically, e.g., as three consecutive

IBIs [67], or physically, e.g., as 6 s or 8 s segments [125, 126]. In either case, we first select beat

events, because they fall into a time span, and then aggregate them. For example, we may use

the mean or the median of all IBIs falling into a 4 s interval. Note that we are not attempting

to find the most suitable selection and aggregation functions (see [139]), but merely discuss

options and aim to establish a framework that can be used for such an endeavor. To illustrate

different choices, we use Chopin’s Op. 68, No. 3 (piano: Cohen, 1997) as example. It is one of over

2,700 recordings of 49 Mazurkas by Chopin collected by the Mazurka Project.1 Of all collected

recordings, 298 recordings of five Mazurkas have been manually beat-annotated [147]. We refer

to this subset as the Mazurka-5 dataset. It contains between 34 and 88 different versions of each

of the five Mazurkas (Table 8.1).

Our example, Op. 68, No. 3, consists of four different musical parts A to D (Figure 8.1). Its score

explicitly specifies two tempo changes: at the start of C from Allegro, ma non troppo (♩=132)

(fast, but not too fast), to Poco più vivo (a little more lively), and back to Tempo I after the

second D-part. Figure 8.1a depicts the effects of different selection functions using the mean for

aggregation. We see that defining local tempo as individual IBIs leads to very high variance.

Using three consecutive IBIs smoothes the tempo curve slightly. The shown tempo curves based

on 4 s, 8 s, and 12 s segments progressively lead to less variance. While the 4 s tempo curve still

follows the phrasing closely (distinct minima at the end of each musical part), this is less so the

case for the curves based on longer segments. This is especially obvious at the end of the 2nd B

part at 38 s.

Figure 8.1b shows the differences between using mean and median as aggregation function. The

tempo curves for mean show local over-smoothing in transitional sections, leading to a triangular

shape in the more lively CDD-section from 50− 60 s. Because of the edge-preserving property

of median-filtering, the median curve captures sudden tempo changes better. The CDD-section

much more resembles a rectangle, i.e., a high tempo plateau. At the same time, the local

1http://www.mazurka.org.uk/
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Figure 8.2.: Per recording normalized tempo distribution with percentage of values between 0.96 and 1.04
(light-red area).

minimum at the end of the 2nd B disappears. Thus, the median curve corresponds nicely to the

composer’s markings.

So far we first selected IBIs, aggregated them, and then converted the result to BPM (selection

→ aggregation → conversion: sac). As an alternative, we could have first converted IBIs to BPM

and then aggregated them (selection → conversion → aggregation: sca). When using mean, the

result is not the same. For sections with changing tempo (Figure 8.1b, 30− 70 s), local tempo

values are lower when we first average and then convert (sac, solid red line) as opposed to first

convert and then average (sca, dotted red line). Note that the median is unaffected by this issue.

8.2. Tempo Stability

As a first approach to describe tempo stability quantitatively on the intra-track level, we convert

all Mazurka-5 IBIs to tempo values and normalize them by dividing with their respective track’s

average. Figure 8.2 depicts the resulting normalized histogram.2 Only 15.5% of the Mazurka-5 ’s

normalized tempi are in the interval between 0.96 and 1.04—the often used ±4% tolerance interval

for stable tempi [64]. For comparison, 90.9% of the Ballroom [64, 93] dataset’s normalized tempi

are in the same interval. Obviously, the two datasets are very different w.r.t. intra-track tempo

stability.

While the ±4% interval is illustrative when categorizing stable vs. unstable, it is a rather arbitrary

threshold (see also Section 6.2.1). Arguably, the standard deviation of a track’s normalized

tempi is better suited to describe intra-track tempo variability. It is identical to the coefficient

of variation introduced in Equation (5.1), which is defined as the ratio between the standard

deviation σ and the mean µ.

We show this IBI-based cvar-value for our example Op. 68, No. 3 (Cohen, 1997) as a horizontal

gray line in Figure 8.3a. As discussed in Section 8.1, instantaneous tempo values like IBIs tend

to overestimate the variance of a musically meaningful local tempo for expressive music. From a

musical point of view, it is therefore more appropriate to analyze tempo stability of Mazurkas

2The comb pattern is a consequence of the 10 ms resolution of the original annotations.
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(a) Stability measures for Op. 68, No. 3 (Cohen, 1997)
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Figure 8.3.: (a) Local tempo (blue line) and stability (cvar) for Op. 68, No. 3 (Cohen, 1997). cvar based either on
IBIs (gray line), the (sampled) median tempo over 12 s intervals (dashed red line), or the averaged
local cvar over 12 s segments of median tempi (solid red line). (b) Percentage of recordings with
cvar ≤ τ .

not based on individual IBIs, but on the basic tempo, which we approximate (for the purpose of

this discussion) with the median tempo over 12 s segments (Figure 8.3a, blue line). Sampling the

local median tempo allows us to calculate an arguably more appropriate cvar (Figure 8.3a, dashed

red line), which lies well below the gray line, indicating higher stability. This however, still

ignores the fact that Mazurkas may contain multiple sections with stable but different tempi. We

can take this into account by calculating local coefficients of variation for short segments of the

median-based tempo curve. The solid red curve in Figure 8.3a shows the results for overlapping

12 s-segments. For most of the recording it is very low. Only in the transitional regions, at

the beginning and end of the CDD-section, we see higher values. Note that by averaging the

local cvar we can obtain a measure for intra-segment stability, while the two track-level cvar

measures represent intra-track stability. Figure 8.3b depicts how many recordings have a cvar

below a threshold τ for all three ways of calculating it. The comparison shows that for Mazurka-5

intra-segment variability is far smaller than intra-track variability.
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Figure 8.4.: Dataset splitting into training, validation, and test sets.

8.3. Experiment

We now investigate how different local tempo estimation systems perform when tested with

Mazurka-5 . We consider the following systems: The RNN-based beat tracking system böck3 [7]

(estimated beats are aggregated identically to the ground truth), the CNN-based tempo estimation

system DeepTemp from Section 7.1.3.2—scaled with model sizing parameter k=16—and the

system DT-Maz, which is set up identically to DeepTemp, but has been trained on Mazurka-5

recordings instead of Pop/Rock, EDM, and Ballroom music. Based on our observations in

Section 8.1 and informal experiments with several segment lengths we model the local tempo

with median-aggregated IBIs from 11.9 s segments.

