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Abstract

The advent of affordable digital sampling technology brought about great changes in music production.

Experienced producers of sample-based electronic music (SBEM) are capable of understanding the

intricate relationship between a sampled source and its use in a new track, harnessing its properties

to shape the structure, timbre, and rhythm of their compositions. However, automated analysis of the

phenomena surrounding both SBEM and the sources it uses for its samples is a challenge which involves

many tasks from music information retrieval (MIR) and audio processing.

In this thesis we develop models and techniques to better understand SBEM at different levels. In particular,

we offer four main technical contributions to retrieval and analysis tasks. First, we explore how timbral

changes affect the spectral peak maps used in audio fingerprinting as a means to identify overlapping

samples. Second, we analyze the structure of typical SBEM tracks using audio decomposition based on

non-negative matrix factor deconvolution (NMFD). Third, we investigate the interaction of timbre and

structure by designing a mid-level audio feature based on cascaded harmonic-residual-percussive source

separation (CHRP). Fourth, we apply random forests to identify the quintessential sampling source: drum

breaks. Given their prominent role in SBEM, we devote considerable attention to drum breaks. As an

application to computational musicology, we formalize an algorithm for calculating local swing ratio

in drum breaks and adapt an autocorrelation-based method to analyze their microrhythmic properties.

Finally, we present a creative application to music production which allows combining the temporal and

timbral properties of two separate drum breaks (redrumming).

Despite the massive commercial success of SBEM and the practice of sampling, they mostly remain

outside the attention of formal academic studies and MIR research. In this thesis our overarching goal is

to identify and formalize some of the fundamental audio processing tasks related to SBEM, proposing

methods that can seed further research.
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Zusammenfassung

Die zunehmende Verbreitung erschwinglicher digitaler Sampling-Technologie wurde die Musikproduk-

tion revolutioniert. Erfahrene Produzenten von Sample-basierter elektronischer Musik (SBEM) können

die vielschichtige Beziehung zwischen der ursprünglichen Musik eines Samples und der Verwendung

in einem neuen Track erkennen und die Eigenschaften des Samples nutzen, um die Struktur, Klang-

farbe und den Rhythmus neuer Kompositionen zu gestalten. Der Zusammenhang von SBEM und den

dort verwendeten Samples ist vielschichtig. Die automatisierte Analyse von SBEM führt somit zu un-

terschiedlichen Aufgabenstellungen, die im Bereich des Music Information Retrieval (MIR) und der

Audioverarbeitung angesiedelt sind. In dieser Arbeit entwickeln wir Modelle und Techniken, um SBEM

auf verschiedenen Ebenen besser zu verstehen. Insbesondere umfasst die Arbeit vier technische Beiträge

zu Retrieval- und Analyseaufgaben. Zuerst untersuchen wir, wie klangliche Veränderungen die spektralen

Peak-Maps beeinflussen, die beim Audio-Fingerprinting verwendet werden, um überlappende Samples

zu identifizieren. Zweitens analysieren wir die Struktur typischer SBEM-Tracks mithilfe von Audioz-

erlegungstechniken, die auf sogenannter Non-Negative Matrix Factorization Deconvolution (NMFD)

basieren. Drittens untersuchen wir die Wechselwirkung von Klangfarbe und Struktur, indem wir ein Mid-

Level-Audio-Merkmal entwickeln, das auf kaskadierter harmonisch-residual-perkussiver Quellentrennung

(CHRP) basiert. Angesichts ihrer herausragenden Rolle in SBEM widmen wir Drum Breaks, eine der

meistverwendeten Sample-Quellen, besondere Aufmerksamkeit. In einem vierten Beitrag wenden wir

Techniken des maschinellen Lernens (insbesondere Random Forests) an, um Drum Breaks automatisiert

in Musikaufnahmen aufzuspüren. Als Anwendung in der computergestützten Musikwissenschaft for-

malisieren wir einen Algorithmus zur Berechnung des lokalen Swing Ratios. Dazu adaptieren wir eine

Autokorrelations-basierte Methode zur Analyse der mikrorhythmischen Eigenschaften von Drum Breaks.

Schließlich präsentieren wir eine kreative Anwendung für die Musikproduktion, bei der zeitliche und klan-

gliche Eigenschaften zweier unterschiedlicher Drum Breaks kombiniert werden können (Redrumming).

Trotz des überaus großen kommerziellen Erfolgs von SBEM und der Verwendung von Samples bleibt diese

Musikpraxis meist außerhalb der Aufmerksamkeit akademischer Studien und MIR-Forschung. Ein über-

geordnetes Ziel dieser Arbeit besteht in der Formalisierung neuartiger wissenschaftlicher Fragestellungen

und der Bereitstellung von Methoden zur computergestützten Analyse von SBEM.
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Chapter 1

Introduction

Almost in parallel, technological advances fostered changes on two fronts. On the one hand, computation

technology enabled emergent fields of study like music information retrieval (MIR) and audio processing.

On the other hand, music technology—particularly affordable digital sampling—democratized production,

putting music-making capabilities into the eager hands of amateur musicians with small home studios.

Each of these fronts has become established in its own right. MIR and audio processing are widely

recognized research fields, with conferences and publications (such as ISMIR, ICASSP, and DAFx) that

are devoted to them. At the same time, sample-based electronic music (SBEM) and the practice of sampling

have grown out of the genres where they were first used (such as hip-hop, jungle, and drum’n’bass), and

have become central to many genres, including contemporary (as of 2018), chart-topping pop music.

Recording technology and digital sampling made possible the emergence of both MIR and SBEM. The

workflows and practices related to SBEM production open up interesting analysis and retrieval problems—

especially new perspectives on well-established tasks such as fingerprinting, audio decomposition, and

structure analysis. However, up to now, MIR and audio processing literature have dedicated relatively

little attention to SBEM.

Audio fingerprinting has typically been used to match a (potentially distorted or modified) query to a

reference in a database—in other words, as a means to identify the query. Nevertheless, it can also be

used for structure analysis in SBEM, by exploiting the fact that loops are exact copies of each other, up

to differences caused by applying effects or overlaying samples in different combinations. This piece of

knowledge—that we can expect mostly identical copies of a sample throughout a track—also motivates

interesting audio decomposition and structure analysis applications.

While making tracks, SBEM producers often have to manage large sample and track collections, seeking

musical material with certain characteristics that will fit into their production. To this end, musicians can

use audio features to visualize important timbral and structural changes, helping to locate and retrieve

3



Chapter 1. Introduction

interesting material. Paired with machine learning systems that classify signals according to desirable

characteristics, we can automate time-consuming tasks like sifting through sizable music collections.

Thus, our main goal in this thesis is to identify some of the essential timbral, structural, and rhythmic

characteristics of SBEM and its archetypal sampling sources, putting them into the formal context of

well-known MIR tasks and techniques.

1.1 Structure

This thesis is organized as follows. We begin with Chapter 2, introducing the fundamental aspects of

SBEM—illustrating them for later use and placing them into the context of current MIR and audio

processing literature.

In Chapter 3 we begin with an in-depth study of how peak-map-based fingerprinting behaves when

faced with the challenges that arise in SBEM tracks/production. Audio fingerprinting is the task of

recognizing a query by matching it to an existing reference in a database. A desirable characteristic of

fingerprinting algorithms is that they should be capable of delivering accurate results despite modifications

and distortions in the query signal. In the MIR literature, most fingerprinting algorithms are based on

peak maps (PM), also known as constellation maps: a sparse spectral representation where local maxima

are used to encode a signal’s most distinctive characteristics. One of the main challenges with PM-based

fingerprinting is source superposition (for instance, drums overlaid with a bassline)—in SBEM it is almost

never the case that the fingerprint of the sum of two signals equals the sum of the component fingerprints.

Thus we conduct systematic, in-depth experiments using audio samples from certain genres in electronic

music, observing how PM are affected by the types of modifications and distortions that are typically

applied in SBEM. Given the fact that state-of-the-art fingerprinting methods such as the one by Sonnleitner

and Widmer [129] are particularly challenged by overlapping musical sources, our study is important to

elucidate the causes and potential solutions to this phenomenon.

Structure analysis and segmentation are fundamental tasks in MIR; many approaches have been developed

for pop and classical music. In Chapter 4 we lay the foundation for structure analysis in SBEM, exploiting

the particularities that result from music production with (practically) identical copies of a sample in

repetition throughout a track. We start by defining a simplified mathematical model for the prototypical

form seen in SBEM: many tracks follow a layered structure where samples (or loops) are introduced and

removed at certain time intervals. We then approach the following task: given a downmix of a SBEM

track that follows the structural rules above, as well as one copy of each loop used in the track, we wish to

find out at what point in the track each loop was activated. We compare three methods for solving this

task. First, we establish a naïve baseline using the cosine distance of short-time spectral features. Our

second approach uses peak maps as discussed in Chapter 3. The third approach relies on non-negative

matrix factor deconvolution (NMFD)—a technique that we use for multiple tasks in this thesis.
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1.2. Publications

In Chapter 5 we present a mid-level audio feature based on cascaded harmonic-residual-percussive

(CHRP) source separation (SS). Decomposing audio mixtures into their harmonic, residual, and percussive

components is a widely studied technique throughout the audio signal processing literature, often used as

a preprocessing step for other tasks such as beat tracking. In contrast to the typical scenario where HRPSS

is used to obtain component signals from a downmix (for instance, separating a mixture of drums and

singing into two components as if recorded separately), we use the energies of separated components to

visualize changes in event density (like playing a snare drum with varying speed), or major changes in

instrumentation—like the transition from a full band playing into a drum solo section.

Drum breaks are perhaps the most sought-after sample source—finding drum breaks within collections of

vinyl records is a very time-consuming task. In Chapter 6 we first define the concept of drum break in a

technically sound way, clearing up the ambiguity that otherwise surrounds the term. With a dataset of

over 200 tracks, we then investigate how to find drum breaks in these digital music recordings. We use a

machine learning approach based on random forests (RF), which was originally designed for the binary

classification task of singing voice detection (SVD).

In Chapter 7 we study the microrhythmic properties of famous drum breaks and, more specifically, their

swing ratio. Swing is an expressive technique by which musicians systematically delay even-numbered

notes or events at a certain metrical level, lending a shuffly or groovy feel to the music. Up to now,

musicologists have mainly focused on this rhythmic practice within jazz music, but in [56], Frane

manually computed local swing ratios for a corpus of 30 drum breaks from the hip-hop canon. In this

chapter, we first formalize Frane’s method for computing local swing ratio (LSR). Then, we adapt an

automatic swing ratio estimation (SRE) method and apply drum source separation as a pre-processing

step. We end the chapter with a large-scale study on a corpus of more than 500 drum breaks.

In Appendix A we present the NMF Toolbox—a collection of NMF variants and implementations which are

documented through concrete applications of audio decomposition to SBEM-related tasks. The examples

in this appendix illustrate both fine-grained scenarios (such as drum replacement or redrumming), as well

as coarser tasks, like analysis and decomposition at the loop scale.

1.2 Publications

Substantial parts of this thesis are based on publications where I am the first and main author. More details

are given in the respective thesis chapters.

[90] Patricio López-Serrano, Christian Dittmar, Jonathan Driedger, and Meinard Müller. Towards modeling and decomposing
loop-based electronic music. In Proceedings of the International Conference on Music Information Retrieval (ISMIR),
pages 502–508, New York City, USA, August 2016
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[93] Patricio López-Serrano, Christian Dittmar, and Meinard Müller. Mid-level audio features based on cascaded harmonic-
residual-percussive separation. In Proceedings of the Audio Engineering Society Conference on Semantic Audio (AES),
pages 32–44, Erlangen, Germany, June 2017

[92] Patricio López-Serrano, Christian Dittmar, and Meinard Müller. Finding drum breaks in digital music recordings. In
Proceedings of the International Symposium on Computer Music Multidisciplinary Research (CMMR), pages 68–79,
Porto, Portugal, September 2017

[89] Patricio López-Serrano, Matthew E. P. Davies, Jason Hockman, Christian Dittmar, and Meinard Müller. Break-informed
audio decomposition for interactive redrumming. In Late Breaking and Demo Session of the International Society for
Music Information Retrieval Conference (ISMIR):, 2018

The following article, which is part of Chapter 7, has been submitted for publication:

[91] Patricio López-Serrano, Christian Dittmar, Andrew V. Frane, and Meinard Müller. Estimating sixteenth note swing ratio
in drum break recordings. 2018

The following additional publication is not considered in this thesis:

[42] Christian Dittmar, Patricio López-Serrano, and Meinard Müller. Unifying local and global methods for harmonic-
percussive source separation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Calgary, Canada, April 2018

1.3 Contributions

The following contributions are based on publications which were presented at conferences in the field of

audio signal processing and MIR.

• A mathematical model for the typical structure of SBEM tracks ([90] and Section 4.3).

• A comparison of techniques for finding the activations of a given sample or loop within a SBEM

track, including repurposing audio fingerprinting for structure analysis ([90] and Section 4.4).

• A mid-level audio feature based on cascaded harmonic-residual-percussive source separation that

can be used to visualize regions of timbral change ([93] and Section 5.3).

• The task definition of finding drum breaks, including a technical definition of drum breaks as

“percussion-only regions” for use with audio classification methods ([92] and Sections 6.1–6.2).

• A dataset of 280 tracks with annotated drum break regions ([92] and Section 6.4.1).

• A study of how well a binary classification method for singing voice detection, based on random

forests, could be repurposed for finding drum breaks ([92] and Section 6.3.2).
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• Formalized, as an algorithm, a method by Frane [56] for computing LSR ([91] and Section 7.2.2).

• An extensive study of the correspondence between Frane’s manual findings for LSR and an

automated SRE method by Dittmar et al. [45]. ([91] and Sections 7.3–7.4).
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Chapter 2

Fundamental Concepts of SBEM

In this chapter we introduce the fundamental concepts and practices of SBEM that motivate the tasks and

models presented throughout the rest of the thesis. DJing and production are the main creative activities in

SBEM, and one cannot be understood without the other. Following the coarse chronology of SBEM, we

examine how modern production principles grew out of the foundation laid by early hip-hop DJ practice.

2.1 Drum Breaks and Layering

We can trace the roots of SBEM to the first hip-hop DJs in the mid-to-late 1970s [118], who played funk,

soul, jazz, and rock records on vinyl. Through their interaction with the audience they came to realize that

dancers particularly favored drum breaks: percussion-only passages (often drum solos) found on these

types of recordings [118]. The drum break soon became a central element of DJ practice, to the extent that

DJs harnessed the technology in their setups in order to arbitrarily prolong the length of breaks: by using

two copies of the same record on separate turntables, together with a mixer, DJs could beat juggle (or loop

the break) by quickly switching between instances [118]. This fascination with drum breaks spawned a

culture of looking for increasingly obscure drum breaks, whereby DJs gained respect for finding hidden

gems that were previously unheard of. The act of looking for vinyl records containing drum breaks is

called (crate) digging and it involves considerable effort; it is a tradition that remains alive to the present

day, with DJs and producers looking for rare records in basements, flea markets, auctions, and during trips

abroad. Once a record has been found, SBEM artists need to locate the break by randomly dropping the

needle along the grooves. Although there are hundreds of well-known breaks that have become classic in

SBEM, perhaps two of the most famous are the “Amen break” from “Amen, Brother” by The Winstons

and “Funky Drummer” by James Brown. Given their importance within SBEM, we dedicate considerable

attention to drum breaks in this thesis. We first touch upon the subject in Chapter 5 and then discuss it

at greater length in Chapters 6 and 7, as well as Appendix A. Seminal work on breakbeats was done by
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Chapter 2. Fundamental Concepts of SBEM

Collins, who approaches various tasks revolving around breakbeats such as algorithmic composition [24],

automatic cutting methods [25], and interactive evolution of breakbeat sequences [26].

Although drum breaks may be the best-known or most recognizable source, sampling is a vast practice

that goes beyond this type of material. For example, Sewell [123] developed a typology of sampling in hip

hop which divides samples into categories according to their function. In [112], Ratcliffe proposes another

sampling typology, offering “a system of classification that takes into account the sonic, musical and

referential properties of sampled elements”. Ratcliffe enumerates four high-level categories for samples:

short isolated fragments, loops and phrases, larger elements, and transformed material. This provides a

formal theoretical framework to discuss sampling practices in electronic music. To conclude this section,

we discuss some of the most prominent MIR literature on the topic of sampling and sample identification.

In [5], Van Balen et al. introduce the problem of automatic sample identification and study a first approach

by using peak-map-based audio fingerprinting (which we discuss at length in Chapter 3). In [40], Dittmar

et al. present a toolbox to inspect cases of suspected music plagiarism, based on non-negative matrix

factorization (NMF) of both the source and suspected target spectrograms. Whitney [144] describes a

method for detecting samples in hip-hop music, focusing on robustness against the modifications that

are typical for that genre. Whitney’s method (inspired by [40]) also relies on a joint NMF of source and

target, but the activation matrices are compared using techniques from image processing, rather than

correlation, as in [40]. Gururani and Lerch [70] also use joint, semi-fixed NMF, but then train a random

forest classifier with high-level features obtained from the activation matrices in order to analyze sampling

cases. In [72, pp. 172] and [73], Hockman proposed the problem of breakbeat classification, offering an

approach to identify which sampled breakbeat was used in a given composition.

2.2 Production

SBEM production began when affordable digital samplers became available for use at small (home)

studios. According to Snoman [126], “a sampler can be viewed as the digital equivalent of an analogue

tape recorder but rather than recording the audio signal onto a magnetic tape, it is recorded digitally

into random access memory (RAM) or onto the computer’s hard disk drive”. Samplers introduced the

possibility of playing multiple loops at the same time, which meant that producers could now take a

drum break from one source and combine it with tonal or harmonic musical material sampled from other

sources [118]. This gave rise to layering in SBEM, which is a central practice that drives the timbre,

rhythm, and structure of SBEM tracks.

SBEM artists often begin creating their tracks by looping a sampled drum break or predominantly rhythmic

pattern (potentially including bass) for the simple reason that it provides the timekeeping for the rest of

the track’s elements [38]. With this foundation in place, frequently supplied by the sampler, producers

can then introduce further electronic instrumentation into their compositions, such as drum machines

and various types of synthesizers. Figure 2.1 shows an overview of a simplified SBEM production setup.
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Sequencer

Drum Machine

Sampler

Bass Synth

Lead Synth

Mixer

MIDI Audio

Figure 2.1: Typical hardware setup for producing SBEM.

We can think of this setup in terms of an orchestra: on the left side of Figure 2.1 we have the sequencer,

which serves as a “conductor” by sending abstract musical instructions (or messages) to the individual

instruments shown in the middle column of the figure. This is typically done using an industry-standard

communication protocol called MIDI, or a more modern standard like OSC.1 The instructions are carried

out by the instruments: the sampler triggers (or mutes) a pattern stored in its internal memory, the

synthesizer plays a sequence of specified musical notes, and the resulting audio signals are fed into a

mixer for recording and further processing (right side of Figure 2.1). The fact that most drum breaks are

only a few bars (musical measures) long, together with the limited memory available on early samplers,

prompted a production style where short blocks of sound are introduced and removed at certain time

intervals. This principle carried over into more modern production—as is the case with software and

digital audio workstations—and its influence is present throughout SBEM. In Chapter 4 we formalize

and model these basic principles that influence the structure of SBEM tracks. Some prominent genres

1For more information about MIDI we refer the reader to [97, pp. 13] and [126, pp. 61].
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Figure 2.2: Prototypical form of electronic music tracks, taken from [14].

that emerged from DJ-oriented music (and as a result of sampling technology) are hardcore, jungle, and

drum’n’bass (collectively referred to as HJDB in [72]). For an in-depth study on the history, production

techniques, and computational analysis of HJDB, we refer the reader to [72].

This simple principle of layering, where elements are brought in and out of the mixture in a looping

fashion, motivates a prototypical structure that is present in many types of electronic music and that Butler

describes graphically in [14, pp. 222]. We have reproduced this representation in Figure 2.2, which shows

a prototypical track structure: the horizontal axis represents time and the vertical axis corresponds to how

many layers are active at a certain point in time. The number of active layers is strongly correlated with

the perceived energy or intensity of that segment in a track, and musical tension is created by introducing

and removing layers. During the intro (leftmost part of Figure 2.2), producers present the track’s main

elements, inducing familiarity in the listeners. The tension is built up by adding layers until reaching a

first core. Then, the track drops to a timbrally sparse breakdown, which is the lowest point in the track,

creating anticipation in the listeners for the more dominant elements to return. There is a second upward

slope, this time reaching a core at a greater height, which means that certain elements are introduced

which had been absent from the first core. This is the most intense part of the track, before progressively

removing elements during the outro. In Section 2.3 we will see how this form also largely responds to the

way DJs mix tracks in their sets.

2.3 DJing

The simplest and perhaps most widespread DJ setup consists of two sources or music-playing devices

(such as vinyl turntables or professional CD players) and a mixer. In order to select music for mixing

in their sets, DJs consider various musical aspects and levels. At the rhythmic level, they perform beat

matching: making sure that two tracks in a mixture have the same tempo and their beats and downbeats

are aligned. DJs can use headphones and an independent output on the mixer to test a mixture and make

the necessary adjustments—while the audience continues to listen only to the main output and cannot

hear this preparation. For this reason, tracks that start (and end) with a clear beat and a sparse layer of

percussion are considered more DJ-friendly, since they are easier to beatmatch and do not oversaturate the
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mixture with too many additional layers at one time [14, pp. 232]. Beyond correct beat matching, DJs

may choose to also match the tonal and harmonic characteristics of the tracks they are mixing—if so,

they are said to be “mixed in key” or avoiding “key clash”. Finally, DJs can also use their knowledge and

intuition to select tracks that have shared timbral characteristics, resulting in smoother and more pleasant

transitions.

The increasing popularity of DJing and SBEM, together with the availability of DJ controllers and software

for digital DJing, has motivated substantial research on understanding and automating the subtasks which

can help digital DJs to quickly and easily create complex, sonically pleasing transitions, or help them find

the next track to mix in from a vast library of digital music.

2.4 SBEM in MIR Literature

In the following we give an overview of MIR and audio processing literature related to SBEM. As a

general note, Van Balen, Hein, and Brown offered a comprehensive tutorial [6]2,3 about why hip hop

is interesting for the MIR community, touching upon many of the sampling-related issues discussed in

this thesis. In one of the earliest works, Cliff [22] proposed an automated method capable of sequencing

and seamlessly mixing dance music tracks. Along the same lines, Ishizaki et al. [75] developed a system

for DJ mixing with optimal tempo adjustment and a function to estimate user discomfort. Kell and

Tzanetakis [78] investigate the process of mix or playlist creation by means of timbre, key, loudness, and

tempo analysis. Given an existing playlist, a recent approach by Bittner et al. [8] is capable of sequencing

the tracks and adding DJ-sytle transitions between them.

On the topic of segmentation, Rocha et al. [115] put forth an algorithm to find structural boundaries and

assess timbral similarity for electronic dance music (EDM), using audio data. By combining the use of

audio with user-generated tags from online social platforms, Yadati et al. [146] developed a method to

detect the drop: a moment where musical tension is released and the audience reacts by dancing vigorously.

In [4], Aljanaki et al. also employ a multimodal approach to detect drops in EDM. Further work on the

topic of drops can be found in [127], a study of the correlation between emotional experiences and

production techniques. In [121], Seetharaman and Pardo exploit knowledge about layered composition

practices in order to perform simultaneous segmentation and source separation of loop-based tracks.

Smith and Goto [125] later approached source separation of loop-based tracks with non-negative tensor

factorization. Focusing on the longer-range timescale of entire DJ sets, Scarfe et al. [116, 117] approach

segmenting DJ mixes using self-similarity, and Glazyrin [66] details a system to segment DJ sets by using

constant-Q log-spectrograms, self-similarity, and clustering. In what could be considered the converse task,

Vande Veire and De Bie [139] developed a system capable of generating seamless mixes of drum’n’bass

music.

2https://wp.nyu.edu/musedlab/2016/08/02/why-hip-hop-is-interesting/
3https://wp.nyu.edu/ismir2016/event/tutorials/#hiphop
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As mentioned previously, DJs select and mix tracks based on rhythmic, timbral, and harmonic similarity.

Faraldo et al. deal with the notion of key detection in EDM in [52], [53], and [108]. Gebhardt et al.

repurpose the psychoacoustic concept of roughness as a further feature for harmonic compatibility in [62]

and [63]. In order to enable large-scale testing of key and tempo detection algorithms for EDM, Knees

et al. published two datasets (GiantSteps Key and GiantSteps Tempo) for these tasks in [80]. Bernardes

et al. [7] used GiantSteps Key as one dataset to test their method for key detection with key mode bias. The

annotations for GiantSteps Tempo were later refined by Schreiber and Müller in [119] by crowdsourcing

the task of tapping along with musical excerpts. More recently, a dataset with 1878 works of “historic

electronic music from 1950–1999” was published by Collins et al. in [28].

Regarding rhythm, Gärtner [61] presents a method for tempo detection in urban music based on NMF.

Panteli et al. [104, 105] provide computational models and audio features for calculating timbral and

rhythmic similarities between tracks—this can be used to organize large personal collections or help

DJs in the process of track selection. In [74], Honingh et al. outline their web-based perceptual studies

on timbral and rhythmic similarity in EDM. Gómez-Marín et al. [68, 67] investigate the concepts of

EDM drum pattern similarity and drum spaces, based on similarity judgments. Vogl and Knees [140]

designed an interface to generate rhythmic patterns in the context of EDM. In [100], Ó Nuanáin presents

computational methods for generating and varying rhythmic patterns.

In [18], Casey and Slaney propose an algorithm for detecting remixes of pop songs, based on audio

shingles and locality-sensitive hashing. Bryan and Wang [13] propose a system for analyzing musical

influence networks at the song, artist, and genre levels. Collins [27] approaches a related question—

determining musical influence of Chicago house and Detroit techno. Regarding the problem of track

identification in DJ sets, Sonnleitner et al. [128, 129] presented a quad-based fingerprinting system robust

to pitch-shifting and time-stretching—two very common signal modifications present in DJ sets.

Finally, we come to the topic of mashups, which are (often humorous) mixtures of two or more pop tracks.

Creating mashups automatically requires all the aforementioned subtasks: beat tracking and matching,

timbral and harmonic compatibility, and accurate structure analysis. In [33] and [34], Davies et al. detail

systems to create mashups based on rhythmic and harmonic similarity (a real-time system is outlined

in [36]). In [82], Lee et al. propose a system that can create mashups with multiple background and lead

track segments. Finally, in [134], Tokui presents a web-based interface that allows collective mashup

creation.

2.5 Further Literature

The following is a list of complementary resources in the greater context of SBEM.

In [10], Brewster and Broughton interview world-renowned DJs and artists related to electronic music,

compiling a history across multiple genres. In [19], Chang collected interviews with hip-hop-related
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personalities into a chronicle of how the genre emerged. In a further genre-specific work, James explores

jungle and drum’n’bass in [76]. On the topic of funk, Davis [37] studies the origins of this genre and

proposes a “framework for understanding the process of genre formation.” Funk music—and especially

James Brown’s “Funky Drummer” are central to drum breaks and breakbeat culture. Along these lines,

Danielsen [30] analyzes several pieces by James Brown and Parliament, with particular attention to

structure and rhythm—and then focuses on microrhythm (groove) as found in “Funky Drummer” in [31].

