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and proof-reading of this thesis. I also want to thank all other members of Meinard’s group for

inspiring discussions and useful hints.

This thesis concludes my studies on Communications and Multimedia Engineering. Getting to

know people from so many different cultures and backgrounds has been an unforgettable and

enriching experience. Thanks to all my new and old friends who made this an incredible journey!

Finally, I would like to thank my family and Doro for their unconditional love and support.

iii Master Thesis, Sebastian Rosenzweig





ABSTRACT

Abstract

Analyzing recorded audio material has become increasingly important in ethnomusicological

research. These recordings may contain valuable cues on performance practice - information that

is often lost in symbolic music transcriptions. A special case is the current ethnomusicological

research on polyphonic vocal music from Georgia, a country located in the Caucasus region of

Europe. Research on Georgian vocal music is challenging, since these chants have exclusively

been passed down orally for generations, with only few transcriptions available.

In this context, a unique dataset of three-voice chant recordings by the former master chanter

Artem Erkomaishvili has become of great interest for ethnomusicological research. The chants

were recorded in a three-stage process, leading to a repetitive structure. In this thesis, we address

two music information retrieval problems based on this special dataset. First, the goal is to

segment these recordings by detecting similar or repeating parts. Second, we consider a task

called fundamental frequency estimation, where the goal is to estimate the predominant melody

as a basis for transcription or further musical analysis.

The main contributions of this thesis are as follows. First, to segment the recordings, we examine

a standard audio matching technique in detail and perform an extensive evaluation on the

results. For reference, we also apply a machine learning approach for the same task. Second, we

present a fundamental frequency estimation algorithm tailored to to the repetitive structure of

the recordings and compare its performance to related algorithms. Third, based on reference

annotations, we show how audio processing techniques can support Georgian vocal music research

by musical interval analysis.
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ZUSAMMENFASSUNG

Zusammenfassung

In der Musikethnologie gewinnt die Analyse von Audiomaterial zunehmend an Bedeutung.

Ein Grund hierfür ist, dass Audioaufnahmen wertvolle Informationen zur Aufführungspraxis

enthalten können, die in Transkriptionen oft nicht enthalten sind. Ein aktuelles Fallbeispiel

ist die musikethnologische Forschung zu polyphoner Vokalmusik aus Georgien. Die Forschung

hierzu stellt eine Herausforderung dar, da die Gesänge seit Generationen ausschließlich mündlich

weitergegeben werden und wenige Transkriptionen vorhanden sind.

In diesem Kontext ist ein besonderer Datensatz von dreistimmigen Gesangsaufnahmen des

einstigen georgischen Meistersängers Artem Erkomaishvili von großem Interesse für die musik-

ethnologische Forschung. Die Aufnahmen wurden in einem dreistufigen Verfahren angefertigt

und weisen eine von Wiederholungen geprägte Struktur auf. Basierend auf diesem speziellen

Datensatz, beschäftigt sich diese Masterarbeit mit zwei Problemstellungen im Bereich des Music

Information Retrievals. Zunächst ist es das Ziel, die Aufnahmen durch Erkennung ähnlicher

oder sich wiederholender Teile zu segmentieren. Danach werden Verfahren zur Fundamental-

frequenzschätzung betrachtet, die die dominierende Melodie in Audioaufnahmen bestimmen. Die

Ergebnisse können als Grundlage für Transkriptionen oder weitere musikalische Analysen dienen.

Ein Hauptbeitrag dieser Arbeit ist die detaillierte Untersuchung einer Standard-Audio-Matching-

Technik zur Segmentierung der wiederholungsbasierten Aufnahmen. Als Referenz für diese Auf-

gabe wird ein Ansatz aus dem Bereich des Maschinellen Lernens angewendet. Des Weiteren wird

ein Algorithmus zur Fundamentalfrequenzschätzung entwickelt, der auf die Wiederholungsstruktur

der Aufnahmen zugeschnitten ist, und mit anderen, verwandten Algorithmen verglichen wird.

Darüber hinaus wird anhand von Analysen zu musikalischen Intervallen gezeigt, wie Tech-

niken aus der Audiosignalverarbeitung musikethnologische Forschung zu georgischer Vokalmusik

unterstützen können.
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1. INTRODUCTION

Chapter 1

Introduction

Music is an elementary part of every culture. The distinctiveness of each musical work or

performance is shaped by social, geographical, and religious influences. The scientific analysis of

these complex mixtures of influences in order to “decipher” the main musical ideas and recover

the artists’ or composers’ original intention is the subject of ethnomusicological research. In

general, ethnomusicology is defined as the “division of musicology in which special emphasis is

given to the study of music in its cultural context” [31]. Starting in the late 19th century as a

discipline focusing on comparative studies, nowadays, ethnomusicology has adopted a multitude

of disciplines such as the preservation of disappearing music cultures.

In the course of a rising mechanization in the 20th century, audio recordings of musical perfor-

mances have become increasingly important for ethnomusicologists and researchers in related disci-

plines [31]. Audio recordings not only constitute an easy method to preserve musical performances,

they also enable unlimited reproduction for later analysis. Furthermore, an audio recording can

be seen as an “objective” representation of a musical performance, compared to symbolic music

transcriptions that may include subjective interpretations. The availability of audio recordings

in digital form and the increasing computational capability starting from the late 20th century

paved the way for an interdisciplinary research field called Music Information Retrieval (MIR).

MIR aims at “extending the understanding and usefulness of music data, through the research,

development and application of computational approaches and tools” [1]. Thus, researchers

combine knowledge from music, computer science and signal processing.

This thesis is grounded at the intersection of music information retrieval and ethnomusicology.

More specifically, we examine and develop audio signal processing techniques for analyzing

a set of chant recordings by the former Georgian master chanter Artem Erkomaishvili. The

recording collection is of great importance for ethnomusicologists, since there exist only few audio

recordings of Georgian chants. The dataset also motivates exciting MIR research questions: since

the three-voice chants were recorded in a three-stage process, the recordings exhibit a repetitive
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1. INTRODUCTION

structure, which creates an interesting scenario for computational analysis. In this thesis, we

focus on two major MIR tasks.

The first task is termed audio segmentation. Although there are various criteria to segment audio

recordings, they can be grouped into three main classes [26]: homogeneity-based segmentation

detects parts that are similar with respect to a certain musical property such as instrumentation

or tempo. Novelty-based segmentation is based on events or sudden changes. Repetition-based

segmentation relies on similar or repeating parts. Due to the repetitive structure of Erkomaishvilis

recordings, we first focus on repetition-based segmentation and then give a short outlook to

homogeneity- and novelty-based segmentation.

The second task is called fundamental frequency estimation, which involves “automatically

obtaining a sequence of frequency values representing the pitch of the dominant melodic line

from recorded music audio signal” [37]. The task can also be seen as an intermediate step for

symbolic music transcriptions. In this context, the dataset of Georgian chants provides different

levels of difficulty, since the recordings include monophonic as well as more complex polyphonic

parts. From an ethnomusicological perspective, the results provide a starting point for various

subsequent analyses addressing the performance practice of Georgian vocal music.

1.1 Structure of this Thesis

In Chapter 2, we first elaborate on the musical background with specific focus on Georgia,

Georgian vocal music and current ethnomusicological research. Then, we review the well-known

Short-Time Fourier Transform, log-frequency spectrograms and the concept of instantaneous

frequency estimation, which form the technical background of this thesis.

In Chapter 3, we discuss the segmentation of the given Georgian chant recordings. To this

end, we first describe the generation of reference annotations. Secondly, we examine informed

and less informed audio matching approaches based on diagonal matching. Finally, we apply a

machine-learning algorithm on this task.

Chapter 4 is dedicated to fundamental frequency (F0) estimation. After giving an overview

of techniques and challenges, we elaborate on the generation of reference annotations. Then,

we present several F0 estimation algorithms and show their properties on selected recordings.

Furthermore, we develop a three-stage F0 estimation algorithm tailored to the Georgian chant

recordings. In a final step, we evaluate the performance of all algorithms on the dataset.

In Chapter 5, we show how audio processing techniques can support research on Georgian vocal

music by interval analysis on the reference F0 annotations. Furthermore, we outline ways to

enhance analysis results.
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1.2 MAIN CONTRIBUTIONS

In Chapter 6, we recapitulate the main achievements of this thesis, draw final conclusions and

outline future work.

1.2 Main Contributions

The main contributions of this thesis are as follows.

First, we apply audio matching approaches, which exploit the repetitive structure of the Georgian

chant recordings. Furthermore, we provide a deeper understanding of diagonal matching by

comparing different features and distance measures. As an example for homogeneity- and novelty-

based segmentation, we demonstrate how a machine-learning-based singing voice detector can be

applied to the same task.

Second, we develop a three-stage F0 estimation algorithm tailored to the repetitive structure of

the recordings. Additionally, we provide a detailed performance comparison of multiple standard

F0 estimation algorithms on the dataset of Georgian chants.

Third, we outline possible applications to ethnomusicological research by performing musical

interval analysis.
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2. BACKGROUND

Chapter 2

Background

In this chapter, we elaborate on the musical and technical background of this thesis. More

specifically, in Section 2.1, we give a brief introduction to Georgian vocal music research and the

given set of recordings, which is used in our experiments. In Section 2.2, we introduce concepts

and notions of time-frequency representations, which form the basic signal processing tools of

this work.

2.1 Georgian Vocal Music Research

In this section, we first give an introduction to Georgia, Georgian vocal music and current

ethnomusicological research (Section 2.1.1). Secondly, we describe a collection of Georgian chant

recordings of great importance for ethnomusicological research, which we analyze throughout

this thesis (Section 2.1.2). Finally, we point out related research in this field (Section 2.1.3).

2.1.1 Georgian Singing Tradition

The description in this section closely follows [30].