8.3.1. Setup

We trained DT-Maz from scratch4 on Mazurka-5 recordings using 5-fold cross-validation with

two different kinds of splits, M for Mazurka and V for version (or performance). For M, each split

contains all versions of one Mazurka (Figure 8.4a). For V, each split consists of a disjoint 5th of

all versions of each of the five Mazurkas (Figure 8.4b). During training, three splits were used as

training data and one for validation. The remaining 5th split was used for testing. Each split was

used exactly once for validation or testing. We refer to the models trained on M-splits as DT-MazM

and to the V-split models as DT-MazV. The employed training procedure was very similar to the

one described in Section 4.2.3. Audio is first converted to mel-magnitude-spectrograms. Then

samples with the dimensions F × T are used as network input. F = 40 being the number of

frequency bins covering the frequency range 20−5,000 Hz, and T = 256 being the number of time

frames with a length of 46 ms per frame, corresponding to 11.9 s. We further use scale-&-crop

data augmentation with time scale factors drawn from N (1, 0.1), but limited to [0.7, 1.3] to

avoid extreme distortions. After augmentation, samples are standardized to zero mean and

unit variance. Like in Section 4.2.3, we cast tempo estimation as classification problem and use

3https://github.com/CPJKU/madmom with default parameters.
4Transfer learning on the DeepTemp model led to very similar results.
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Figure 8.5.: (a) Local ACC1 and ACC2 depending on accuracy tolerance (b) Density estimation for OE1

(c) Local ACC1 and ACC2 for the five Mazurkas

categorical cross-entropy as loss function. Adam [84] is used as optimizer with a batch size of 32

and an initial learning rate of 0.001. The rate is halved once the validation loss stops improving

and training is continued with the best performing model up to that point (stepwise annealing).

We repeat this at most 10 times. If reduction does not lead to a lower validation loss three times

in a row, training is stopped. To avoid overfitting to longer recordings, we ensure that samples

from all training recordings are presented with the same frequency.
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Figure 8.6.: (top) Sweet octaves (bottom) Estimates of generalized additive models fit to OE1/tempo-pairs

8.3.2. Evaluation

To evaluate, we estimate the tempo for a sliding segment with length 11.9 s (256 frames) and

a hop size of 186 ms (4 frames) over all recordings. As metric we use ACC1 (tempo accuracy)

and ACC2 (accuracy allowing octave errors) from the global tempo estimation task [64], which

are meant for music with low intra-track tempo variability. This is reasonable, because we

apply the metric locally for each segment, so that the tolerance does not have to correspond to

intra-track, but to intra-segment variability, and as we have shown in Section 8.2, intra-segment

variability is relatively low. Nevertheless, we consider the typical 4% tolerance an arbitrary

threshold and therefore plot accuracy values for the tolerance interval 0− 15% in Figure 8.5a.

For both variants of DT-Maz, ACC1 values are higher than for the other systems, regardless of

tolerance. Not surprisingly, ACC1 values are also generally higher for higher tolerances.5 The

best performing system for the tolerances 4%, 8%, and 12% is DT-MazV with remarkable 64.6%,

86.4%, and 93.5%. The worst performing system is böck, with 16.8%, 24.8%, and 29.7%. For

ACC2 the best performing system is also DT-MazV with 64.8%, 86.8%, and 94.0%, and the worst

performing system is DeepTemp with 27.3%, 47.5%, and 61.2%. In the following paragraphs we

discuss the most prominent errors, namely octave errors, tempo stability related errors, and

problems with specific musical properties.

8.3.2.1. Tempo Octave

Using violin plots, Figure 8.5b depicts kernel density estimates (KDE) of the octave error OE1

introduced in Section 6.6.3. Identifiable by the very dense section around −1 Tempo Octaves (TO),

DeepTemp and böck suffer most from underestimating the actual tempo. As Figure 8.5c shows,

5To keep the evaluation concise, the reported local accuracy in all following accuracy figures use 4% tolerance.
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octave errors are not evenly distributed among the five Mazurkas. Op. 24, No. 2 and Op. 30, No. 2

are much more affected than the other three. This can be partially explained by the fact that on

average versions for Op. 24, No. 2 and Op. 30, No. 2 are performed much faster than the other

three Mazurkas. Their sweet octaves (Section 3.2.1.3) are [116, 232) and [112, 224) BPM, while

the sweet octaves for the other three are [72, 144), [86, 172), and [81, 162) BPM (Figure 8.6, top).

A closer investigation shows that for the tested Mazurkas, both DeepTemp and böck lean towards

negative octave errors for higher tempi, revealing an octave bias (Section 3.2.1.3). This is

visualized in Figure 8.6, bottom. It shows the estimates of generalized additive models (GAM)

fit to measured OE1 per reference tempo. In other words, it illustrates what kind of estimation

error we can expect depending on a given true tempo. For tempi greater than 100 BPM, böck

and DeepTemp tend to suffer from negative octave errors.

8.3.2.2. Stability

Figure 8.7a shows that accuracy is higher when considering only segments with low cvar-values—

our proxy for tempo variability. When only considering relatively stable segments with cvar <

0.025 (Figure 8.7b), the accuracy scores for all five Mazurkas increase substantially. But at least

for DT-MazM, scores for Op. 17, No. 4, Op. 63, No. 3, and Op. 68, No. 3 remain well below those for

Op. 24, No. 2 and Op. 30, No. 2. Apparently, differences in stability cannot fully explain differences

in accuracy for the five works.

8.3.2.3. Musical Properties

We have seen in Figure 8.7b that even for stable segments, DT-MazV performs better than DT-MazM.

To find out why, we exploit beat annotations for each recording of the five Mazurkas. They

allow us to compute stability and the absolute octave error |OE1| for 11.9 s segments with a

beat at their center, i.e., stability and error on a musical time axis. Using musical time, we can

summarize errors and stability measures in a cross-version fashion by averaging per beat over all

recordings of a given Mazurka (Figure 8.8). Figure 8.8a shows the results for Op. 17, No. 4 and

as expected, the cvar-curve roughly correlates with errors by both DT-MazM and DT-MazV. For

DT-MazM we see four large additional peaks around beats 42, 89, 162, and 305 (highlighted in

light-blue). These peaks loosely correlate with the occurrence of dense mixtures of ornamented

beats (red�, trills, grace notes, and arpeggios) and weak bass beats (cyan�, only the left hand

is played), i.e., piece-dependent musical properties (classification from [69]), which are apparently

the main reason for the difference in accuracy. The same kind of graph for Op. 63, No. 3 is

shown in Figure 8.8d. It also has large additional peaks for DT-MazM, which do not coincide with

tempo instabilities. In this case we cannot provide beat classes that explain the errors. The fact

that they occur in particular sections and that DT-MazV does not suffer from them supports the

123



Chapter 8. Chopin Mazurkas: A Cross-Version Study on Local Tempo Estimation

(a) Accuracy depending on cvar

0.
00

0.
25

0.
25

0.
50

0.
50

1.
00

1.
00

2.
00

2.
00

10 cvar

0
25
50
75

100
AC

C 1
 (%

)

20
.3

32
.0

29
.1

12
.9 5.
7

Dataset Fraction (%)

0.
00

0.
25

0.
25

0.
50

0.
50

1.
00

1.
00

2.
00

2.
00

10 cvar

0
25
50
75

100

AC
C 2

 (%
)

20
.3

32
.0

29
.1

12
.9 5.
7

Dataset Fraction (%)

(b) Accuracies for cvar < 0.025
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Figure 8.7.: (a) Local ACC1 and ACC2 considering cvar ranges. (b) Accuracies for segments with cvar < 0.025.

argument that these errors are caused by musical properties of the work. Trained on the V-split,

DT-MazV was able to learn piece-specific musical properties and generalize them across versions.