A fundamental question in jazz research is What makes music swing? In [58], Friberg and Sundström

measure the swing ratio produced by drummers on the ride cymbal. Prögler [110] analyzes several

microrhythmic traits including swing, and how they emerge from the interaction between (jazz) musicians.

In [130] Stewart investigates how American musicians influenced each other in terms of microrhythm and

swing. Finally, although production techniques are mostly out of the scope of this thesis, it is important to

mention trackers as an early example of computer programs used for producing SBEM; Collins reviews

the topic of trackers in [23]. Furthermore, in [133], Taylor explores the intersection between music and

technology at different times throughout history.
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Chapter 3

Fingerprinting in Electronic Music

This chapter is the result of collaborating with and supervising the work of

Pedro Solórzano, resulting in a Master’s thesis [94]. Together with Meinard

Müller, we proposed peak survival as a method to evaluate constellation

map degradation. My main contributions in this chapter are the problem

formalization, dataset preparation, experimental design, and verification.

In this chapter we first give a brief overview of audio signals and the Fourier transform—two fundamental

concepts that are prerequisite not only for the remainder of the chapter, but also for the rest of the thesis.

Section 3.1, closely following the formulations from [97, Chapter 2], deals with key topics. Then, from

Sections 3.2 to 3.9, we discuss the task of audio fingerprinting in the context of SBEM.

3.1 Audio Signals and Fourier Analysis

Sound travels in the form of waves—compressions and rarefactions of a medium (such as air) with a

certain amplitude. Following [97, Section 2.2.1], one way of expressing this phenomenon is as an analog

signal, a function f : R→ R which assigns an amplitude value f (t) ∈ R to each time point t ∈ R. Also

called a continuous time (CT) signal, this definition allows us to model infinitesimal variations in time

and amplitude. However, when dealing with signals on a computer, we must resort to discrete-time (DT)

representations, commonly achieved by digitization: a combination of sampling and quantization. We

refer the reader to [97, Section 2.2.2.2] for a more detailed description of quantization, and proceed to

discuss sampling. In Chapter 2 we used the term sampling in the artistic sense, referring to the musical

practice of repurposing previously existing music recordings in new works. In the following we will

discuss sampling in signal processing (see also [97, pp. 386]). According to [97, Section 2.2.2.1], the
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Figure 3.1: (a) Waveform of a syn-
thesizer sound sampled at Fs =
22050Hz. (b) Detailed view of
the first 100 samples from the sig-
nal in (a).
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most common procedure to transform a CT signal f : R→ R into a DT signal x : Z→ R is equidistant

sampling. If we fix a positive real number T > 0, then we have

x(n) := f (n ·T ) (3.1)

for n ∈ Z. The particular value x(n) is called a sample, taken at time t = n ·T . The number T is the

sampling period, and its inverse is called the sampling rate:

Fs :=
1
T
. (3.2)

The sampling rate is measured in Hertz (Hz), telling us how many samples per second were extracted

from the CT signal. Note that in Eq. 3.1, the signal has an infinite length (defined for n ∈ Z). Again,

since we are dealing with signals on a computer, we have to restrict the signal x to a finite length N ∈ N,

considering only a finite set of samples x(0), x(1), . . . , x(N−1). For simplicity, we also set x(n) = 0 for

n ∈ Z\ [0 : N−1], where [0 : N−1] := {0,1, . . . ,N−1}. Figure 3.1a shows the waveform for a digital

music signal sampled at 22050 Hz. In the signal, the musical note sequence C6-G5-C5 is played twice

with a synthesizer: once at 0 s and then shortly after the one-second mark. Figure 3.1b is a zoomed-in

version, showing the first 100 samples of the same signal.

Music signals are complex mixtures of sound sources and if we consider that typical sampling rates for

audio are 44100 Hz or 22050 Hz, it quickly becomes apparent that processing waveforms (in the time
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domain) can be a computationally costly task. This is where the Fourier transform comes into play. We

can trace the history of the Fourier transform (FT) to the eighteenth century, with two main problems that

motivated what would become Fourier analysis: describing the vibration of a string anchored at both ends

and determining the orbits of celestial bodies [12].

In general terms, the FT can help us better understand signals by decomposing them into a spectrum of

sinusoidal components. Thus, the FT converts time-dependent representations into frequency-dependent

representations. On a related note, it is important to mention that human hearing is also spectral in nature

and the FT is particularly useful for approximating our perception of sound. Following [97, Section 2.4.2],

we define the discrete Fourier transform (DFT) of length N ∈ N for a DT signal x as

X(k) :=
N

∑
n=0

x(n) · exp(−2πikn/N) (3.3)

for k ∈ [0 : N− 1]. Each complex value X(k) ∈ C is called a Fourier coefficient, which encodes the

magnitude and phase of a sinusoidal component with frequency

Fcoef(k) :=
k ·Fs

N
. (3.4)

Since the DFT is invertible, if we sum these components we can obtain the original time-domain signal by

x(n) =
1
N

N−1

∑
k=0

X(k) · exp(2πikn/N), (3.5)

for n ∈ [0 : N−1].

Figure 3.2b shows the magnitude Fourier spectrum for the synthesizer signal. We can now clearly see

the peaks for the notes C5 (∼523 Hz), G5 (∼784 Hz), and C6 (∼1046 Hz)—the individual frequencies

are hard to glean from the waveform in Figure 3.2a. On the other hand, only by looking at the spectrum,

it is no longer clear when each note was played. Since the analysis function has a non-local nature, the

frequency information is always averaged over the entire time domain [97, Section 2.5].

To address this shortcoming, Gabor [60] introduced the short-time Fourier transform (STFT). The STFT

partitions the signal into smaller segments (also called frames) and applies the FT at a local scale to each

one. Thus, the STFT offers frequency information that can be assigned to a given time interval. Let us

define the STFT in formal terms, following [97, Section 2.5.3]. If x is a DT signal, w is a discrete window

function of length N with coefficients w(n) for n ∈ [0 : N−1], and H ∈ N is the hop size in samples, then

X (m,k) :=
N−1

∑
n=0

x(n+mH) ·w(n) · exp(−2πikn/N) (3.6)
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Figure 3.2: (a) Waveform of a synthesizer sound. (b) Magnitude Fourier spectrum. (c) Magnitude
spectrogram.
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is the discrete STFT, or STFT of x. In X (m,k), m ∈ Z is the frame index and k ∈ [0 : N− 1] is the

frequency coefficient. The frame index m corresponds to the physical time position Tcoef, such that

Tcoef(m) :=
m ·H

Fs
. (3.7)

Looking back at Figure 3.2c, there is indeed both time and frequency information for the synthesizer

signal: the dark horizontal lines which start at 0 s and 1 s show the notes that were played, at their temporal

location.

Now that we have defined these fundamental concepts, we will discuss a first application—audio

fingerprinting—in the following sections of this chapter. Fourier analysis is of central importance

to MIR and audio processing—we will encounter these topics throughout the remainder of this thesis.

3.2 Audio Fingerprinting

Audio fingerprinting was developed to match a recording of a fragment of music (obtained in potentially

adverse conditions, subject to environmental noise, reverb, or compression codec artifacts) against a

database containing an undistorted version. Fingerprinting typically relies on constellation maps or peak

maps—a binary feature representation which captures local maxima and is resilient to a certain amount of

acoustic interference. The original intent of fingerprinting is to answer the question does a (potentially

modified) audio query match any documents in the database? We deviate from this objective and study

constellation maps in the context of electronic music (EM), where existing recorded sounds or music

excerpts (called samples) are reused, for instance, as loops (we use the terms loop, pattern and sample

interchangeably). Additional instruments are often mixed with the sample, and several samples may be

stacked on top of each other, creating musically modified versions of the original query. In this chapter

we use two experiments to test the limits of reliable fingerprint matching at a lower level by studying the

peak agreement—a measure of how much information is shared between the constellation maps of an

unmodified musical fragment, and one modified by various means. First, we quantify the peak agreement

between a loop and versions overlaid with increasing amounts of white noise. Secondly, we study the

effects of progressively adding musically coherent loops to the query (i.e., further loops with the same

tempo and genre).

3.3 EM-Mini Dataset Description

In order to study peak maps in a controlled EM scenario, we compiled a dataset of 111 loops originally

included with MAGIX Music Maker Premium—a digital audio workstation (DAW) which focuses on

loop-based EM production (we refer to it as the EM-Mini dataset). At the topmost level, the dataset is
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Table 3.1: Overview of the
EM-Mini dataset by genre [94].

Genre Number
of loops

Number of
timbral families

BPM Length
in bars

Dance 10 10 130 2, 4, 8
Deep House 19 11 120 1, 2, 4
Dubstep 19 8 135 4, 8
HipHop 20 12 90 1, 2, 4
Techno 23 8 130 1, 2
Trap 20 8 75 1, 2, 4

Table 3.2: Overview of the
EM-Mini dataset by timbral
family [94].

Timbral
family

Number
of loops

Number
of genres

BPM Length
in bars

Bass 13 6 75, 90, 120, 130, 135 1, 2, 4
Brass 3 3 75, 90, 120 2, 4
Drums 22 6 75, 90, 120, 130, 135 2, 4, 8
Fx 11 6 75, 90, 120, 130, 135 2, 4
Guitar 2 2 90, 130 2, 8
Keys 4 4 90, 130, 135 2, 4
Lead 2 1 135 4, 8
Mallet 1 1 130 2
Pad 7 6 75, 90, 120, 130, 135 2, 4
Percussion 8 3 120, 130 1, 2, 4
Sequence 15 6 75, 90, 120, 130, 135 1, 2, 4
Special 3 1 120 2
Strings 3 2 90, 120 2, 4
Synth 7 5 75, 90, 120, 130, 135 1, 2, 4
Vocals 9 4 75, 90, 120, 130 2, 4, 8
Vocal Rap 1 1 90 1

organized by genre—loops of a given genre have the same tempo, but may have different lengths (1, 2, 4,

or 8 bars). For an overview of how loop lengths are distributed within the dataset, see Figure 3.3. Within

each genre, the loops are categorized by timbral family, a loose designation of the type of synthesizer they

were made with. Tables 3.1 and 3.2 (taken from [94]) provide a summary of the dataset’s composition.

The timbral families are unevenly distributed among genres; for instance, bass and drum loops are present

in all genres, but lead is only available within the dubstep genre. Additionally, we classified all loops

into more general categories harmonic (H), residual (R) and percussive (P), inspired by [48]. This was

done manually, according to subjective timbral criteria. The H, R, and P categories contain 42, 39, and 30

loops, respectively.

3.4 Fingerprinting with Peak Maps

We implement constellation maps as outlined in [90]. First, we convert the loops in the EM-Mini dataset

to mono and a sampling frequency Fs = 22050 Hz. For each individual loop, as well as each version

modified through the addition of noise or further loops, we compute an STFT X such that X (n,k) refers

to the kth Fourier coefficient for the nth time frame, where k ∈ [0 : K−1] and n ∈ Z. We use the following

parameters: block size N = 4096, hop size H = N/2 and a Hann window.
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Figure 3.3: Distribution of loop durations
in the EM-Mini dataset.
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The next step is to compute magnitude spectrograms Y = |X | (Figure 3.5a). We then map Y to a

logarithmically spaced frequency axis with a lower cutoff frequency of 32 Hz, an upper cutoff frequency

of 8000 Hz and spectral selectivity of 36 bins per octave, resulting in YLF (Figure 3.5b). Under these

STFT settings, the 36-bin spectral selectivity does not hold in the two lowest octaves; however, their

spectral peak contribution is negligible.

We now apply log-compression to YLF, obtaining YLFC = log(1+YLF) (Figure 3.5c). Then, we apply an

exponential moving average to smooth the spectrograms YLFC over time, defined as:

Ye(n,k) = max(α ·Ye(n−1,k)+YLFC(n,k) · (1−α),YLFC(n,k)) (3.8)

for n > 0 and k ∈ [0 : K−1]. In the case where n = 0 (the first STFT frame), we take Ye(0,k) =YLFC(0,k).

In our implementation, we use a smoothing factor α = 0.9. Exponential smoothing assigns exponentially

decreasing weights over time—in contrast to the simple moving average, where past observations are

weighted equally [145]. In Equation 3.8, the maximum operator allows us to only affect falling frequency

slopes along time, but not rising slopes. This leads to a smoothing along the time axis where onsets are

emphasized (Figure 3.5d).

Although our scenario is slightly different to that of audio fingerprinting and identification, both require

a feature representation which captures an individual pattern’s characteristics despite the superposition

of further sound sources. To this end, we use spectral peak maps (or constellation maps) as described

in [97]; we will first give the theoretical details and then outline our efficient implementation. The idea

behind peak maps is to summarize the STFT as a sparse set of time-frequency (TF) points. Peak picking

is used to identify TF bins with a magnitude greater than that of their neighbors. Let τ > 0 and κ > 0 be
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Figure 3.4: A TF bin indexed by
(n0,k0) and the corresponding neighbor-
hood Nτp,κp(n0,k0) that surrounds it (red
square).
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the neighborhood size parameters in time and frequency, respectively. We now define the neighborhood

Nτ,κ around a TF bin (n0,k0) as

Nτ,κ(n0,k0) = {(n,k) : |n−n0| ≤ τ ∧|k− k0| ≤ κ}. (3.9)

For this peak picking task, we set τ = τp = 7 and κ = κp = 7—in Section 3.6 we will define τe and

κe as tolerance parameters for evaluation purposes. Thus, a TF bin (n0,k0) is selected as a peak if

|X (n0,k0)| ≥ |X (n,k)| for all (n,k) ∈Nτp,κp(n0,k0) (see Figure 3.4)

In practice, we convolve Ye with a τp×κp maximum filter, obtaining Ymax (Figure 3.5e). This is equivalent

to:

Ymax(n0,k0) = max(Ye(n,k) | (n,k) ∈Nτp,κp(n0,k0)). (3.10)

Finally, to obtain the peak map C (Figure 3.5f), we use the following definition:

C(n,k) =

1 if (Ye(n,k) = Ymax(n,k))∧ (Ymax(n,k)> 1)

0 otherwise.
(3.11)

Figure 3.6 shows YLFC overlaid with corresponding peak maps C for nine representative loops from the

dataset. Each row corresponds to a category H, R, or P (top to bottom). Conceptually, we are following an

early approach for loop retrieval inside hip hop recordings which was presented in [137] and later refined
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Figure 3.5: Steps to compute peak maps, illustrated with a loop from the residual (R) category of
the EM-Mini dataset. (a) Magnitude spectrogram Y with a linear frequency axis. (b) Log-frequency
spectrogram YLF. (c) Log-compressed spectrogram YLFC. (d) After exponential decay, Ye. (e) After max
filtering, Ymax. (f) YLF overlaid with the resulting peak map (local maxima shown as red circles). The red
rectangles that enclose each local maximum represent the neighborhood Nτ,κ . Although τp = κp = 7, the
neighborhoods appear larger along the time axis, given that there are fewer STFT frames than feature
dimensions, affecting the aspect ratio.
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Figure 3.6: Log-frequency spectrograms (LS) overlaid with corresponding peak maps (PLS) for nine loops
from the EM-Mini dataset. Each row contains loops from the harmonic (H), residual (R), or percussive (P)
category.
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3.5. Reference Implementation

STFT Parameters Log-Frequency Parameters Peak Map Parameters

Sampling frequency 22050 Hz Lower cutoff 32 Hz Window dimensions τp = 7
Block size 4096 samples Upper cutoff 8000 Hz κp = 7

64 ms Spectral Selectivity 36 bins per octave 7 time frames 0.65 s
∆ f 5.39 Hz 7 freq. bins 40.38 Hz (linear)
Hop size 2048 samples 232.9 cents (log)
∆t 92.9 ms
Window type Hann

Table 3.3: Overview of implementation parameters.

in [138]. Their method is based on a modification of the fingerprinting procedure originally described

in [141]. For each time-frequency bin in the respective log-frequency spectrogram (LS), a rectangular

analysis window is constructed. The maximum value within each window is kept (with the value 1 on the

output) and all neighbors are set to 0 on the output.

In further sections we only use LS to compute peak maps, given their superior performance when compared

to magnitude spectrograms (MS). For more details on this comparison, refer to [90] and [94].

3.5 Reference Implementation

Wang [141] did not supply a reference implementation of the Shazam algorithm, as it is industrial

intellectual property. However, Ellis [50] provides MATLAB source code that follows the functionality

outlined in [141]. It is a full-fledged implementation of the fingerprinting pipeline, which we describe in

the following. Let’s assume that we have a collection of audio tracks that we wish to add to a database

for later matching. For each track, the algorithm first computes a peak map. To compute peak maps,

the audio signal is first converted to mono and a sampling frequency Fs = 8000 Hz. Then, an STFT is

computed with a window size of 512 samples (64 ms), a hop size of 256 samples (32 ms) and a Hanning

window. The magnitude spectrogram is extracted and logarithmically compressed. This log-compressed

spectrogram is made zero-mean (i.e., by subtracting the overall mean from each element), and then filtered

with a high-pass filter. Ellis [50] comments in the source code that the high-pass filter blocks slowly

varying terms and emphasizes onsets. These peak maps have a target density of 10 landmarks per second.

Ellis’ implementation uses a frequency neighborhood parameter κ = 30, corresponding to a half-width of

468.75 Hz. Furthermore, up to 5 peaks per STFT frame are allowed. Each peak map is summarized as a

set of hashes or landmarks: a hash is an integer representation of a pair of peaks in the constellation map.

These hashes are now added to the database—they allow efficient lookups in a database of considerable

size. For the matching stage, the algorithm also computes peak maps and then hashes for a query excerpt.

It compares the hashes stored in the database with those of the query, returning a ranked list of matching

database documents.
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Figure 3.7: Shazam algorithm perfor-
mance when matching queries recorded
with pub noise at different SNR levels (hor-
izontal axis). Each curve shows a particu-
lar query length. (Taken from [141])
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Figure 3.8: Recognition rate for queries
from our EM-Mini dataset. The dashed
line is the average across all loops in the
dataset, the solid line is the average for all
loops with a length greater than 5 s.
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One way of evaluating a matching algorithm is through the recognition rate. For a number of queries—

which are often distorted—the recognition rate (or accuracy) measures how often the system returns the

correct database document as a top match. Figure 3.7 was taken from [141] and shows the recognition rate

under additive pub noise, from −15 to 15 dB SNR. Each of the three curves shows results for a particular

query length in seconds.

We used Ellis’ implementation [50], without modifications, to compute the recognition rate with the

EM-Mini dataset loops, modified with increasing amounts of white noise. Our results are shown in

Figure 3.8: the dashed line is the average recognition rate for the entire dataset (irrespective of length) and

the solid line is the average for all loops whose length is greater than five seconds.

Figures 3.7 and 3.8 are not directly comparable for a number of reasons. First, Wang’s implementation

[141] is unavailable and probably contains undisclosed techniques that improve recognition. Second, Wang

used pub noise, and we used white noise. Third, the underlying datasets are different: our EM-Mini dataset

28



3.6. Peak Agreement

Table 3.4: Parameters for fingerprinting
implementation by Ellis [50].

Ellis’ [50] STFT Parameters

Sampling frequency 8000 Hz
Block size 512 samples

64 ms
∆ f 15.6 Hz
Hop size 256 samples
∆t 32 ms
Window type Hanning

contains 45 loops that are shorter than five seconds (see Figure 3.3) and is confined to electronic musical

genres; Wang used 250 excerpts (from a database of 10,000 popular music pieces) whose length is at least

5 seconds. The overall lower performance in Figure 3.8 serves to highlight the difficulty of matching

audio at a smaller scale (e. g., loops in EM), as opposed to longer passages in an entire pop song.

Figure 3.8 is meant to give context for fingerprinting loops in electronic music—it reflects the output

when using an end-to-end reference implementation of the Shazam algorithm. In the following sections

we concentrate on peak maps; we wish to better understand how they behave, given that landmark and

hash computation both rely on the results of this previous stage.

3.6 Peak Agreement

Once we have computed the peak maps for both the original loop and the modified version, we wish

to quantify how much shared information remains and how many peaks are added by the particular

modification. Formally, we refer to the original loop as the database D and the modified version as the

query Q, conforming to the typical information retrieval concepts. Their constellation maps CQ and CD
are overlaid and compared by using Boolean operators to determine the recall, answering the question

how many peaks survive the modification?, as well as the precision, telling us how many spurious or

additional peaks the modification has produced. Furthermore, we can use the definition of a neighborhood

(Equation 3.9) to introduce a tolerance around the peaks in the database, leading to a potential increase in

true positives. In our implementation, we have used τ = τe = 1 and κ = κe = 1, or one TF bin in every

direction around each peak in CD. Figure 3.9 illustrates an example of peak agreement between two PLS.

In Figure 3.9, the lighter, larger squares represent peaks in the original constellation map CD, extended by

a tolerance window of one TF bin in every direction. The smaller squares are peaks in the constellation

map of a modified version CQ. Four evaluation cases are surrounded by a red circle: (1) is a perfect match

(true positive) between the original and modified versions – since it is centered, it would remain a true

positive even without a tolerance window; (2) is a peak present in the modified version, but not in the

original – thus, a false positive; (3) is a peak in the original version which remains unmatched by the

modified version – a false negative; (4) is a true positive, but only because of the tolerance window. Both
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Figure 3.9: Peak agreement between an un-
modified loop and one modified by adding
noise. Large squares correspond to the
peaks (plus tolerance) of the unmodified
loop. Small squares correspond to the
modified loop. Four cases are surrounded
by a red circle. (1): True positive, even
without tolerance. (2): False positive. (3):
False negative. (4): True positive, due to
tolerance.
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Figure 3.10: Two potentially problematic cases when using a tolerance window for evaluation. Red dots
are a peak in CD, surrounded by a tolerance window (red square). Black crosses are peaks in CQ. (a) The
tolerance windows for two peaks in CD overlap; they both contain a matching peak from CQ. (b) The
tolerance window for a single peak in CD contains two matching peaks from CQ.

peak maps are shown with transparency: the smaller squares in (1) and (4) are darker because of the

overlap between CD and CQ; the small square in (2) and the large square in (3) are comparatively lighter

because there is no overlap between the peak maps.

Using a tolerance window for evaluation can be problematic, as shown in Figure 3.10. In Figure 3.10a we

show two peaks from CD (red dots), surrounded by their overlapping tolerance windows (red squares).

In the overlapping region, a peak from CQ (black cross) is a potential true positive for both peaks in

the database. In Figure 3.10b, two different peaks from the query can match a single peak from the

database. These problems do not affect our implementation since we use peak picking windows which are

considerably larger than the evaluation tolerance: recall that τp = κp = 7 and τe = κe = 1.

In the following sections we use peak agreement to evaluate constellation maps under various loop

modifications and degradations.
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3.7. Adding White Noise

Figure 3.11: Adding white noise: the
query (red rectangles, bottom row) is
mixed with white noise (gray rectangles,
height denotes power). Each column rep-
resents a single track.
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Figure 3.12: Peak map comparison when adding white noise to a loop from the residual category. (a)
Peak map for unmodified loop (red dots). (b) Peak map for unmodified loop (red dots) overlaid with peak
map for the same loop with white noise added at 0 dB SNR (grey dots). (c) Peak map for loop with white
noise at 0 dB SNR (grey dots).

3.7 Adding White Noise

We illustrate the concept of these experiments in Figure 3.11, where the query (red rectangles, bottom

row) is mixed with white noise (gray rectangles, height denotes power) and each column represents a

single track. Figure 3.12 shows the effects of adding white noise to a loop in the residual (R) category. In

Figure 3.12a we show the peak map for the unmodified loop (grey dots); Figure 3.12b shows the peak

map for the unmodified loop (grey dots) overlaid with the peak map for the same loop with white noise

added at 0 dB SNR (red dots); in Figure 3.12c we show the peak map for the loop with white noise added

at 0 dB SNR (red dots).

Figure 3.13 shows the mean peak agreement recall and precision under modification by white noise. For

each of the 111 loops in our dataset we generated 11 modified versions (corresponding to the SNR values

shown along the horizontal axis). For a given SNR value, we show the mean recall and precision across

the entire dataset: the solid blue curves were computed without any tolerance and the dashed red curves

were computed with a tolerance of one TF bin in every direction (see also Figure 3.9).

Beyond the results for white noise across the entire dataset (Figure 3.13), we now investigate what role the

timbral category (harmonic, residual, or percussive) plays in peak agreement.Figure 3.14 shows recall and

precision, averaged by timbral category. They were computed without a tolerance window and contain
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Figure 3.13: Mean peak agreement recall (a), precision (b), and F-measure (c) after adding white noise.
Recall and precision have linear vertical axes, F-measure has a log-axis. Each point in the curves denotes
the mean recall for a given SNR value across the whole dataset (111 loops). The solid blue curve shows
results without a tolerance window; the dashed red curve was produced with a tolerance of one TF bin in
every direction.
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Figure 3.14: Mean peak agreement recall after adding white noise. Each curve corresponds to a timbral
category (harmonic, residual, or percussive). Results were computed without a tolerance window. The
dashed line is the mean across the entire dataset.
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3.8. Multi-Loop Mixtures
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Figure 3.15: (a) Log-compressed log-frequency spectrogram of a percussive loop. Red circles denote
peaks in its constellation map. The dashed rectangles highlight vertical peak structures typical of percussive
signals. (b) Log-compressed log-frequency spectrogram of a percussive loop with white noise added at
–3 dB SNR. Red circles denote peaks in its constellation map.

Figure 3.16: Mixture complexity: the
query (red rectangles, bottom row) is
mixed with further loops from the dataset.
Each column represents a single track.
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the dataset average as a dashed line for reference. In Figure 3.14, the recall for harmonic and residual

loops is slightly better than average, whereas percussive loops are consistently below average by about

10%, suggesting that peak maps may not be optimal for this timbral category. Because of their high,

wide-band onset energy, percussive loops produce peak maps with vertical structures and empty spaces

between onsets. Figure 3.15 shows the log-compressed log-frequency spectrogram YLFC of a percussive

loop overlaid with dashed rectangles that enclose groups of vertically structured peaks. Since these STFT

frames (or columns of YLFC) contain many local maxima, the peak picking can be thought of as a random

sampling, or an arbitrary decision mainly related to the choice of neighborhood size. Adding white noise

to a percussive loop has two prominent effects: it modifies this random sampling in the peak selection at

the onsets and it fills the low-energy spaces between onsets with additional peaks.
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Figure 3.17: Peak map comparison for a mixture of vocals (H category) and percussions (P). (a) Peak
map for vocals (query, red dots). (b) Peak map for vocals (red dots) overlaid with peak map for mixture
(grey dots). (c) Peak map for mixture track (grey dots).