Georgia is a country located in the Caucasus region of Eurasia, which has a rich centuries-old

polyphonic singing tradition. In particular, Georgian polyphonic singing has been acknowledged

as an intangible cultural heritage, which has “regained a place of prominence in the hearts and

minds of the public and in the life of the Church” [42].

Despite its small size, Georgia is home to many stylistically very diverse singing traditions, which

form an essential part of the cultural identity of this country and which are increasingly receiving

the attention of international music lovers, musicians, and scholars alike [46].
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Figure 2.1: Recording of the Georgian chant “Da Sulisatsa” sung by Artem Erkomaishvili
(from [30]). (a) Three-stage recording process. (b) Waveform.

In order to preserve this cultural treasure, the “Commission for Chant Preservation” began

notating Georgian chants in the 1860s, which had been passed down orally for many generations.

This has resulted in thousands of transcriptions collected between 1880–1920. Due to changing

social and political conditions, however, the tradition of how to perform these chants has largely

been lost, and ethnomusicologists have started to research on traditional performance practice [42].

The distinctiveness of Georgian vocal polyphonic music in comparison to Western music is based

on the abundant use of “dissonances” and on the fact that the music is not tuned to the 12-tone

equal-tempered scale. While musicologists have agreed on the non-tempered nature of traditional

Georgian vocal music, the particular nature of the traditional Georgian tuning is an ongoing

topic of intense and controversial discussions [12, 45, 38].

2.1.2 Recordings by Artem Erkomaishvili

The description in this section closely follows [30].

In the context of the aforementioned preservation activities for Georgian chants, a collection of

music recordings performed by Artem Erkomaishvili (1887–1967)—one of the last representatives

of the master chanters (“sruligalobelni”) of Georgian music—has become of great importance.

Recorded at the Tbilisi State Conservatory in 1966, the aging Erkomaishvili was asked to

perform three-voice chants by successively singing the individual voices. At the beginning of each

recording, Artem Erkomaishvili announces the name of the chant he is going to perform. After

recording the lead voice, one tape recorder was used to playback this first voice while a second

tape recorder was used to synchronously record the middle voice. Similarly, playing back the

first and second voice, the bass voice was recorded, see Figure 2.1. Note that due to this specific

recording procedure, Artem Erkomaishvili begins the middle and bass voice always with a slight

8 Master Thesis, Sebastian Rosenzweig



2.2 TIME-FREQUENCY REPRESENTATIONS

offset against the lead voice.

In this way, Erkomaishvili was able to accompany and embellish his own recordings, yielding a

genuine source of original Georgian musical thinking [42]. The resulting collection of 101 audio

recordings of 1 − 13 minutes length is hosted at the Folklore Department of the Tbilisi State

Conservatory and has been made available at [43]. The collection comprises various types of

chants including hymns for Easter, Christmas, or wedding ceremonies. Despite the poor sound

quality, especially in the third part of the recordings due to tape recorder noise, this collection is

still of great importance for ethnomusicological research.

While analyzing these chants, the files in the collection have been renamed according to the

convention introduced in Appendix A. Furthermore, the files have been transcoded from the

original 128 kbit/s MP3 to mono WAV files with a sampling rate of 22 050 Hz. We will use this

collection throughout this thesis as an input for various audio processing techniques, which also

exploit the three-part structure of the recordings.

2.1.3 Related Research

In summer 2015, another collection of Georgian chants was recorded by Scherbaum et al. during

an exploratory field trip to Upper Svaneti/Georgia [40]. The recordings comprise various chants

sung by different groups and singers in different villages. A special property of this collection is

the variety of recording devices used. Besides a camcorder for video recording and conventional

stereo microphones to capture the overall impression, each of the singers was recorded separately

with a headset microphone and a larynx/throat microphone.

Throat microphones pick up the vibrations of the singer’s throat and convert them to an audio

signal. In this way, unwanted environmental noise is not recorded by the microphones, leading

to a reasonable voice quality even in loud environments. This effect is especially useful when

recording polyphonic vocal music performances, since every throat microphone captures the voice

of only one singer while suppressing the other singers’ voices. First experiments with throat

microphones have been conducted in [39].

At the time of this writing, the recordings were not yet publicly available.

2.2 Time-Frequency Representations

In this section, we introduce the basic notions of time-frequency representations used throughout

this thesis. In particular, we focus on the Fourier Transform and its short-time formulation

(STFT) in Section 2.2.1. Based on these formulations we derive a spectrogram respresentation

with a logarithmically spaced frequency axis in Section 2.2.2. Finally, in Section 2.2.3, we show

9 Master Thesis, Sebastian Rosenzweig



2. BACKGROUND

how the concept of Instantaneous Frequency Estimation can be used to refine the frequency

resolution of the previously introduced STFT.

2.2.1 Fourier Transform

The Fourier Transform is the basic analysis step in many applications in audio signal processing.

It transforms a given time signal into the frequency domain. For a discrete time signal x of

length N ∈ N, the Discrete Fourier Transform (DFT) is defined as

X(k) =
N−1∑
n=0

x(n) exp(−2πikn/N) , (2.1)

for k ∈ [0 : N − 1] according to [26, Section 2.4].

The complex-valued Fourier coefficients X describe the magnitude and phase of a sinusoidal

with physical frequency

Fcoef(k) =
k · Fs

N
. (2.2)

Figure 2.2 shows different representations of our running example “Da Sulisatsa”

(GCH 087 Erkomaishvili.wav) by Artem Erkomaishvili. From the waveform in Figure 2.2a,

we can get a rough idea about when a sound event is occurring, but no information about its

spectral properties. In the magnitude Fourier spectrum in Figure 2.2b, we see the spectral

content of the whole recording, however, the temporal information is lost. In order to retrieve

both the temporal and spectral information of a digital audio recording, one uses the discrete

Short-Time Fourier Transform (STFT). The basic idea behind the STFT is to divide the audio

signal into short frames of length N using a suitable window function w and calculate the Fourier

transform for each of the frames. Following [26, Section 2.5], this leads to

X (m, k) =
N−1∑
n=0

x(n+mH)w(n) exp(−2πikn/N) , (2.3)

where m ∈ Z is the frame index and k ∈ [0 : K] is the frequency index. The hopsize H ∈ N
defines the number of samples between two consecutive frames. The resulting complex time- and

frequency-dependent coefficients are associated with the physical time position

Tcoef(m) =
m ·H
Fs

(2.4)

given in seconds and the physical frequency

Fcoef(k) =
k · Fs
N

(2.5)
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Figure 2.2: Signal representations of “Da Sulisatsa” (And with thy spirit) by Artem Erkomaishvili.
(a) Waveform. (b) Magnitude Fourier spectrum. (c) Magnitude spectrogram.

given in Hz. The magnitude of the STFT is referred to as magnitude spectrogram:

Y(m, k) := |X (m, k)| . (2.6)

Figure 2.2c shows a magnitude spectrogram of our running example with N = 1024 Samples

and H = 128 Samples. Dark regions in the spectrogram reflect coefficients with high magnitude,

whereas white regions reflect coefficients with low magnitude. In order to enhance regions in

the spectrogram with low magnitude, the spectrogram has been compressed using logarithmic

compression defined by

Γγ(Y) := log(1 + γ · Y) , (2.7)

with γ = 0.1.
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2.2.2 Log-Frequency Spectrogram

The spectrogram representation introduced in Section 2.2.1 based on the STFT possesses a

linearly sampled frequency axis. This means that the distance between the center frequencies of

two neighboring frequency bands is constant. However, in order to account for the logarithmic

frequency perception of the human ear, it is desirable to have a logarithmically spaced frequency

axis. The so called log-frequency spectrogram can be calculated in different ways, e.g. using

interpolation or pitch filterbanks [25, Chapter 3]. Here, we focus on a rather simple binning

technique explained in [26, Section 3.1]. Given a STFT X of an audio signal, the main idea of

this technique is to assign each coefficient X (n, k), n ∈ Z and k ∈ [0 : K], to a MIDI pitch with

the center frequency Fpitch(p) that is closest to the frequency Fcoef(k). More precisely, we define

the set of frequency indices that are pooled in the pitch band p (also called bin) as

P (p) = {k : Fpitch(p− 0.5) ≤ Fcoef(k) < Fpitch(p+ 0.5)} , (2.8)

with p ∈ [0 : 127]. A pitch-based log-frequency spectrogram YLF : Z× [0 : 127]→ R is then given

by

YLF(n, p) =
∑

k∈P (p)

|X (n, k)|2 . (2.9)

According to [26, Section 8.2.2.1], it can be shown that equation 2.8 can also be reformulated to

P (p) = {k : Bin(Fcoef(k)) = p} , (2.10)

with the binning function

Bin(ω) =
⌊
12 · log2

( ω

440

)
+ 69.5

⌋
. (2.11)

The binning function assigns a given frequency ω ∈ R to a MIDI pitch p := Bin(ω). This yields,

e.g. for the reference tone A4 =̂ 440 Hz, a MIDI pitch of p = 69. Furthermore, an octave is

subdivided into twelve bands according to the twelve-tone equal tempered scale. Note that this

mapping creates a logarithmic frequency axis with a fixed resolution of 100 cents (one semitone)

per bin. When analysing music recordings that do not follow the twelve-tone equal-tempered

scale, such as Georgian music, one may want to have a finer logarithmic axis resolution. To this

end, we generalize the binning function 2.11 as follows. Given a desired frequency resolution R

in cents and a reference frequency ωref , which is assigned to the bin index 1, the bin assignment

is defined by

Bin(ω) =

⌊
1200

R
· log2

(
ω

ωref

)
+ 1.5

⌋
. (2.12)

Note that although this definition allows us to bin the coefficients with an arbitrary resolution,

12 Master Thesis, Sebastian Rosenzweig
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Figure 2.3: Spectrogram representations of “Da Sulisatsa” (And with thy spirit) by Artem
Erkomaishvili. (a) Log-frequency spectrogram. (b) Log-frequency spectrogram with refined
frequency resolution.

the overall frequency resolution of the log-frequency spectrogram is still limited by the STFT

hopsize and window overlap. However, the frequency resolution of the STFT can be refined, e.g.

by using instantaneous frequency estimation (see Section 2.2.3).