This implies that expecting DT-MazM’s accuracy levels is more realistic when using either of the

two models on completely unseen Mazurkas.

8.4. Discussion and Conclusions

With five Chopin Mazurkas as use case, we have shown that local tempo for expressive music

can be modeled using median aggregated IBIs, and tempo stability can be measured using the

coefficient of variation (cvar) of tempo values. Using these tools, we have found that the five

Chopin Mazurkas exhibit high intra-track tempo variability, but low intra-segment variability,
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i.e., the local tempo is relatively stable and thus musically meaningful. This has allowed us to

conduct a local tempo estimation experiment. The results show that a standard beat-tracker

like böck and a tempo estimation CNN like DeepTemp—trained on Pop, EDM, and Ballroom

music—perform relatively poorly for Mazurkas. Even when ignoring tempo octave errors, the

results are by far inferior to those achieved by the same kind of CNN as DeepTemp, but trained

on recordings from the target genre. It is reasonable to assume that training the böck system

on Mazurkas would also improve performance substantially—at the price of a strong genre bias

(see Section 3.2.1.4). Through our experiments, we have been able to confirm a relationship

between estimation accuracy and tempo stability measured in cvar. Arguably, segments with

a very high cvar may not have a meaningful local tempo. Via comparison of local accuracy

results for DT-Maz-models trained on either the piece-wise split across Marzurkas (M-split) or

the performance-wise split across versions (V-split), we have been able to identify piece-specific,

musically difficult passages. When training and testing on the V-split, the network apparently

has a chance to learn these piece-specific features not covered by data augmentation. One might

also argue, DT-MazV overfits to the pieces (“cover song effect”). As with all deep learning systems,

performance depends largely on the training data. For a production system, one is therefore well

advised to use a larger and more diverse training set than we did in this case study.
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Figure 8.8.: Averaged cvar and |OE1| around beats with classifications from [69]: non-event beats (black�) ,
boundary beats (blue�), ornamented beats (red�), constant harmony beats (green�), and weak
bass beats (cyan�). Sections with high OE1-values that cannot be explained by tempo instability,
i.e., high cvar-values, are highlighted with a light-blue background.
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9. Schubert Winterreise: A Cross-Version

Study on Local Key Estimation

In this chapter, we discuss local key estimation comparing an HMM and a

CNN approach using a cross-version dataset. It is based on joint work

with Christof Weiß, which is currently under review [166]. Christof Weiß

contributed local key annotations, HMM implementation and training, as

well as the musicological evaluation and parts of the discussion. My main

contributions are the CNN implementation and training, as well as parts

of the discussion.

The tonal analysis of music audio recordings is of high relevance for both musicologists and music

listeners and therefore constitutes a central task in MIR research. Notions of tonal structures

relate to different temporal scales. Many researchers have focused on local (i.e., temporally

concentrated) structures such as chords [21, 81, 89, 173, 108]—loosely defined as sets of pitches

that are perceived as an entity. In contrast, the global key describes the tonality of a whole

song, piece, or movement. It can be defined as a set of pitch relationships that establishes a

particular major or minor chord as a tonal center [142], attaining a subjective sense of arrival

and rest [27]. In this chapter, we consider the intermediate notion of local key, which relates to

mid- and large-scale segments of a piece.

For the global key in Western classical music, the beginning and ending sections [189] and the

final chord [193] play an important role, and the key label is often provided by the composer as

part of the title. Contrasting this global view, the musical key may also change over the course

of a piece, thus calling for a local key analysis. When the harmonic structure prepares the arrival

of the new key, we speak of a modulation [142]. Modulations often proceed gradually over a

certain time span leading to ill-defined segment boundaries. Furthermore, some keys are closely

related to each other such as relative keys (e.g., C major ↔ A minor), which share the same

underlying diatonic scale. Some researchers therefore focus on the 12-class problem of diatonic

scale detection [202, 194]. There is also a high similarity between parallel keys (C major ↔
C minor) or fifth-related keys (C major ↔ G major), whose associated scales largely overlap

by sharing many pitch classes. Due to these issues, local key estimation (LKE) is a challenging

127



Chapter 9. Schubert Winterreise: A Cross-Version Study on Local Key Estimation

Time (s)

Figure 9.1.: Local key predictions of the CNN model for song 15 “Die Krähe” from Schubert’s song cycle
Winterreise, performed by T. Quasthoff and C. Spencer (1998). Dark red bars indicate false positives,
brighter red bars false negatives, black bars true positives.

task where annotations are often ambiguous and highly subjective by nature. Several approaches

therefore avoid the “hard” detection of keys and boundaries and propose multi-scale [146, 65],

self-referential [80], or probabilistic [134, 194, 195] visualization techniques instead. Figure 9.1

shows a visualization of LKE results with an arrangement of keys according to the circle of

fifths—thus showing closely related keys next to each other. At second 40, we observe a confusion

with the relative key and around second 90, a confusion with a fifth-related key.

To address automatic LKE from audio recordings, different methods have been proposed. Tra-

ditional approaches combine chroma features with template-based recognition [79, 124]. For

segmentation and post-filtering, many researchers used Hidden Markov Models (HMMs) [18, 202]

with non-negative matrix factorization (NMF) as an alternative [79]. As we know from chord

estimation research [21, 81], HMMs are useful mainly due to the context-sensitive smoothing

effect and less due to their quality as a language model for key transitions. Several methods

address chord estimation, LKE, and (down-)beat tracking simultaneously [141, 107, 124]. Re-

cently, deep-learning techniques have become popular for chord estimation [173, 108] and global

key estimation [90, 91, 163] in music recordings. Korzeniowski et al. [91] successfully used

convolutional neural networks (CNN) to estimate the global key for music recordings across

different genres. Though we are not aware of any research using deep neural networks for LKE,

this is an obvious endeavor due to the task’s similarity to chord and global key estimation—both

of which have been tackled successfully using CNNs.