3.8 Multi-Loop Mixtures

For this series of experiments, we generated tracks or mixtures by adding loops from the dataset. We

tested the peak agreement between a single, unmodified loop, and mixtures consisting of an increasing

number of loops—only in cases where the original loop is contained in the complex mixture. The track

height or mixture complexity is the number of loops present in the mixture—a track height of 1 is trivial,

as it contains simply one of the loops. Figure 3.17 illustrates the effects of mixing a vocal track with a

percussive track: Figure 3.17a shows the peak map for the unmodified vocal loop (red dots), Figure 3.17b

is a peak map overlay of the vocal track (red dots) and the mixture track (grey dots), Figure 3.17c is the

peak map for the mixture track (grey dots), which was made by combining the loop in Figure 3.17a with a

percussive loop.

Figure 3.16 illustrates five mixtures with increasing height, from left to right. The query (red rectangles,

bottom row) is always present, and is mixed with a certain number of additional loops from the dataset.

Each column yields a distinct track for evaluation. A track’s duration (in samples) is always fixed to the

query. A loop longer than the query is trimmed to fit; a shorter loop is repeated until the query length is

achieved. The following steps outline our procedure for random track generation and evaluation:

1. Choose a genre.

2. For the current genre, randomly choose ten loops—one of these loops will be fixed as the query.

3. For each track height from two to ten:

(a) generate a mixture with the current height;

(b) evaluate the peak agreement between the fixed query and the current mixture.
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Figure 3.18: Mean peak agreement recall and precision for increasing track complexity. Each curve
corresponds to a timbral category (harmonic, residual, or percussive). Results were computed without a
tolerance window. The dashed line is the mean across all experiments.

We make a total of ten passes over the dataset, executing the method above for every genre. Figure 3.18

reveals a number of trends in these experiments that we discuss in the following. First, note that

approximately half of the peak information is modified once a further loop is added to the mixture (recall

drops to 0.5 and precision to 0.4). From that point onwards, there is a steady drop which ends slightly

below 0.1. Second, harmonic and percussive loops retain close-to-average precision and recall across

all mixture complexities, whereas residual loops fare worse throughout. This is explained by the fact

that percussive loops induce localized vertical structures (with high energy) that are unperturbed by

the addition of harmonic loops (with predominantly horizontal structures) or residual loops (with more

random, sparse peak maps). Conversely, residual loops suffer the most from combinations, since their peak

structure is easily disrupted by the other two types. Harmonic loops have roughly average performance;

they have minimal peak overlap with the well-confined percussive loops and are only slightly modified by

residual loops.

We can further support these hypotheses by analyzing the average number of peaks that a loop of a given

timbral category contains. Figure 3.20 shows statistics for the average number of peaks per STFT frame

that the loops in our dataset contain. The fact that percussive loops contain the most peaks explains their

superior performance in the complexity experiments. Since there is only a slight difference between

harmonic and residual loops, the deciding factor for peak agreement in these categories has more to do

with the spatial distribution of the peaks, rather than the amount.
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Figure 3.19: F-measure for increasing
track complexity (log vertical axis). The
solid blue curve was computed with no
tolerance. The dashed red curve was com-
puted with one TF bin tolerance in every
direction.
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Figure 3.20: Average number of peaks per
STFT frame, grouped by timbral category.
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3.9 STFT Frame Offset

In the previous sections we studied how peak maps behave under different modifications of the signals’

content. We now focus on an aspect of the algorithm which can decrease peak agreement without changing

the signals themselves. Within our controlled scenario, we have computed STFTs and peak maps for

isolated instances of a loop — however, in real-world applications, there is no guarantee that the query and

database will be processed with identical STFT frame offsets. For instance, we might have an isolated loop

as a query and an entire track containing that loop in the middle as the database, inducing unequal STFT

frame offsets. For all loops in the EM-Mini dataset, we zero-padded the query signals (with increments of

256 samples, up to the hop size of 2048) while keeping unmodified versions as a database. Figure 3.21

illustrates how peak maps can change due to different STFT framing offsets. In Figure 3.21a we show the

peak map for an unmodified query of the residual category (red dots). In Figure 3.21b, the unmodified

loop (red dots) is overlaid with a version shifted by 1024 samples (one-half hop size, grey dots). The

frame-shifted version is shown in Figure 3.21c (grey dots). Figure 3.22 shows the mean peak agreement
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Figure 3.21: Peak map comparison when changing the frame offset for a loop from the residual category.
(a) Peak map for unmodified loop (red dots). (b) Peak map for unmodified loop (red dots) overlaid with
peak map for the same loop, shifted by 1024 samples (one-half hop size) by zero-padding (grey dots). (c)
Peak map for shifted loop (grey dots).
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Figure 3.22: Mean peak agreement recall and precision for increasing amounts of zero-padding, up to the
hop size.

precision and recall across the dataset. The solid blue curve shows results without a tolerance window and

the dashed red line corresponds to one TF bin in every direction.

The results in Figure 3.22 illustrate how important it is for a fingerprinting algorithm to be robust against

varying STFT frame offsets. Recall and precision with no tolerance (solid blue curves) decrease steadily,

reaching a value of zero when a full hop size (2048 samples) of zero-padding samples has been added

to the query. With a tolerance of one TF bin in every direction (dashed red lines), recall and precision
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decrease until half the hop size is reached (1024 samples), and then increase for the second half of the

experimental configurations, achieving perfect peak agreement again at 2048 samples. This tolerance

setting has a maximum information loss of approximately thirty percent (or, conversely, 0.7 precision and

recall). Our experiments highlight how unreliable individual peaks can be. Ellis’ [50] implementation

augments the original query landmarks by computing further sets of landmarks at quarter-hop, half-hop

and three-quarter-hop offsets (see file match_query.m) and produces good results with a reduced number

of landmark matches.
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Chapter 4

Modeling SBEM

This chapter is based mainly on [90]. The core idea was born at HAMR@ISMIR

2015, with teammates Jonathan Driedger and Hendrik Schreiber. My main

contributions were identifying the task, formulating the main constraints,

preparing the dataset, and conducting the experiments. Christian Dittmar

provided code and guidance for NMFD and the Pearson correlation evaluation.

Together with Meinard Müller, we developed the mathematical formalization,

identified the similarity with NMFD, and desinged the experimental setup.

As discussed in Chapters 1 and 2, SBEM is a popular family of genres which has increasingly received

attention as a research subject in the field of MIR. Although this thesis focuses mainly on SBEM, in this

chapter we present models and methods that work with electronic music (EM) in general, and thus we

will use both terms interchangeably. A fundamental structural unit in SBEM are loops—audio fragments

whose duration can span several seconds. The devices commonly used to produce EM, such as sequencers

and digital audio workstations, impose a musical structure in which loops are repeatedly triggered and

overlaid. This particular structure allows new perspectives on well-known MIR tasks. In this chapter we

first review a prototypical production technique for EM from which we derive a simplified model. We

then use our model to illustrate approaches for the following task: given a set of loops that were used to

produce a track, decompose the track by finding the points in time at which each loop was activated. To

this end, we repurpose established MIR techniques such as fingerprinting and non-negative matrix factor

deconvolution.

This work offers three main contributions. First, we review the production process of EM and how it leads

to the prototypical structure outlined previously (Section 4.2). Second, we propose a simplified formal

model that captures these structural characteristics (Section 4.3). Third, we use our model to approach the

EM decomposition task from two angles: first, we interpret it within a standard retrieval scenario by using
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Figure 4.1: A condensed EM track built
with three loop layers: drums (D), melody
(M) and bass (B). Each block denotes the
activation of the corresponding pattern dur-
ing the time it spans.

fingerprinting and diagonal matching (Section 4.4). Our second approach is based on non-negative matrix

factor deconvolution (NMFD), a technique commonly used for audio source separation (Section 4.5). We

summarize our findings and discuss open issues in Section 4.6.

4.1 EM Composition Basics

With the arrival of affordable electronic music production technology, various loop-based genres emerged:

techno, house, drum’n’bass and some forms of hip hop; this family of genres is subsumed under the

umbrella term Electronic Music (EM). EM has garnered mainstream attention within the past two decades

and has recently become a popular subject in MIR: standard tasks have been applied to EM (structure

analysis [115]); new tasks have been developed (breakbeat analysis and resequencing [73, 71]); and

specialized datasets have been compiled [80].

A central characteristic of EM that has not been extensively considered is its sequencer-centric composition.

As noted by Collins [29], loops are an essential element of EM: loops are short audio fragments that are

“generally associated with a single instrumental sound” [14]. Figure 4.1 illustrates a simplified EM track

structure similar to that encouraged by digital audio workstations (DAWs) such as Ableton Live [1]. The

track starts with the activation of a drum loop (blue, bottom row). After one cycle, a melody loop (yellow,

middle row) is added, while the drum loop continues to play. A third layer—the bass (red, top row)—is

activated in the third cycle. Over the course of the track, these loops are activated and deactivated. An

important observation is that all appearances of a loop are identical; a property that can be modeled and

exploited in MIR tasks. In particular, we consider the task of decomposing an EM track: given the set of

loops that were used to produce a track and the final, downmixed version of the track itself, we wish to

retrieve the set of timepoints at which each loop was activated.

4.2 Structure and Production Process

Unlike other genres, EM is often produced by starting with a single distinct musical pattern [126] (also

called loop) and then adding and subtracting further musical material to shape the tension and listener’s

expectation. An EM track is built by combining layers (with potentially different lengths) in looping

cyclical time—where the overall form corresponds to the multitrack layout of sequencers and digital audio

40



4.3. Simplified Model for EM

workstations (DAWs) [29]. Figure 4.1 provides a simple example of such a track (total duration 56s),

consisting of three layers or loops: drums (D), bass (B) and melody (M), each with a duration of 8s. We

will be using this track as a running example to clarify the points made throughout this chapter.

A common characteristic of EM tracks is their relative sparseness or low timbral complexity during the

intro and outro—in other words, a single loop is active. This practice is rooted in two facts: Firstly, EM

tracks are conceived not as isolated units, but rather as part of a seamless mix (performed by a DJ), where

two or more tracks are overlaid together. Thus, in what could be termed DJ-friendly tracks [29], a single,

clearly percussive element at the beginning and end facilitates the task of beat matching [14] and helps

avoid unpleasantly dense transitions. We have constructed our running example following this principle:

in Figure 4.1, the only active layer during the intro and outro is the drum loop (bottom row, blue).

The second reason for having a single-layer intro is that this section presents the track’s main elements,

making the listener aware of the sounds [14]. Once the listener has become familiar with the main musical

idea expressed in the intro, more layers are progressively brought in to increase the tension (also known

as a buildup), culminating in what Butler [14] designates as the track’s core: the “thicker middle sections”

where all loop layers are simultaneously active. This is reflected in Figure 4.1, where the melody is

brought in at 8s and the bass at 16s, overlapping with uninterrupted drums. After the core has been

reached, the majority of layers are muted or removed—once again, to create musical anticipation—in a

section usually known as break or breakdown (see the region between 24–32s in Figure 4.1, where only

the melody is active). To release the musical tension, previous loops are reintroduced after the breakdown,

(seconds 32–40, Figure 4.1) only to be gradually removed again, arriving at the outro. In the following

sections we will develop a model that captures these structural characteristics and provides a foundation

for analyzing EM tracks.

4.3 Simplified Model for EM

In Section 4.2 we illustrated the typical form of loop-based electronic music. With this in mind, our goal

is to analyze an EM track’s structure. More specifically, our method takes as input the set of loops or

patterns that were used to produce a track, as well as the final, downmixed version of the track itself. From

these, we wish to retrieve the set of timepoints at which each loop was activated within the track. We

begin by formalizing the necessary input elements.

Let V ∈ RK×M be the feature representation of an EM track, where K ∈ N is the feature dimensionality

and M ∈N represents the number of elements or frames along the time axis. We assume that the track was

constructed from a set of R patterns Pr ∈ RK×T r
, r ∈ [0 : R−1] := {0, . . . ,R−1}. The parameter T r ∈ N

is the number of feature frames or observations for pattern Pr. In practice, the patterns can have different

lengths—however, without loss of generality, we define their lengths to be the same T := T 0 = . . .= T R−1,

which could be achieved by adequately zero-padding shorter patterns until they reach the length of the
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Figure 4.2: Left: Tensor P with three pat-
terns (drums, bass, melody). Right: Acti-
vation matrix H with three rows; the col-
ored cells denote an activation of the cor-
responding pattern.

longest. Based on this assumption, the patterns can be grouped into a pattern tensor P ∈ RK×R×T . In the

case of our running example, seen in Figure 4.1, T =̂ 8s and the number of patterns is R= 3. Consequently,

the subdimension of the tensor which refers to a specific pattern with index r is Pr := P(·, r, ·) (i. e., the

feature matrix for either (D), (M), or (B) in our example); whereas Pt := P(·, ·, t) refers to frame index t

simultaneously in all patterns.

In order to construct the feature representation V from the pattern tensor P, we require an activation matrix

H ∈ BR×M with B := {0,1}, such that

V =̂
T−1

∑
t=0

Pt ·
t→
H , (4.1)

where
t→
(·) denotes a frame shift operator [124]. Figure 4.2 depicts P and H as constructed for our running

example. The model assumes that the sum of pattern signals and their respective transformations to a

feature representation are linear, which may not always be the case. The additive assumption of Eq. 4.1

implies that no time-varying and/or non-linear effects were added to the mixture (such as compression,

distiortion, or filtering), which are often present in real-world EM. Aside from this, we specify a number

of further constraints below.

The devices used to produce early EM imposed a series of technical constraints which we formalize here.

Although many of these constraints were subsequently eliminated in more modern equipment and DAWs,

they have been ingrained into the music’s aesthetic and remain in use up to the present day.

Non-overlap constraint: A pattern is never superimposed with itself, i. e., the distance between two

activations of any given pattern is always equal to or greater than the pattern’s length. Patterns are loaded

into a device’s memory and triggered by a sequencer—usually without further activation signals before

it has played through to the end. If a pattern Pr is activated at time m ∈ [0 : M−1], then Hr(m) 6= 0⇒
Hr(m+1) = . . .= Hr(m+T −1) = 0.

Length constraint: As noted by [29], multiple layers in EM are complementary, creating aggregate effects

and capable of being independently inserted and removed. For this reason, we make the simplifying

assumption that T := T 0 = T 1 = . . .= T R−1, i. e., that all patterns have the same length.

T-grid constraint: Motivated by the use of centralized MIDI clocks and the fixed amount of musical time

available on prevalent devices such as drum machines (which typically allow programming one musical

measure at a time, in 16 steps), we enforce a timing grid which restricts the possible activation points in

42



4.4. Fingerprint-Based EM Decomposition

(a) 

(b) 

Lo
g-

fr
eq

ue
nc

y 
Co

si
ne

 s
im

ila
ri

ty
 

1 
 
 
 
 
0 

1 
 
 
 
 
0 

Time (s) 

Figure 4.3: (a): Log-frequency spectrogram for entire track. (b): Matching curves computed using cosine
similarity for drums, melody, and bass (bottom to top). The dashed line represents the curve’s global
mean; the dash-dotted line is the GT mean (see Section 4.4.4 for definition of gain). Colored triangles
indicate GT loop activation positions.

H. In Figure 4.1, patterns are always introduced and removed at multiples of 8s.

Amplitude constraint: We assume that a pattern is always activated with the same intensity throughout a

track, and therefore each row r in the activation matrix H fulfills Hr := H(r, ·) ∈ B1×M.

4.4 Fingerprint-Based EM Decomposition

In the running example, multiple patterns are overlaid in different configurations to form the track. If

we know a priori which patterns are included and wish to find their respective activation positions, we
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Figure 4.4: (a): Log-frequency spectral peak map for the entire track (black dots) and for each query (red
dots enclosed in red, from left to right: drums, melody, and bass). (b): Matching curves computed with
the Jaccard index and each pattern as a query for drums, melody, and bass (bottom to top).

need a technique capable of identifying an audio query within a database where further musical material

is superimposed. We first examine log-frequency spectrograms and diagonal matching as a baseline

approach, and continue with audio fingerprinting techniques based on spectral peaks in combination with

various similarity measures. In Section 4.5 we discuss an alternative approach based on NMFD. The

running example is constructed with one audio file for each pattern and a generic EM track arrangement

seen in Figure 4.1. The complete track is generated in the time domain by summing the individual patterns

that are active at a given point in time. All audio files have been downmixed to mono with a sampling rate

Fs = 22050 Hz.
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4.4.1 Diagonal Matching

We implement the diagonal matching procedure outlined in [97, pp. 376–378] to measure the similarity

between each query pattern Pr and the track feature matrix V . In simple terms, to test if and where the

query Pr = (Pr
0, . . . ,P

r
T−1) is contained in V = (V0, . . . ,VM−1), we shift the sequence Pr over the sequence

V and locally compare Pr with suitable subsequences of V . In general, let F be the feature space (for

example, F =RK in the case of log-frequency spectrograms). A similarity measure s :F×F →R∩ [0,1]
between two feature frames will yield a value of 1 if the query is identical to a certain region of the

database, and 0 if there is no resemblance at all.

4.4.2 Baseline Procedure

For each individual pattern, as well as the entire track, we compute an STFT X with the following

parameters: block size N = 4096, hop size H = N/2 and a Hann window. From these, magnitude

spectrograms (abbreviated as MS) are computed and mapped to a logarithmically spaced frequency axis

with a lower cutoff frequency of 32 Hz, an upper cutoff frequency of 8000 Hz and spectral selectivity of 36

bins per octave (abbreviated LS). Under these STFT settings, the 36-bin spectral selectivity does not hold

in the two lowest octaves; however, their spectral peak contribution is negligible. Preliminary experiments

have shown that this musically meaningful feature representation is beneficial for the matching procedure

both in terms of efficiency and accuracy. We begin with a baseline experiment (Figure 4.3), using LS and

cosine similarity:

Cosine : scos(u,v) :=
〈u|v〉
||u|| · ||v||

, u,v ∈ RK \{0}. (4.2)

Notice that the clearest peak is produced by the melody activation at 24s (Figure 4.3b, middle row),

which occurs without any other patterns being overlaid. The three remaining activation points for the

melody have a very low gain relative to their neighboring values. The matching curve for the drums

(Figure 4.3b, bottom row) displays a coarse downwards trend starting at 0s and reaching a global minimum

at 24s (the point at which the drum pattern is not activated in our example); this trend is reversed as the

drums are added again at 32s. The internal repetitivity (or self-similarity) of the drum pattern causes the

periodic peaks seen throughout the matching curve. Overall, it is evident from all three curves that the

combination of LS with cosine similarity is insufficient to capture the activations when multiple patterns

are superimposed—motivating our next experimental configuration which uses spectral peak maps.

4.4.3 Fingerprinting with Peak Maps

Although our scenario is slightly different to that of audio fingerprinting and identification, both require a

feature representation which captures an individual pattern’s characteristics despite the superposition of

further sound sources. To this end, we use spectral peak maps as described in [97]. Conceptually, we are
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following an early approach for loop retrieval inside hip hop recordings which was presented in [137] and

later refined in [138]. Their method is based on a modification of the fingerprinting procedure originally

described in [141].

For each time-frequency bin in the respective LS, a rectangular analysis window is constructed. The

maximum value within each window is kept (with the value 1 on the output) and all neighbors are set to 0

on the output. In Figure 4.4a we show the spectral peak map for the entire track (black dots) and the query

peak map for each query pattern (red dots in red rectangles). These log-frequency peak maps populate

a pattern tensor P ∈ BK×R×T , where K = 286. Thus Pr corresponds to the peak map for the rth pattern,

while V corresponds to the entire track.

In addition to the cosine measure defined in Eq. 4.2, we test different similarity measures s:

Jaccard : sJac(u,v) :=
||u ∧ v||
||u ∨ v||

, u,v ∈ BK , (4.3)

Inclusion : sinc(u,v) :=
||u ∧ v||
||u||

, u,v ∈ BK , (4.4)

where we set 0
0 := 1. The inclusion metric aims to quantify the extent to which the query is contained or

included in the database and has a similar definition to the Jaccard index.

4.4.4 Evaluation

We use two measures to quantify how well the matching curves capture the pattern activations. For the

first measure, termed gain, we compute the average of the activation values at the ground truth (GT)

activation points: in Figures 4.3b and 4.4b, these locations are marked by colored triangles, corresponding

to each loop in the running example; their mean value is shown as a dash-dotted line. We also compute the

mean value for the entire curve (dashed line) and use the ratio between these two means in order to assess

the quality of the matching curve. Ideally, the curve assumes large values at the GT activation points and

small values elsewhere, resulting in a larger gain. As a second measure we take the Pearson correlation

between a computed matching curve and its corresponding row Hr in the GT activation matrix, where

the activation points have a value of 1, and 0 elsewhere. Again, a high Pearson correlation reflects high

matching curve quality.

We generated a set of patterns used to build prototypical EM tracks. To foster reproducible research,

we produced them ourselves, avoiding potential copyright issues—they are available under a Creative

Commons Attribution-ShareAlike 4.0 International license and can be obtained at the companion website1.

We chose seven prominent EM subgenres such as big beat, garage and drum’n’bass (in a tempo range

1https://www.audiolabs-erlangen.de/resources/MIR/2016-ISMIR-EMLoop
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Table 4.1: Results for diagonal matching
experiments with magnitude spectrograms
(MS), log-frequency spectrograms (LS),
and log-frequency peak maps (PLS) using
the cosine, inclusion and Jaccard similarity
measures. Each column shows the mean
and variance for peak gain and Pearson
correlation.

Gain Pearson
µ σ µ σ

MS/cos 1.72 0.31 0.13 0.05
LS/cos 1.57 0.29 0.11 0.05

PLS/cos 19.46 10.45 0.52 0.18
PLS/inc 21.69 11.90 0.51 0.19
PLS/Jac 19.54 9.76 0.53 0.18

between 120–160 BPM). For each subgenre, we generated four patterns in the categories of drums, bass,

melody and additional effects.

As stated by Wang [141], spectral peak maps are robust to superposition of multiple sources; a fact

which becomes clear when comparing Figures 4.3b and 4.4b. In Figure 4.4b, the peak gain has greatly

increased compared to the baseline approach with LS. In Table 4.1 we list the mean peak gain and Pearson

correlation for all seven tracks, along with standard deviations for each value. The first two rows, MS/cos

and LS/cos, correspond to the baseline approach—the last three rows summarize the experiments with

spectral peak maps. Note that spectral peak maps have approximately ten times the peak gain of MS/LS,

whereas the Pearson correlation increases by a factor of four. Figures 4.3 and 4.4 illustrate the results

in Table 4.1 at an intuitive level. With MS, the spectral content shared among different types of patterns

impedes distinct peaks from emerging. By discarding this irrelevant information, LS better represent the

characteristics of each pattern. From the perspective of peak quality, only the self-similarity of the drum

pattern continues to pose a challenge.

4.5 NMFD-Based EM Decomposition

By design, our model for EM is very close to the formulation of NMFD; in this section we explore the

performance of NMFD and compare it with our fingerprinting methods.

4.5.1 Related Work

In this section, we briefly review the NMFD method that we employ for decomposing the feature repre-

sentation V . Weiss and Bello [142] used non-negative matrix factorization (NMF) to identify repeating

patterns in music. By adding sparsity constraints and shift-invariant probabilistic latent component

analysis (SI-PLCA), they automatically identify the number of patterns and their lengths—applied to

beat-synchronous chromagrams in popular music. Masuda et al. [96] propose a query-by-audio system

based on NMF to identify the locations where a query musical phrase is present in a musical piece.

Among more general techniques for investigating alleged music plagiarism, Dittmar et al. [40] proposed a
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Figure 4.5: Activation curves learned by NMFD applied to the magnitude spectrogram of the running
example. The dashed lines represent the mean value for the complete curve, but are very close to the
x-axis.

method for retrieval of sampling. Their approach, based on NMF, was not supplemented with systematic

evaluation, but was further investigated in [144]. Previous works [124, 87, 114, 43] successfully applied

NMFD—a convolutive version of NMF—for drum transcription and separation. Hockman et al. [71, 73]

specifically focused on analyzing breakbeats, i. e., drum-only loops as used in hip hop and drum’n’bass.

Detecting sample occurrences throughout a track is a secondary aspect, as they address the more challeng-

ing scenario of estimating the loop resequencing [73]. All these previous works have in common that

they attempt to retrieve one loop inside a song, whereas we pursue a more holistic approach that allows to

deconstruct the whole track into loops.

4.5.2 NMFD Model

Our objective is to decompose V into component magnitude spectrograms that correspond to the distinct

musical elements.2 Conventional NMF can be used to compute a factorization V ≈W ·H, where the

columns of W∈RK×R
≥0 represent spectral basis functions (also called templates) and the rows of H∈RR×M

≥0

contain time-varying gains (also called activations). The rank R ∈N of the approximation (i. e., number of

2This section was formulated together with Christian Dittmar and also appears in [44].
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Table 4.2: Results for NMFD with magni-
tude spectrograms (MS) and log-frequency
spectrograms (LS), initializing the number
of templates (R) and also the loop tem-
plates (RP). Each column shows the mean
and variance for peak gain and Pearson
correlation.

Gain Pearson
µ σ µ σ

NMFD@MS, R 55.20 29.80 0.65 0.25
NMFD@MS, RP 89.62 39.67 0.88 0.11
NMFD@LS, R 52.39 35.95 0.64 0.22
NMFD@LS, RP 79.59 34.99 0.87 0.12

components) is an important but generally unknown parameter. NMFD extends NMF to the convolutive

case by using two-dimensional templates so that each of the R spectral bases can be interpreted as a

magnitude spectrogram snippet consisting of T � M spectral frames. The convolutive spectrogram

approximation V≈ Λ is modeled as

Λ :=
T−1

∑
t=0

Wt ·
t→
H , (4.5)

where
t→
(·) denotes a frame shift operator (see also Eq. 4.1). As before, each column in Wt ∈ RK×R

≥0

represents the spectral basis of a particular component, but this time we have T different versions Wt ,

with t ∈ [0 : T −1] available. If we take lateral slices along the columns of Wt , we can obtain R prototype

magnitude spectrograms Ur ∈ RK×T
≥0 . NMFD typically starts with a suitable initialization (with random

values or constant values) of matrices W(0)
t and H(0). These matrices are iteratively updated to minimize a

suitable distance measure between the convolutive approximation Λ and V. In this work, we use the update

rules detailed in [124], which extend the well-known update rules for minimizing the Kullback-Leibler

Divergence (KLD) [83] to the convolutive case.

4.5.3 Evaluation

For our experiments with NMFD we used MS and LS to conduct the procedure in two variants. For the

first variant (referred to as R in Table 4.2), the only a priori information used is the number of patterns (or

templates) R and their length T . The templates are initialized randomly and fifty iterative updates are used

to minimize the KLD. To account for the effects of random initialization, we carry out ten initialization

passes per track. The results in Table 4.2 reflect the mean and standard deviation across all passes. For

the second variant (RP), we supply the pattern templates themselves at initialization (i. e., R, T and P are

known). We also disallow template updates and only allow activation updates. Since the templates in

variant R are initialized randomly, there is no direct relationship between the learned activation curves and

the corresponding ground truth curves. We deal with this permutation indeterminacy by comparing all

computed activation curves with all ground truth curves and taking the results which maximize the overall

score. For all configurations in Table 4.2, we observe a peak gain at least twice as high as that obtained

through diagonal matching; the Pearson correlation increases by a factor of 1.2–1.7, depending on the

NMFD configuration taken for comparison. Focusing on the differences among NMFD configurations,
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Table 4.3: Computation times for di-
agonal matching with log-spectral peak
maps (PLS), NMFD with magnitude spec-
trograms (MS), and NMFD with log-
frequency spectrograms (LS). The choice
of initialization R or RP for NMFD does
not impact execution time.