A log-spectrogram with a resolution of R = 10 cents and a reference frequency ωref = 55 Hz of

our running example “Da Sulisatsa” (And with thy spirit) by Artem Erkomaishvili is shown in

Figure 2.3a. Again we applied logarithmic compression with γ = 0.1. The non-linear expansion

of the linearly spaced STFT coefficients results in a clearly visible blurring effect in the lower

part of the spectrogram.

2.2.3 Refined STFT Resolution

Depending on the STFT parameters, the frequency resolution of the STFT may not be high

enough to capture small variations in melody such as vibrato or glissando. Increasing the window

length N would improve the frequency resolution, but would also lead to an undesirable decrease

in time resolution. In this section, we introduce a method called Instantaneous Frequency

Estimation, which makes use of the spectrogram’s phase information to increase the frequency

resolution without changing the time resolution.
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Figure 2.4: Illustration of phase progression in the complex plane (from [26, p. 435]).

First, we recall the definition of the STFT as introduced in Section 2.2.1. Each complex-

valued time-frequency bin X (n, k) can be interpreted as a sinusoidal component with amplitude

|X (n, k)| and phase ϕ(n, k). Assume we are given two adjacent time-frequency bins X1 = X (n, k)

and X2 = X (n + 1, k), both corresponding to the band with the “coarse” physical frequency

ω = Fcoef(k). From the STFT coefficients, we are also given the corresponding phase estimates

ϕ1 = ϕ(n, k), ϕ2 = ϕ(n+ 1, k) at the time instances t1 = Tcoef(n), t2 = Tcoef(n+ 1). The given

scenario is visualized in Figure 2.4. Our goal is to use the given time and phase information to

estimate the frequency band’s “real” frequency IF (ω).

Given the physical frequency ω, we can determine the phase progression over the course of the

interval ∆t = t2 − t1:
ω ·∆t .

With this and ϕ1 we can estimate the phase at time instant t2:

ϕPred = ϕ1 + ω ·∆t . (2.13)

Now, we can compare the predicted phase ϕPred to the given phase ϕ2 and compute the phase

error ϕErr. Ideally, if both bins correspond to the same “real” frequency, the error will be zero.

ϕErr = Ψ(ϕ2 − ϕPred) . (2.14)

In order to avoid phase ambiguities, we need an unwrapped version of the phase obtained by the

principal argument function Ψ : R→ [−0.5, 0.5). With these results, we can correct the “coarse”
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phase progression by adding the error phase:

ω ·∆t+ ϕErr .

This gives us the number of oscillations within the interval ∆t. Given that ∆t is very small

(typically a couple of ms), we can finally compute the instantaneous frequency estimates

F IF
coef(n, k) = IF (ω) =

ω ·∆t+ ϕErr

∆t
= ω +

ϕErr

∆t
. (2.15)

Similarly to the procedure described in Section 2.2.2, we can bin the refined STFT coefficients

F IF
coef(n, k) onto a logarithmic frequency axis. To this end, we again define the set of frequency

indices that are pooled together:

PIF(n, b) = {k : Bin(F IF
coef(n, k)) = b} , (2.16)

with bin index b ∈ [1 : B] and frame index n ∈ Z. The refined log-frequency spectrogram YIF
LF is

derived from this new assignment by setting

YIF
LF(n, b) =

∑
k∈PIF(n,b)

|X (n, k)|2 . (2.17)

Figure 2.3b shows a refined log-frequency spectrogram again logarithmically compressed with

γ = 0.1. In comparison with the standard log-frequency spectrogram shown in Figure 2.3b,

the resolution, especially in the lower part of the spectrogram, has increased. Furthermore,

the vertical structures in the refined spectrogram are much sharper. Further information on

instantaneous frequency estimation can be found in [26, Section 8.2].
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Chapter 3

Audio Segmentation

Segmentation of audio recordings is a fundamental task in music processing and can serve as a

starting point for many subsequent analysis steps such as fundamental frequency estimation or

harmony analysis. In this chapter, we analyze the structure of Artem Erkomaishvili’s recordings

introduced in Section 2.1.2 with specific focus on the repetition of the lead voice. Due to the

three-stage recording procedure, the lead voice occurs three times in the recording: the first time

as a solo voice, the second time together with the middle voice, and the third time together

with middle and bass voices (see Figure 2.1). Our goal is to find the start and end points of

all three occurrences of the lead voice in each of the given recordings in an automated fashion.

Throughout this chapter, we rely on existing ground truth annotations, which will be described

in Section 3.1.

In the last years, many techniques have been developed, which may be suitable to solve this

segmentation task. A well-known method for music structure analysis are self-similarity ma-

trices [26, Chapter 4.2]. A good overview about different segmentation techniques is given

in [32]. However, we approach this task in two different ways: first, focusing on repetition-based

segmentation principles, we interpret the task as an audio retrieval problem in Section 3.2. In

this context, we develop an informed matching procedure to find all occurrences. By interpreting

the task as a classification problem, our second approach described in Section 3.3, aims to

detect all parts where a singing voice is active for subsequent segmentation. To this end, we

apply a machine-learning algorithm for singing voice detection, which is implicitly based on

homogeneity and novelty segmentation principles. Finally, in Section 3.4, we draw conclusions

for both approaches.
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Description Variable Timestamp in Seconds

Start Lead Voice torig1 5.706122448

End Lead Voice torig2 20.60408163

Start Lead Voice (Loop) torig3 22.11428571

Start Middle Voice torig4 23.60000000

End Middle Voice torig5 37.87619048

End Lead Voice (Loop) torig6 38.0214059

Start Lead Voice (Loop) torig7 39.24897959

Start Middle Voice (Loop) torig8 40.74780045

Start Bass Voice torig9 40.75732426

End Bass Voice torig10 55.03433107

End Middle Voice (Loop) torig11 55.03673469

End Lead Voice (Loop) torig12 55.05306122

Table 3.1: Original annotation with twelve timestamps for “Da Sulisatsa”.

3.1 Reference Annotations

Throughout this thesis, we relied on the ground truth annotations for all 101 chants in the

collection. The annotations have been produced by a student with some musical background

using the publicly available application “Sonic Visualiser” [6]. Originally, every annotation

consists of a list of twelve timestamps corresponding to the start and end points of every voice

in each recording step. For the first recording step with only one voice present, there exist

two timestamps, whereas in the second recording step with two voices present, there exist four

timestamps. The same principle applies to the third recording step, resulting in six timestamps.

The annotation for our running example “Da Sulisatsa” is illustrated in Table 3.1.

In a subsequent step, we simplify the annotation structure, since we are only interested in the

occurrences of the lead voice. In particular, our goal is to divide each recording into three

segments, each defined by the start and end point of the lead voice in the current recording

step. Consequently, the simplified annotation contains six timestamps: t11, t12, t21, t22, t31 and

t32, with the first index denoting the segment number and second index denoting start or end

position (see Figure 3.1).

For a further simplification step, let us recall the loop-based structure of the given recordings.

Ideally, the duration of the lead voice should be the same in all three recording steps, since it is
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Figure 3.1: Waveform of our running example “Da Sulisatsa” by Artem Erkomaishvili. The
segments are marked with red boxes.

simply played back during the recording of middle and bass voice. In practice, due to wow and

flutter of the tape recorder, the duration can be slightly shorter or longer, which can easily be

proven by looking at Table 3.1:

torig2 − torig1 6= torig6 − torig3 6= torig12 − t
orig
7 . (3.1)

Furthermore, we also have to account for slight inaccuracies in the reference annotation. However,

we neglect these effects in our simplification and require each segment to be of equal length,

implying

t12 − t11 = t22 − t21 = t32 − t31 . (3.2)

Given this assumption, individually for each recording, the simplified segment annotation is

derived from the original annotation as follows: the start and end points of the lead voice

in the first recording step are taken from the original annotation, leading to t11 = torig1 and

t12 = torig2 . From these two timestamps, the segment duration ∆t for all three segments can

easily be computed by setting

∆t = t12 − t11 . (3.3)

The second segment is defined by t21 = torig1 and t22 = t21 + ∆t. In a similar manner, we compute

the borders of the third segment as t31 = torig7 and t32 = t31 + ∆t. The simplified annotation for

our running example “Da Sulisatsa” is illustrated in Table 3.2.

Note that applying these rules to all recordings led to problems with some files, where the end

of the third segment overran the length of the corresponding audio file due to the inaccuracies
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Description Variable Timestamp in Seconds

Start First Segment t11 5.706122448

End First Segment t12 20.60408163

Start Second Segment t21 22.11428571

End Second Segment t22 37.012244898

Start Third Segment t31 39.24897959

End Third Segment t32 54.146938775

Table 3.2: Simplified segment annotation with six timestamps for “Da Sulisatsa”.

mentioned above. In these cases, we slightly decreased the segment duration ∆t (typically by

a couple of milliseconds) in order to fit the end of the third segment to the total length of the

recording. This ensures that our constraint formulated in (3.2) is fulfilled in every annotation file.

The simplified/refined segment annotations in CSV format are publicly available and can be

downloaded at [29].

3.2 Matching-Based Segmentation

In this section, we interpret the previously defined segmentation task as a standard audio retrieval

problem: given a suitable query and a database document, we want to find all occurrences of the

query in the database using an audio matching technique.