While most audio-based LKE systems were developed and tested on popular music, Western

classical music has rarely been approached. Mearns et al. [113] analyze modulations in synthesized

recordings of twelve chorales by J. S. Bach. Papadopoulos and Peeters [124] consider recordings of

Mozart’s piano sonatas. Weiss et al. [195] provide visualizations of local key regions in Wagner’s

operas. Compared to popular music, the use of closely related keys and gradual modulations are

particularly prominent in classical music. Moreover, many classical music styles involve altered
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9.1. Cross-Version Dataset

ID Singer Pianist Year Duration

AL98 Thomas Allen Roger Vignoles 1998 1:13:33
FI55 Dietrich Fischer-Dieskau Gerald Moore 1955 1:14:35
FI66 Dietrich Fischer-Dieskau Jörg Demus 1966 1:11:23
FI80 Dietrich Fischer-Dieskau Daniel Barenboim 1980 1:13:07
HU33 Gerhard Hüsch Hanns-Udo Müller 1933 1:07:31
OL06 Thomas Oliemans Bert van den Brink 2006 1:14:42
QU98 Thomas Quasthoff Charles Spencer 1998 1:12:24
SC06 Randall Scarlata Jeremy Denk 2006 1:06:45
TR99 Roman Trekel Ulrich Eisenlohr 1999 1:15:21

Table 9.1.: Cross-version dataset of Franz Schubert’s Winterreise.

chords featuring non-scale tones that make LKE even harder. As a peculiarity of classical music,

there are usually many recorded performances (interpretations) available. Together with other

representations, such as symbolic scores, we consider these as individual versions of an abstract

musical work. Exploiting several such versions in a cross-version scenario allows for studying

and improving the robustness and generalization for various tasks such as chord [89] and scale

analysis [195] or singing voice detection [32, 114].

In this chapter, we study LKE within a cross-version scenario. We make use of a dataset

comprising nine recorded performances (referred to as versions) of Franz Schubert’s 24-song cycle

Winterreise [65]. Using measure annotations as anchor points, we semi-automatically generate

local key annotations [1, 65]. We propose a straightforward LKE approach based on a CNN

and compare it to a traditional method using chroma features and HMMs. In our experiments,

we evaluate the efficacy of both methods and systematically assess their robustness. As our

main contribution, we investigate the effect of using different training–test splits that require

generalization across versions, songs, or both. Furthermore, we conduct an in-depth analysis and

investigate musical reasons for key confusions.

The chapter is organized as follows. In Section 9.1, we start with the description of the dataset and

our training–test scenarios. We proceed in Section 9.2 with introducing the technical approaches

(HMM and CNN). In Section 9.3, we then discuss our results in detail. We draw our conclusions

in Section 9.4.

9.1. Cross-Version Dataset

In this section, we describe our dataset and annotation procedure followed by the different splits

used for training, validation, and testing.
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Figure 9.2.: Dataset splitting into training, validation, and test sets.

9.1.1. Dataset

Franz Schubert’s song cycle Winterreise (Winter Journey, published 1828) consists of 24 songs

for voice (originally tenor) and piano. The individual songs differ in length and complexity.

Some songs are harmonically unambiguous showing distinct key regions of diatonic pitch content

(No. 2) or being based on a single tonic chord (No. 24). Other songs involve many altered chords

(No. 10) and ambiguous key regions (No. 16). Inspired by previous analyses [1, 65], each song

has been annotated on score level (musical time axis) with continuous local key segments by

the professionally trained musician Christof Weiß. Since the local key is sometimes ambiguous,

our annotations differ from [1, 65] in several respects: We did not label unclear or transitional

passages with “no key” but decided on the most likely key. Furthermore, we ensured a certain

continuity of the key segments.

Our dataset [65] comprises nine complete performances by different duos, recorded in a studio

setting (Table 9.1). On average, each song lasts 3 min (σ=1:10 min), ranging from 0:44 min

(No. 18, SC06) to 6:18 min (No. 1, OL06). We manually annotated measure positions for two

recordings (HU33, SC06) and automatically transferred these to the other recordings using

synchronization techniques as proposed in [200]. Using the measure positions as anchor points,

we semi-automatically transferred the local key regions from the score level to the nine recordings

(physical time axis).

9.1.2. Splits

To train our models and optimize their hyperparameters, we split our dataset into training,

validation, and test subsets so that each song in each version is analyzed exactly once in a cross-

validation procedure. Since our dataset has a specific structure, we can split along two axes—the

“version axis” and the “song axis” (see Figure 9.2). In order to systematically investigate the

models’ efficacy when trained in different ways, we create three different splits:
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• Version split V (Figure 9.2a). The training subset contains all songs in five versions, the

validation subset all songs of one version, and the test subset all songs of three versions.

In this case, the models can exploit their knowledge of the abstract musical structure

(harmonic progressions), but have to generalize to unseen acoustic conditions and different

interpretations, which is not trivial.

• Song split S (Figure 9.2b). The training subset contains recordings of 13 songs in all nine

versions, the validation subset three songs in all versions, and the test subset eight songs in

all versions. The models have to generalize to unseen musical pieces with different harmonic

properties but can adapt to the acoustic conditions of each version during training.

• Neither split N (Figure 9.2c). In this strict split, the training subset contains 19 songs

in four versions, the validation subset two other songs in two other versions, and the test

subset three other songs in three other versions. Thus, the model knows neither song nor

version and has to generalize across both axes. This is the only split where not all data is

used in one fold, and it is the most realistic one.

To ensure comparability, we fix the exact versions and songs in each of the splits (no randomization)

for both models.

9.2. Methods

We present two approaches for LKE. The first one is a baseline system relying on HMMs, the

second one uses CNNs.

9.2.1. HMM-Based Method

Our first system, denoted as HMM, relies on the extraction of chroma features using the filter-bank

method proposed in [118].1 We post-process the filter-bank output (pitch features) by applying

logarithmic compression with a parameter γ ∈ {100, 1000, 10 000} and apply pitch weighting

to emphasize the pitch range around C4 [21]. We smooth the resulting 10 Hz chroma features

with a median filter of length λ ∈ {81, 85, . . . , 157}. On the training subset, we learn Gaussian

models for the 24 keys (assuming enharmonic equivalence) in the chroma space R12. We cyclically

average the major and the minor key model over the chroma dimension in order to achieve

transposition-blind models, which we then use for generating the HMM emission probabilities.

Inspired by [21], we apply a uniform, diagonal-enhanced transition matrix with a self-transition

probability of 1− σ where σ ∈ {10−5, 10−6, 10−7, 10−8}. Using these HMM parameters, we run

Viterbi decoding to predict a key label for every 10 Hz frame. We optimize the parameters γ, λ,

1We use the librosa implementation [109].
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and σ on the validation subset. That way, we exploit the available data in a way similar to the

CNN-based system described next.