Method Time (s)

PLS 0.2
NMFD@LS,(R/RP) 2.5
NMFD@MS,(R/RP) 36.0

RP brings peak gain improvements by a factor slightly greater than 1.5; the Pearson correlation increases

by about 1.35. The feature choice (MS or LS) does not play a significant role in result quality. Due to the

amount of prior knowledge used to initialize the RP configuration, we consider it as an upper bound for

less informed approaches.

4.6 Conclusions and Future Work

In the preceding sections we developed a better understanding of the feature representations and matching

techniques that are commonly used for pattern activation discovery. In this section, we reflect on some of

the limitations of our work, further research topics, and computational performance issues.

Clearly, our work only provides a baseline for further work towards more realistic scenarios. As to our

model’s inherent shortcomings, real-world EM tracks usually contain more than four individual patterns,

which are rarely available. Moreover, activations of a given pattern are often (spectrally) different from

one another due to the use of effects such as delay and reverb, filter sweeps or resequencing. Thus, we

consider this study as a stepping stone towards a fully-developed pipeline for EM structure analysis and

decomposition. One potential research direction would be the automatic identification of suitable pattern

candidates. A repetition-based analysis technique as described in [98] could be used in conjunction

with spectral peak maps to compute self-similarity matrices (SSMs) that saliently encode inclusion

relationships. Furthermore, semi-informed variants of NMFD might be helpful in discovering additional

patterns that are not explicitly given, where the use of rhythmic structure can serve as prior knowledge

to initialize the activations. Although diagonal matching curves can be computed efficiently with a

straightforward implementation, we have seen they have certain shortcomings; we wish to investigate

the feasibility of using them as rough initial guesses and leaving the refinement up to NMFD. Beyond

each method’s capabilities, as seen in Tables 4.1 and 4.2, there is also the issue of their running time and

memory requirements. For the running example, we tested our MATLAB implementation on a 3.2GHz Intel

Core i5 CPU with 16GB RAM, yielding the mean execution times in Table 4.3.

From Tables 4.3 and 4.2 we can conclude that NMFD@LS offers the best balance between quality and

resource intensity. NMFD@MS takes approximately 14 times longer to compute than NMFD@LS and

50



4.6. Conclusions and Future Work

only produces marginally better results. Indeed, recall that the feature dimensionality K = 286 for LS and

K = 2049 for MS, which explains the large difference in execution times.

As a final remark, musical structure analysis is an ill-defined problem, primarily because of ambiguity; a

segmentation may be based on different principles (homogeneity, repetition, novelty) that can conflict

with each other [107]. The main advantage of our method is that we avoid the philosophical issue of

how a track’s structure is perceived, and rather attempt to determine how it was produced—a univocal

problem. It can then be argued that the listeners’ perception is influenced by the cues inherent to EM’s

compositional style.
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Chapter 5

Cascaded Harmonic-Residual-Percussive
Features

In this chapter, based on [93], mymain contribution was identifying phenomena

in electronic music that could be visualized well by their timbral changes

along the HRP axis. The original HRPSS method and code are by Jonathan

Driedger. Christian Dittmar contributed critical insight about the discrepancies

between time- and frequency-domain implementations, as well as important

parameter settings. Meinard Müller provided the initial idea of a cascaded

feature, and we then collaborated to develop themathematical formalization.

Harmonic-percussive separation is an audio decomposition technique that coarsely splits music recordings

into harmonic and percussive components—it can be used for karaoke, DJing, or remixing; or as a prepro-

cessing step that can potentially facilitate further tasks like key detection (for the harmonic component) or

drum transcription (for the percussive component). We propose a cascaded harmonic-residual-percussive

(HRP) procedure yielding a mid-level feature representation that can help analyze musical phenomena

such as percussive event density, shifts in timbral properties, and homogeneous structural segments. In

this chapter, we first outline the steps to compute cascaded HRP features (CHRP) and then illustrate their

capabilities by means of three examples: to visualize the percussive and noise-like properties of snare-

drum playing techniques, to examine changes between harmonic and percussive timbres in electronic

music, and to identify homogeneous, purely percussive passages in funk and soul recordings (also known

as breaks).

This chapter is laid out as follows: Section 5.2 outlines previous work in (cascaded) HPSS, Section 5.3

describes our CHRP approach and how to use it to construct an energy-based feature matrix, Section 5.4

53



Chapter 5. Cascaded Harmonic-Residual-Percussive Features

deals with concrete musical applications where the CHRP feature is particularly relevant, and Section 5.5

contains some final thoughts on our method and how it can be used and extended in future work.

5.1 Harmonic-Residual-Percussive Source Separation

Music signals are typically mixtures of different sound sources, such as melodic instruments, singing voice,

and drums—which can be categorized as (predominantly) harmonic or percussive. Harmonic-Percussive

Source Separation (HPSS) aims at splitting a downmixed music recording into a harmonic, sustained part

(e. g., melodic instruments, singing voice) and a percussive, unpitched part (e. g., drums and percussion).

Inspired by the Sinusoids+Transients+Noise (S+T+N) signal model [86, 32], HPSS was then extended

to harmonic-residual-percussive source separation (HRPSS) in [48, 59], where the residual component

captures the musical elements that cannot clearly be categorized as either harmonic or percussive. In this

chapter we present a cascaded procedure to obtain a finer-grained decomposition (which goes beyond the

standard components H, R, and P) and then derive mid-level features based on this cascade.

In real-world applications, even a single musical source—which can naïvely be considered as either purely

harmonic or percussive—often contains elements from multiple realms: the human voice (idealized as

harmonic) also contains noise-like elements in the form of sibilants and percussive elements in the form

of plosives; percussive instruments (especially kicks, snares, and toms) have a percussive onset and a

tonal/harmonic decay. Although HPSS is frequently used to isolate a certain component (e. g., singing

voice) with minimal interference from other elements, our main goal is to develop a feature based on

HRPSS which helps visualize these timbral ambiguities. Furthermore, we propose a cascaded approach

to increase resolution along the HRP axis: the HRPSS procedure is used iteratively, beginning with the

original signal in the first pass and then applying it repeatedly to the residual component from the previous

stage. Prior works which use multiple passes of HPSS are discussed in detail further in this section.

Driedger et al. [48] introduced a separation factor as a parameter to control the strictness with which

spectral elements are classified as either harmonic or percussive. Intuitively speaking, the separation factor

(β ) determines the width of the harmonic and percussive components: higher β values yield narrower H

and P components (and a broader R component).

Figure 5.1 illustrates, on a conceptual level, how we incorporated both cascading and varying separation

factors into our procedure to obtain a seven-dimensional feature. In the first row, a comparatively high

separation factor is used to compute the H, P, and R components of the input signal; note that the H and P

components have a small width relative to the total HRP width. In the second row (β = 3), the RH, RR,

and RP components are computed using R from the first pass—a lower separation factor allows the RH

and RP components to have a greater relative width. In the third row (β = 1.5), obtained from RR, all

components are distributed equally. The last row illustrates how the components from all three stages
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Figure 5.1: Conceptual illustration of cascaded harmonic-residual-percussive source separation. In the first
row, a signal is separated into harmonic, residual, and percussive components (using β = 5 as a separation
factor). In the second and third rows, the residual component from the previous pass is separated into
the H, R, and P components, using decreasing separation factors. The last row shows how the cascade
components can be ordered on an HRP axis.

are aggregated into a single feature. In general, the prefix of a component’s name indicates how it was

derived.

5.2 Related Work

Harmonic-percussive separation yields component signals which are of interest under various circum-

stances; they may be used for DJing, remixing, or karaoke, or they can simplify further tasks such as pitch

tracking, key detection, or drum transcription. Using the separated percussive component can lead to a

quality improvement for beat tracking [65], rhythm analysis [101] and transcription of rhythm instruments.

The separated harmonic component might be more suitable for the transcription of pitched instruments

and chord detection [101, 135]. Furthermore, HPSS can be used as a remixing tool by changing the level

ratio between both signal components [102]. A comprehensive overview of existing methods for HPSS is

given in [131].

The first line of HPSS approaches relied on factorizing a time-frequency (TF) representation of the

music mixture into low-rank components and subsequently clustering them into harmonic and percussive

subsets. In an early work [136], the magnitude spectrogram of the music mixture is decomposed

via Independent Subspace Analysis. Spectral low-level features are computed from the components

that serve to discriminate them into either harmonic or percussive via a manually optimized decision

tree. In later works, factorization techniques such as Non-Negative Matrix (or Tensor) Factorization

(NMF/NTF) were used together with more elaborate classification schemes, such as Support Vector

Machines [64, 120, 55, 113]. It is worth noting that a HPSS procedure based on NMF that is intended to
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emphasize harmonic structures in some of the components was recently proposed in [106]. An alternative

approach based on phase-cues was proposed in [17]. The second line of research simplifies the HPSS task

by assuming that harmonic sounds usually exhibit a horizontal structure in the magnitude spectrogram

of the mixture (in time direction), while percussive sounds appear as vertical structures (in frequency

direction). Ono et al. [103] proposed a method that creates harmonically or percussively enhanced

spectrograms based on complementary diffusion. A similar method was introduced in [54] by Fitzgerald,

where the enhanced spectrograms were derived from the mixture by applying median filtering in either

time or frequency direction.

Cascaded or multi-stage HPSS has been used mainly to enhance spectrograms in tasks related to singing

voice detection and melody line estimation [84]. Tachibana et al. [132] compute a two-stage HPSS to

enhance melodies. In the first stage, they use a long analysis window (200 ms) to obtain harmonic and

percussive components; in the second stage, a shorter analysis window (30 ms) is applied to the percussive

component from the first stage.

5.3 Cascaded Harmonic-Residual-Percussive Features

This section is divided into three subsections. In the first subsection, we detail our general procedure to

conduct HRPSS, which follows the work of [48]. In the second subsection, we describe our cascaded appli-

cation of HRPSS. While other works have used the concept of cascading to better capture the properties of

a specific component (e. g., the singing voice, as in [84]), our approach retains all components—inducing

an HRP axis with greater resolution. In the third subsection we present our main contribution: using the

results of the cascading step to assemble a mid-level, energy-based CHRP feature representation.

5.3.1 General HRP Procedure

Given the original audio recording x, let X be its short-time Fourier transform (STFT) with coefficients

X(t,k), where t ∈ [0 : T −1] and k ∈ [0 : K], T is the number of frames, K = N/2 is the frequency index

corresponding to the Nyquist frequency, N is the window (frame) size, and hSTFT is the hop length.

As observed in [101, 48, 54], if we take Y = |X | to be the magnitude spectrogram of the signal, percussive

elements tend to be distributed along the bins of one STFT observation in Y , whereas harmonic elements

tend to distribute relatively stably within neighboring frequency bins of consecutive frames of Y . Thus,

the corresponding harmonic and percussive components can be obtained by applying a median filter to Y

in the horizontal and vertical directions, yielding the component magnitude spectrograms Ỹh and Ỹp with

enhanced percussive content [54]:
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Ỹh(t,k) := median(Y (t− `h,k), . . . ,Y (t + `h,k)),

Ỹp(t,k) := median(Y (t,k− `p), . . . ,Y (t,k+ `p)),

for `h, `p ∈ N where 2`h +1 and 2`p +1 are the lengths of the median filters, respectively.

Additionally, Driedger et al. [48] introduce the separation factor β ∈ R, β ≥ 1, which defines how “strict”

the harmonic-percussive separation is to be, or how prominently percussive or harmonic a sound must be

in order to be classified as such. Thus, binary masks Mh, Mp, and Mr are defined for each component:

Mβ

h (t,k) :=
(
Ỹh(t,k)/(Ỹp(t,k)+ ε)

)
> β

Mβ
p (t,k) :=

(
Ỹp(t,k)/(Ỹh(t,k)+ ε)

)
≥ β

Mβ
r (t,k) := 1−

(
Mh(t,k)+Mp(t,k)

)
,

where ε is a small constant to avoid division by zero, and the operators ≥ and > produce a binary result

from {0,1}. Applying these masks to the original spectrogram X yields the spectrograms for the harmonic,

percussive, and residual components

Xβ

h (t,k) := X(t,k) ·Mβ

h (t,k),

Xβ
p (t,k) := X(t,k) ·Mβ

p (t,k),

Xβ
r (t,k) := X(t,k) ·Mβ

r (t,k).

These can be transformed back into the time domain by means of the inverse short-time Fourier transform

(ISTFT), yielding the signals xβ

h , xβ
r , and xβ

p (see [69] for details).

We can summarize the HRP procedure through an operator Γβ such that Γβ [x] := (xβ

h ,x
β
r ,x

β
p). The

operator Γβ takes a signal x as input and delivers three component signals (xβ

h ,x
β
r ,x

β
p) that were obtained

by the HRPSS procedure, using β as a separation factor. Note that x = xβ

h + xβ
r + xβ

p (up to small signal

reconstruction errors).

5.3.2 Cascaded HRP Procedure

In order to apply HRPSS in a cascaded fashion (CHRPSS), we require a list of separation factors

(β1 > β2,> . . . > βB), where B≥ 1 is the number of cascading stages. The following equations describe

the stages in the procedure:
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(x(1)h ,x(1)r ,x(1)p ) := Γ
β1 [x]

(x(b)h ,x(b)r ,x(b)p ) := Γ
βb [x(b−1)

r ],

for b = 2, . . . ,B. In the first equation, HRP is applied to the original signal x using a separation factor β1.

The second equation describes the cascade at stage b, where HRP is applied to the residual component

from the previous stage (x(b−1)
r ) with a separation factor βb.

5.3.3 Energy-Based CHRP Features

Once all the required cascading stages are complete, the component signals are sorted on an axis that goes

from harmonic, through residual, to percussive:

x(1)h ,x(2)h , . . . ,x(B)h ,x(B)r ,x(B)p , . . . ,x(2)p ,x(1)p .

In general, CHRP will produce (2B+1) component signals—their sum is equal to x (up to a small error).

For the examples shown in this chapter we have chosen B = 3, which produces seven component signals H,

RH, RRH, RRR, RRP, RP, and P. Motivated by tasks such as musical event density and structure analysis,

we now introduce a mid-level feature representation. To this end, we compute the local energy for each of

the 2B+1 component signals using a window we and stack them into a feature matrix V = (v1, . . . ,vM)

such that vm ∈ R2B+1, for m ∈ [1 : M] (where M is the number of elements or observations along the

time axis). Furthermore, if we take ||V ||1, where || · ||1 denotes the `–1 norm, it follows that the columns

vn ∈ [0,1]2B+1. Depending on the task at hand and the nature of the input signal, different energy window

lengths may be chosen—we used a window length of 1.86 s for all the examples in this chapter.

5.3.4 Efficiency and Implementation Issues

For the sake of simplicity, our treatment of the HRP procedure (particularly, the Γβ operator) has assumed

both input and output as time-domain signals. However, if the desired output is the CHRP feature matrix,

energies can be computed in the time-frequency (TF) domain; it makes more sense (efficiency-wise) to

only transform the original signal x into the TF domain for the first pass, and remain there for all following

stages. In this case, the length of the energy window we becomes bound to the time resolution induced by

the hop length hSTFT.

Throughout the processing pipeline are many parameters that may be modified to achieve task-specific

results. To analyze finer-grained events (such as drum playing technique, Section 5.4.1), it is more
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Figure 5.2: CHRP feature for a signal made with five non-overlapping sound samples. Note the ramp-like
behavior beginning at the percussive component (castanets, bottom left) and ending at the harmonic
component (violin-legato, top right).

meaningful to pick smaller STFT frame sizes and hop lengths, shorter median filter lengths (especially

along the horizontal axis), and a more localized energy computation. For tasks at a larger timescale

(such as structure analysis), the opposite parameter choices would be more adequate. This assortment of

parameters induces a CHRP feature family that can be tailored to different scenarios. Finally, the CHRP

feature matrix itself may benefit from different types of normalization and logarithmic compression.

In the following, we give examples of analysis tasks that show the potential of our CHRP feature and

demonstrate the role that energies on the HRP axis play in different musical phenomena.

5.4 Applications

Two driving forces that shape the structure and tension in musical traditions throughout the world are

event density and timbral homogeneity. In this section we use CHRP to study harmonic and percussive

elements both in isolation and in relation to each other, at different timescales.

Before illustrating specific use cases for the CHRP feature, we wish to show the general capabilities of

our feature. Figure 5.2 contains the CHRP feature matrix for a signal consisting of five non-overlapping

sound samples: castanets, snare roll, applause, staccato strings and legato violin. The castanets have the

highest percussive energy and are well confined to the P component. The snare roll is predominantly

composed of RP and RRR. Indeed, snare drums have a percussive onset and a decay curve which is both

noisy and tonal (according to the drum’s tuning frequency). When struck in rapid succession, the noisy

decay tails overpower the percussive onsets. Applause is centered around RRR and well-confined to the

residual region. The staccato strings are predominantly harmonic, with an additional RH component

which corresponds to the noisy onsets that emerge in this playing technique. Violin legato is confined to

the H component, since the stable, harmonic signal properties dominate all other components.
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Figure 5.3: (a): Waveform of paradiddles on snare drum. Onset frequency increases between 0–40s
and decreases again from 40–75s. (b): Cascaded Harmonic-Residual-Percussive energy feature (CHRP).
Darker colors denote higher energy. Note that increasing onset frequency causes energy to migrate from
the percussive components into the residual components.

5.4.1 Percussive Event Density

Our first example shows the migration of energy from percussive to residual in a snare-playing technique

known as paradiddles. Figure 5.3a shows the waveform of paradiddles played on a snare drum; first

with increasing speed (0–40s), and then with decreasing speed (40–75s). Figure 5.3b contains the

corresponding CHRP feature matrix; notice how there is very little remaining P energy after a certain

onset frequency or playing speed has been reached (around 25s). This is due to the fact that the noise-like

tails reach a relative proximity that overpowers the individual percussive onsets, centering the energy

around the residual components in the feature matrix.

5.4.2 Musical Structure

Musical structure is manifested through different types of relationships among the sections of a song. One

such type of relationships is homogeneity: the fact that a certain musical property (e. g., instrumentation
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Figure 5.4: Structure annotation (top) and CHRP (bottom) for “Funky Drummer” by James Brown. Red
rectangles enclose percussive passages known as breaks. Darker colors denote higher energy. Note the
high P energy and low H energy in the parts annotated as drum breaks.

or tempo) is similar within the section. The focus of homogeneity analysis lies in the identification of

longer passages that are coherent with respect to some musical property [97].

For example, hip hop producers often seek purely percussive passages (also known as drum breaks or

breaks) within funk and soul recordings in order to sample them and create new musical material [118].

Figure 5.4 (top, red regions) shows a structural annotation of “Funky Drummer” by James Brown, focusing

on the location of the drum breaks. Figure 5.4 (bottom) contains the corresponding CHRP feature matrix,

where the drum breaks—a timbrally homogeneous musical structure—are visible at the beginning and

end of the piece: notice how the annotated parts correspond to low H energy and high P energy.

Butler [14] describes phenomena in electronic music that are relevant to structure in terms of timbre and

homogeneity. For instance, a typical resource to induce anticipation in the listener is to “withhold the

beat”, which occurs when the bass (kick) drum is temporarily removed from a track—having both textural

and metrical influence on the piece. Furthermore, in many types of electronic music, loops (short audio

fragments) are overlaid in different combinations to shape the track structure [90]. This results in locally

homogeneous regions which are sometimes connected through what Butler calls articulative sounds:

“brief and intermittent; they usually appear at or near structural boundaries”. Thus, an approaching

structural change is often announced by introducing noise filtered with an increasing cutoff frequency,

by increasing the envelope release time of cymbal sounds (e. g., hi-hats and rides), or by activating a

long-tailed reverb effect.

The CHRP feature can be used to visualize both kick drum removals and instances of noise as an

articulative sound—they appear as a shift of energy into the residual components. In Figure 5.5 we

show the CHRP feature matrix for the track “Liberum Spirita (Original Mix)” by Nicole Moudaber.

We annotated three prominent timepoints (blue triangles, top of figure): (1) indicates the removal of

the bass drum and the beginning of a section dominated by cymbal sounds and an increasing level of
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Figure 5.5: CHRP for “Liberum Spirita (Original Mix)” by Nicole Moudaber. The colormap has been
shifted to enhance visibility. The annotations (blue triangles) indicate points of timbral change, seen as
shifts in energy between harmonic and residual components.

noise-like components (notice the increase in all R components and the decrease in the H component);

(2) indicates the reintroduction of the bass drum. The CHRP feature captures this event—somewhat

counterintuitively—as an increase in H energy. This is explained by the fact that kick drum sounds contain

most of their energy after the initial percussive attack, and electronic music producers often overlay them

with low-pitched sinusoids to reinforce their effect. The region between (2) and (3) contains an articulative

sound in the form of a noise burst. Timepoint (3) also marks the removal of a long-tailed ride cymbal

sound, which can be seen as a drop in RRR energy. The decrease in RH energy at (3) is primarily due to

the removal of a synthesizer sound consisting of both tonal and noise-like components.

5.5 Conclusions and Future Work

We introduced cascaded harmonic-residual-percussive features which capture timbral properties on the

HRP axis. Through musical examples, we showed their capabilities to illustrate onset density and structural

changes. The CHRP feature is a helpful extension of other features (e. g., pitch chroma or MFCCs) for

two reasons. Firstly, because it is often difficult to classify an instrument’s sound as purely harmonic or

percussive. For instance, a synthesizer might be configured to play a melody with a mixture of sinusoids

and white noise—while a human listener would be capable of recognizing the sound’s tonal properties, it

is very unlikely that a pitch-related feature (such as chroma) could accurately capture them. Our proposed

feature is impervious to this fact and allows analysis on the HRP scale. Secondly, the CHRP representation

is easy to interpret visually and can therefore assist timbre-related musical analysis. The main drawbacks

of our current approach are the manual selection of feature dimensionality (or cascading steps) and the

choice of separation factors at each stage. In future work, we plan to investigate the feasibility of finding

optimal separation factors adaptively, and consider the CHRP feature alongside other features to test its

potential in tasks like breakbeat detection and homogeneity-based structure analysis.
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Chapter 6

Finding Drum Breaks in Digital Music
Recordings

My main contribution in this chapter—based on the work in [92]—was

identifying the task, preparing the dataset, and conducting the experiments.

Christian Dittmar made major contributions to the dataset, provided critical

insight about random forests (including evaluation issues), and supplied the

original implementation (tailored for singing voice detection, SVD). Together

with Meinard Müller, we formulated this task as a binary classification and

identified the opportunity of testing whether the system for SVD could be

ported to the task of drum break detection.

DJs and producers of SBEM use breakbeats as an essential building block and rhythmic foundation for

their artistic work. The practice of reusing and resequencing sampled drum breaks critically influenced

modern musical genres such as hip hop, drum’n’bass, and jungle. While SBEM artists have primarily

sourced drum breaks from funk, soul, and jazz recordings from the 1960s to 1980s, they can potentially

be sampled from music of any genre. In this chapter, we introduce and formalize the task of automatically

finding suitable drum breaks in music recordings. By adapting an approach previously used for singing

voice detection, we establish a first baseline for drum break detection. Besides a quantitative evaluation,

we discuss benefits and limitations of our procedure by considering a number of challenging examples.

The main contributions of this chapter are as follows. In Section 6.2 we introduce the task of drum break

detection and some of the difficulties that arise when trying to define it as a binary classification problem

concerned with finding percussion-only passages. In Section 6.3 we present related work, the features we

used, and a baseline approach adapted from a machine learning method for singing voice detection. By

doing so, we explore how well machine learning techniques can be transferred to a completely different
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Figure 6.1: Top: Schematic il-
lustration of a drum break on a
vinyl record. Bottom: Location
of drum break (enclosed in red)
within waveform.

domain. In Section 6.4 we introduce our dataset and elaborate on its most important statistical properties,

as well as our annotation process. The dataset represents the real-world music typically sampled in

this SBEM scenario. Together with a statistical overview of the results, we also go into greater detail,

analyzing two difficult examples we found in our dataset. In Section 6.5 we give conclusions and future

work for this chapter.

6.1 Drum Breaks

Musical structure arises through the relationships between segments in a song. For instance, a segment can

be characterized as homogeneous with respect to instrumentation or tempo [97, p. 171]. Structure is also

driven by introducing or removing certain instruments, as is the case of solo sections. Music information

retrieval (MIR) research has studied these phenomena through tasks such as structure analysis [107] and

singing voice detection [85, 41]. In this chapter we focus on finding drum break sections, which are

homogeneous with respect to instrumentation (i. e., they only contain drums) and often contrast with

neighboring segments, where additional instruments are active.

Based mainly on [118], we present the notion of drum break, together with its history and usage. Drum

breaks, breaks, or breakbeats are percussion-only passages typically found in funk, soul, and jazz record-

ings. Breaks first came into use within early hip hop DJ practice: by taking two copies of the same

record (on separate turntables) along with a mixer, DJs could isolate and loop these sections, which were

particularly popular with with the dancers and audience. When digital sampling technology became

affordable for use at home and small studios, producers started using breaks to create their own tracks

by adding further musical material and rearranging the individual drum hits into new rhythms. These

musical practices are a cornerstone of genres like hip hop, jungle, and drum’n’bass; they helped develop

a considerable body of knowledge about the nature and location of breakbeats, fostering a culture that

valued finding rare and unheard breaks.

At this point, we need to make a distinction regarding the term break. The sections that producers choose

for looping and sampling are not always exclusively made up of percussion instruments: many famous

breaks also contain non-percussion instruments, such as bass or strings. Under a broader definition, a
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break can be any musical segment (typically four measures or less), even if it doesn’t contain percussion

[118]. In this chapter we use break to designate regions containing only percussion instruments, for

two reasons. First, percussion-only breaks afford producers the greatest flexibility when incorporating

their own tonal and harmonic content, thus avoiding dissonant compositions (also known as “key clash”).

Second, it allows us to unambiguously define our task: given a funk, soul, or jazz recording, we wish

to identify passages which only contain percussion, i.e., detect the drum breaks. In the top portion of

Figure 6.1 we show, in a simplified manner, the location of a drum break on a vinyl record. On the bottom

we illustrate our task in this chapter, which is finding percussion-only regions in digital music recordings.

Originally, vinyl records were the prime source for sampling material. When looking for rare breaks,

artists visit record stores, basements and flea markets (known as “[crate] digging”). Once they acquire

a record, artists carefully listen to the entire content, sometimes skipping at random with the needle

on the turntable, until they find an appealing section to work with. Motivated by the current predomi-

nance and size of digital music collections, we propose a method to automate digging in the digital context.