Two well-known audio matching techniques are Dynamic Time Warping and Diagonal Matching

(see [26][Section 7.2]). Inspired by [20], our approach uses simple diagonal matching, which we will

shortly explain in Section 3.2.1. In Section 3.2.2, we outline our informed baseline procedure based

on diagonal matching. Subsequently, we discuss suitable feature representations as input for our

baseline procedure in Section 3.2.3. The obtained matching curves are evaluated in Section 3.2.4

and the segmentation results are discussed in Section 3.2.5. Finally, in Section 3.2.6, we show

how diagonal matching can be used for segmentation with less prior knowledge.

3.2.1 Diagonal Matching

Diagonal Matching is a matching technique to measure the similarity between a query audio

fragment Q and a database recording D. In our description, we follow the notation in [26][Section

7.2.2].
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Let us assume we are given a feature sequence X = (x1, x2, ..., xN ) of length N corresponding

to Q and a feature sequence Y = (y1, y2, ..., yM ) of length M corresponding to D. In order to

find out where the query occurs in the database, we shift X over Y and locally compare the

subsequences of X and Y with a suitable distance measure c(x, y). Consequently, in regions

similar or equal to the query, the distance to the database will be small.

In this work, we use the euclidean distance and the cosine distance as distance measures. The

euclidean distance is defined by

ceuclid(x, y) := ||x− y|| . (3.4)

The cosine distance is defined as

ccosine(x, y) := 1− 〈x|y〉
||x|| · ||y||

, (3.5)

with ||x|| being the norm of vector x and 〈x|y〉 being the inner product of x and y. If one of the

vectors x or y is 0, ccosine(x, y) := 0. Note that ceuclid ∈ R+ whereas ccosine ∈ [0, 1]. Both distance

measures will return values close to 0 if x is similar to y. Conversely, if x and y are not similar,

ccosine will return a value close to 1 and ceuclid a high positive real number.

Computing the distance measures for all subsequences and all possible shifts, we obtain the

matching function or matching curve ∆Diag, which indicates how similar query and database are

at a specific shift m:

∆Diag(m) :=
1

N

N∑
n=1

c(xn, yn+m) , (3.6)

with n ∈ [1 : N ] and m ∈ [1 : M ].

The matching function ∆Diag can also be interpreted as the normalized sum of the diagonals of a

cost matrix C ∈ RN×M given by

C(n,m) := c(xn, ym) , (3.7)

which gives diagonal matching its name.

3.2.2 Informed Baseline Procedure

The proposed informed baseline procedure requires the first segment of the recording to be

given as a query and the whole recording given as database for diagonal matching. Then, our

segmentation task reformulates as follows: given a feature representation of the first segment as

a query and the same feature representation of the whole recording as the database, we apply

diagonal matching to find all occurrences of the query in the database recording.
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Figure 3.2: Baseline matching procedure illustrated on “Da Sulisatsa”. (a) Feature representation
of database. (b) Feature representation of query (first segment) being shifted over the database.
(c) Matching function obtained by diagonal matching.

According to the diagonal matching procedure described in Section 3.2.1, the feature represen-

tation of the query X is shifted over the feature representation of the database Y and locally

compared using the given distance measures. The matching process is illustrated in Figure 3.2a.

Ideally, the obtained matching function ∆Diag should indicate small distances between query and

database at the starting points of the three segments t11, t21, and t31. At all other points in time,

∆Diag should indicate a higher distance between query and database, as depicted in Figure 3.2b.

Note that we require the distance to be close to zero at point t11, since the query is originally

taken from the recording (for further details, see Section 3.2.3).

In a subsequent step, the estimated starting points of all three segments are obtained by using a

suitable peak-picking algorithm. The corresponding end points t12, t22 and t32 are derived by

adding the query length to each of the estimated starting points.
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Figure 3.3: Generation of query and database feature representation. (a) Query is cut out from
the time domain audio recording. (b) Query and database are transformed separately to a
time-frequency representation.

3.2.3 Feature Representations

For our experiments, we use two types of input feature representations for both database and query,

which are generated as follows. First, the query is cut out from the time domain audio file using

timestamps t11 and t12 from the corresponding segment annotation, as illustrated in Figure 3.3a.

Afterwards, as shown in Figure 3.3b, query and database are separately transformed to the

time-frequency domain using the STFT introduced in 2.2.1. The magnitude of the computed

STFT coefficients represents the first feature type. The second feature representation is the

refined log-frequency spectrogram representation introduced in Section 2.2.2, which is based on

the STFT.

The STFT parameters turned out to have a great impact on the matching curves. Recall that

the given collection contains transcoded WAV files with a sampling rate of 22 050 Hz. In our first

experiments, we used a STFT with window length N = 64 ms and a window overlap of H = N/2,

as in [11]. Using these settings, the measured overall similarity was very low (see black curve

in Figure 3.4). Even the peak at t11 was far from zero in the tested feature-distance measure

combinations.

The main reason for this observation is the small window length. A larger window length increases

the overall similarity, but at the same time broadens the peaks due to blurring (purple curve
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Figure 3.4: Two matching curves generated by diagonal matching based on refined log-frequency
spectrograms and the cosine distance measure. The dashed vertical red lines indicate the reference
annotation. The black curve was generated with the STFT parameters N = 1024 samples and
H = 512 samples similar to [11]. The purple curve was generated with the STFT parameters
N = 16 384 samples and H = 512 samples.

in Figure 3.4). After trying several parameter settings, we decided to set the window length to

N = 4096 samples ≈ 186 ms and the hopsize to H = N/8 ≈ 23 ms. Note that we do not claim

these settings to be optimal in this scenario. However, these settings produced accurate matching

curves with good peak quality within reasonable computation time.

3.2.4 Evaluation of Matching Curves

In this section, we evaluate the quality of the peaks depending on the used features and distance

measures. Note that we use two feature representations (magnitude spectrogram and the refined

log-frequency spectrogram) and two distance measures (euclidean and cosine distance), leading

to four different feature-distance measure combinations.

As in [27] and [16], we divide the matching curves into false alarm regions and peak regions.

In false alarm regions, the similarity of the query X and the database Y should be low. In

order to capture the characteristics of the false alarm regions, we define µXF and minXF as the

mean and the minimum of ∆Diag within the false alarm regions. Peak regions contain the true

matches (local minima) of the matching curve and their neighborhood. Recall that we expect

every matching curve to have three peaks around t11, t21 and t31. Since we are given the segment

annotations for every file in the collection, we can define the peak neighborhoods by adding a

neighborhood parameter κ given in seconds to the left and right of every expected peak position.

Furthermore, we define minXT to be the minimum/peak value of each peak region.

The above metrics can be combined into two quality measures, which we compute for each of
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Figure 3.5: Matching curves for “Da Sulisatsa” using the euclidean distance measure. The various
evaluation metrics are indicated by horizontal lines. The peak regions defined by κ = 1 s are
marked with light red. The reference positions are marked by vertical red lines. The green dot
indicates the position in the matching curve that corresponds to minXF . (a) Spectrogram-based
matching (b) Refined log-frequency spectrogram-based matching.

the peak regions separately. We define αX := minXT /minXF and βX := minXT /µ
X
F . Both quality

measures should be close to zero in case of distinct peaks. αX can be considered as a rather

strict measure in our scenario, since it sets the peak values in relation to the minimum of the

false alarm regions. βX can be seen as a rather soft evaluation measure, since it sets the peak

values in relation to the mean of the false alarm regions.

The evaluation measures for our running example are visualized as horizontal lines in Fig-

ures 3.5 and 3.6. In both figures we set the STFT parameters to N = 4096 samples, H = N/8

and defined the peak regions with κ = 1 s.

Figure 3.5 shows matching curves obtained by diagonal matching using the euclidean distance

and magnitude spectrograms in (a) and refined log-frequency spectrograms in (b). Comparing

(a) and (b), we notice that using refined log-frequency spectrograms noticeably increases µXF , but

at the same time also increases minXT . We can also see that in (b) the peak at t11 is not close to

zero anymore, which can be traced back to the chosen STFT parameters. Furthermore, the peaks

are narrower in Figure 3.5b compared to Figure 3.5a, which also leads to an increase in minXF .
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Figure 3.6: Matching curves for “Da Sulisatsa” using the cosine distance measure. The various
evaluation metrics are indicated by horizontal lines. The peak regions defined by κ = 1 s are
marked with slight red. The reference positions are marked by vertical red lines. The green dot
indicates the position in the matching curve that corresponds to minXF . (a) Spectrogram-based
matching (b) Refined log-frequency spectrogram-based matching.

Figure 3.6 shows matching curves obtained by diagonal matching using the cosine distance and

magnitude spectrograms in (a) and refined log-frequency spectrograms in (b). Comparing (a)

and (b), we notice similar effects regarding means and peak widths as in Figure 3.5. Comparing

both figures 3.5 and 3.6, we assert that the cosine distance measure produces more prominent

peaks in the shown matching curves than the euclidean distance.

In the following, the observations described above are evaluated on the whole set of recordings in

order to see whether they can be generalized to all recordings. Note that the chant “Adide sulo

chemo” (GCH 048 Erkomaishvili.wav) was excluded from our evaluation, since the recording is

duplicated, resulting in six peaks in the matching curve (see Figure B.3 in the Appendix). The

results rounded to two decimals are shown in Tables 3.3, 3.4, 3.5, and 3.6.

The tables show that, as expected, α exhibits higher values than β. Focusing on the results of

the first segment, α and β are close to zero throughout all tables. The measures also indicate

that the quality of peak two and three corresponding to the beginning of the second and third

segment is similar on average, but also depends on the chosen features and distance measures.
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Description minT µF minF α β

Peak Region 1 35.20 808.74 711.63 0.05 0.05

Peak Region 2 646.65 808.74 711.63 0.94 0.81

Peak Region 3 637.05 808.74 711.63 0.95 0.81

Table 3.3: Evaluation measures for diagonal matching using spectrogram representations and
euclidean distance averaged over whole collection.