9.2.2. CNN-Based Method

The second system, denoted as CNN, is set up identically to the global key estimation network

DeepSquare from Section 7.1.3.2 (Figure 7.3), scaled with the model sizing parameter k=8

and dropout probability pD=0.3. Overall, the network has 293 296 trainable parameters. The

employed training procedure is similar to the one described in Chapter 7. We first convert the

audio to constant-Q magnitude spectrograms. Then, we use samples of dimension F × T as

input to the network. F=168 is the number of frequency bins covering a frequency range of

seven octaves with a frequency resolution of two bins per semitone. T=60 is the number of time

frames with a resolution of 0.19 s per frame, i.e., 60 frames correspond to 11.1 s. To account for

class imbalances within the major or minor keys, we randomly shift each spectrogram along the

frequency axis by {−4,−3, . . . , 6, 7} semitones and adjust the ground truth labels accordingly.

Since key estimation is a single-label, multi-class problem, we use categorical cross-entropy as

loss function. Adam [84] is used as optimizer with a batch size of 32 and an initial learning rate

of 0.001. Once the validation loss plateaus, we halve the learning rate and continue training with

the best performing model up to that point (stepwise annealing). We repeat this at most ten

times. If reduction does not lead to a lower validation loss three times in a row, we stop training.

9.3. Results

In order to evaluate LKE on classical music, we trained both systems on recorded songs from

Schubert’s Winterreise using different data splits. As general evaluation measure, we compute

the accuracy while ignoring “no key” regions (which only occur at the beginning and ending of a

piece). Moreover, we analyze musically explainable key confusions such as relative, parallel, and

fifth-related keys. In the following, we discuss the results with a focus on the data splits and

musical key confusions.

9.3.1. Detailed Results

We first consider the realistic split N, where neither test songs nor test versions are seen during

training or validation. Figure 9.3a depicts the HMM’s results. With most songs, we observe a

similar accuracy for the different versions. However, the accuracy varies greatly between songs.

For example, song no. 1 reaches high accuracies around 93% for all versions, which is expected

due to its clear harmonic structure. In contrast, song no. 10, which is highly chromatic, shows
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(b) Results for CNN
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Figure 9.3.: Individual accuracy values (in percent) per song and version for the strict neither split N.

low accuracies around 50%. For few songs, we observe higher variance along the version axis.

An example for such an outlier is song no. 18, whose accuracy is strongly version-dependent.

Investigating these results in detail, we find that this is a very short song of approx. 45 seconds,

whose beginning and ending sections are monophonic (unisono) without any chords in the piano,

thus posing a particular challenge. The HMM’s tendency to stay in a key reinforces the impact of

such errors on the overall accuracy. Comparing the HMM’s results with the CNN’s (Figure 9.3b),

we observe similar tendencies in both plots. With an average of 73%, the CNN performs only

marginally better than the HMM trained on split N (71%). For the CNN, accuracies are also similar

across different versions of a song. Moreover, the variation across songs is very similar to the

HMM’s results, which indicates that musical properties of the individual songs may pose the main

challenge for both systems.
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Figure 9.4.: Average accuracies for songs based on different splits (V, S, N) and models (HMM, CNN). Black errorbars
denote standard deviations across versions (averaged over all songs), red errorbars denote standard
deviations across songs (averaged over all versions).

9.3.2. Data Splits

To statistically summarize these results, we report the average per-song accuracy values in

Figure 9.4. For the “neither” split N, the two right-most bars correspond to the overall averages

(lower-right values) in Figures 9.3a and 9.3b. Black errorbars indicate the average standard

deviation over all versions of a song (“vertical direction” in Figure 9.3). Red errorbars denote

the average standard deviation over all songs of a version (“horizontal direction” in Figure 9.3).

The standard deviation across songs (14.4% for CNN) is substantially greater than across versions

(5.2% for CNN), which confirms our observation that the accuracy variance can be traced back

more to differences in songs than in versions. This also holds for the other splits V and S depicted

in Figure 9.4. Comparing the average accuracy between splits, we find that the “song split” S

leads to similar results (69% for HMM, 72% for CNN). Interestingly, accuracies are a bit lower than

for N, despite having more training data available in each step. In N, the split between training

and validation is stricter, which might lead to more robust systems. Contrary to findings for

genre classification [123], we found no advantage for either system to being exposed to other

versions from the same CD recording, i.e., no observable “album effect.” Looking at the “version

split” V, we find a remarkable result. Accuracies are considerably higher with 76% for HMM and

96% for CNN. Both systems apparently have a capacity to learn the specific musical characteristics

of the individual songs (resp. their specific annotations), with the CNN’s capacity being greater

than the HMM’s. The CNN system is effectively (over)fitting to harmonic progressions in the songs.

Therefore, we cannot expect it to perform similarly well for other classical songs—we might call

this a “cover song effect.” Interestingly, generalization to unseen acoustic conditions works well,

especially for the CNN. Having several versions available for training (and validation) seems to

build up the model’s robustness against version differences and thus, is sufficient for avoiding the

“album effect.”
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Figure 9.5.: Accumulated accuracy including different types of musically explainable key confusions.

9.3.3. Musical Key Confusions

Finally, we want to discuss the specific types of confusions in the models’ predictions. Figure 9.5

shows the percentage of frames with certain prediction errors on top of the accuracy (true

positives). We report confusions with the relative key (e.g., C major ↔ A minor), the parallel

key (C major ↔ C minor), fifth-related keys (C major ↔ G major, or C major ↔ F major), as

well as the relative of fifth-related keys (C major ↔ E minor, or C major ↔ D minor) and the

parallel of fifth-related keys (C major ↔ G minor, or C major ↔ F minor). For both the S- and

the N-split, we see that the most common errors are fifth errors, parallel key errors, relative key

errors, relative fifth errors, and parallel fifth errors (roughly in this order). Together, these errors

explain most of the performance gap between the CNN trained on the V-split and either system

trained on one of the other splits (Figure 9.5). Gray and dark blue bars together constitute the

accuracy for estimating the correct diatonic scale [194, 195]. Correct predictions and all musical

errors together comprise ≈ 95% of all frames. From this, we conclude that it is most challenging

for the models to learn how musically ambiguous regions have to be labeled in order to predict

the local key label as given by a specific annotator. For a detailed visualization of which kind of

error each model is prone to for each measure of the 24 songs, please see Appendix C.

9.4. Conclusions

We approached the task of local key estimation in classical music recordings and systematically

explored the efficacy of an HMM-based and a CNN-based approach. Using a cross-version dataset

of Schubert’s song cycle Winterreise, we trained, validated, and tested both systems on splits

along songs or versions. Moreover, we explored a strict split where neither test songs nor test

versions are shown during training. For the song and the “neither” split, we found that CNN and

HMM models perform similarly well, reaching an accuracy of approx. 70%. Most of the observed

errors can be explained through musical ambiguities where annotations are often subjective.
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Comparing results for different splits, we showed that generalization across versions (“album

effect”) does not pose major problems for the models. Knowing the specific songs (version

split) leads to clearly higher results, especially for the CNN (96%). We call this the “cover song

effect.” While this is beneficial in our scenario, it means that the CNN (over)fits to the harmonic

progressions of specific songs and learns how a single annotator labeled these songs. Song and

“neither” split therefore show more realistic results as can be expected for unseen pieces. Yet,

providing CNN models with more training data covering a wide variety of harmonic progressions

should have high potential for improving local key estimation systems in general.
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10. Summary and Future Work

In this thesis, we explored data-driven solutions to the classic MIR tasks tempo and key estimation.