6.2 Task Specification

In Section 4.1 we set our task as finding percussion-only passages in a given musical piece—a seemingly

straightforward problem definition. Detecting breaks can thus be reduced to discriminating between per-

cussion instruments—which contribute exclusively to rhythm—and all other instruments which contribute

(mainly) to melody and harmony. We will now examine why this distinction is problematic from the

perspective of prevalent music processing tasks. Harmonic-percussive source separation (HPSS) is a

technique that aims to decompose a signal into its constituent components, according to their spectral

properties [54, 97]. HPSS methods usually assign sustained, pitched sounds to the harmonic component,

and transient, unpitched sounds to the percussive component. From an HPSS standpoint, our class of

desired instruments has both harmonic and percussive signal components: many drum kit pieces such

as kicks, snares, and toms have a discernible pitch, although they are not considered to contribute to the

melody or harmony. Thus, drum break retrieval is difficult because of overlapping acoustic properties

between our desired and undesired instruments—in other words, it is very hard to give an intensional

definition of our target set’s characteristics.

Our task lies between the practical definition of drum break and a technical definition used for automated

retrieval—with a significant gap in between. On the technical side, we have opted for the term percussion-

only passage instead of drum break due to the presence of percussion instruments which are not part of a

standard drum kit, such as congas, bongos, timbales, and shakers. As a final note, we also distinguish

between [drum] breaks and breakbeats: we interpret the former as a percussion-only segment within a

recording (in its “natural” or “original” state), and the latter as a [drum] break which has been spotted and

potentially manipulated by the artist.
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6.3 Baseline System and Experiments

6.3.1 Related Work

There are relatively few publications in the MIR field on drum breaks and breakbeats. In [137] and [5],

the authors investigate automatic sample identification for hip hop via fingerprinting. A multifaceted

study of breakbeats which covers beat tracking, tempo induction, downbeat detection, and percussion

identification can be found in [72]. Furthermore, given a certain breakbeat, the authors of [73] automati-

cally retrieve hardcore, jungle, and drum’n’bass (HJDB) tracks where it is present. On the musicological

side, [112] proposes a typology of sampled material in EDM, where breakbeats are considered at fine

and coarse temporal scales. Putting our work in context, we can think of the typical artistic workflow in

two steps: drum break discovery and manipulation. To the extent of our knowledge, research has mainly

focused on the second phase—after breakbeats have been extracted and manipulated. Following this

analogy, our task would be at the first stage, where the artist wishes to filter useful musical material. In

a fully automated pipeline, our proposed system could be inserted before any of the tasks mentioned above.

6.3.2 Baseline System

Our baseline system follows [85], an approach for singing voice detection (SVD). SVD is used to

determine the regions of a music recording where vocal activity is present. In [85], the authors address

the problem that automated techniques frequently confuse singing voice with other pitch-continuous and

pitch-varying instruments. They introduce new audio features—fluctogram, spectral flatness/contraction,

and vocal variance (VOCVAR)—which are combined with mel-frequency cepstral coefficients (MFCCs)

and subjected to machine learning. VOCVAR is strongly related to MFCCs—it captures the variance in

the first five MFCCs across a number of consecutive frames. Spectral contraction and spectral flatness

(FLAT) are extracted in logarithmically spaced, overlapping frequency bands. The spectral contrast

features OBSC [77] and SBSC [3] encode the relation of peaks to valleys of the spectral magnitude in

sub-bands. In general, both variants can be interpreted as harmonicity or tonality descriptors.

In this chapter we use a subset of the features from [85], along with a set of novel features derived from

harmonic-residual-percussive source separation (HRPSS). HRPSS is a technique used to decompose

signals into tonal, noise-like, and transient components [48]. The cascaded harmonic-residual-percussive

(CHRP) feature was recently proposed in [93]; by iteratively applying HRPSS to a signal and measuring

the component energies, this feature captures timbral properties along the HRP axis. We have included a

seven-dimensional variant of CHRP for our experiments. Concatenating all features results in a vector

with 83 entries (dimensions) per spectral frame. The set of all vectors makes up our feature matrix, which

is split into training, validation, and test sets for use with machine learning.

Again following [85], we employ random forests (RF) [9] as a classification scheme. RF deliver a
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Figure 6.2: (a): Original, unprocessed decision function (the output of the random forest classifier,
interpreted as the confidence that a frame belongs to the percussion-only class, solid blue curve); optimal
threshold value (0.78, dotted black line). (b): Binary classification for original decision function (blue
rectangles). (c): Ground truth annotation (black rectangles). (d): Decision function after median filtering
with a filter length of 2.2 s (solid red curve); optimal threshold (0.67, dotted black line). (e): Binary
classification for median-filtered decision function (red rectangles).

frame-wise score value per class that can be interpreted as a confidence measure for the classifier decision.

In our binary classification scenario, the two score functions are inversely proportional. We pick the one

corresponding to our target percussion-only class and refer to it as decision function in the following.

A decision function value close to 1 indicates a very reliable assignment to the percussion-only class,

whereas a value close to 0 points to the opposite. Only frames where the decision function value exceeds

the threshold will be classified as belonging to the percussion-only class. Prior to binarization, the

decision function can be smoothed using a median filter, helping stabilize the detection and preventing

unreasonably short spikes where the classification flips between both classes. Figure 6.2 illustrates the

concepts mentioned above. Figure 6.2a (blue curve) shows the original, unprocessed decision function

for “Funky Drummer” by James Brown. The ground truth (black rectangles, 6.2c) has three annotated

breaks: shortly after 60 s, shortly before 240 s, and after 240 s (black rectangles). In 6.2d (red curve) we

show the median-filtered decision, using a filter length of 2.2 s. In both 6.2a and 6.2d, the dotted black

line represents the decision threshold (0.78 and 0.67, respectively). In 6.2b (solid blue rectangles) and

6.2e (solid red rectangles) we show the classification results for the original and median-filtered decision

functions. In the remainder of this chapter, all plots related to the original decision function are blue; the

ones corresponding to median filtering are red.
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Table 6.1: Statistical overview
for audio and annotation data.

Measure Track Length (s) Break Length (s) Breaks (per track)

min 77.00 0.84 1.00
max 1116.00 224.84 9.00
mean 277.11 10.23 1.55
median 251.80 6.83 1.00
std. dev. 128.49 17.43 1.18

Dataset total 77600.00 4500.00 433.00

6.4 Evaluation

6.4.1 Dataset

Our dataset consists of 280 full recordings, covering funk, soul, jazz, rock, and other genres. All audio

files are mono and have a sampling rate of 22050 Hz. Each track has a corresponding annotation with

timepoints that enclose the breaks.1 Two main principles guided our annotation style. First, we included

regions containing strictly percussion, disregarding metrical structure. For example, if a break contained

trailing non-percussive content from the previous musical measure (bar), we set the starting point after

the undesirable component had reasonably decayed. Our second principle regards minimum duration:

although we mostly annotated breaks spanning one or more measures, we also included shorter instances.

The criterion for considering shorter fragments has to do with sampleability—if a percussive section

contains distinct drum hits (for instance, only kick or snare), it is included. On the other hand, a short

fill (such as a snare roll or flam) would not be annotated. Table 6.1 has an overview of the statistics for

our audio and annotation data. The shortest break, an individual cymbal sound, lasts 0.84 s. The longest

break, corresponding to an entire track, has a length of 224.84 s. The median track length is 251.80 s, and

the median break length is 6.83 s. The relative rarity of drum breaks as a musical event is noteworthy:

5.81% of the entire dataset is labeled as such.

During the annotation process, we made interesting observations on how humans treat the breakbeat

retrieval problem. We used Sonic Visualiser [16] to annotate the start and end of percussion-only passages.

At the dawn of SBEM, when vinyl was the only medium in use, artists devotedly looking for unheard

breakbeats would listen to a record by skipping with the needle through the grooves.2 With the help of

Sonic Visualiser, we found it very effective to scrub through the audio, moving the playhead forward at

short, random intervals, also using visual cues from the waveform and spectrogram.

For our particular task, this fragmented, non-sequential method of seeking breaks seemed to be sufficient

for listeners with enough expertise. This leads us to believe that a frame-wise classification approach

provides a satisfactory baseline model for this task. Of course, in order to refine the start and end of the

1A complete list of track titles, artists, and YouTubeTM identifiers is available at the accompanying website, along with
annotations in plaintext. https://www.audiolabs-erlangen.de/resources/MIR/2017-CMMR-Breaks

2In [11, p. 247], the authors relate that “[Grand Wizard] Theodore could do something amazing: he could find the beginning
of a break by eye and drop the needle right on it, with no need to spin the record back.”
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percussion-only passages, we had to listen more carefully and visually inspect the waveform. As we will

show, precise localization also poses a major challenge for automatic break retrieval.

6.4.2 Results

We now discuss the evaluation results for our experiments conducted on the entire dataset. We use the

framewise F-measure as an evaluation strategy. Frames with a positive classification that coincide with an

annotated break are counted as true positives (TP), frames with a negative classification that coincide with

an annotated break are false negatives (FN), and frames with a positive classification that do not coincide

with an annotated break are considered false positives (FP). The three quantities are represented in the

F-measure by

F =
2 ·TP

2 ·TP+FP+FN
. (6.1)

In order to reduce the album effect, we discarded tracks from our dataset, arriving at a subset with one

track per unique artist (from 280 to 220 tracks). We performed a ten-fold cross validation: for each fold,

we randomly chose 70% of the tracks for training (155 tracks), 15% (33 tracks) for validation, and 15%

(34 tracks) for testing. Since the classes percussion-only and not only percussion are strongly unbalanced

(see statistic in Section 6.4.1), training was done with balanced data. That means that for each track,

all percussion-only frames are taken as positive examples, and an equal number of not only percussion

frames are taken as negative examples. Validation and testing are done with unbalanced data [20]. During

validation, we perform a parameter sweep for the decision threshold and median filter length.

Figure 6.3 gives an overview of experiments with threshold and median filter length. Figure 6.3a is a

parameter sweep matrix across all folds, where each row corresponds to a certain threshold value, and

each column is a median filter length. Each entry in the matrix is the mean F-measure across all ten

folds, for the testing phase. Darker entries represent a higher F-measure—the colormap was shifted to

enhance visibility. The red circle denotes the optimal configuration: a threshold of 0.67 and a median

filter length of 4.6 s yield an F-measure of 0.79. The blue triangle at threshold value 0.78 indicates the

highest F-measure (0.68) without median filtering. Figures 6.3c and 6.3d contain curves extracted from

this matrix. In Figure 6.3c, the curve corresponds to the highlighted row in the matrix (i. e., for a fixed

threshold and varying median filter length). Figure 6.3d is the converse: we show the highlighted column

of the matrix, with a fixed median filter length and varying threshold. In both 6.3c and 6.3d, the light

red area surrounding the main curve is the standard deviation across folds. Figure 6.3b compares the

F-measures between the original (unprocessed) binarized decision curve (blue) and after median filtering

(red)—with respect to increasing thresholds (horizontal axis).

In Figure 6.3a we can see that the choice of threshold has a greater effect on F-measure than the

median filter length: the differences between rows are more pronounced than between columns. Indeed,

Figure 6.3b shows that original and median filtered have a similar dependency on the threshold. The

solid red curve in Figure 6.3c starts at an F-measure of 0.67 (without median filtering), reaches a peak
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thresholds.
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Figure 6.3: (a): Parameter sweep for median filter length (horizontal axis) and threshold (vertical axis).
Darker entries of the matrix have a higher mean F-measure. The colormap has been shifted to enhance
visibility, markers denote optimal configurations. (b): F-measure for unprocessed (blue) and median
filtered (red) decisions, depending on threshold (horizontal axis). (c): Highlighted row of parameter sweep
matrix. (d): Highlighted column of parameter sweep matrix.

at F-measure 0.79 (median filter length 4.6 s) and then drops to 0.76 for the longest tested median filter

window (9.8 s). The standard deviation is stable across all median filter lengths, amounting to about 0.06.

In Figure 6.3d, the mean F-measure goes from below 0.2 (at threshold 0), through the optimal value (0.79

at threshold 0.67), and decays rapidly for the remaining higher threshold values. The standard deviation

widens in proximity to the optimal F-measure. It is interesting that the optimal median filter length (4.6 s)

is about half the mean annotated break length (10.23 s). This median filter length seems to offer the best
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Table 6.2: Evaluation results with optimal
parameters. Rows are statistical measures,
columns are experimental configurations.

Measure Original MedFilt Random Biased

mean 0.6816 0.7923 0.0963 0.1170
median 0.6636 0.7997 0.0951 0.1133
std. dev. 0.0620 0.0636 0.0180 0.0259

trade-off between closing gaps in the detection (as seen in the last break of Figure 6.2e), removing isolated

false positives (seen throughout Figure 6.2e), and reducing true positives (seen in the two first short breaks

in Figure 6.2e).

Table 6.2 summarizes statistics over multiple experimental configurations. Each column contains the

mean, median and standard deviation (SD) for the F-measure across ten folds. The mean F-measure for the

original (unprocessed) decision function is 0.68, and it corresponds to a threshold value of 0.78. Median

filtering with a length of 4.6 s, together with a threshold of 0.67, yields an optimal mean F-Measure of

0.79. Generating a random decision function leads to a mean F-Measure of 0.09; labeling all frames as

purely percussive (seen in the biased column) delivers 0.11.

The first important result from Table 6.2 is that variants of our approach (original and median-filtered)

yield F-measures between six and seven times higher than randomly generating decision functions, or

simply labeling all frames as percussion-only (biased). Second, we can see that median filtering increases

the F-measure by about 0.11 (from 0.68 to 0.79). As seen in Figure 6.2b and 6.2e, median filtering

removes most false positives (boosting precision), but can also diminish (or completely remove) true

positives, as is the case with the short break after 240 s. Finally, we can also be confident of the usefulness

of median filtering because it increases the mean F-measure without affecting the standard deviation (0.06

in both cases).

6.4.3 Some Notorious Examples

Beyond the large-scale results from Section 6.4, we now show some examples that posed specific

challenges to our classification scheme. The first case is “Ride, Sally, Ride” by Dennis Coffey (Figure 6.4),

recorded in 1972. From top to bottom, Figure 6.4 shows the decision function output by the RF (solid

blue curve), the threshold value optimized during validation and testing (black dotted line), the frames

estimated as percussion-only (blue rectangles), and the ground truth annotation (black rectangle). Focusing

on the annotated segment (shortly after 60 s), we can see that the decision curve oscillates about the

threshold, producing an inconsistent labeling. We attribute this behavior to eighth-note conga hits being

played during the first beat of each bar in the break. These percussion sounds are pitched and appear

relatively seldom in the dataset, leading to low decision scores. Our second example, seen in Figure 6.5, is

“Dusty Groove” by The New Mastersounds. On this modern release from 2009, the production strives to

replicate the “vintage” sound found on older recordings. Around the annotated region (240 s) we highlight

two issues: during the break, there are few frames classified as percussion-only, and the decision curve

maintains a relatively high mean value well after the break. Again, we ascribe the misdetection during the
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Figure 6.4: Results for “Ride, Sally, Ride” by Dennis Coffey. From top to bottom: unprocessed decision
function (solid blue curve) and threshold (dotted black line), classification (blue rectangles), GT annotation
(black rectangle). Note the high decision function values immediately following the annotated break.
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Figure 4. Dennis Coffey. This one may be tough because of pitched congas and bongos,
which are relatively rare in the dataset
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Figure 5. Dusty Groove. Break not recognized at all. Decision function after break
has practically the same value. Bass guitar presence after the break not correctly dis-
criminated.

induces a strong genre-related bias, but it reflects the real-world bias (or practice)
that EDM artists have when selecting sampling material. As for applications, DJs
and producers could use our system to retrieve drum breaks from large digital
collections, considerably reducing the time needed for digging. Our procedure can
also be used as a pre-processing step for drum sample/breakbeat identification
tasks, as outlined in [4] and [14]. Finally, MIR researchers could use this system
to compile datasets for other tasks such as beat tracking and drum transcription.
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Figure 6.5: “Dusty Groove” by The New Mastersounds. Note the number of false negatives during the
annotated break and the high values in the decision function after the break.

break to the presence of drum hits with strong tonal content. Especially the snare has a distinct sound that

is overtone-rich and has a longer decay than usual, almost reminiscent of timbales. After the annotated

break the percussion continue, but a bass guitar playing mostly sixteenth and syncopated, staccato eighth

notes appears—upon closer inspection, we observed that the onsets of the bass guitar synchronize quite

well with those of the bass drum. When played simultaneously, the spectral content of both the bass

drum and bass guitar overlaps considerably, creating a hybrid sound closer to percussion than a pitched

instrument.

6.5 Conclusions and Future Work

We presented a system to find percussion-only passages (drum breaks) in digital music recordings. To

establish a baseline for this binary classification task, we built our system around the work of [41] and

[85]. With this chapter we investigated to which extent binary classification methods are transferable

across tasks.

Having established this baseline, in future work we wish to improve detection for difficult examples
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(as described in Section 6.4.3), and include genres beyond the ones studied here. When implementing

machine learning techniques, it is important to address the issue of overfitting. We are aware that our

dataset induces a strong genre-related bias, but it reflects the real-world bias (or practice) that SBEM

artists follow when selecting sampling material. Going beyond results with the F-measure, an interesting

alternative to evaluate our approach would be to conduct user experience tests, measuring the potential

speedup in drum break location. As for applications, DJs and producers could use our system to retrieve

drum breaks from large digital collections, considerably reducing the time needed for digging. Our

procedure can also be used as a pre-processing step for breakbeat identification tasks, as outlined in [5]

and [73]; or for structure analysis of loop-based EDM [90]. Finally, MIR researchers could use this system

to compile datasets for other tasks such as beat tracking and drum transcription.
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Chapter 7

Estimating Sixteenth Note Swing Ratio in
Drum Break Recordings

This chapter is the result of a collaboration with Christian Dittmar, Andrew V.

Frane, and Meinard Müller. For this chapter I identified—together with Christian

Dittmar—the potential for reproducing the manual findings of Frane [56] with

the automatic swing ratio estimation authored mainly by Christian Dittmar.

My main contributions are as follows. First, I transformed Frane’s dataset

from proprietary formats to standard formats for MIR. Second, together

with Christian Dittmar, I prepared the experimental setup and incorporated

drum source separation into the swing ratio estimation task. Andrew V.

Frane provided input for the whole text, but especially regarding the correct

formulation of musical concepts and the analysis and interpretation of results.

Swing is a microrhythmic trait that can be heard in performances of many types of music. The key element

of swing is an unequal subdividing of the pulse at a particular metrical level, so that odd-numbered

divisions are slightly longer than their adjacent, even-numbered counterparts. For instance, in jazz, swing

is typically applied at the eighth-note level, so that the first eighth-note subdivision of each quarter-note

beat is longer than the second eighth-note subdivision of that beat. In some other music genres, such

as funk, soul, and rock, swing is more commonly applied at the sixteenth-note level. These genres are

often the source of drum breaks, i.e., percussion-only passages that are frequently sampled from older

recordings and repurposed within new compositions. In this chapter, we semi-automatically estimate

the amount of sixteenth-note swing in drum breaks, using the concept of swing ratio (the ratio of odd to

even subdivision duration). Our starting point is a recent study by Andrew Frane, who computed swing
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ratios in 30 drum breaks based on manual annotations. We contribute to this line of research in several

ways. First, we formalize Frane’s method of swing ratio computation as an algorithm. Second, we adapt

an automatic swing ratio estimation method (which had been developed for eighth-note swing) for use

at the sixteenth-note level. Third, we use state-of-the-art drum source separation to examine the role of

individual drum kit components in swing ratio estimation. Finally, we go beyond the initial dataset used

by Frane and analyze swing ratios on a larger corpus of over 500 drum breaks.

We now summarize our contributions and describe how this chapter is organized. In Section 7.2 we

review and formalize the methodology from [56] for computing sixteenth-note swing ratios based on onset

annotations. In Section 7.3 we extend and adapt an automatic swing ratio estimation procedure based

on pattern matching of the log-lag autocorrelation function (LLACF) by [46] and [45]. We investigate

enhancing the required signal representations with an eighth-note grid, as well as estimating swing ratios

of individual drum kit components obtained with drum source separation methods. We also give critical

insight as to why LLACF-based methods deliver erroneous swing ratio estimates for drum breaks under

certain circumstances. In Section 7.4 we show how we validated a dataset from [56] and reproduced

previous manual results with the automated methods discussed in Section 7.3. As a further contribution,

we go beyond the initial 29-item annotated dataset from Section 7.2 and perform an explorative statistical

analysis on a corpus of more than 500 unannotated drum breaks. We conclude the chapter with some

criticism about quantifying swing as a ratio and discuss potential future work.

7.1 Context and Related Tasks

This chapter involves the intersection of three research topics: swing, drum breaks, and drum source

separation. Swing is a type of systematic microtiming (defined in Section 7.1.1) that is present in many

styles of music, but has gone relatively unnoticed outside of jazz research. It can be quantified by the swing

ratio (also defined in Section 7.1.1). Drum breaks are percussion-only passages (often found in funk, soul,

rock, and jazz-funk recordings from the 1960s to 1980s) that are highly relevant to contemporary music,

but have received little attention from the fields of musicology, music cognition/perception, and music

information retrieval (MIR). Drum source separation is used to isolate individual drum kit components

(e.g., kick drum, snare, and hi-hat) from a recording of those elements in combination. In this chapter, we

build on the work of [56] by formalizing his method of swing ratio computation and by using automated

audio processing methods to reproduce his findings regarding swing ratios in drum breaks. Moreover,

we adapt the drum source separation method of [44] to examine the swing ratios of individual drum kit

components.
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Figure 7.1: Musical time-grids illustrat-
ing swing. On both axes, odd-numbered
onsets are shown as dotted vertical lines;
even-numbered onsets are solid lines. The
bottom time-grid is for a straight (swing-
less) rhythm, i.e., the odd-numbered inter-
val length δo is equal to the even-numbered
interval length δe. The top time-grid is for
a rhythm with swing, i.e., δo > δe (because
each even-numbered division’s onset is de-
layed).

Swung
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δo δe
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Figure 7.2: Schematic overview of the rhythmic phenomenon of swing for a drum break. (a): Drum
score notation with kick drum (red, bottom of staff), snare drum (green, mid-staff), hi-hat (blue, top of
staff). (b): Straight sixteenth-note time-grid. (c): Waveform for excerpt of “Theme From the Planets” by
Dexter Wansel, modified to emphasize the swing. (d): Time grid with swung onsets corresponding to the
waveform.

7.1.1 Swing and the Swing Ratio

Musicians apply swing to a rhythm by slightly delaying (“swinging”) the onsets of notes that occur at

even-numbered beat-divisions (at a particular metrical level, typically the eighth-note or sixteenth-note

level). This effectively lengthens the odd-numbered divisions and shortens the even-numbered divisions,

as illustrated in Figure 7.1. The magnitude of swing can be quantified by the swing ratio (SR): s := δo/δe,

where s is the swing ratio, δo is an odd-numbered division’s duration (i.e., the time interval from the

odd-numbered division’s onset to the ensuing division’s onset), and δe is an even-numbered division’s

duration. Thus, s = 1 indicates a straight (swing-less) rhythm, and greater values of s (at a given tempo)

indicate greater delays of the even-numbered division onset, i.e., greater discrepancy between δo and δe.

For illustrative purposes, we have generated a semi-synthetic running example—a version of Dexter

Wansel’s “Theme From the Planets” which we manually modified to have a swing ratio of 2 throughout

the entire drum break (the original swing ratio being 1). This provides a controlled example drum break
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to optimally illustrate the concepts and procedures that we discuss in the chapter. Figure 7.2a shows the

drum score notation for the break. In Figure 7.2b we have placed a straight grid, which lines up with

the notation in 7.2a. Figure 7.2c shows the waveform for our modified signal. Figure 7.2d is a grid with

onsets swung at a ratio of 2, aligned with the waveform. Figure 7.2 can be conceptually divided into

two realms: the realm of musical notation, where the exact swing ratio is not expressed or encoded (7.2a

and 7.2b), and the realm of musical performance, where swing is applied by musicians (7.2c and 7.2d).

Swing ratio has been studied prominently in jazz research [see 109, 143]. For example, Friberg and

Sundström [58] manually annotated ride cymbal onsets in spectrogram plots of jazz recordings to quantify

eighth-note swing ratios. Dittmar et al. [46, 45] later developed automated methods that largely confirmed

previous findings. Beyond the relatively well-studied characteristics of microtiming in jazz music in

general and swing ratio estimation in particular, there is a growing interest in investigating microtiming in

other styles of music, such as funk and soul. For instance, Räsänen et al. [111] conducted a case study of

Michael McDonald’s “I Keep Forgettin’”, an emblematic soul recording featuring drummer Jeff Porcaro.

The researchers presented an in-depth audio analysis of Porcaro’s one-handed hi-hat playing technique,

revealing characteristic patterns of accents and sixteenth-note inter-onset intervals (IOIs). In their study

of the effects of microtiming on subjective evaluations of rhythms, Davies et al. [35] included rhythmic

stimuli that were based on the microtiming from Clyde Stubblefield’s drumming in Jame’s Brown’s

“Funky Drummer”. In [95], Marchand and Peeters propose an autocorrelation-based SRE method, along

with a large dataset of swing ratio annotations at the eighth-note level. Senn et al. [122] used recordings of

bass-and-drums duos, some of which were in a funk style, to study the effects of microtiming on listeners’

emotional response and perception of “groove”. Frane and Shams [57] studied the threshold of swing

detection among drummers and non-drummers, using genre-nonspecific electronic drum loops.

7.1.2 Drum Breaks

The term break has a rich history and a somewhat flexible definition, recounted here based on the work

of [118]. In the end of the 1970s, at the dawn of hip-hop, party DJs noticed that the audience reacted

most enthusiastically to breaks—sections of a record with isolated (or nearly isolated) percussion. In

fact, a great break could come from an otherwise uninteresting song. By using two copies of the same

record on two separate turntables connected to a mixer, DJs could alternate back and forth between

copies, effectively looping the break and extending it at will. The next major advance in the use of

breaks came with the arrival of affordable digital sampling technology in the late 1980s. Producers started

sampling interesting parts of their favorite records in order to rearrange and layer them with other musical

material. These musical practices of looping and sampling are pillars of music styles such as hip-hop

and drum’n’bass. Throughout the years, these genres have gained popularity and mainstream attention.

Furthermore, the practice of sampling breaks has transcended these seminal styles, with pop artists such

as Justin Bieber, Hanson, and Alanis Morissette also incorporating sampled breaks into their songs.
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Although the term break, like the similar term breakbeat, is often considered as referring specifically

to percussion-only passages, Schloss [118, p. 36] noted that “today, the term ‘break’ refers to any

segment of music (usually four measures or less) that could be sampled and repeated.” If one accepts that

looser definition, then the term drum break—which unambiguously implies isolated (or nearly isolated)

percussion—may be considered as a special class of break that holds a uniquely celebrated status among

breaks at large. Not only are drum breaks especially revered by DJs and sampling enthusiasts, drum

breaks are also in some ways ideal materials for studying swing and other microrhythmic properties.