Description minT µF minF α β

Peak Region 1 209.59 1217.62 1096.07 0.20 0.18

Peak Region 2 1072.27 1217.62 1096.07 1.01 0.89

Peak Region 3 1076.88 1217.62 1096.07 1.04 0.90

Table 3.4: Evaluation measures for diagonal matching using refined log-frequency spectrogram
representations and euclidean distance averaged over whole collection.

Description minT µF minF α β

Peak Region 1 0.00 0.72 0.63 0.01 0.00

Peak Region 2 0.48 0.72 0.63 0.76 0.67

Peak Region 3 0.46 0.72 0.63 0.73 0.64

Table 3.5: Evaluation measures for diagonal matching using spectrogram representations and
cosine distance averaged over whole collection.

Description minT µF minF α β

Peak Region 1 0.07 0.88 0.84 0.09 0.08

Peak Region 2 0.73 0.88 0.84 0.86 0.82

Peak Region 3 0.73 0.88 0.84 0.86 0.82

Table 3.6: Evaluation measures for diagonal matching using refined log-frequency spectrogram
representations and cosine distance averaged over whole collection.

Comparing the distance measures, α and β indicate for all three peaks that the cosine measure

produces better results than the euclidean distance. The main reason for this is the vulnerability

of the euclidean distance to changes in dynamics (recording volume/level) that frequently occur

in this collection due to the looping structure of the recordings.
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Figure 3.7: Matching curves for the chant “Ats’ dzalni tsatani” (GCH 107 Erkomaishvili.wav)
where segments two and three could not be detected due to changing tempo and pitch. (a)
Euclidean distance; a drop in dynamics is visible. (b) Cosine distance; the drop in dynamics is
not visible due to normalization.

By looking at Figure 3.7a, we see that the matching curve slightly drops in the course of the

recording. This effect is compensated in the cosine distance measure due to normalization, which

can easily be seen in Figure 3.7b. In general, Figure 3.7 illustrates a worst case scenario (file

GCH 107 Erkomaishvili.wav). The velocity of the tape recorder drops during the recording,

leading to audible time stretching and pitch shifting artifacts. Under these conditions, it is not

possible to detect segments two and three using diagonal matching.

Comparing feature representations, α and β indicate better results for the spectrogram than

for the refined log-frequency spectrogram. However, minXF and µXF behave contrarily. This can

be explained by looking back at the different representations in Figure 2.2c and Figure 2.3b.

Figure 2.2c contains more noise and is rather blurred compared to Figure 2.3b, which increases

the general similarity. The refined resolution in Figure 2.3b produces fine spectral lines with

lower magnitude and reduces the noise-like components in the spectrogram while decreasing the

overall similarity.
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3.2.5 Segmentation Results

In this section, we evaluate the accuracy of the peaks in the matching curves of the given

recordings. More specifically, we select the three most prominent peaks from every matching

curve with a peak-picking algorithm and compare them to the corresponding reference annotations.

As a baseline for our peak-picking, we use the matching curves generated by diagonal matching

with refined log-frequency representations and the cosine distance, which exhibited the narrowest

peaks in the qualitative evaluation in Section 3.2.4.

The peak-picking algorithm works as follows. Assume we are given a matching curve ∆Diag with

three distinct peaks generated from a query of length N and a database of length M according

to Section 3.2.2. The goal is to find the estimates for t11, t21 and t31 denoted by t̂11, t̂21 and t̂31.

To this end the algorithm first picks the minimum of ∆Diag, which is very likely to correspond

to time point t11. In a second step, the algorithm excludes the neighborhood of the peak by

setting the values in ∆Diag to the left and to the right to ∞. In our work, we exclude ε = N/2

from each side of the peak. In a subsequent step, the algorithm picks again the minimum of the

modified curve. The whole procedure is repeated three times until all three estimates are found.

The peak-picking is outlined in Algorithm 1.

Algorithm 1 Peak-picking

Input :∆Diag, ε = N/2

Output : t̂11, t̂21, t̂31

for i = 1 : 3 do

t̂i1 = min(∆Diag);

∆Diag(t̂i1 − ε : t̂i1 + ε) =∞;

end

To evaluate peak accuracy we compute the absolute difference ∆ti1 between the reference positions

ti1 and the estimated positions t̂i1 with i ∈ [1 : 3]

∆ti1 = |ti1 − t̂i1| . (3.8)

Furthermore, we define a tolerance τ in seconds that defines whether a peak is considered as a

match with the reference. In other words, if ∆ti1 ≤ τ we consider the peak as a correct match, if

∆ti1 > τ we consider the peak as an outlier. We evaluated all matching curves on logarithmically

spaced τ -values in the range of 10−3 to 10 s as shown in Figure 3.8. For a given τ , the figure

shows the number of outliers in percent for each ∆ti1. Note that deviations from the reference

may also be caused by inaccuracies in the segment annotations, which may lie in the same

evaluation range.
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Figure 3.8: Evaluation of peak accuracy for each peak individually on a logarithmic τ -axis. All
values of ∆ti1 that do not lie within the tolerance τ are considered as outliers.

As expected, Figure 3.8 shows a large number of outliers for very small values of τ . However,

about 21 % of the ∆t11 values are even closer to the reference than 10−3 s, which is indicated

by the black curve starting around 79 % outliers. This is of course of limited significance when

regarding the limited annotation accuracy of a human. Estimates of the first peak t11 can be

considered as the most accurate, since all peaks lie within a maximum tolerance of 0.012 ≈ 10−2 s.

For a tolerance of τ = 100 = 1 s all curves have reached a low level of outliers. The remaining

outliers for ∆t21 and ∆t31 of about 4 % can mainly be traced back to tape recorder issues and

noise (see Figure 3.7). Matching curves for all recordings where the second and/or third segment

could not be found are given in Appendix B.

3.2.6 Towards Blind Segmentation

In this section, we show how diagonal matching can be used to detect the segment borders

without any prior knowledge about the first segment. To this end, let us recall the baseline

procedure shown in Figure 3.2. In our previous experiments, a feature representation of the first

segment was chosen as a query based on the known segment borders.

A more uninformed approach takes the first third of the recording as a query, assuming that the

first segment is largely included in the chosen query. A matching curve for this new scenario is

shown in Figure 3.9a. The matching curve exhibits again three distinct peaks. The first peak is

located at t = 0 s, which corresponds to the starting point of our query. All three peaks have

an offset of ∆t relative to the reference starting positions. Further experiments with diagonal

matching for determining this offset, as well as the segment length to find the end points, did

not produce reliable results.

A different approach is based on the silence/noise at the beginning of the recording and the
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Figure 3.9: Less informed segmentation using diagonal matching. The vertical red lines denote
the six reference segment borders. (a) Diagonal matching with the first third of the recording
as query. (b) Diagonal Matching using the first second of the recording as query. The minima
between the segments are marked in blue.

pauses in between the segments. This time, we take the first second of the recording as a query,

which ideally contains only noise or tape recorder sounds. The resulting matching curve shown

in Figure 3.9b. It exhibits local minima at the beginning of the recording and in between the

segments (see blue dots). One way to get the final segmentation result would be to divide the

obtained matching curve in “segment” and “non-segment” regions with a suitable threshold and

then infer the segment borders.

3.3 Classification-Based Segmentation

In this section, we interpret the segmentation task as a classification problem. To this end, recall

that each of the segments contains at least one singing voice that is present throughout the

whole segment, potentially with short pauses in between. Outside of the segment borders, there

is no voice present, except at the beginning, where Artem Erkomaishvili introduces the title

of the chant he is going to perform (see Section 2.1.2). However, based on these observations,

we consider parts of the recording where a singing voice is present to be located within one
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of the three segments. Ideally, these parts cluster in three homogeneous units, reflecting the

three-segment structure of the recordings. In this way, we transform the original segmentation

problem into a singing voice detection/classification problem.

For the classification into “vocal” and “non-vocal” parts, we apply a machine-learning-based

random forest classifier on the recordings, which was originally used for singing voice detection

in classical opera recordings by Dittmar et al. [8]. A random forest is a classification method

which consists of several binary decision trees. Each decision tree classifies input data based on a

randomly assigned (sub-)set of classification criteria. Combining the decisions of all trees leads

to the final classification result. Further details on decision trees and machine-learning in general

can be found in [2, Chapter 14.4], [15, Chapter 15] and [44, Chapter 7.8].

The baseline procedure for this segmentation approach is explained in Section 3.3.1. Subsequently,

we briefly present the classification results in Section 3.3.2.

3.3.1 Baseline Procedure

The baseline procedure closely follows the work of Dittmar et al. [8].

Machine-learning-based classification is typically conducted in three phases, including training

the classifier, validation for parameter tuning, and testing with the chosen parameter settings to

get final evaluation results.

In a first step, we split the dataset of Georgian chant recordings into a training, validation and

test set. More specifically, we randomly assign 70 % of the recordings to the training set (70

tracks), 15 % to the validation set (15 tracks), and the remaining 15 % to the test set (15 tracks).

We again exclude GCH 048 Erkomaishvili.wav from our experiment. Furthermore, we slightly

bias the random splitting process by requiring our running example “Da Sulisatsa” to be within

the test dataset.

In a second step, we compute different low- and mid-level audio features on each of the three

subsets. The used feature types are mel-frequency cepstral coefficients, vocal variance, fluctogram

variance, spectral contraction variance, spectral flatness mean, and polynomial shape spectral

contrast, identically to the ones used and explained in [8]. Furthermore, our random forest is

designed to have 128 individual trees. In the first phase, we train each of these trees with a

random subset of features of the training set and the corresponding reference segment annotations.

In this way, each tree bases its decisions on different classification criteria (feature types).