Starting with traditional digital signal-processing methods, we applied increasingly complex

machine learning techniques, essentially moving from handcrafted to data-driven solutions.

Beginning with a basic handcrafted system, we used linear regression and random forests on

engineered features with the goal of correcting already reasonable results (Chapter 3). Machine

learning was used as an “add-on”, not as the core of the solution. This differentiates the first

part of this thesis from the second. Realizing that the presented basic tempo estimation pipeline

with its two-level Fourier transforms is just another computational graph with weights that can

be learned, we searched for a suitable problem formulation that can be expressed in the shape

of a DNN. This led to our first CNN-based tempo estimation system proposed in Chapter 4.

Its architecture reflects a key insight from our signal-processing method, namely first matching

short-time patterns (“onsets”) as building blocks for detecting long-time periodicities (“tempo”).

Following the same design principle, we showed in Chapter 7 that relatively shallow, but highly

specialized DNNs can reach competitive performance for both the tempo and the key estimation

task. Ultimately, they may be inferior to deep architectures that have a greater capacity to learn

a large range of rhythmical patterns. Nevertheless, we believe that building ML systems by

exploiting domain knowledge is key to a better understanding and thus better solutions. We

have further demonstrated how knowing the subject matter and available data is essential for

approaching MIR tasks in Chapters 8 and 9. In both chapters the CNNs used are primarily tools

that help us explore cross-version datasets and their musical properties. The interesting insights

in both chapters are not found in how well the CNN performs, but what we can conclude from

its successes and failures depending on how we split the data.

Data is what working ML models are made from. That is why it is so important that we create,

analyze, and correct datasets as we have done throughout this work. As shown in Chapter 5,

there is much to be questioned and improved. Just because we have always used this dataset or

that metric does not make achieved evaluation results automatically meaningful or useful. We

therefore critically discussed tempo estimation evaluation in Chapter 6. It is simply not enough

to search for better methods. The way we evaluate these methods has to be constantly challenged

as well. We were able to show that use cases, metrics, and dataset are in need of improvement

and proposed suitable remedies, namely new metrics and an open evaluation repository.
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Chapter 10. Summary and Future Work

We firmly believe that methods for MIR tasks like tempo and key estimation will continue to

improve thanks to larger and better datasets and advances in ML. This may also make it easier

to learn directly from audio signals instead of spectrograms [30, 132]. Since annotating music

datasets tends to be expensive, interesting solutions may arise from semi-supervised or multi-task

learning [5, 8]. Very likely, we will also see progress w.r.t. explainability [23], to better understand

not only how to learn, but also what is learned in order to gain true insights into music and

MIR—and not just ML.
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A. Implementations: Tempo Estimation

Systems

This appendix gives an overview of implementations for the tempo estimation systems we

proposed in this thesis.

A.1. Global Features and Linear Regression

An implementation of the algorithm described in Section 3.1 is available at https://www.

audiolabs-erlangen.de/fau/assistant/schreiber/data/schreiber_icassp2014.zip and

http://www.tagtraum.com/download/schreiber_icassp2014.zip.

The software requires Java 6 or later.

To start, execute one of these three programs:

$ java -cp jipes-0.9.7.jar:schreiber icassp2014-0.0.1.jar BPM <input> [output]

$ java -cp jipes-0.9.7.jar:schreiber icassp2014-0.0.1.jar Mirex <input> [output]

$ java -cp jipes-0.9.7.jar:schreiber icassp2014-0.0.1.jar SNM82 <input> [output]

• BPM: Produces just the BPM

• Mirex: Output as required in the MIREX competition

• SNM82: The mean spectral novelty feature with kernel length 82

Note, that on Windows the path separator between the two jars is not ’:’, but ’;’. Both jars

have to reside in the current directory (unless you edit the classpath accordingly). The output is

either written to the given file or, if omitted, to standard out. Supported audio input formats

are .au and .wav with samples rate that are multiples of 11,025 Hz.

The code was implemented using the open source audio feature extraction framework jipes [153].
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Appendix A. Implementations: Tempo Estimation Systems

A.2. Octave Error Correction with Random Forests

An implementation of the algorithm described in Section 3.2 is available at https://www.

audiolabs-erlangen.de/fau/assistant/schreiber/data/schreiber_ismir2017-0.0.4.zip

and http://www.tagtraum.com/download/schreiber_ismir2017-0.0.4.zip.

The software requires Java 8 or later.

To start, execute one of these two programs:

$ java -cp schreiber tempo ismir2017-0.0.4-jar-with-dependencies.jar \
-Djava.awt.headless=true \
BPM [--model=MODEL FILE|ismir2017|mirex2017] <input> [output]

$ java -cp schreiber tempo ismir2017-0.0.4-jar-with-dependencies.jar \
-Djava.awt.headless=true \
Mirex [--model=MODEL FILE|ismir2017|mirex2017] <input> [output]

• BPM: Produces just the BPM

• Mirex: Output as required in the MIREX competition

You may optionally specify a model. By default the model for the original ISMIR paper is used.

The MIREX model has been trained on a wider range of datasets than the ISMIR model and

may produce better results.

The output is either written to the given file or, if omitted, to standard out. Supported audio

input formats are .au and .wav with samples rate that are multiples of 11,025 Hz.

The code was implemented using the open source audio feature extraction framework jipes [153].

A.3. CNN-Based Systems

The GitHub repository https://github.com/hendriks73/tempo-cnn hosts several ready-to-

use tempo estimation models from Chapters 4, 7, and 8 of this thesis. The Python library

librosa [109] is used for feature extraction.

A.3.1. Installation

To install, please clone the repository using git, create a fresh conda environment, and then run

the installation script:

$ git clone git@github.com:hendriks73/tempo-cnn.git

$ cd tempo-cnn
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A.3. CNN-Based Systems

$ conda create -n tempocnn ”python=3.6.∗”

$ conda activate tempocnn

$ python setup.py install

After the installation succeeded, you may use the scripts tempo and tempogram. Both support

the command line flag --help and provide detailed usage information.

A.3.2. Global Tempo Estimation

To estimate the tempo of a music audio file named my_audio.wav, please run:

$ tempo -i my audio.wav -o my audio.bpm

The result will be written to my_audio.bpm.

The most important tempo parameters are explained below. You may find additional options

using --help.