Indeed, drum breaks are unhampered by harmonic and melodic information, and their extensive historical

use ensures their ecological validity as source material. Therefore, it is perhaps somewhat surprising that

drum breaks have so rarely been the topic of scientific study. An exception is the work by [92], which

approached the task of automatically finding drum breaks in digital music recordings. They treated the

task as a framewise classification problem, reduced to deciding whether a given short-time frame belonged

to the class “percussion-only” or to the class “not only percussion”. Another exception is the study by

[56], discussed in Section 7.1.3.

Some publications that touch upon drum breaks and breakbeats in a wider sense are briefly listed in

the following. A multifaceted study of breakbeats covering diverse production aspects and MIR tasks

can be found in [72]. In [73], the authors developed a method to retrieve HJDB (hardcore, jungle, and

drum’n’bass) tracks that incorporate a certain break supplied as a query. Concerning musicology and

sampling practices, [112] proposes a typology of sampled material in electronic dance music, where

breakbeats are discussed in various roles and capacities. Educational books such as [2] indicate that there

is also a growing interest among musicians to practice and play authentic drum breaks.

7.1.3 Study by Frane

Frane [56] investigated microrhythmic properties of classic drum breaks. In this context, “classic” means

that these particular breaks have been used in large number of derivative recordings and are even known

by name among aficionados of these styles. At the core of Frane’s study is a dataset of 30 drum breaks

with meticulously annotated drum onsets. Using this annotated dataset, Frane computed local swing ratios

(LSRs) according to a particular methodology which we have formalized as an algorithm in Section 7.2.2.

He also described properties such as swing density and dual swing ratio. Swing density refers to the

proportion of even-numbered division onsets (at the swing level) that are marked by note onsets. Dual

swing ratio refers to the two competing swing ratios that arise when two different drum kit components

are struck at slightly different times, but at the same nominal beat-division, thereby creating ambiguity

regarding the precise onset of that division. Frane’s study differed from previous studies on swing ratio for

two main reasons. First, Frane studied sixteenth-note swing and considered multiple drum kit components,

whereas previous studies of drummers’ microtiming, e.g., [58] and [46], mainly studied eighth-note swing

and focused on the ride cymbal. Secondly, Frane’s dataset was comprised of drum breaks from “hip-hop’s
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breakbeat canon” (i.e., drum breaks that have become especially iconic due to their widespread use in

hip-hop), whereas most previous studies focused on jazz.

7.2 Annotated Dataset

We were able to source 29 of the 30 drum breaks used by [56]. The dataset consists of audio files, as well

as two types of annotations. The audio files are drum breaks from hip-hop’s breakbeat canon. They are

one to four musical measures (bars) in length, in 4/4 time, with tempi ranging from 78 to 138 beats per

minute (BPM). Each excerpt starts at the onset of a quarter-note beat (usually beat 1 of the 1st measure),

and ends at the same beat onset an exact integer number of measures later. Thus, from a music production

perspective, each excerpt could be looped without further modification. The first type of annotation gives

drum onset timepoints, as is common in MIR tasks. The second type gives LSRs, which were computed

based on the onset annotations, using a procedure that we formalize in Section 7.2.2.

7.2.1 Annotation Procedure

Frane manually annotated 30 drum breaks. For each drum break, wherever a note (i.e., an annotated onset)

occurred at what was judged to be an even-numbered division’s onset, Frane computed an LSR at the

sixteenth-note level. He then computed the global swing ratio of each drum break as the arithmetic mean

of its LSRs.

In the jazz literature, swing ratio has conventionally been computed by comparing the given δe to the

preceding δo. However, one could also compare the given δe to the ensuing δo. In fact, [15] argued that

using the ensuing δo may often be more functionally relevant, in part because the swung note and the

note at the ensuing division may be considered as an iambic pair. That is, a swung note often acts as

an anacrusis that creates motional energy leading into the ensuing note: da-DUM. On the other hand,

one could argue that such motional energy is effectively resolved upon the onset (rather than upon the

conclusion) of the second note in the iamb, making the duration of that second note less perceptually

critical. Frane’s compromise was to average the preceding δo with the ensuing δo when computing the

LSR at a given even-numbered division (except when one of the two δo values could not be measured due

to rhythmic sparseness, in which case he used whichever of the two was available).

That compromise was based on a threefold rationale. First, the divisions on either side of the swung

division are both likely to affect local swing perception to some extent, and there is no definitive reason to

assume that one is far more perceptually relevant than the other. Second, incorporating both neighboring

δo values into the computation uses more of the available information and thus may make measurements

less noisy. Lastly, neither the preceding nor the ensuing δo alone could be consistently used (because some

divisions in some breaks were not explicitly marked by event onsets, meaning some δo values could not
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Annotated Onsets A

Sixteenth Beats B
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δl δc δr

a j = a1 a j = a5 A = {a1,a3,a5,a7}

δl δc δr

· · ·a1 a2 a3 a4 a5 a6 a7 a8

Figure 7.3: Local swing ratio annotation method.

be defined), so a policy of using all available neighboring divisions was a more consistently enforceable

approach. We formalize Frane’s method in Section 7.2.2 (see Algorithm 1).

7.2.2 Annotation Method Formalization

Disregarding some particularities, we can describe the LSR calculation in simple terms as follows. Given

a list of annotated onsets and an idealized (isochronous) sixteenth-note grid, we step through the annotated

onsets, checking each one to determine whether the annotated onset corresponds to an even-numbered

division onset. Each time such an annotated onset is identified, we compute the LSR at that division. That

procedure is formalized as follows.

To describe the sixteenth-note grid we use the notation from [97] for “beat” positions; note that in

this section, the term beat refers to sixteenth-note division onsets, rather than to quarter-note beats.

Let B := (b1,b2, . . . ,bL) be a sequence of length L consisting of strictly monotonically increasing beat

positions b` ∈ R for ` ∈ [1 : L]. Our formalization has two prerequisites regarding the beat grid. The first

requirement is that b1 marks the beginning of the drum break. The second requirement is that there are an

even number of beat positions, distributed across the entire drum break (e.g., a one-measure drum break

would have 16 beat positions, i.e., L = 16). We now construct a sub-list Bodd := (b1,b3,b5, · · · ,bL−1),

containing the odd-numbered beat positions, which are very unlikely to coincide with a swung drum-onset.

Furthermore, let A := (a1,a2, · · · ,aJ) be the list of annotated drum-onsets, with length J. We also define

a list A⊆A such that A := (a ∈ A | ∃b ∈ Bodd : |b−a| ≤ ε), for a suitable ε . Using automated methods

that follow deterministic rules, it is easier to track the mapping between odd-numbered beats and their

corresponding annotated onsets. In other words, given a tolerance value ε , it is more plausible to expect

that A will—under real-world conditions—contain all the intended onsets from A. On the other hand,

given the variability of swung onsets, it would be harder to formulate a deterministic rule assigning swung

onsets to their even-numbered grid counterparts. Finally, we need a way to determine whether an interval

between two adjacent annotated onsets also maps to an interval between two adjacent beats, or if one or
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more beats are “skipped”. To that end, we define δs as the theoretical IOI of one straight sixteenth note at

the tempo in consideration. To decide whether the length of a given interval δ is valid, we require the

function D : R2→B, where B := {0,1} is the set of truth values (equivalent to false and true, respectively).

For tolerance parameters τ1 and τ2, we define the function as

D(δ ,δs) :=

1, if τ1 ·δs ≤ δ ≤ τ2 ·δs ;

0, otherwise.
(7.1)

In other words, the function D takes a positive time interval δ and a theoretical straight sixteenth-note

interval δs, and outputs a truth value indicating whether δ is sufficiently close to δs. We found empirically

that τ1 = 0.325 and τ2 = 1.3 deliver results very close to those reported by Frane.

Algorithm 1 Compute local swing ratios
1: procedure LSR(A,A,δs)
2: S←∅ . Initialize empty list of LSRs
3: for a j ∈ A do . Loop over non-swing annot.
4: L←∅ . Initialize empty list for lookaround
5: δl ← a j+1−a j . Lookbehind
6: δc← a j+2−a j+1 . Current length
7: δr← a j+3−a j+2 . Lookahead
8: if D(δl ,δs) ∧ D(δc,δs) then . If δl and δc are of valid length (lookbehind)
9: L←{L, δl/δc} . Add their ratio to the list

10: end if
11: if D(δc,δs) ∧ D(δr,δs) then . If δc and δr are of valid length (lookahead)
12: L←{L, δr/δc} . Add their ratio to the list
13: end if
14: S←{S, mean(L)} . Mean of left and right
15: end for
16: return S
17: end procedure

We will now go through an example constructed to illustrate the two main cases encountered when

calculating LSR. In the first case, all conditions are met for ratios to be measurable on both sides of a

swung interval. In the second case, only one adjacent interval has a valid length, while the other spans

two sixteenth notes (and is therefore invalid.) This example follows Figure 7.3 and Algorithm 1. In

Figure 7.3, time runs from left to right. The bottom axis contains the beat positions from B; odd-numbered

onsets are shown as dotted vertical bars, and even-numbered onsets are shown as solid bars. The top

axis contains the annotated onsets from A. Because the beat grid is defined to be regular, the interval δs,

which is shown as the distance between b2 and b3, could alternatively be placed between any other two

adjacent beat positions on the axis. Our formalization assumes, without loss of generality, that the first
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annotated onset a1 coincides with b1 and both are at time position 0 s. The algorithm begins with the first

annotated onset, a1 (seen at the left of Figure 7.3 and line 3 of Algorithm 1). We now set the three IOIs

that potentially contribute to the LSR: the “left” interval δl = a2−a1 (line 5 of Algorithm 1), the “center”

interval δc = a3−a2 (the potentially swung interval, as it coincides with the even-numbered beat b2; line

6 of Algorithm 1), and the “right” interval δr = a4−a3 (line 7 of Algorithm 1). The next step (line 8 of

Algorithm 1) is to determine whether both δl and δc have a valid length with respect to δs, τ1, and τ2;

if so, we can compute the lookbehind swing ratio (δc/δl); In this case, as is evident in Figure 7.3, both

intervals comply, so we proceed to append the swing ratio δl/δc to the temporary lookaround list L (line

9 of Algorithm 1). We now determine whether the length conditions hold for the lookahead ratio (line 11

of Algorithm 1) and, seeing that they do, append δr/δc to L. Because valid intervals were found on both

sides, the LSR associated with a2 will be the mean of δl/δc and δr/δc, which is stored in S, the list that

holds all the LSRs for the drum break (line 14 of Algorithm 1). The algorithm then progresses to a3 (i.e.,

a j = a3 in line 3 of Algorithm 1). For δl = a4−a3, the validation function D(δl,δs) holds true, but not

for δc = a5−a4 (line 8 of Algorithm 1). The next a j where conditions are met is a5. Here, δl and δc are

both valid (and their ratio is appended to L), but D(δr,δs) does not hold, because δr� τ2 ·δs. Thus, only

δl/δc is appended to L, and this quantity is then stored in S without taking the arithmetic mean.

Having formalized Frane’s annotation method, we now discuss the reference annotations available for

the dataset. Table 7.1, with data taken from [56], gives an overview of this dataset. The first column (ID)

contains identifiers of the form BPM-Shortname, which we will use throughout the chapter. The second

column contains the original full title of each drum break. The third column specifies the number of bars

or musical measures that each break spans—either 1, 2, or 4. The fourth column contains the tempo in

BPM. The fifth column (SR) contains the arithmetic mean of the annotated LSRs for each break, with

values ranging from 1.0 to 2.1. Since our automated method estimates global swing ratio, we will be

using this annotated value as a reference for evaluation. The sixth column (Max LSR) shows the highest

value of LSR registered for each item. Finally, in the rightmost column (S. Dens.), we present the swing

density, defined in Section 7.1.3. As we will discuss in Section 7.4, swing density also plays an important

role in evaluation since a low swing density can be a potential source for discrepancies between annotated

and estimated SRs.

It is interesting to note that 12 items from the dataset (almost half) have a swing density of 25% or lower,

and 20 items (two thirds) have a density of 50% or lower. The dataset contains items that have relatively

low swing ratios (close to 1, as seen in the SR column), and the swing is often applied sparsely throughout

the drum break. This is especially relevant in Section 7.4, where we look closely at the correspondence

between annotated and estimated values.
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ID Song Title # of Bars BPM SR Max LSR S. Dens. (%)

138-amen Amen, Brother 4 138 1.2 1.6 43.8
100-hihache Hihache 1 100 1.1 1.2 25.0
85-breakthru Breakthrough 4 85 1.1 1.2 96.9
109-jam The Jam 1 109 1.2 1.3 50.0
92-kissing Kissing My Love 4 92 1.3 1.5 96.9
84-imgonna I’m Gonna Love You Just A Little

More Baby
2 84 1.1 1.2 100.0

94-herecomes Here Comes The Meter Man 2 94 1.2 1.4 62.5
98-ashley Ashley’s Roachclip 1 98 1.3 1.4 100.0
104-koolis Kool Is Back 4 104 1.2 1.4 46.9
104-youlllike You’ll Like It Too 4 104 1.6 2.0 96.9
117-apache Apache 2 117 1.1 1.2 25.0
79-themeplanets Theme From The Planets 2 79 1.0 1.1 93.8
106-dofunkypenguin Do The Funky Penguin Part II 1 106 1.3 1.3 25.0
99-nt N.T. 1 99 1.3 1.5 87.5
94-godmademe God Made Me Funky 4 94 1.2 1.4 31.2
101-funkydrummer Funky Drummer 2 101 1.1 1.2 100.0
92-dontchange Don’t Change Your Love 1 92 1.6 1.7 37.5
96-syntheticsubs Synthetic Substitution 2 96 1.3 1.7 50.0
95-itsanew It’s A New Day 1 95 1.7 1.7 25.0
94-youregett You’re Getting A Little Too Smart 2 94 1.1 1.3 18.8
103-youcan You Can Make It If You Try 1 103 1.0 1.2 50.0
81-imglad I’m Glad You’re Mine 2 81 1.0 1.2 50.0
121-youandlo You & Love Are The Same 2 121 1.2 1.3 12.5
96-love Love’s Theme 1 96 1.0 1.0 100.0
82-funkyworm Funky Worm 1 82 1.2 1.2 12.5
93-longred Long Red 1 93 1.5 1.5 25.0
101-singa Sing A Simple Song 1 101 2.1 2.1 12.5
91-getoutmylife Get Out My Life Woman 2 91 1.6 1.7 25.0
95-impeach Impeach The President 1 95 1.4 1.5 12.5
— Fool Yourself 1 78 1.5 1.7 25.0

Table 7.1: Reference table, based on [56].

7.3 Automated SR Estimation Approach

In Section 7.2 we discussed Frane’s annotation method and dataset for LSR. While the method formalized

in Section 7.2.2 is suitable to be applied to manually created onset annotations, [46] showed that SR

estimation based on automatic onset detection can be an error-prone process. For this reason, they

proposed a more robust and efficient method based on periodicity analysis at a global scale, which we

closely follow in our experiments. Since the original works were conceived mainly for eighth-note swing

in ride cymbals, we also describe modifications that accommodate sixteenth-note swing in multiple

drum kit components. The modifications include an eighth-note pulse grid, as well as the applica-

tion of drum sound separation as described in [44]. In essence, we are investigating to which degree an

automated, global SR estimation methods can reproduce the results obtained from manual LSR annotation.
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Figure 7.4: (a) Waveform for excerpt of “Theme From the Planets” by Dexter Wansel. (b) Novelty curve
extracted from the waveform. (c) LLACF x resulting from the novelty curve. (d): Waveform (black) and
ground truth onset annotation (red vertical lines). (e): Oracle novelty curve from annotation points. (f):
LLACF curve computed from oracle novelty.

In practically all MIR tasks, an important first step is to compute audio features that capture relevant

properties of a signal for further processing [97, p. 117]. One approach to feature-based information

retrieval is to compare the features obtained for real-world input data with features computed for idealized

synthetic data with known characteristics. Our swing ratio estimation method uses such an approach. On

the one hand, we compute audio features from drum break recordings, and on the other hand, we have a

series of prototypical reference features for which we know the swing ratio. The task then becomes a

problem of pattern matching, i.e., comparing the features estimated from the input data with the reference

features.

The family of features typically used for rhythm-related tasks is based on novelty (e.g., sudden events such

as drum onsets) and periodicity (e.g., at which rate these events repeat) in the underlying signal. Dittmar

et al. developed methods for swing ratio estimation via periodicity analysis in [46, 45]. The procedure

which we will describe in this section is based mainly on those works.

Figure 7.4 is our running example for this section. The main idea is to first convert waveforms (Figure 7.4a)

into a novelty curve representation emphasizing onset candidates (Figure 7.4b), and then into a log-lag
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representation that implicitly encodes swing ratio (Figure 7.4c). In parallel, we have a synthetically

generated reference set containing pre-computed log-lag representations (or patterns) for various swing

ratios within a plausible range. The task is then to compare the estimated pattern (obtained by processing

the input waveform) with all the patterns in the reference matrix, selecting the reference which is maximally

similar (see Figure 7.5) and thus retrieve the underlying swing ratio. In the following, we examine each of

these stages in greater detail.

7.3.1 Novelty Curve

Our first goal is to obtain a feature representation that contains the temporal pulse characteristics of the

input signal S. Because swing ratio is defined by the relative positions of onsets, we compute a novelty

curve to expose salient peaks that we can interpret as onset candidates. We start with mono audio files

sampled at 44100 Hz. As an example, Figure 7.4a shows an excerpt of the waveform for our swing-

modified version of “Theme from the Planets” by Dexter Wansel. The first step is to compute a short-time

Fourier transform (STFT) with a block size of 2048 samples and a hop size of 256 samples, using a

Hann window. Following [46, 45], we apply log-compression to the resulting magnitude spectrogram

and accumulate changes between consecutive frames to obtain a suitably normalized novelty curve

(Figure 7.4b).

7.3.1.1 Oracle Novelty

Using the audio signal S as input can produce imperfect novelty curves. On the one hand, drum hits

that are played very softly can lead to missing peaks, and on the other hand, spurious peaks might occur

due to noisy input signals. Furthermore, in order to find out whether the SR annotations from [56] are

fundamentally compatible with our method, and if so, to what extent they agree, we establish a glass

ceiling (i.e., estimate of the upper bound) for our algorithm by using the onset annotations as oracle

data. In Figure 7.4d–f we illustrate how to produce an oracle novelty curve from annotated onsets. At

the top, Figure 7.4d shows the waveform for our running example in black, and the ground truth onset

annotations as red vertical bars; Figure 7.4e shows the oracle novelty curve, obtained by placing a short

Gauss-shaped pulse centered at each of the annotated onset time-points. Figure 7.4f contains the oracle

LLACF, computed from the oracle novelty by using our method as described above. We will revisit the

oracle novelty in Section 7.4.1, where it will help put our estimated SR results into context.

7.3.2 Log-Lag Autocorrelation Function (LLACF)

Having computed the novelty curve, we could use peak-picking and beat-tracking to select onset candidates

within a sixteenth-note grid, corresponding to the algorithmic formalization in Section 7.2.2 and Frane’s

LSR computation. However, Dittmar et al. [46] observed that such onset detection is an error-prone
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process, and that the log-lag autocorrelation function (LLACF) can help circumvent it. The LLACF is

a tempo-normalized, mid-level feature representation that encodes the periodicity and salience of the

novelty curve at different metrical levels. Computing LLACF patterns (or vectors) is a two-step process.

First, the conventional autocorrelation function is applied to the novelty curve. The ACF values are then

max-normalized to lie between 0 and 1. As mentioned before, the method in [46] works on the eighth-note

level; our adaptation to the sixteenth-note level consists of defining the tempo axis for the autocorrelation

one tempo octave higher—that is, at “double the tempo”. In typical autocorrelation functions, lags that

correspond to salient peaks hint at IOIs present in the signal (at different metrical levels). Thus, we denote

lag values with δ , the same symbol we used for IOIs. The relationship between a tempo t (in BPM) and a

lag δ (in seconds) is given by t = 60 / δ . Continuing from the autocorrelation function, we use linear

interpolation to map the autocorrelation function values onto a log-lag axis that has equal spacing between

tempo octaves, with a reference tempo of 240 BPM at a defined position. The LLACF pattern for our

example is shown in Figure 7.4c. For the following extraction steps, let x ∈ RK×1 be an LLACF vector,

with K being the number of elements of the discrete log-lag axis. For all experiments in this chapter we

use K = 721, which results from sampling 120 bins per tempo octave in the range from 30 to 1920 BPM.

To simplify notation, we define Λ as an operator that encapsulates the steps necessary to arrive at a log-lag

representation: transform the signal S to a time-frequency representation, compute the novelty, and apply

LLACF. In the following, Λ(S) denotes the LLACF pattern obtained from the audio signal, and Λ(O) is

the pattern obtained from the oracle novelty.

7.3.2.1 LLACF Prototype Patterns

As mentioned before, we can estimate the swing ratio of an LLACF by comparing it against a set

of reference LLACF patterns with known swing ratios and selecting the one with highest similarity.

Figure 7.5a shows the matrix of LLACF reference patterns, which we call Y . From left to right, the

columns in Y contain LLACF patterns with increasing swing ratio, each one obtained by applying the

method from Section 7.3.2 to a synthetically created novelty curve that has the particular swing ratio

present in its IOIs. Thus, Y := (y1,y2, . . . ,yM) ∈ RK×M. In practice, we have M = 402, resulting from a

uniform sampling of 400 swing ratios sm ∈ [1,2.5], along with two additional columns at the end; these

columns correspond to straight quarter- and eighth-notes, and are useful when dealing with novelty curves

that only exhibit salient periodicities at those metrical levels. In Figure 7.5a, we have enclosed the column

number 257 in a red dotted rectangle, corresponding to the swing ratio 1.96, which closely matches the

swing ratio 2 enforced in our running example.

7.3.2.2 Pattern Matching and Similarity

Having extracted the LLACF vector x and the reference matrix Y , we need to use pattern matching to

select a reference vector y that is maximally similar to x. We cannot yet directly compare the estimated
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Figure 7.5: (a) Reference LLACF patterns
for swing ratios from 1 to 2.5. Each col-
umn is a synthetically generated LLACF
vector corresponding to a certain swing ra-
tio. The column for SR 1.96 is enclosed in
a dotted red rectangle, and is shown in (c).
(b) Similarity that results from comparing
the computed LLACF vector for our run-
ning example (Figure 7.2c) with all the
reference patterns from the matrix. A max-
imal similarity of 0.97 is found at SR 1.96,
enclosed in a red circle at the top-left cor-
ner. (c) Estimated LLACF (black, solid)
and maximally similar reference LLACF
(red, dotted).
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and reference LLACF vectors, as they may correspond to slightly different underlying tempi. Tempo

differences lead to linear shifts in the resulting LLACF pattern along the log-lag axis. To be able to

compare x with reference patterns ym, a shift-invariant similarity measure ψ : RK×RK→R is used. Thus,

following [46], we transform the estimated x and each reference column ym into equivalent representations

by computing their discrete Fourier transform (DFT) and taking the absolute value. By preserving the

magnitude and discarding the phase, we capture their overall characteristics while ignoring shifts along

the log-lag axis. We normalize these DFT-magnitude vectors by subtracting their arithmetic mean and
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Figure 7.6: (a) Self-similarity matrix
for the LLACF reference patterns, using
Eq. 7.2. Darkness indicates similarity. (b)
Curves illustrating LLACF pattern confu-
sion.
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dividing the result by the standard deviation, resulting in an x̂ vector and a series of ŷ vectors. We can now

define the similarity between x and a given y as:

ψ(y,x) := 〈ŷ|x̂〉, (7.2)
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Figure 7.7: Schematic illustration of NMFD drum component separation.

with 〈·|·〉 being the dot product between two vectors.

Figure 7.5b shows the result of the dot product between x and each column in the matrix Y . We can see

that x is maximally similar to the 257th entry in the matrix (similarity 0.97, swing ratio 1.96, indicated by

red circle). However, the vector is also considerably similar to patterns in the vicinity of swing ratio 1, as

well as the two additional vectors at the end (straight quarter and eighth notes, with swing ratio 1)—this

ambiguity prompts further evaluation.

We need to critically assess the pattern matching—it is important to determine the potential for confusion

among reference patterns. To this end, we have computed a self-similarity matrix S for the matrix Y ,

where S(i, j) := ψ(ŷi, ŷ j) for i, j ∈ [1 : M]. Figure 7.6a shows S, with darkness representing higher values

(i.e., greater similarity). Ideally, the plot would have a thin, dark main diagonal (because each ŷm is

maximally similar to itself) and should be considerably lighter everywhere else. But in practice, as shown

in the figure, the main diagonal is somewhat wide, indicating a swing ratio uncertainty of roughly 0.25 for

any given value. Furthermore, there are separate regions with high confusion: Swing ratios between 1 and

1.25 are very likely to be confused with ratios between 1.8 and 2.2 (and vice-versa), as is evident from the

dark spots near the bottom-left and top-right of the plot. In Figure 7.6b, we illustrate the reason for this

ambiguity, which is a byproduct of the similarity computation described above. As one would intuitively

expect, the reference LLACF with swing ratio 1 (in dotted red) is very dissimilar to the reference LLACF

with swing ratio 2 (solid black). However, if we deliberately shift it to the left along the log-lag axis

(equivalent to increasing the tempo), we reach a point where it matches quite well to the LLACF with

swing ratio 2 (blue curve). This particular log-lag shift corresponds to multiplying the original tempo by

a factor of 1.5. In other words, our similarity computation can deliver ambiguous results under certain

circumstances. For example, a ternary swing pattern with SR 2 at 120 BPM matches a straight pattern at

180 BPM. The tempo-invariant method was developed for swing ratio analysis over the course of longer

jazz recordings [45], where its ability to deal with greater tempo variations is an asset. For short drum

breaks with steady tempo, the tempo-invariance property can have a detrimental effect on swing ratio

estimation.
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7.3.3 Separating Drum Components

Our first contribution to the swing ratio estimation method is applying drum component source separation

as a preprocessing step, following [44]. Here we offer a brief overview of how that method works;

for a more detailed description we refer the reader to the original publication. In general terms, drum

source separation is a technique that takes a signal containing a mixture of drum kit components, such as

kick drum, snare, and hi-hat, and attempts to deliver individual signals for each component as if it were

recorded in isolation. Dittmar and Müller [44] approached drum source separation using an informed

variant of the non-negative matrix factor deconvolution (NMFD) method proposed by [124].

As its main premise, NMFD considers the original signal to be a linear mixture of component signals

that correspond to the individual sound sources. In this case, the original “mixed” signal is a drum break

(S), and the component signals are kick drum (KD), snare drum (SD), and hi-hat (HH). Thus, we make

the simplifying assumption that S = SKD + SSD + SHH, where S is the original signal as introduced in

Section 7.3.1. The NMFD variant that we are using (from [44]) is informed by timbral templates from

a database of prototypical KD, SD, and HH sounds. Seeded by this initialization, the NMFD makes an

iterative approximation to the input signal, learning its particularities. Thus, for example, although we are

initializing one component with the spectral characteristics for HH, this component might learn the timbral

information of similar drum kit components such as ride cymbals. As illustrated in Figure 7.7, the NMFD

algorithm considers the original signal as a target that can be approximated as the convolutional sum of a

tensor with an activation matrix. The target V is represented by the leftmost part of Figure 7.7, which

shows an excerpt of the magnitude spectrogram of a drum break. The spectral information is color-coded

according to our standard throughout the chapter: KD is red, identified by its characteristic energy in the

lower frequencies; SD is green, with predominance in the mid- and higher frequency regions; and HH is

blue, with wide-band spectral characteristics. The tensor P, represented by the middle part of Figure 7.7,

has three templates, each corresponding to a prototypical magnitude spectrogram for one of the three

components: KD (P1), SD (P2), and HH (P3). The activation matrix H, represented by the rightmost part

of Figure 7.7, has three rows, each of which essentially encodes when and how intensely a given drum kit

component was struck.