Applying such a trained random forest on audio feature representations results in a score value

between 0 and 1 for each time frame and class. Concatenation of these score values creates

a so called decision function, which can also be interpreted as a confidence measure for the

classifier decision. Since in our scenario, we only have two classes, the two decision functions are
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Figure 3.10: F-measure curve for running thresholds τD on validation dataset.

inversely proportional. In order to get a classification result, we binarize the decision function

using a threshold τD ∈ [0, 1]. Only if a score value is larger than τD, the corresponding frame is

considered as “vocal”, otherwise as “non-vocal”. Instead of simply fixing τD = 0.5, we search

for a potential value of τD that delivers a better predictive performance. To this end, we apply

the trained random forest classifier on our validation dataset and compare the classification

performance for different thresholds.

For the evaluation of classification performance, we use the well-known F-measure [26, Sec-

tion 4.5.1]. Frames with a positive classification that coincide with an annotated segment in the

reference annotation are counted as true positives (TP), frames with a negative classification that

coincide with an annotated segment are false negatives (FN). Frames with a positive classification

that do not coincide with an annotated segment are considered false positives (FP). These

measures are combined in the F-measure by

F =
2 · TP

2 · TP + FP + FN
. (3.9)

The resulting F-measure curve for the running threshold is shown in Figure 3.10. The curve

is close to 1 for almost all thresholds τD, which already indicates that the classifier performs

well in our segmentation task. The curve reaches its maximum at threshold τD = 0.596 with

an F-measure of 0.988. We choose this threshold (operating point) for binarizing the decision

function in the final test phase, where the trained classifier is applied on the features of the test

set.

3.3.2 Classification Results

Figure 3.11a shows the decision function for our running example obtained from applying the

trained random forest classifier on the test dataset. The chosen threshold in the validation
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Figure 3.11: Random forest classification. (a) Decision function for our running example “Da
Sulisatsa”. The chosen decision threshold is marked with a solid purple line. (b) Activity of
automatically detected singing voice. (c) Activity of the reference annotation.

phase is again marked with a purple line. The time lines underneath show the activations

of our classification approach (Figure 3.11b, black rectangles) and the reference annotations

(Figure 3.11c, red rectangles). By having a closer look at the time lines, we see that the activations

of our approach form three main homogeneous units which marginally deviate from the reference

annotations. The introductory part has also been classified as “vocal”, which is formally correct,

but is of course an undesired behavior of our classifier for segmentation purposes. In general,

we cannot observe any noticeable differences in classification performance between the three

segments.

Evaluating the classification results of all 15 items in the test set on the corresponding reference

annotations yields an F-measure of 0.947.

3.4 Conclusions and Further Notes

In this chapter, we developed and examined two approaches for segmenting the recordings by

Erkomaishvili.

In the informed segmentation scenario, diagonal matching produced good results. The matching

curves exhibited accurate and distinct peaks on average. Furthermore, we could show that the

quality of the matching curves highly depends on the STFT parameters, feature representations,

and distance measures.
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Peak maps, which are used in audio fingerprinting (see [26, Section 7.1.2]), can reduce processing

time and may also generate more distinct peaks in the matching curves. The proposed methods

in Section 3.2.6 are tailored to the recordings of Artem Erkomaishvili and may not generalize to

other audio retrieval scenarios. Evaluating these improvements was beyond the scope of this

thesis and is left as further research.

The evaluation results for our machine-learning approach indicate that a trained random forest

classifier can be suitable for segmenting the given Georgian chant recordings. In this simple

scenario, without background music or other interference, the classifier produced accurate results.

However, in order to make reliable statements about the classification performance, the baseline

procedure described above has to be repeated multiple times (manifold cross validation), which

was beyond the scope of this thesis. To better understand the classifier and the classification

results requires examining the impact of feature types and parameter settings on the decision

trees. In this context, it would also be interesting to compare the obtained decision functions

with simple, energy-based novelty curves [26, 6.1.1], which should deliver good results for this

segmentation task.

One way to eliminate the influence of Erkomaishvili’s preface in future classification tasks is to

consider only the three largest homogeneous singing voice parts in the binarized decision function.

This may also require some post-processing of the curves, e.g. using median filters. With these

improvements, the performance of the classifier is expected to become even better.
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Chapter 4

Fundamental Frequency Estimation

Another basic task in music processing is fundamental frequency (F0) estimation, where the

main goal is to estimate the predominant melody in an audio recording, which can also be

seen as an intermediate step for music transcription. Due to the fact that transcriptions are

often subjectively influenced, F0 estimation can be a useful tool for ethnomusicologists to gain

a more neutral view on the performance practice of Georgian vocal music. In this chapter, we

compare multiple F0 estimation algorithms and show how reliable these algorithms perform

on the Georgian chant recordings described in Section 2.1.2. To this end, we first give a brief

introduction to F0 estimation in Section 4.1. Secondly, in Section 4.2, we explain the generation

of reference annotations with specific focus on the interactive graphical user interface (GUI)

that we used. In Section 4.3, we describe the metrics for our evaluations. Subsequently, we

introduce some standard F0 estimation algorithms based on time domain and enhanced time-

frequency domain (salience) representations in Section 4.4 and Section 4.5. In this context,

we evaluate these algorithms segment-wise on our running example “Da Sulisatsa” to further

illustrate their properties. In Section 4.6, we show how a salience-based algorithm can be adapted

to the Georgian music scenario. We evaluate all introduced algorithms on the whole dataset

in Section 4.7. Finally, we draw conclusions and outline future work in Section 4.8.

4.1 Background

The description in this section follows [30].

Audio recordings (given as waveforms) are complex in the sense that musical parameters such as

pitches, note onsets, or note durations are not explicitly given. Furthermore, real-world sounds

are far from being simple pure tones with well-defined frequencies. Playing a single note on

an instrument may result in a complex sound that contains a mixture of different frequencies
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changing over time. Intuitively, such a musical tone can be described as a superposition of pure

tones or sinusoids, each with its own frequency of vibration, amplitude, and phase. A partial is

any of the sinusoids by which a musical tone is described. The frequency of the lowest partial

present is called the fundamental frequency (abbreviated as F0) of the sound. The pitch of a

musical tone is usually determined by the fundamental frequency, which is the one created by

vibration over the full length of a string or air column of an instrument. For further details, we

refer to [26, Chapter 1].

When given an audio recording, one central task in music processing is referred to as melody

extraction. In general terms, a melody (or more generally a melodic voice) may be defined as a

linear succession of musical tones expressing a particular musical idea. Because of the special

arrangement of tones, a melody is perceived as a coherent entity. When performed by a singer

or played on an instrument, the melody corresponds to a sequence of frequency values rather

than notes. Also, as opposed to a notated symbolic representation, some of the notes may be

smoothly connected (e. g., when singing a glissando). Furthermore, one may observe pronounced

frequency modulations due to vibrato. Given an audio recording, melody extraction is often

understood as the task of estimating the sequence of frequency values that correspond to the

main melody [14, 33, 37].

In other words, rather than estimating a sequence of notes, the objective is to determine a

sequence of frequency values that correspond to the notes’ pitches. Such a frequency path over

time, which may also capture continuous frequency glides and modulations, is referred to as a

frequency trajectory. In particular, one is interested in the fundamental frequency values of a

melody’s notes. The resulting trajectory is also called the melody’s F0 trajectory. For further

details, we refer to [26, Chapter 8].

Estimating the fundamental frequency of a quasiperiodic signal, termed monopitch estimation, is

a long-studied problem with applications in speech processing. For a review of early contributions

we refer to [17]. While monopitch estimation is now achievable with a reasonably high accuracy,

the problem of multipitch estimation with the objective of estimating the fundamental frequencies

of concurrent periodic sounds remains very challenging. This particularly holds for music signals,

where concurrent notes stand in close harmonic relation.

In this chapter, the F0 estimation task formulates as follows: given the set of Georgian chant

recordings, the goal is to estimate the F0 trajectories of lead, middle and bass voice in each of

the recordings. In the first segment, the task is a simple monopitch estimation problem, since

only the lead voice is present. The task becomes more difficult in the polyphonic second segment

where lead and middle voice are present. The F0 estimation task in the third segment is most

difficult, since all three voices are present in the recordings (see Figure 2.1). However, throughout

all segments, the trajectories may suffer from so-called octave jumps or octave errors, which

result from confusions between the fundamental frequency and higher harmonics.
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Figure 4.1: Graphical user interface for interactive F0 trajectory estimation (from [30]).

In general, F0 estimation algorithms can be categorized in time domain algorithms, which

estimate the F0 trajectories from the time domain signal and salience-based algorithms that

estimate the F0 trajectories from an enhanced time-frequency representation. A broad overview

about state-of-the-art algorithms and their performances on different datasets is provided by the

annual MIREX (Music Information Retrieval Evaluation eXchange) challenges [24] and in the

article by Salamon et al. [37].

4.2 Generating Reference Annotations

During this thesis project, we relied on manual reference annotations generated with an interactive

F0 annotation tool developed by Drieger et al. [10]. In this section, we elaborate on the generation

of these reference annotations with specific focus on the GUI, following the description in [30].

Note that the underlying salience-based F0 estimation procedure is explained in Section 4.5.

The GUI allows a user to interactively generate and correct frequency trajectories. Figure 4.1

shows a screenshot of this GUI, which integrates an enhanced time-frequency representation of

the audio signal as its central visual element. On top of this representation, a previously specified

frequency trajectory can be plotted (green line). The GUI integrates the features of a standard

audio player, with buttons for starting, pausing, and stopping the playback of the loaded music
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Figure 4.2: Reference F0 trajectory for our running example (red). The constraint regions are
marked with blue boxes.

recording at the bottom of the interface. When playing back the music recording, the respective

time position is indicated by a vertical dashed playback bar running across the time-frequency

representation. This way, salient structures in the visual representation can be directly compared

to the auditory cues in the recording. Additionally, the interface allows for playing back a

sinusoidal sonification of the specified frequency trajectory (acoustically superimposed with the

original audio recording). This allows the user to easily understand the accuracy of the current

trajectory simply by listening.