A.3.2.1. Model Selection

There are multiple trained models to choose from, which can be specified with the parameter -m:

ismir2018 Model, set-up and trained as described in Chapter 4.

cnn CNN model, trained for MIREX 2018 [157] on a large dataset,

including some of the typical test sets.

fcn Fully convolutional model (FCN), trained for MIREX 2018 [157]

on a large dataset, including some of the typical test sets.

shallowtemp_k{1,2,4,6,8,12} ShallowTemp-style model (Section 7.1.3.1) for selected values

of the model scaling parameter k.

deeptemp_k{2,4,8,16,24} DeepTemp-style model (Section 7.1.3.2) for selected values of

the model scaling parameter k.

deepsquare_k{1,2,4,8,16,24} DeepSquare-style model (Section 7.1.3.2) for selected values of

the model scaling parameter k.

dt_maz_m_fold[0-4] DeepTemp-style model (Section 7.1.3.2), trained on one of five

folds of Mazurka-5 using M-split (Figure 8.4a).

dt_maz_v_fold[0-4] DeepTemp-style model (Section 7.1.3.2), trained on one of five

folds of Mazurka-5 using V-split (Figure 8.4b).
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Appendix A. Implementations: Tempo Estimation Systems

Note that we trained shallowtemp_kx, deeptemp_kx, deepsquare_kx multiple times (five runs

each, i.e., five different models each), but the tempo-cnn GitHub repository only contains the

models from the first run for each setup. The code used for training these models can be found

at https://github.com/hendriks73/directional_cnns.

A.3.2.2. Output Format

Besides the default (just a BPM value), results may be presented in different formats using one

of the following flags:

--mirex Format for MIREX

--jams JSON-based data format JAMS [77]

A.3.2.3. Interpolation

Since the networks supported by tempo perform classification, the output has a limited resolution.

Final tempi are usually picked by selecting the class with the highest value of a softmax-

distribution. Since the discrete distributions can be (quadratically) interpolated, we can also

estimate sub-class tempo-values. You can request this behavior by setting the flag --interpolate.

A.3.3. Local Tempo Estimation and Visualization

To visualize the local tempo of a music audio file named my_audio.wav, please run:

$ tempogram my audio.wav

The most important tempogram parameters are explained below. You may find additional options

using --help.

A.3.3.1. Model Selection

You may choose the same models as for global tempo estimation (Section A.3.2.1) using the -m

parameter.

A.3.3.2. CSV Export

In order to export local estimates as machine-readable data, you may set the --csv flag. Results

are written to a file named like the input audio file with the extension .csv appended.
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A.3. CNN-Based Systems

A.3.3.3. Time Resolution

By default, local tempo is determined every 1.486 s (0.67 Hz, hop-length 32). You may change

this by specifying a different hop-length as multiples of 0.0464399093 s.

For example, --hop-length 1 is equivalent to a hop length of 0.0464399093 s, i.e., a time

resolution of 21.5 Hz.

A.3.3.4. Post Processing
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Figure A.1.: Typhoon by Foreign Beggars/Chasing Shadows without and with different kinds of post-processing
using the fcn model and standard hop-length. (a) Plain visualization (b) Sharpened (c) `2-normed.

You may choose to have tempogram post-process the computed softmax distributions before

visualization. For examples, please see Figure A.1.
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Appendix A. Implementations: Tempo Estimation Systems

--sharpen Sharpen the image by only showing argmax values (one-hot encod-

ing, Figure A.1b).

--norm-frame NORM_FRAME Enable framewise normalization using max, `1, or `2 norm (Fig-

ure A.1c)).
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B. Implementations: Key Estimation Systems

This appendix gives an overview of implementations for the key estimation systems we proposed

in this thesis.

B.1. CNN-Based Systems

The GitHub repository https://github.com/hendriks73/key-cnn hosts several ready-to-use

key estimation models from Chapter 7 of this thesis. The Python library librosa [109] is used for

feature extraction.

B.1.1. Installation

To install, please clone the repository using git, create a fresh conda environment, and then run

the installation script:

$ git clone git@github.com:hendriks73/key-cnn.git

$ cd key-cnn

$ conda create -n keycnn ”python=3.6.∗”

$ conda activate keycnn

$ python setup.py install

After the installation succeeded, you may use the scripts key and keygram. Both support the

command line flag --help and provide detailed usage information.

B.1.2. Global Key Estimation

To estimate the key of a music audio file named my_audio.wav, please run:

$ key -i my audio.wav -o my audio.key

The result will be written to my_audio.key.

The most important key parameters are explained below. You may find additional options using

--help.
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Appendix B. Implementations: Key Estimation Systems

B.1.2.1. Model Selection

There are multiple trained models to choose from, which can be specified with the parameter -m:

shallowspec_k{1,2,4,6,8,12} ShallowSpec-style model (Section 7.1.3.1) for selected values

of the model scaling parameter k.

deepspec_k{2,4,8,16,24} DeepSpec-style model (Section 7.1.3.2) for selected values of

the model scaling parameter k.

deepsquare_k{1,2,4,8,16,24} DeepSquare-style model (Section 7.1.3.2) for selected values of

the model scaling parameter k.

Note that we trained shallowspec_kx, deepspec_kx, deepsquare_kx multiple times (five runs

each, i.e., five different models each), but the key-cnn GitHub repository only contains the

models from the first run for each setup. The code used for training these models can be found

at https://github.com/hendriks73/directional_cnns.

B.1.2.2. Output Format

Besides the default (just a key value), results may be presented in different formats using one of

the following flags:

--mirex Format for MIREX

--jams JSON-based data format JAMS [77]

B.1.3. Local Key Estimation and Visualization

To visualize the local tempo of a music audio file named my_audio.wav, please run:

$ keygram my audio.wav

The most important keygram parameters are explained below. You may find additional options

using --help.

B.1.3.1. Model Selection

You may choose the same models as for global tempo estimation (Section B.1.2.1) using the -m

parameter.
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B.1. CNN-Based Systems

B.1.3.2. CSV Export

In order to export local estimates as machine-readable data, you may set the --csv flag. Results

are written to a file named like the input audio file with the extension .csv appended.

B.1.3.3. Time Resolution

By default, local tempo is determined every 1.4861 s (0.6729 Hz, hop-length 8). You may change

this by specifying a different hop-length as multiples of 0.1857 s.

For example, --hop-length 1 is equivalent to a hop length of 0.1857 s, i.e., a time resolution of

5.3833 Hz.

B.1.3.4. Post Processing

You may choose to have tempogram post-process the computed softmax distributions before

visualization. For examples, please see Figure B.1.

--sharpen Sharpen the image by only showing argmax values (one-hot encod-

ing, Figure B.1b).