NMFD recovers the templates and activations from the mixture, in an iterative process, where the number

of iterations is a fixed parameter. We initialize each template in P with a prototypical instance of each type

of drum sound, learned from a large database of one-shot sounds (recorded in isolation), and we initialize

H with constant values. In each iterative pass, the algorithm performs the convolution P ∗H = V̂ and

attempts to minimize the Kullback–Leibler divergence between the current estimate V̂ and the target V by

updating P and H. Ideally, after the specified number of updates, the algorithm has learned the timbral

details of each drum kit component, as well as the locations and intensities of their onsets. To recover the

individual magnitude spectrograms for the separated drum components, we perform the convolutional

approximation but only between the selected spectral template in P and its corresponding row in H. Since

NMFD yields only a rough approximation of the component spectrograms we apply generalized Wiener
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Figure 7.8: (a) Waveforms for sepa-
rated drum kit components: kick drum
(KD, bottom, red), snare drum (SD, mid-
dle, green), and hi-hat (HH, top, blue).
(b) Novelty curves for drum kit com-
ponents (red, green, and blue), over-
laid with an eighth-note pulse grid (dot-
ted black). (c) LLACF patterns for
separated drum kit components (Λ(SKD)
in red, Λ(SSD) in green, Λ(SHH) in
red). The LLACF patterns with grid sup-
port Λ(SKD,G), Λ(SSD,G), Λ(SHH,G) are
overlaid as black dotted plots.
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filtering as described by [88], to preserve small spectral nuances that otherwise might be lost. Finally, we

follow the same steps for the three component spectrograms as we did for the the original mixture signal

in Section 7.3.1. We refer to the LLACF patterns for these components as Λ(SKD), Λ(SSD), and Λ(SHH).

In Section 7.3.4 we describe a further modification that helps stabilize swing ratio estimates for drum

components that exhibit relatively sparse onset activity, such as KD and SD.

7.3.4 Eighth-Note Pulse Grid

In most drum breaks from Frane’s dataset (and also, we contend, in drum breaks at large), KD and SD

have sparser onsets than HH. This is exemplified in Figure 7.8a, which shows the waveforms for the

individual drum components obtained by the method from Section 7.3.3: KD has four onsets and SD has
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ID r s(Λ(O)) r− s(Λ(O)) s(Λ(S)) r− s(Λ(S)) s(Λ(S,G)) r− s(Λ(S,G)) S.Dens.

138-amen 1.1774 1.1729 0.0045 1.0000 0.1774 1.0376 0.1398 43.8
100-hihache 1.1002 1.0940 0.0062 1.0000 0.1002 1.0301 0.0702 25.0
85-breakthru 1.0710 1.0602 0.0109 1.0000 0.0710 1.0000 0.0710 96.9
109-jam 1.1939 1.1805 0.0134 1.0602 0.1337 1.0639 0.1300 50.0
92-kissing 1.2628 1.2481 0.0146 1.2068 0.0560 1.2105 0.0522 96.9
84-imgonna 1.0985 1.0752 0.0233 1.0977 0.0007 1.0000 0.0985 100.0
94-herecomes 1.1890 1.1654 0.0236 1.2105 −0.0215 1.1203 0.0687 62.5
98-ashley 1.2577 1.2293 0.0283 1.1353 0.1223 1.1353 0.1223 100.0
104-koolis 1.1503 1.1805 −0.0301 1.1203 0.0300 1.0677 0.0827 46.9
104-youlllike 1.5748 1.5414 0.0335 1.6617 −0.0868 1.8158 −0.2409 96.9
117-apache 1.0723 1.1128 −0.0404 1.0000 0.0723 1.0714 0.0009 25.0
79-themeplanets 0.9864 1.0451 −0.0588 1.0000 −0.0136 1.0000 −0.0136 93.8
106-dofunkypenguin 1.2967 1.2368 0.0598 1.0000 0.2967 1.0000 0.2967 25.0
99-nt 1.2971 1.2368 0.0603 1.2519 0.0452 1.2218 0.0753 87.5
94-godmademe 1.1776 1.1165 0.0611 1.0000 0.1776 1.0000 0.1776 31.2
101-funkydrummer 1.0590 1.1241 −0.0650 1.0564 0.0026 1.1241 −0.0650 100.0
92-dontchange 1.5958 1.6617 −0.0659 1.0000 0.5958 1.0000 0.5958 37.5
96-syntheticsubs 1.2986 1.2180 0.0806 1.0000 0.2986 1.0000 0.2986 50.0
95-itsanew 1.7121 1.8008 −0.0886 1.0263 0.6858 1.0451 0.6670 25.0
94-youregett 1.1007 1.0000 0.1007 1.0000 0.1007 1.0000 0.1007 18.8
103-youcan 1.0398 1.1429 −0.1030 1.0526 −0.0128 1.0564 −0.0166 50.0
81-imglad 1.0246 1.1316 −0.1070 1.0564 −0.0318 1.0677 −0.0431 50.0
121-youandlo 1.2420 1.1165 0.1254 1.0338 0.2081 1.0451 0.1968 12.5
96-love 0.9652 1.1241 −0.1589 1.0150 −0.0498 1.0526 −0.0874 100.0
82-funkyworm 1.1607 1.0000 0.1607 1.0000 0.1607 1.0000 0.1607 12.5
93-longred 1.5305 1.3684 0.1621 1.0000 0.5305 1.0000 0.5305 25.0
101-singa 2.0957 1.8985 0.1972 1.9962 0.0995 2.0263 0.0694 12.5
91-getoutmylife 1.5799 1.8195 −0.2396 1.0000 0.5799 1.0000 0.5799 25.0
95-impeach 1.4188 1.0000 0.4188 1.0000 0.4188 1.0226 0.3962 12.5

Table 7.2: Detailed overview of SR comparisons per item in Frane’s set of drum breaks. Rows are sorted
by magnitude difference between annotation and oracle SR (third column). The two items with highest
absolute deviation between estimation and expert annotation are shaded in gray.

two onsets, whereas HH is in a continuous stream of 16 sixteenth-notes. The sparsity of onsets in KD and

SD leads to LLACF patterns that match highly with many prototype templates, making the swing ratio

ambiguous. To address this problem, we further adapt the method of [45] by applying an eighth-note pulse

grid that helps stabilize the novelty curves of sparse elements. The eighth-note pulse grid is obtained by

processing the original signal’s novelty curve with a dynamic programming beat tracker, following [51]

and [97, p. 333]. In the following, we designate the use of this grid as Λ(·,G), with G = true.

Figure 7.8b shows the separated drum component novelty curves, each overlaid with the eighth-note pulse

grid in dotted black. Focusing on the KD component (bottom row of Figure 7.8b), we can see that the

eighth-grid introduces previously non-existent novelty peaks (such as the first peak, shortly before 0 s) and

amplifies weaker peaks, such as the one shortly before 2.5 s. In Figure 7.8c, the LLACF patterns Λ(SKD),

Λ(SSD), and Λ(SHH) are shown in their original colors; Λ(SKD,G), Λ(SSD,G), and Λ(SHH,G) are overlaid

as dotted black plots.
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7.4 Evaluation

The general goal of this section is to show the degree of correspondence between the LSR values that

Frane computed in [56] by using Algorithm 1 and our own estimation of global SR computed with the

LLACF-based method discussed in Section 7.3. However, we do not condense this assessment into a

single number, but instead provide diverse, detailed views on the agreement between expert annotation and

automatic estimation. We first present simple pairwise differences (or deviations) between an annotated

SR and an SR estimated with a particular configuration, seen in Table 7.2. For each drum break1 with

index n ∈ [1 : N], N = 29, we define the deviation εn := sn− rn, where rn is the corresponding reference

swing ratio from Frane’s annotations. To put the results into context, recall from Section 7.3 that our

search space for SR estimates is defined between 1 and 2.5.

7.4.1 Oracle Novelty Evaluation

The first two columns of Table 7.2 contain our internal drum break ID and the SR as annotated by

Frane. In the following, we will also frequently refer to the last column of the table, which contains the

annotated swing density (S. Dens.). The third column s(Λ(O)) contains the SR values that we estimated

semi-automatically from oracle novelty curves generated using manually annotated onsets. In [56], Frane

did not make any distinctions between drum components when annotating. For this reason, the oracle

values are computed taking into account all annotated onsets, regardless of the drum kit component.

The fourth column contains the difference r− s(Λ(O)) (i.e., the difference between the previous two

columns); this column was used to sort the rows in order of increasing absolute value. Thus, the first item

(138-amen) has the smallest difference between annotated SR and oracle SR (1.1774−1.1729 = 0.0045).

A total of 22 dataset items (around two thirds of the dataset) have a difference |r− s(Λ(O))| smaller than

0.11. Interestingly, the 7 bottom items (which have |r− s(Λ(O))|> 0.11) mostly have swing densities of

either 12.5% or 25%. This discrepancy can be attributed to the fact that the LLACF method favors global

swing applied consistently throughout the input signal. Furthermore, out of these 7 items, “Impeach

the President” is an especially difficult case because of dual SR, meriting more detailed discussion

in Section 7.4.5. The difference r− s(Λ(O)) gives an upper bound for results estimated from audio

data—having established this upper bound we proceed to discuss results computed from audio features.

7.4.2 Audio-Based Novelty Curves

The columns s(Λ(S)) and r− s(Λ(S)) summarize results with mixture audio signals as input, without grid

support. In this category of our experiments, a total of 16 items (around half the dataset) have a deviation

|r− s(Λ(S))| < 0.11, and only 7 have a difference greater than 0.2. In this “problematic” group, the

item 96-syntheticsubs has the highest swing density (50%)—all others have lower densities. This further

1Recall from Section 7.2 that we were only able to source 29 of the 30 breaks from Frane’s original dataset.
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Figure 7.9: (a): Mean accuracy for increasing tolerance value (horizontal axis with non-uniform spacing).
The blue curve shows results for original method Λ(·), the red curve represents the eighth-grid-enhanced
method Λ(·,G) (both curves are means across all input signals S, SKD, SSD, SHH). Black curve is accuracy
for oracle data as input, Λ(O). (b): Relative distributions of log2-ratios for both estimation methods,
according to input signal.

illustrates that our results coincide to a high degree with Frane’s, except when faced with low swing

densities. “Don’t Change Your Love” (92-dontchange) and “It’s a New Day” (95-itsanew), shaded gray in

Table 7.2, were both estimated to have SR close to 1. Upon closer inspection, the estimated novelty curves

for these examples closely resembled the oracle novelties, indicating that the misestimation happened at

the LLACF pattern matching stage. Indeed, the estimated SR of 1 is highly confusable with the annotation

and oracle values around 1.7, as seen in Figure 7.6.

7.4.3 Eighth-Note Grid Enhanced Novelty Curves

We continue with columns Λ(S,G) and r− s(Λ(S,G)), which correspond to the mixture signal as input,

and using the eighth-note grid support. Since we introduced grid support to investigate whether it offers

an improvement to signals containing sparse drum onsets, we will present the results for this category in

comparison to the previous category, s(Λ(S)). Adding grid support improved performance for 9 items,

decreased performance for another 9 items, and left the remaining 11 unchanged. Interestingly, the items

with decreased performance have swing densities of 46% and higher—5 of them are at 80% or above.

The potential of grid support unfolds when applied to the sparser component signals obtained through

drum component source separation, which we discuss in Section 7.4.4.
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7.4.4 Further Metrics

As a first higher-level performance metric, we present the accuracy α: the proportion of items whose

absolute deviation |εn| falls within a certain tolerance τ . That proportion gives us the accuracy ατ ,

described in Equation 7.3:

ατ := |{n ∈ [1 : N] :−τ ≤ εn ≤ τ}| / N. (7.3)

Figure 7.9a shows the mean ατ (averaged across the results for all input signals S, SKD, SSD, SHH) as a

function of τ , based on sn values computed with eighth-note grid support (dashed red curve) and without

eighth-note grid support (dotted blue curve), as well as the accuracy obtained for the oracle novelty

curves (solid black curve). Recall that the oracle values (based on Frane’s original annotations) were

computed using only S (and not the component signals SKD, SSD, SHH)—thus, since the solid black curve

is based on only a quarter of the items, it is more step-like. We can see that introducing eighth-note grid

support notably improves mean accuracy, notwithstanding extreme values of τ . It is important to note

the oracle accuracy of around 0.9 at a low tolerance value of 0.2, implying that there is a high agreement

between Frane’s annotations and the LLACF-based method applied to oracle novelty curves. We extend

the tolerance sweep to a total value of 2 (which could seem exaggerated) in order to illustrate the point at

which Λ(·) (dotted blue curve) reaches an accuracy of 1.

Figure 7.9b shows the the relative distributions of log2(sn/rn) for the four signal categories used in our

experiments: SKD, SSD, SHH, and S. Overestimation (sn > rn) results in positive log2 ratios, whereas

underestimation (sn < rn) results in negative log2 ratios. The ideal score is zero (shown as a red horizontal

line), because if sn = rn it follows that log2(sn/rn) = log2(1) = 0. The red distributions (hatched with

positive slope, on the right of each item) are based on sn values computed with eighth-note grid support

(Λ(·,G)), and the blue distributions (hatched with negative slope, on the left of each item) are based on sn

values computed without eighth-note grid support (Λ(·)). Note that the blue (left-hand) distributions for

SKD and SSD have larger variances than their red (right-hand) counterparts. This confirms that eighth-note

grid support helps to stabilize swing ratio estimations for SKD and SSD (i.e., for the components that tended

to have sparser onsets). In contrast, the blue and red distributions are nearly identical to each other for

SHH, and also for S. This is not surprising, because SHH and S tended to have onsets at most eighth-note

divisions already, thus leaving little room for enhancement from eighth-note grid support. Other relevant

trends in Figure 7.9b include the tendency, on average, to overestimate swing ratio with SKD and SD

without eighth-note grid support, and to underestimate swing ratio once eighth-note grid support has been

introduced.
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Figure 7.10: Excerpt from “Impeach the
President” by the Honey Drippers. The au-
dio waveform is shown in black; the blue
vertical bars at 0.95 and 1.12 s are HH on-
sets; the red vertical bars at 1.14 and 1.26 s
are KD onsets. This is a problematic case
because the swing ratio differs consider-
ably, depending on whether the HH onset
at a5 or the KD onset at a6 is used in the
computation, even though those two on-
sets are only 0.02 s apart.
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7.4.5 Problematic Example: Dual Swing

In “Impeach the President”, the drummer plays hi-hat at an even-numbered sixteenth-note division,

immediately followed by kick drum. The onsets of those two events are sufficiently far apart (0.02 s)

that one could say they were played in a “loose” style, yet they are sufficiently close together that they

clearly should be mapped to the same nominal division. Because we are dealing with ratios of small

numbers, and because changing the onset of an even-numbered division affects not only the length of that

division but also the length of the preceding division, a small variation in onset can substantially alter

the swing ratio computation. In this case, considering the hi-hat onset as the division onset results in an

LSR of 1.6, whereas considering the kick drum as the division onset results in an LSR of 1.8. Figure 7.10

illustrates this dual swing ratio. Following the formalization in Algorithm 1, the main issue is that the

function D holds true for all four intervals δ KD
c , δ KD

l , δ HH
c , and δ HH

l . In other words, both a5 (shown in

blue, corresponding to a hi-hat onset at 1.125 s) and a6 (shown in red, the kick drum onset at 1.145 s) are

mapped to the same even-numbered beat, b8. Because both choices yield a valid result for D, this leads to

two potential pairs of δc and δl .

7.4.6 Explorative Statistical Results on Large Dataset

In this section we report statistical trends observed when applying our swing ratio estimation method to a

larger corpus of drum break recordings. We use a superset of the corpus from [92], comprising a total
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Figure 7.11: Statistical model of swing ratio vs. tempo for our large corpus of drum breaks. Each point in
the scatter plot corresponds to one drum break recording, giving a rough estimate of the joint distribution
of swing ratio and tempo. The histograms provide approximations to the marginal distributions of each
variable independently.

of 575 drum breaks. For this large-scale study we allow breaks containing percussion, as well as further

instrumentation. Similarly to the jazz analyses conducted in [45], we were interested to see if there is a

common pattern of swing ratio given different tempi in this kind of data.

As it turns out, there are only two conclusions that can be safely drawn with this perspective on the data.

The first finding is that drum breaks in our dataset have a tempo range between 80 and 120 BPM, with

a mode close to 110 BPM. The second finding is that sixteenth-note swing is used very subtly, rarely

exceeding an SR of 1.2; we give visual evidence for these two findings in Figure 7.11, which shows a

scatter plot representing all drum break items as single points in the swing ratio vs. tempo plane. The

corresponding histograms support our conclusions.
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As a final note, we suggest that Figure 7.11 could serve as a basis for an interactive application, enabling

audiovisual exploration of our dataset. This would be particularly interesting as future work, analyzing

outliers in the dataset (i.e., the point-cloud gathered close to swing ratio 2).

7.5 Conclusion

In this chapter we investigated swing ratio estimation in drum break recordings. Starting from a previous

study that was based on expert annotations of drum sound onsets, we formalized the algorithm used

to quantify LSR. We then adapted a method that was originally intended for swing ratio estimation in

jazz solo recordings to the drum breaks. Through a series of experiments, we showed a satisfactory

correspondence between mean LSR computed as per [56] and global SR computed automatically with

LLACF. We observed that swing ratio estimation is very sensitive, as a few milliseconds in onset deviation

can strongly influence the result. In contrast to jazz music, this is even more problematic with drum

breaks, since they tend to exhibit a much more subtle use of swing. It should be acknowledged that swing

ratio is not the only metric of swing magnitude. Swing can also be quantified by onset displacement,

i.e., the delay of even-numbered divisions, which can be heuristically defined as (δo – δe)/2; see [57].

However, unlike swing ratio, onset displacement in a given recording changes when the recording is

played at different speeds (unless the onset displacement is zero). Thus, given that sampled drum breaks

are rarely used at their original tempi, swing ratio is generally a more relevant metric for drum breaks.

Despite these issues, we applied our automated method to a considerably larger corpus, resulting in an

explorative study of the statistical distribution of swing in drum breaks. We hope that our speculative

findings serve as a foundation for further research in the domain of drum breaks, rhythm, and groove in

general.
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Chapter 8

Summary and Future Work

In this thesis we have developed methods to analyze SBEM as well drum breaks—one of its most

prominent sampling sources. In the following we will go through each chapter, revisiting key findings and

contributions, and putting them into the context of potential applications and future work.

In Chapter 3 we studied using peak-map-based audio fingerprinting to recognize samples under various

types of modifications and degradations commonly present in SBEM. Although this task is not new, and

our experiments were performed in a controlled, synthetic environment, our contribution was to quantify

the effects of modifications such as overlaying multiple samples, changing the STFT framing offset, or

adding white noise. Furthermore, we studied the relationship between the sonic properties of a query loop

(classified as either harmonic, noise-like, or percussive) and the feasibility of retrieving it from a mixture.

We learned that peak maps respond differently for combinations of these sound categories, suggesting

that it would make sense to incorporate this information into future algorithms. If we consider that

state-of-the-art methods which are robust to timescale modifications (such as the one by Sonnleitner et al.

[129]) are still challenged by overlapping musical sources, we can see the importance of our investigation.

This use case of fingerprinting (or automated sampling detection/analysis) is interesting and useful for

many reasons. Perhaps most prominently, there is great monetary value in being able to automatically

determine sampling cases, for royalty payments and legal proceedings. However, scholars and SBEM

lovers can gain a lot from exploring the connections between sampling sources and targets, as made

evident by websites such as WhoSampled.com.

In Chapter 4, inspired by how SBEM artists structure their compositions, we developed a model and a

method (based on NMFD) to answer the following question: If we are given the downmix of a SBEM

track, along with the patterns that were used to create it, can we determine the points in time where each

pattern was activated? Although we used a controlled environment and a priori information that is seldom

available, we were able to achieve promising results in the task of finding activation points. A related

question, based on our initial study, was investigated by Smith and Goto [125], who used non-negative

tensor factorization paired with downbeat estimation to approach this task with less a priori information.
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The art of structuring tracks is difficult to master—in contrast to other musical skills (such as piano or

guitar playing technique), there are remarkably few resources that allow aspiring producers to improve

their understanding of structure. Future work along these lines could yield interactive tools for analyzing

structure in electronic music.

In Chapter 5 we developed a mid-level audio feature based on cascaded harmonic-residual-percussive

(CHRP) source separation. Although it requires manual parameter selection, we were able to show that we

can use this type of feature to visualize important musical phenomena, such as the joint role of timbre and

event density in a track’s structure. Given the ease of interpreting the CHRP representation, future work

could incorporate this type of visualization into a GUI with easily controllable parameters. Such a GUI

could be useful for aspiring musicians wishing to master density-related techniques, such as paradiddles

with varying speeds on a snare drum.

In Chapter 6 we designed a system for finding drum breaks by classifying short audio frames as percussion-

only or not only percussion. The relative rarity of drum breaks as a musical event (5–6% of our dataset),

coupled with the amount of time and effort that SBEM artists invest in finding and manipulating them,

indicate that drum breaks are a compelling musical construct warranting more attention from researchers.

Although our method does not deliver ready-to-use drum breaks, we were able to show that our system,

based on random forests and a bag-of-timbral-features, can effectively perform this binary classification.

By contributing an annotated dataset of drum break regions (in the form of segmentations) we call attention

to an important musical construct that is pervasive across many genres beyond SBEM. Music producers

looking in digital collections would benefit from a full-blown system that can present relevant suggestions

for sampling new drum breaks.

In Chapter 7 we formalized an algorithm by Frane [56] to compute local swing ratio (LSR) based on both

the preceding and following interval lengths. Then we used Frane’s expert-annotated dataset to investigate

the correspondence between LSR computed manually and an automatic estimation of global swing ratio.

This is an important contribution mainly for two reasons. First this study departs from the more numerous

studies on swing ratio and microtiming in jazz. Second, the dataset is interesting because drum breaks are

a natural occurrence of solo percussion, and thus estimation algorithms can operate unhindered by further

instrumentation. Despite the small dataset, we were able to observe the joint role of swing ratio and swing

density (the number of intervals that are actually swung, divided by the total number of intervals). Given

the painstaking effort that it takes to annotate drum onsets at the sixteenth-note level (which is required to

compute swing ratios, it would be non-trivial to categorize or sort a large collection of drum breaks based

on their swing ratios. Studying drum breaks from the perspective of swing ratio is not only interesting

from a musicological perspective, but it also opens up new forms of interaction for producers looking to

sample material based on groove and other microrhythmic properties.
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Appendix A

NMF Toolbox

I collaborated with Christian Dittmar to develop the NMF Toolbox: a collection

of MATLAB code and examples that span multiple publications, such

as [49], [44], [90], and [89]. The formal definitions and mathematical notation

follow [97] and [44].

A.1 Introduction

Non-negative matrix factorization (NMF) is a family of methods widely used in MIR and audio processing,

but also many other fields that deal with signal processing and information retrieval. In general terms,

NMF decomposes a non-negative matrix V into the multiplication of two other non-negative matrices W

and H, such that V≈ Ṽ := W ·H.

In the case of audio signal processing and MIR, one popular choice for the matrix V is the magnitude

spectrogram of an audio signal containing a number of musical events spread across time. Intuitively

speaking, we would like to learn two non-negative matrices W and H that capture what happened (i.e.,

which particular sounds were produced, which drum kit parts were struck, which piano notes were

sounded), and when each one of these sound events was active in time. Intuitively, we can say that the

template (or spectral basis) matrix W contains the “what”—whereas H, called the gain or activation matrix,

contains the “when”. Keeping in mind the SBEM production setup described in Section 2.2, we can draw

parallels between SBEM production and the NMF framework. Recall that a sequencer sends abstract

musical instructions to the sampler (and the other instruments), telling it when to activate a pattern, and

with which intensity. Following this SBEM production metaphor, we can think of the activation matrix H

as representing the sequencer; H encodes the information about the location in time and relative intensity
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of the musical events. On the other hand, we can think of the template matrix W as the sampler, since it

contains a representation of the actual sounds or spectral information that is to be realized.

A.1.1 NMF and NMFD Models

For the sake of easier reading, in this section we reproduce portions from [44] and Chapter 4.

NMF is based on iteratively computing a low-rank approximation Ṽ ∈ RK×M
≥0 of the mixture spectrogram

V, where K ∈ N is the feature dimensionality and M ∈ N represents the number of elements or frames

along the time axis. Specifically, Ṽ is defined as the linear combination of the templates W ∈ RK×R
≥0 and

activations H ∈ RR×M
≥0 such that V≈ Ṽ := W ·H. The rank R ∈ N of the approximation (i. e., number of

components) is an important but generally unknown parameter.

NMF typically starts with a suitable initialization of the matrices W and H. For example, both matrices

could be populated with non-negative random numbers—however, depending on the task and availability

of prior information, it might make more sense to use other initialization strategies. After initialization,

both W and H are iteratively updated to approximate V with respect to a cost function L. A standard

choice is the generalized Kullback-Leibler Divergence (KLD) [83], given as

L=DKL(V | Ṽ) = ∑

(
V� log

(
V
Ṽ

)
−V+ Ṽ

)
. (A.1)

The symbol � denotes element-wise multiplication; the logarithm and division are to be performed

element-wise as well. The sum is to be computed over all K ·M elements of V. To minimize this cost, an

alternating scheme with multiplicative updates is used [83]. The respective update rules are given as

W←W�
V
Ṽ ·H

>

J ·H>
, (A.2)

H← H�
W> · V

Ṽ
W> · J

, (A.3)

where the symbol · denotes the matrix product. Furthermore, J ∈ RK×M denotes a matrix of ones. Since

this is an alternating update scheme, it should be noted that Eq. (A.2) uses the latest update of H from the

previous iteration. In the same vein, (A.3) uses the latest update of W. These update rules are typically

applied for a limited number of iterations L ∈ N, with the iteration index ` ∈ [0 : L].