As another important feature, the GUI allows a user to correct a given frequency trajectory. To

this end, the rough location of a frequency trajectory can be specified by means of a rectangular

box (as indicated by the blue boxes). These boxes are used as constraint regions to recompute

frequency trajectories within these regions, while previously specified trajectories within the

corresponding time windows are replaced. To allow extremely fine-grained corrections, the user

may even use an editing option for drawing free-hand trajectories. To further simplify the

tracking process, the user can also visually enhance interesting structures in the time-frequency

representation by applying a logarithmic compression. Of course, it is possible to save the current

state of the frequency estimation and correction process at any time and to resume the interactive

process at a later stage.

Every file in the given recordings was annotated using the above described GUI by a user with

some musical background. The user annotated the lead voice in the first, the middle voice in the

second and the bass voice in the third recording iteration, leading to F0 trajectories with three

parts and non-annotated regions in between. The reference trajectory for our running example

including the user-defined constraint regions is shown in Figure 4.2.

In this way, together with the segment annotations described in Section 3.1, we can rely on an

extensive dataset similarly structured as other well-known MIR datasets such as MedleyDB [3] or

the Orchset [4]. Note that in our dataset, the segment annotations were independently generated
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from the F0 annotations. Since the segments only indicate the occurrences of the lead voice, one

may also find F0 annotations outside of segment borders. Inside the segments, middle and bass

voice start with an offset relative to the lead voice (see Figure 4.2). This is due to the specific

recording process, since it took Artem Erkomaishvili some time to “tune” into the playback.

The whole dataset, including the reference F0 annotations, is publicly available at [29].

4.3 Evaluation Measures

In our work, we use the standard evaluation measures for melody extraction algorithms, which

were first introduced in [33]. However, our notation follows [37].

Note that from a mathematical point of view, an F0 trajectory is a vector with one frequency

value per time frame. Following this, we denote the estimated F0 trajectory vector as f ∈ R+ and

the reference trajectory as f∗ ∈ R+. Furthermore, we define a reference voicing indicator vector

v∗ ∈ [0, 1], whose τ th elements v∗τ = 1, where a voice is present (“voiced”), and v∗τ = 0, where no

voice present (“unvoiced”). Similarly, we retrieve an estimated voicing indicator vector v ∈ [0, 1]

from our algorithms. We need these vectors for evaluating algorithms, which automatically detect

voiced and unvoiced parts in the recording (voicing detection). Using this definition, we require

these algorithms to indicate unvoiced frames by setting the estimated F0 trajectory to zero at

the respective time frames. For algorithms that do not have a voicing detection, v is filled with

ones.

Our first evaluation measure is the Voicing Recall Rate (Recvx), which is defined as the ratio

of frames in v correctly labeled as melody frames to the total number of melody frames in the

reference v∗:

Recvx =

∑
τ vτv

∗
τ∑

τ v
∗
τ

. (4.1)

Since Recvx does not capture frames that were incorrectly labeled as voiced in the estimation,

we define a second evaluation measure called Voicing False Alarm Rate (FAvx). It is defined by

the ratio of frames mistakenly estimated as voiced frames to the number of unvoiced frames in

the reference. If an algorithm outputs a value for every time frame (no voicing detection), it

will have a perfect recall rate Recvx = 1, which would in turn result in a bad false alarm rate

FAvx = 1 if there is at least one time frame in the reference, which is marked as unvoiced.

FAvx =

∑
τ vτv

∗
τ∑

τ v
∗
τ

. (4.2)

Our third evaluation measure is the Raw Pitch Accuracy (Accpitch), which describes how accurate

correctly detected voiced pitches are compared to the reference trajectory. More specifically,
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we consider a trajectory value as correct if it deviates at most ε semitones from the reference

trajectory value. To this end, the trajectories containing frequency values in Hz are mapped to a

logarithmic pitch axis using a mapping function

M(f) = 12 log2

(
f

fref

)
, (4.3)

where fref = 55 Hz (=̂ note A1) in this work. The raw pitch accuracy is then defined by

Accpitch =

∑
τ v
∗
τT [M(fτ )−M(f∗τ )]∑

τ v
∗
τ

, (4.4)

where T is a threshold function defined by:

T [a] =

{
1 if |a| < ε

0 if |a| ≥ ε
. (4.5)

Since octave errors are common in F0 estimation algorithms, we introduce a fourth measure

called Raw Chroma Accuracy (Accchroma), which maps the pitch difference onto a single octave

before it decides on whether the pitch is accurate or not:

Accchroma =

∑
τ v
∗
τT [〈M(fτ )−M(f∗τ )〉12]∑

τ v
∗
τ

, (4.6)

with the mapping function

〈a〉12 = a− 12b a
12

+ 0.5c . (4.7)

Finally, we define a fifth measure Overall Accuracy (Accov), which combines the performances of

the voicing and pitch evaluation tasks. In order to have a good overall accuracy (Accov close to

1), an algorithm must correctly detect unvoiced frames and must have a high pitch accuracy for

voiced frames:

Accov =
1

L

∑
τ

v∗τT [M(fτ )−M(f∗τ )] + v∗τvτ , (4.8)

with L being the total number of frames (voiced + unvoiced frames). Note that in this measure,

algorithms without voicing detection may perform worse than algorithms with voicing detection

although having the same pitch accuracy.

4.4 Time Domain Algorithms

This section gives a brief overview about the two most popular time domain F0 estimation algo-

rithms YIN (Section 4.4.1) and its further developed variant pYIN (Section 4.4.2). Furthermore,

we show their properties by evaluating them on our running example.
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4.4.1 YIN

YIN (name stems from oriental philosophy “Yin” and “Yang”) is a time domain F0 estimation

algorithm based on a modified autocorrelation function (ACF). Given a waveform of a periodic

signal, the ACF exhibits peaks at multiples of the period. Instead of simply picking the highest

non-zero-lag peak in the ACF, which is prone to errors, the algorithm uses several refinement

strategies to increase the estimation accuracy. Among these refinements is a difference function

that increases robustness to changes in signal amplitude, a thresholding mechanism to reduce

octave jumps and an interpolation algorithm to increase output resolution. The original algorithm

does not have a voicing detection, thus computing a single F0 estimate for every time frame

regardless of whether a voice is present or not. Further information about YIN can be found

in [7].

The F0 trajectory obtained by applying YIN to our running example using an ACF computed

within windows of length 1024 samples and a hopsize of 256 samples is visualized in Figure 4.3.

In our work, we use a Matlab re-implementation by Grosche et al. used in [28].

The evaluation results for our running example are given in Table 4.1. Note that we evaluate

the trajectories only within the three segments of a recording (red squares), since we are only

interested in the trajectories of the three voices. As expected, Recvx = FAvx = 1 in all segments,

since YIN does not detect unvoiced frames. In the first segment, YIN performs well in terms of

pitch accuracy. Disregarding octave errors, the accuracy slightly increases to Accchroma = 0.90.

In the second segment, the pitch accuracy drops significantly, mostly due to octave errors

(Accpitch < Accchroma). In the third segment, the pitch accuracy drops even more, since only the

last unison part is detected correctly. A low pitch accuracy together with a low chroma accuracy

indicates that the algorithm is distracted by the other two voices being present. In terms of

overall accuracy, YIN performs well in the first and equally bad in the second and third segment.

Note that YIN is disadvantaged in this measure due to a missing voicing detection.

4.4.2 pYIN

pYIN (probabilistic YIN) is a modification of the previously introduced YIN algorithm. Rather

than computing a single F0 estimate for each time frame, pYIN first computes multiple F0

candidates. Furthermore, for every candidate, it computes a probability that indicates how likely

the estimate is to be the “real” fundamental frequency. In a second step, the algorithm uses

a hidden Markov model to find a “smooth” path through the F0 candidates. It also uses a

voicing detection algorithm, which marks unvoiced frames by setting them to zero. For further

information about pYIN, we refer to [23].

pYIN is used in the publicly available annotation software “Tony” that allows the user to
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Figure 4.3: F0 trajectory computed with YIN for our running example “Da Sulisatsa” (yellow
trajectory). The reference trajectory is visualized in bold red. Zero-frequency values denote
unvoiced parts.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 1.00 0.87 0.90 0.83

Segment 2 1.00 1.00 0.31 0.69 0.26

Segment 3 1.00 1.00 0.30 0.39 0.26

Table 4.1: Evaluation results for YIN for our running example.

graphically correct pre-computed F0 trajectories [21]. The F0 trajectory obtained by applying

pYIN on our running example using an ACF computed within windows of length 1024 samples

and a hopsize of 256 samples is visualized in Figure 4.4. For the trajectory computation, we used

the publicly available batch tool “Sonic Annotator” [5] and the pYIN VAMP plugin by Mauch et

al. available at [22].

The evaluation results for our running example are given in Table 4.2. In the first segment,

we observe a high recall rate together with a reasonable false alarm rate. Furthermore, pYIN

achieves a very high pitch accuracy with (almost) no octave errors (Accpitch = Accchroma). In the

second segment, the recall rate remains on a high level whereas the false alarm rate drastically

increases. The pitch accuracy drops as well, mostly due to jumps to lower octaves. In the third

segment, recall and false alarm rate equalize on a high level. Interestingly, the pitch accuracy

remains on the same level as in segment two. This time, the amount of octave errors is low.

Consequently, the overall accuracy drops throughout the three segments from a high value of

0.88 to a low value of 0.37.
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Figure 4.4: F0 trajectory computed with pYIN for our running example “Da Sulisatsa” (purple
trajectory). The reference trajectory is visualized in bold red. Zero-frequency values denote
unvoiced parts.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 0.98 0.57 0.92 0.92 0.88

Segment 2 0.95 0.82 0.45 0.75 0.39

Segment 3 0.92 0.92 0.45 0.48 0.37

Table 4.2: Evaluation results for pYIN for our running example.