--norm-frame NORM_FRAME Enable framewise normalization using max, `1, or `2 norm (Fig-

ure B.1c)).
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Appendix B. Implementations: Key Estimation Systems

(a) Plain

(b) Sharpened

(c) `2-normed

Figure B.1.: Honky Tonk Women by The Rolling Stones without and with different kinds of post-processing
using the deepspec model and standard hop-length. (a) Plain visualization (b) Sharpened (c)
`2-normed.
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C. Schubert Winterreise: Measure Estimation

Errors

In order to better understand what kind of errors the two local key estimation (LKE) systems

from Chapter 9 make, we conducted an additional measurewise evaluation. Particularly, we

were interested in musically motivated errors that do not depend on a particular performance

or version. To this end, we determined whether estimates by one of our systems for a specific

measure of a specific version were mostly correct or mostly wrong. In case the estimates were

mostly wrong, we counted which kind of error occurred most often in the measure. We then

added these dominant errors for each measure and version and visualized them in a stacked bar

diagram. Both systems were trained on the “neither” split N described in Section 9.1.2

Just as an example, we can clearly see that, given our ground truth, both models tend to make

relative key errors in song 23 in measures 10 to 12. Or that in song 19, both models make fifth

errors from measure 25 to 30.

Further discussion of measure-specific errors is beyond the scope of this work, but certainly

interesting in the context of annotator subjectivity.
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Appendix C. Schubert Winterreise: Measure Estimation Errors
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Figure C.1.: Dominant measure errors for songs 1 to 3.
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Figure C.2.: Dominant measure errors for songs 4 to 6.
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Appendix C. Schubert Winterreise: Measure Estimation Errors
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Figure C.3.: Dominant measure errors for songs 7 to 9.
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Figure C.4.: Dominant measure errors for songs 10 to 12.
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Appendix C. Schubert Winterreise: Measure Estimation Errors
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Figure C.5.: Dominant measure errors for songs 13 to 15.
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Figure C.6.: Dominant measure errors for songs 16 to 18.
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Appendix C. Schubert Winterreise: Measure Estimation Errors
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Figure C.7.: Dominant measure errors for estimates for songs 19 to 21.
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Figure C.8.: Dominant measure errors for estimates for songs 22 to 24.
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D. beaTunes

beaTunes1 ["bi:tu:nz] is a commercial desktop software (macOS/Windows) for personal music

library management developed by the author of this thesis. It is one of the main motivations

for the work presented. The core idea of beaTunes is to support users in richly annotating

their music in order to take advantage of this metadata when creating playlists, searching for or

playing music.

beaTunes attempts to do this in multiple ways:

Inspection Inconsistency search and repair

Analysis Batch-processing of content-analysis tasks

Matchlists User-configurable song-similarity functions

Semantic Navigation Segmentation-aware music playback

Tempo and key estimation, as described in this work, are important pillars of beaTunes’ automatic

content analysis, as they are necessary inputs for building playlists with a certain tempo and

harmonic progression.

In the following sections we will highlight some of the application’s features.

1https://www.beatunes.com/
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Appendix D. beaTunes

List of Issues

Issue Details

Possible Solutions

Affected Songs

Figure D.1.: beaTunes inspection dialog. The left panel shows a list of potential issues found by one of beaTunes’
inspectors. The right panel offers a detailed description of the selected issue along with potential
fixes. The affected songs are shown in the bottom panel.

D.1. Inspection

Inspection is a process in which beaTunes attempts to find textual inconsistencies or errors in

your music’s metadata. For example, different spellings of the band name R.E.M.: REM, rem,

Rem, etc. Once inconsistencies have been identified, beaTunes offers reasonable solutions like

“change all artist names to the one used most often.” Inspection is interactive, which means

that the user is completely in control. Figure D.1 shows a screenshot of an inspection dialog.

This feature is used most by collectors and audiophiles who aspire to maintain a well-curated

collection.
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D.2. Analysis

Task Help

Possible Tasks List

Tempo Estimation Task

Key Estimation Task

Figure D.2.: beaTunes analysis options dialog. After selecting the songs to be analyzed, this dialog lets the user
choose the analysis tasks, e.g., tempo, key, or mood estimation.

Multi-Threaded Processing Queue

Figure D.3.: beaTunes’s batch processing is based on a persistent queue that is polled by multiple worker threads.
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Appendix D. beaTunes

D.2. Analysis

The Analysis process supports multi-threaded batch-processing (Figure D.3) for certain analysis

tasks. Among them are automatic tempo and key estimation, automatic segmentation, loudness

normalization, mood estimation, metadata lookup via audio fingerprinting, etc. (Figure D.2).

While some of these tasks are based on content analysis, others are simple web-lookups, e.g.,

using AcousticBrainz2 [133], or query the central beaTunes database. This database contains

anonymized metadata of beaTunes user’s collections [154, 155, 12] (if they chose to interact with

the database). In contrast to Inspection (Section D.1), Analysis only lets the user select which

songs to process and what tasks to execute. It is not interactive and therefore does not allow the

user to make any decision once processing started.

2https://acousticbrainz.org/
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D.3. Matchlists

Configurable Similarity Rules

Figure D.4.: beaTunes similarity rulesets allow the user to create configurable similarity functions with emphasis
on particular aspects. This allows users to create playlists around different concepts, like tempo,
release year, popularity, or language.

D.3. Matchlists

The Matchlist feature allows users of beaTunes to create custom similarity rules (Figure D.4),

emphasizing certain aspects of similarity. These rules can then be used for automatic playlist

building based on one of multiple seed songs (Figure D.5). Additionally, beaTunes supports

iterative playlist building by displaying matching songs in a separate panel (Figure D.6).
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Appendix D. beaTunes

Track Source

Seed Tracks

Ruleset

Optional Filters

Figure D.5.: beaTunes Matchlists enables users to create new playlists based on seed songs, a similarity ruleset
(Figure D.4), and optional filters.

Source Ruleset

Matching Songs

Figure D.6.: The beaTunes Matching Songs panel (bottom) shows songs that are similar to the selected song
in the main panel (top). How similarity is determined depends on the active similarity ruleset
(Figure D.4).
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D.4. Semantic Navigation

Figure D.7.: beaTunes semantic playback navigation. (top line) bars with the same color are of one kind, e.g.,
the blue chorus. (bottom line) blue/white bars visualize segments elsewhere in the song that are
very similar to the current playhead position and indicate the corresponding playhead position in
the similar segment. Clicking on such a bar takes the user to such a similar sounding position.

D.4. Semantic Navigation

Semantic Navigation is an innovative playback feature [59, 95] that allows users of beaTunes to

navigate within a song from verse to verse or segment to segment (Figure D.7). It exploits the

similarities and segments analysis task (Section D.2), which performs an automatic segmentation.

This effectively allows users to jump from one instance of the chorus to the next, visually identify

the end of the intro, etc. beaTunes exploits these annotation also in its scan feature, which

allows listening through a playlist by only listening to prominent parts (e.g, choruses). How well

this works, obviously depends highly on the quality of the automatic segmentation.
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