NMFD extends NMF to the convolutive case by using two-dimensional templates so that each of the

R templates (or spectral bases) can be interpreted as a magnitude spectrogram snippet consisting of

T � M spectral frames. We assume that the track (and therefore the track’s magnitude spectrogram)

was constructed from a set of R patterns Pr ∈ RK×T r
, r ∈ [0 : R−1] := {0, . . . ,R− 1}. The parameter

T r ∈ N is the number of feature frames or observations for pattern Pr. In practice, the patterns can
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have different lengths—however, without loss of generality, we define their lengths to be the same

T := T 0 = . . .= T R−1, which could be achieved by adequately zero-padding shorter patterns until they

reach the length of the longest. Based on this assumption, the patterns can be grouped into a pattern tensor

P ∈ RK×R×T . Consequently, the subdimension of the tensor which refers to a specific pattern with index r

is Pr := P(·, r, ·), whereas Pt := P(·, ·, t) refers to frame index t simultaneously in all patterns. Thus, the

model for the feature representation becomes

V =̂
T−1

∑
t=0

Pt ·
t→
H , (A.4)

where
t→
(·) denotes a frame shift operator [124].

A.2 SBEM Example: Learning a Track Model with Minimal Information

We saw in Chapter 4 that we can use NMFD to learn the activation points for a SBEM track if we have a

downmix of the track and one copy of each loop present in the mix (i. e., V and W, respectively). As we

discussed in Section 4.6, it is unrealistic to expect that the individual loops are available, and thus the

question arises: How does NMFD perform with the absolute minimum amount of information? In other

words, what can we learn if we have only the target spectrogram V, the number of loops or patterns R, and

the template length T ? In the following we will go through the code example in Listing L.1 to examine

this scenario.

1 inpPath = 'data/';

2 filename = '120_jd.wav';

3 [xTr,fs] = audioread([inpPath filename]);

4 xTr = mean(xTr, 2);

5

6 % spectral parameters

7 paramSTFT.blockSize = 4096;

8 paramSTFT.hopSize = 2048;

9 paramSTFT.winFunc = hann(paramSTFT.blockSize);

10 paramSTFT.reconstMirror = true;

11 paramSTFT.appendFrame = true;

12

13 % STFT computation for Track returns complex-val, mag-spec, phase-spec

14 [XTr, ATr, PTr] = forwardSTFT(xTr, paramSTFT);

15

16 % get dimensions and time and freq resolutions

17 [numBinsTr, numFramesTr] = size(XTr);

18 deltaT = paramSTFT.hopSize / fs;

19 deltaF = fs / paramSTFT.blockSize;

20

21 % set common parameters

22 numComp = 3;

23 numIter = 15;
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24 numTemplateFrames = 87;

25

26 % generate initial activations

27 paramActivations.numComp = numComp;

28 paramActivations.numFrames = numFramesTr;

29 initH = initActivations(paramActivations, 'uniform');

30

31 % NMFD parameters

32 paramNMFD.numComp = numComp;

33 paramNMFD.numFrames = numFramesTr;

34 paramNMFD.numIter = numIter;

35 paramNMFD.numTemplateFrames = numTemplateFrames;

36 paramNMFD.initH = initH;

37 paramNMFD.numBins = numBinsTr;

38

39 % generate initial templates

40 paramTemplates.numComp = numComp;

41 paramTemplates.numBins = numBinsTr;

42 paramTemplates.numTemplateFrames = numTemplateFrames;

43 initW = initTemplates(paramTemplates, 'random');

44 paramNMFD.initW = initW;

45

46 %% visualize initialization data

47 paramVis = [];

48 paramVis.deltaF = deltaF;

49 paramVis.deltaT = deltaT;

50 fh1 = visualizeComponentsNMF(ATr, initW, initH, [], paramVis);

51

52 %% NMFD core method

53 [nmfdW, nmfdH, nmfdV, divKL] = NMFD(ATr, paramNMFD);

54

55 %% visualize after NMFD

56 fh2 = visualizeComponentsNMF(ATr, nmfdW, nmfdH, nmfdV, paramVis);

Listing L.1: Code example to learn templates and activations using a randomly initialized NMFD

model.

In lines 1–3 of Listing L.1 we set up the audio path, read the file for the mixture track into the variable

xTr (the suffix Tr for “Track” is appended to all relevant variables) and make it monaural (line 4). In

lines 7–11 we use the structure paramSTFT to set the STFT parameters: a block size of 4096 samples, a

hop size of 2048 samples, a Hann window, a Boolean value indicating that we wish to discard the mirror

spectrum (paramSTFT.reconstMirror), and a Boolean indicating that we want to pad the entire signal

with one-half block size at the beginning and end (paramSTFT.appendFrame). In line 14 we compute

the STFT by calling forwardSTFT, which returns the complex-valued spectrogram XTr, the magnitude

spectrogram ATr, and the phase spectrogram PTr. In lines 17–19 we obtain the spectrogram’s dimensions

and set deltaT (time resolution) and deltaF (frequency resolution) for later use. In lines 22–24 we

set the first parameters relative to NMFD. First we set the number of components numComp =̂ R := 3,

since we know a priori that the track was produced using 3 loops or patterns (line 22). In line 23 we set

the initial number of iterations numIter =̂ L := 15. In line 24 we set the number of template frames
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numTemplateFrames =̂ T := 87 because we know beforehand that each loop instance used to produce

the track has a length of 8 seconds (equivalent to 16 quarter-note-beats at 120 BPM, or 87 STFT frames

under the current settings). The next steps are to prepare the initial states for the activations and the

templates. In lines 27–29 we prepare the activation matrix initH =̂ H. The function initActivations()

initializes the activation matrix with dimensions specified in paramActivations (lines 27 and 28), and

values specified as a second parameter. The output matrix will consist of all ones, since we pass the

string parameter uniform to initActivations(). All the previous NMFD parameters are assigned to

the parameter structure paramNMFD in lines 32–37—this structure will later be passed to the function

NMFD(). In lines 40–42 we assign the three dimensions to the pattern tensor P, using paramTemplates.

The function initTemplates() takes these parameters, along with the string random, and initializes the

template tensor initW =̂ W with random values. In line 44 we append the initialized template tensor

initW to paramNMFD. In order to visualize the initial states of the templates and activations, we define the

variable paramVis in lines 47–50. We then call visualizeComponentsNMF() with the track spectrogram

ATr, the initialized templates initW, the initialized activations initH, and paramVis—this results in

Figure A.2. The core function in this example, NMFD() (line 53), takes the target spectrogram ATr =̂ V

together with the the parameter structure paramNMFD and performs the learning. The output arguments

for NMFD() are the learned pattern tensor nmfdW, the learned activation matrix nmfdH, the component

spectrograms nmfdV, and the Kullback-Leibler divergence across all iterations, divKL. Finally, in line 56

we use these outputs from NMFD() to call visualizeComponentsNMF()—this time generating the plots

seen in Figure A.3.

In Figure A.1a we show the ground truth (GT) for the track presented originally in Chapter 4 and which

we use for further examples in this appendix. Figure A.1b shows the GT templates, corresponding to

the three loops used in the track. The first template (colored red), corresponds to the drums; the second

template (green) corresponds to the melody; the third template (blue) corresponds to bass. In Figure A.1c

we show the GT activations, color-coded and numbered to match the templates on the left.

Figure A.2a shows W, the vertical axis represents log-frequency. Note that although the experiments were

conducted with linear frequency axes, we show log-frequency to enhance visual properties. The templates

are color-coded in red (template 1), green (template 2), and blue (template 3). In Figure A.2b we show

the activation matrix H, whose rows are colored and numbered to match the templates on the left. For

visualization (and also in subsequent figures), each row in H is normalized to have values between 0 and

1—since H is initialized to the constant 1 and we have colored the area under the curve, this results in

each row appearing as a horizontal bar.

Figure A.3 contains four panels—it is a snapshot of the NMFD model at iteration 15 (from a total of

30). In Figure A.3a we show the loss function L as a blue curve, for the first 15 iterations (denoted by

a red circle at iteration 15). The vertical axis, which is logarithmic, represents the KLD between the

target spectrogram V and the approximation Ṽ. We can see that the fastest learning happened within

the first 3 iterations, where the slope is most pronounced. After the third iteration, learning becomes
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Figure A.1: (a) Production structure for example track. (b) Ground truth templates and (c) ground truth
activations for NMFD model to learn structure and patterns of a SBEM track.
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Figure A.2: (a) Initial state for templates in an uninformed NMFD model to learn structure and patterns
of a SBEM track. (b) Initial state for activations.

slower, stabilizing at a divergence close to 1 ·10−6. Figure A.3b contains H— notice that the rows are very

similar to each other: there are higher gains close to the activation points (at multiples of the loop length,

8 seconds) and lower periodic peaks throughout. In Figure A.3c (showing W), we can see that the model

has learned some salient timbral properties mostly in the lower frequencies, but the templates have not

yet differentiated from each other—each template is still a mixture of all three loops used to produce the

track. Finally, in Figure A.3d, which shows Ṽ := W ·H, we can see coarse structural properties beginning

to appear, like the higher density between 16–24 s and 32–40 s, and a lower density from 24–32 s, where

only the melody pattern is active.
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Figure A.3: NMFD model with random initialization at iteration 15.
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Figure A.4: NMFD model with random initialization at iteration 30.

109



Appendix A. NMF Toolbox

Figure A.4 shows our NMFD model at the final state, after 30 iterations. In Figure A.4a we see the

KLD has reached a value slightly below 1 ·10−6; the model has learned the track structure and templates

remarkably well. We will now go through the visual characteristics of Figure A.4b and A.4c. The first

spectral template P1 has best approximated the drum loop—this is apparent in the vertical structures,

as well as the activation peaks in H (Figure A.4b), which largely coincide with the GT activations. P2

best approximates the bass pattern: we can see spectral information in the lower frequencies of P2 and

the activations in the second row of H largely coincide with the GT. Finally, we come to P3, which

closely resembles the melody pattern. We can see the up-and-down main melody line centered at around

400 Hz, and almost all activations in the top row of H coincide with the GT. The only exception is the

last activation (around 40 s), which does not appear in the original track. This spurious peak tells us that

P2 and P3 contain information from both the melody and bass patterns, leading to this confusion in the

model. Despite this erroneous peak, NMFD has correctly captured the track’s most salient characteristics,

without prior knowledge about the spectral content.

A.3 Diagonality-Enhanced NMF

In contrast to NMFD, where temporal continuity of the spectral bases is enforced through convolutive

template activation, standard NMF algorithms offer no such guarantees. For certain tasks, such as SBEM

decomposition, it is desirable to enforce temporal continuity by activating contiguous templates. In [49],

Driedger et al. describe a set of update rules for NMF that support the development of sparse diagonal

structures in the activation matrix. The intent of these rules is to encourage the activation of consecutive

templates to obtain sonically pleasing results in a task known as audio mosaicing. In this section we

present an example of diagonality-enhanced NMF (DE-NMF) with fixed templates—a different approach

for learning the activations of a SBEM track with known loops.

1 inpPath = 'data/';

2 filename = '120_jd.wav';

3 filenameBass = '120_jd_bass_1.wav';

4 filenameMelody = '120_jd_melody_1.wav';

5 filenameDrums = '120_jd_drums_1.wav';

6

7 [xTr,fs] = audioread([inpPath filename]);

8 xTr = mean(xTr, 2);

9 [xBass, fsBass] = audioread([inpPath filenameBass]);

10 [xMelody, fsMelody] = audioread([inpPath filenameMelody]);

11 [xDrums, fsDrums] = audioread([inpPath filenameDrums]);

12 xBass = mean(xBass, 2);

13 xMelody = mean(xMelody, 2);

14 xDrums = mean(xDrums, 2);

15

16 % spectral parameters

17 paramSTFT.blockSize = 4096;

18 paramSTFT.hopSize = 2048;

19 paramSTFT.winFunc = hann(paramSTFT.blockSize);

110



A.3. Diagonality-Enhanced NMF

20 paramSTFT.reconstMirror = true;

21 paramSTFT.appendFrame = true;

22

23 % STFT computation for Track returns complex-val, mag-spec, phase-spec

24 [XTr, ATr, PTr] = forwardSTFT(xTr, paramSTFT);

25

26 [XBass, ABass, PBass] = forwardSTFT(xBass, paramSTFT);

27 [XMelody, AMelody, PMelody] = forwardSTFT(xMelody, paramSTFT);

28 [XDrums, ADrums, PDrums] = forwardSTFT(xDrums, paramSTFT);

29 numTemplateFrames = size(ABass, 2); % we know that all loops are same length

30

31 % get dimensions and time and freq resolutions

32 [numBinsTr, numFramesTr] = size(XTr);

33 deltaT = paramSTFT.hopSize / fs;

34 deltaF = fs / paramSTFT.blockSize;

35

36 W0 = cat(2, ADrums, AMelody, ABass);

37 numSourceFrames = size(W0, 2);

38 numTargetFrames = numFramesTr;

39 % initialize activations randomly

40 paramActivations.numComp = numSourceFrames;

41 paramActivations.numFrames = numTargetFrames;

42 H0 = initActivations(paramActivations, 'random');

43

44 paramNMFdiag.fixW = 1;

45 paramNMFdiag.numOfIter = 20;

46 paramNMFdiag.continuity.polyphony = 3;

47 paramNMFdiag.continuity.length = floor(numTemplateFrames / 2);

48 paramNMFdiag.continuity.grid = 1;

49 paramNMFdiag.continuity.sparsen = [1, floor(numTemplateFrames / 2)];

50

51 % call the reference implementation as provided by Jonathan Driedger

52 [nmfdiagW, nmfdiagH] = NMFdiag(ATr, W0, H0, paramNMFdiag);

53 nmfdiagV = nmfdiagW * nmfdiagH;

54

55 %% visualize

56 paramVis = [];

57 paramVis.deltaF = deltaF;

58 paramVis.deltaT = deltaT;

59 fh1 = visualizeComponentsNMF(nmfdiagV, nmfdiagW, nmfdiagH, [], paramVis);

Listing L.2: Code example to learn NMF model with diagonality-enhanced activation matrix and

fixed templates.

The code in Listing L.2 shows DE-NMF with fixed templates, mainly following [49]. In lines 1–5 we

set up the paths where the audio files are located: the mixture track, as well as instances of the drums,

melody, and bass loops. In lines 7–14 we load the audio files and make them monaural for further

processing (variables xTr, xBass, xMelody, and xDrums). In lines 17–21 we prepare the parameter

structure paramSTFT with the necessary fields (identical to those described in Section A.2). In line 24 we

compute the STFT for the mixture track, obtaining the complex-valued spectrogram XTr, the magnitude

spectrogram ATr, and the phase spectrogram PTr. In lines 26–28 we compute the same three types
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of spectrograms for the individual loops, prefixing the variable names with X, A, and P, respectively.

Since we know that all loops have the same length, in line 29 we use the number of frames in the bass

loop to set the template length numTemplateFrames, in order to set a smoothing parameter later on in

line 49. In lines 32–34 we save the dimensions of the track spectrogram, as well as the time and frequency

resolutions deltaT and deltaF, respectively. To construct the spectral bases, we concatenate the loop

spectrograms along the time dimension into a single matrix, called W0 (line 36). In line 37 we save the size

of the newly constructed template matrix W0 as numSourceFrames, and in line 38 we save the number

of STFT frames for the mixture track as numTargetFrames. In lines 40 and 41 we use the previously

defined dimensions to create the parameter structure paramActivations, setting the number of spectral

components numComp to numSourceFrames and the number of frames (or observations along time)

numFrames to numTargetFrames. In line 42 we call initActivations with the parameter structure

paramActivations and the string random, which outputs H0, the initial activation matrix with random

values. In lines 44–49 we set the fields of paramNMFdiag, the structure that contains the parameters for

the DE-NMF learning. In line 44 we use the Boolean fixW to specify that we want fixed templates—in

other words, we disallow updates to the template matrix W0. In line 45 we set the number of iterations to

20. In line 46 we set continuity.polyphony to 3: this means that each column in the activation matrix

can have up to three active (salient) entries, taking into account that our track has up to 3 concurrently

active loops. In line 47 we set continuity.length to half the length of one loop instance; this parameter

controls the length of the smoothing window enhancing the diagonals of the activation matrix. In line 48

we set continuity.grid to 1, which ensures that the continuity constraints will be applied at each

iteration of the algorithm. In line 49, the field continuity.sparsen specifies the length of a max-filter

used to make activations more sparse, by preserving local maxima in the matrix. We have chosen one-half

of the loop length, since we want to discourage diagonal structures that are too close together—i. e.,

repeating activations at the beginning of a loop instead of learning the full length. In line 52 we call

the main function for this example, NMFdiag(), with ATr as the target spectrogram, W0 as the initial

(and fixed) template matrix, H0 as the randomly initialized activation matrix, and paramNMFdiag as the

parameter structure. NMFdiag() returns nmfdiagW and nmfdiagH, which we multiply in line 53 to obtain

nmfdiagV, the learned spectrogram approximating the track. In lines 56–59 we prepare a structure with

visualization parameters, paramVis, and then call visualizeComponentsNMF(), which results in the

plot shown in Figure A.5.

Figure A.5 shows the state of our DE-NMF model after 20 update iterations. Figure A.5a contains H,

the activation matrix learned with the constraints set in lines 44–49 of Listing L.2. The horizontal axis

represents time and the vertical axis corresponds to frame indices from the matrix W in Figure A.5b.

The red dashed horizontal lines are intended to simplify understanding the correspondence between

diagonals and their counterparts in the template matrix—these annotations are added for illustrative

purposes and are not generated by the function visualizeComponentsNMF() (line 59 of Listing L.2).

The main characteristic of DE-NMF is that it enforces consecutive activations of the templates—which is

desirable because we know a priori that full-length loop activations were used to produce the track. Recall
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Figure A.5: Diagonal NMF.

that our running example track starts with an isolated activation of the drum loop from 0–8 s. We can see

in the template matrix (Figure A.5b) that the region labeled 1 corresponds to the drum loop, which, in turn,

corresponds to the bottom portion of the activation matrix, shown in Figure A.5a. Focusing on the drum

loop activations, the expected behavior is to have a diagonal structure starting at the lower-left corner of

the activation matrix and ending at the dashed line at frame index 87; this means that all template vectors

from the drum loop were activated consecutively in the first 8 seconds of the track. Ideally, the bottom

portion of the activation matrix would have 6 diagonals, starting at 0, 8, 16, 32, 40, and 48 s, respectively.

In practice, due to the high self-similarity within the drum loop, further diagonals emerge between the

expected ones. The same principle holds for the other regions in the activation matrix corresponding

to melody and bass. In Figure A.5a we can see that DE-NMF has correctly learned the main structural

aspects of our example track.

Figure A.5b shows the template matrix W, made by horizontally concatenating the drums (frames 0–86),

melody (frames 87–173), and bass (frames 174–260). Each loop has a duration of 8 seconds, as indicated

by the red dashed vertical lines which separate the loops in the matrix for better visibility; the vertical

axis corresponds to log-frequency. Figure A.5c shows the model Ṽ := W ·H obtained through the code in

Listing L.2.
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A.4 MATLAB Function Reference

Filename Main parameters Description

NMFD.m V,

numComp,

numIter,

numTemplateFrames,

initW,

initH,

paramConstr,

fixH

Non-Negative Matrix Factor Deconvolution with
Kullback-Leibler-Divergence and fixable components.
The core algorithm was proposed in [124], the specific
adaptions are used in [44].

NMF.m V,

costFunc,

numIter,

numComp

Given a non-negative matrix V, find non-negative tem-
plates W and activations H that approximate V. Multiple
cost functions are supported.

NMFdiag.m V,

W0,

H0,

distMeas,

numOfIter,

fixW,

continuity.length,

continuity.grid,

continuity.sparsen,

continuity.polyphony

Given a non-negative matrix V, find non-negative matrix
factors W and H such that V≈W ·H. If specified, also
enforce continuity constraints, as in [49].

NMFconv.m V,

numComp,

numIter,

numTemplateFrames,

initW,

initH,

beta,

sparsityWeight,

uncorrWeight

Convolutive Non-Negative Matrix Factorization with
Beta-Divergence and optional regularization parameters
as described in Chapter 3.7 of [21]. The averaged acti-
vation updates are computed via the compact algorithm
given in paragraph 3.7.3. For the sake of consistency, we
use the notation from [44] instead of the one from [21].

semiFixedComponentConstraintsNMF.m W,

H,

iter,

numIter,

initW,

initH,

adaptDegree,

adaptTiming

Implements a simplified version of the soft constraints
in [90]. Pass this function pointer to NMFD() in order to
fix (or partially fix) templates.

convModel.m W,

H

Convolutive NMF model implementing Eq. (4) from [44].
Note that it can also be used to compute the standard
NMF model in case the number of time frames of the
templates equals one.
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shiftOperator.m A,

shiftAmount

Shift operator as described in Eq. (5) from [44]. It shifts
the columns of a matrix to the left or the right and fills
undefined elements with zeros.

initActivations.m numComp,

numFrames,

deltaT,

pitches,

onsets,

durations,

drums,

decay,

onsetOffsetTol,

tolerance,

strategy

Implements different initialization strategies for NMF
activations. The strategies ’random’ and ’uniform’ are
self-explanatory. The strategy ’pitched’ places gate-like
activations at the frames, where certain notes are active in
the ground truth transcription [47]. The strategy ’drums’
places decaying impulses at the frames where drum on-
sets are given in the ground truth transcription [44].

initTemplates.m numComp,

numBins,

numTemplateFrames,

pitches,

drumTypes,

strategy

Implements different initialization strategies for NMF
templates. The strategies ’random’ and ’uniform’ are
self-explaining. The strategy ’pitched’ uses comb-filter
templates as described in [47]. The strategy ’drums’
uses pre-extracted, averaged spectra of desired drum
types [44].

visualizeComponentsNMF.m V,

W,

H,

compV,

deltaT,

deltaF,

startSec,

endeSec

Given a non-negative matrix V, and its non non-negative
NMF or NMFD components, this function provides a
visualization.

NEMA.m lambda This function takes a matrix of row-wise time series
and applies a non-linear exponential moving average
(NEMA) to each row. This filter introduces exponentially
decaying slopes and is defined in Eq. (3) from [42].

midi2freq.m midi Converts a given MIDI pitch to the corresponding fre-
quency in Hz. No sanity checks on the validity of the
input are performed.

freq2midi.m freq Converts a given frequency in Hz to the corresponding
MIDI pitch, applying a quantization to semitone steps
on the equal tempered scale. No sanity checks on the
validity of the input are performed.

logFreqLogMag.m A,

deltaF,

binsPerOctave,

upperFreq,

lowerFreq

Given a magnitude spectrogram, this function maps
it onto a compact representation with logarithmically
spaced frequency axis and logarithmic magnitude com-
pression.
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forwardSTFT.m x,

blockSize,

hopSize,

winFunc,

reconstMirror,

appendFrame

Given a time signal as input, this computes the spectro-
gram by means of the Short-time Fourier transform.

inverseSTFT.m X,

blockSize,

hopSize,

anaWinFunc,

reconstMirror,

appendFrame,

synWinFunc,

analyticSig,

numSamples

Given a valid STFT spectrogram as input, this recon-
structs the corresponding time-domain signal by means
of the frame-wise inverse FFT and overlap-add method
described as LSEE-MSTFT in [69].

alphaWienerFilter.m alpha,

binarize

Given a cell-array of spectrogram estimates as input,
this function computes the alpha-related soft masks for
extracting the sources. Details about this procedure are
given in [88], further experimental studies in [39].
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Break-Informed Audio Decomposition for
Interactive Redrumming

This section is based on [89]: Patricio López-Serrano, Matthew E. P. Davies,

Jason Hockman, Christian Dittmar, and Meinard Müller. Break-informed audio

decomposition for interactive redrumming. In Late Breaking and Demo Session

of the International Society for Music Information Retrieval Conference (ISMIR):,

2018.

In this appendix we describe a further scenario where audio decomposition techniques are used for a

creative application. Redrumming or drum replacement is used to substitute or enhance the drum hits in a

song with one-shot drum sounds obtained from an external collection or database. In an ideal setting, this

is done on multitrack audio, where one or more tracks are dedicated exclusively to drums and percussion.

However, most non-professional producers and DJs only have access to mono or stereo downmixes of the

music they work with. Motivated by this scenario, as well as previous work on decomposition techniques

for audio signals, we propose a step towards enabling full-fledged redrumming with mono downmixes.

B.1 Proposed Method

Figure B.1 gives an overview of our method for break-informed redrumming, inspired by [99]. The figure

consists of two sides: the left side contains the track that will be redrummed, and the right side contains

the track that will provide new timbral information. We describe each side in the following.

As input for the track that will be redrummed, we need the monaural (mono) downmix of a song that

contains a drum break, as well as a segmentation indicating the location of the drum break. A method for
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Figure B.1: Overview of our break-informed redrumming method. For a detailed explanation, see
Section B.1.

automatically finding percussion-only regions in digital music recordings is described in [92]. Since we

are working with mono input data, we need a way to extract multiple drum kit tracks from the mixture. At

this stage we use the drum source separation (DSS) method by Dittmar and Müller [44] (which is based

on non-negative matrix factor deconvolution, NMFD) to learn timbral templates for the drum kit elements

present in the break.

Following the assumption that the drum timbre remains largely unchanged throughout the track, we

fix the drum templates and learn a further non-negative matrix factorization (NMF) for the entire track,

following [79]. In principle, this is equivalent to NMF-based harmonic-percussive source separation

(HPSS), such as recently proposed by [81]. We now have spectral information for all the non-percussive

instruments (or the harmonic part, shown as horizontal orange bars), which includes lead melody as well

as accompaniment instrumentation. Our NMF model has also learned activations for the fixed drum

templates—these activations are shown as light purple curves for kick drum (KD), snare drum (SD), and

hi-hat (HH), and will be used as insertion positions for the redrumming.

The right side of Figure B.1 shows a second song containing a drum break, along with an indication of

where the break is. This drum break will provide the timbral information for the redrum, with sounds

being “copied” onto appropriate timepoints in the left-hand track. Again, we use NMFD-based DSS [44]
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to learn the timbral properties of individual drum hits in the break, in order to combine these spectral

templates with the activations found in the left-hand track.

B.2 Real-World Scenario

Fully automatic redrumming is a difficult task. Especially when working with audio mixtures, the main

challenge lies in avoiding crosstalk—not only between the harmonic and percussive parts, but also among

the individual drum kit parts themselves. In a studio setting, redrumming is usually done by selecting

(one-shot) drum hit sounds from a collection or database—in this contribution, instead of having a

ready-made drum sound database, we construct this collection from a drum break of the user’s choosing.

Thus, for instance, we can imagine that a user selects James Brown’s “Funky Drummer” as a track to be

redrummed, using the sounds (or timbral properties) from “Amen, Brother” by The Winstons.

Redrumming is also usually done manually or semi-manually, using a DAW such as Logic Pro or

Cubase, or a specialized plugin, like Drumagog or Superior Drummer. Assuming that a user wishes to

substitute KD hits, the procedure would be to step through all the transients in the drum track, placing

the cursor at the beginning of each KD hit. Then, the user would select a sound from the library and use

it to either replace the current KD hit, or place it in a new track to enhance the timbral properties of the

existing one. An advantage of our system is that all hits of a certain type (e.g., all KD hits) are tracked

simultaneously by our decomposition model, enabling a once-through automatic substitution.

Furthermore, in a professional setting, musicians often request a certain sound or aesthetic for the mixing

process, wishing to sound like other artists that they admire. Thus, another advantage of our method is that

users can directly achieve this effect by selecting a drum break recording with their desired properties.
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