4.5 Salience-Based Algorithms

In this section, we first describe the basic procedure of salience-based F0 estimation algorithms

(Section 4.5.1). Subsequently, we explain two algorithms based on this procedure, Melodia

(Section 4.5.2) and a re-implementation of Melodia (Section 4.5.3).

4.5.1 Baseline Procedure

The description in this section closely follows [30].

When extracting dominant fundamental frequency information from a complex, possibly poly-

phonic music recording, most salience-based approaches typically proceed in two steps. In the

first step, the audio recording is converted into some kind of time–frequency representation.

Then, in the second step, the dominant frequency values are selected for each time position,

where one typically introduces temporal continuity conditions and exploits additional knowledge

on the expected frequency range. Following this basic approach, we now summarize such a

procedure closely following the work by Salamon et al. [36]. The procedure is illustrated for our
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Figure 4.5: Illustration of the F0 trajectory computation for the three-stage recording of Figure 2.1.
(a) Salience representation (enhanced log-frequency spectrogram). (b) Frame-wise F0 trajectory
(green line). (c) F0 trajectory with continuity constraints.

running example in Figure 4.5.

In the first step, the waveform is converted into a time-frequency representation by applying a

suitable STFT as described in Section 2.2.1. Accounting for the fact that the human perception of

pitch is logarithmic in frequency, we convert the STFT coefficients to a log-frequency spectrogram

according to Section 2.2.3, which also includes a refinement of frequency resolution by instanta-

neous frequency estimation. When used for extracting fundamental frequency information, the

log-frequency spectrogram is typically enhanced to better account for acoustic characteristics

that are of perceptual and musical relevance. First, motivated by the observation that spectral

components can show extremely small values while still being relevant for a human listener, the

spectrogram is logarithmically compressed to balance out the difference between large and small
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values.

The second enhancement strategy is based on the observation that a sound event such as a

musical tone is associated to a fundamental frequency along with its harmonic partials, which are

(approximately) the integer multiples of the fundamental frequency. The multiple appearances

of tonal time–frequency patterns can be exploited to enhance a spectrogram representation by

jointly considering a frequency and its harmonics forming suitably weighted sums—a technique

also called harmonic summation, see [14, 19, 36]. The resulting time-frequency representation is

often referred to as salience spectrogram, since it makes the time-frequency coefficients that are

likely to be part of a melody’s F0 trajectory more salient (see Figure 4.5a). For further details,

we refer to [26, Chapter 8] and [36].

In the second step, the goal is to determine relevant frequency information. Based on the

assumption that the melody often correlates to the predominant F0 trajectory, a first strategy

is to simply consider the frame-wise maximum of the computed salience representation (see

Figure 4.5b). Such a frame-wise approach may lead to a number of temporal discontinuities

and random jumps that occur due to confusions between the fundamental frequency and higher

harmonics or lower ghost components introduced by the harmonic summation. To balance out

the two conflicting conditions of temporal flexibility (to account for possible jumps between

notes) and temporal continuity (to account for smoothness properties), one can use a procedure

for constructing a frequency trajectory based on dynamic programming [34, 25] (see Figure 4.5c).

Even though this may be a desirable property most of the time, discontinuities that are the

result of abrupt note changes tend to be smoothed out (we elaborate further on this trade-off in

the subsequent sections). Furthermore, tracking errors still occur when there are several melodic

lines or when there is no melody at all.

4.5.2 Melodia

Melodia is a F0 estimation algorithm developped by Salamon et al. based on the general

procedure described above [36]. In this work, we computed F0 trajectories using the Melodia

VAMP plugin available at [35]. Based on a STFT with window length N = 1024 samples

and hopsize H = 256 samples, the Melodia trajectory of our running example is visualized

in Figure 4.6. As a default setting, the algorithm’s temporal continuity constraints restrict the

distance in frequency between two consecutive trajectory values (also referred to as pitch offset)

to 80 cents. Consequently, a large maximum pitch offset allows for large jumps in the trajectory,

whereas a small maximum pitch offset creates a rather smooth trajectory. Note that Melodia has

a built-in voicing detection, which indicates unvoiced frames by negative values in the trajectory.

For better comparison, we set all negative trajectory values to zero.

The evaluation results for Melodia on our running example are given in Table 4.3. In the first
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Figure 4.6: F0 trajectory computed with Melodia for our running example “Da Sulisatsa” (light
blue trajectory). The reference trajectory is visualized in bold red. Zero-frequency values denote
unvoiced parts.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 0.80 0.16 0.94 0.94 0.75

Segment 2 0.70 0.55 0.57 0.79 0.40

Segment 3 0.67 0.85 0.00 0.12 0.02

Table 4.3: Evaluation results for Melodia for our running example.

segment, we observe a high recall value and a very low false alarm rate. For the monopitch

estimation task, Melodia achieves a very good pitch accuracy with (almost) no octave errors. In

the second segment, the recall rate drops while the false alarm rate increases. In this segment,

the trajectory exhibits many jumps to higher octaves, leading to a reasonable pitch accuracy and

a good chroma accuracy. The false alarm rate increases again in the third segment. By looking

at the third segment in Figure 4.6, one can observe that the Melodia trajectory is far off the

reference trajectory. This also reflects in a pitch accuracy of Accpitch = 0.00. Remarkably, there

are also few octave errors, indicating that Melodia is strongly distracted by spectral contributions

of the other two voices. As a consequence, the overall accuracy also drops in the third segment.

4.5.3 Melodia Re-Implementation

As a second algorithm, we examine a re-implementation of Melodia in Matlab by Driedger [9].

In the following, we will denote the algorithm as DGM, derived from the surnames of the

main contributors Driedger, Grohganz and Müller. Contrary to Melodia, the re-implementation

does not have a voicing detection. In this work, we consider two settings for the temporal

continuity constraints of DGM. First, we restrict the maximum allowed pitch offset to 10 cents
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Table 4.4: F0 trajectories computed with DGM for our running example “Da Sulisatsa”. The
reference trajectory is visualized in bold red. Zero-frequency values denote unvoiced parts. (a)
Maximum pitch offset: 10 cents (dark green). (b) Maximum pitch offset: 50 cents (light green).

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 1.00 0.94 0.94 0.89

Segment 2 1.00 1.00 0.85 0.85 0.71

Segment 3 1.00 1.00 0.27 0.27 0.23

Table 4.5: Evaluation results for DGM (maximum pitch offset: 10 cents) for our running example.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 1.00 0.98 0.98 0.93

Segment 2 1.00 1.00 0.57 0.80 0.47

Segment 3 1.00 1.00 0.27 0.29 0.23

Table 4.6: Evaluation results for DGM (maximum pitch offset: 50 cents) for our running example.

(see Figure 4.4a), then we loosen the constraints by setting the allowed pitch offset to 50 cents

(see Figure 4.4b). Note that every pitch jump within these intervals has equal weight/probability.
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Both figures were generated based on a STFT with window length N = 1024 samples and hopsize

H = 256 samples.

The evaluation results for our running example are given in Tables 4.5 and 4.6. As expected,

Recvx = FAvx = 1 due to a missing voicing detection. In the first segment, both parameter

settings deliver very good pitch accuracies and do not suffer from octave jumps. The 10 cents-

restricted trajectory follows the reference trajectory rather smoothly in comparison to the

50 cents-restricted trajectory. In the second segment, the differences between the two settings is

even more pronounced. While the 10 cents-restricted trajectory smoothly stays on the reference,

the less constrained version is able to leave the reference and erroneously jumps to higher octaves.

This results in a lower pitch accuracy and a high chroma accuracy. In the third segment, both

trajectories are mostly off the reference, only being correct in the final unison part. However,

although both settings achieve the same low pitch accuracy, the chroma accuracy for the 50 cents-

restricted setting is slightly higher. In terms of overall accuracy, both settings produce similar

results in segments one and three and largely differ in the second segment.

4.6 Three-Stage F0 Trajectory Estimation

In this section, based on the DGM implementation introduced above, we propose a refined

salience-based F0 estimation algorithm that exploits the three-stage recording process of the

given Georgian chant recordings outlined in Figure 2.1. Recall that our goal is to extract the F0

trajectory for the lead voice in the first segment, the F0 trajectory for the middle voice in the

second segment, and the F0 trajectory for the bass voice in the third segment. Furthermore, the

frequency values for time frames between the sections should remain unspecified.

In the first segment, where only the lead voice is present, we simply use the continuity-constrained

F0 tracking procedure as described in Section 4.5.1 to determine the dominant F0 trajectory,

see Figure 4.7a. The maximally allowed pitch offset is set to 50 cents. Since we have a monophonic

scenario in the first segment, this is expected to produce accurate estimates even though,

occasionally one may obtain some octave errors. However, such errors may be reduced by limiting

the search range, which is done in the following stages.

In the second segment, the task is to extract the F0 trajectory for the middle voice. In this

segment, however, the task is much harder, since the middle voice is superimposed with the

lead voice. To reduce octave errors and the confusion between middle and lead voice, we set the

previously extracted F0 trajectory from the first segment as an upper limit of the search range

in the second segment. In other words, we exclude the time-frequency region that lies above the

F0 trajectory of the lead voice, as depicted in Figure 4.7b. Furthermore, we impose a “safety

margin” of 50 cents (half a semitone) between the lead and middle voice in order to prevent the
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Figure 4.7: Computation of F0 trajectory exploiting the three-step recording process. (a) F0
trajectory of the first section (lead voice). (b) F0 trajectory of the second section (middle voice)
excluding the region above the lead voice trajectory. (c) F0 trajectory of the third section (bass
voice) excluding the region above the middle voice trajectory.

middle voice trajectory from taking values close to the lead voice trajectory. Subsequently, we

apply the continuity-constrained F0 tracking procedure in the remaining region to obtain a F0

trajectory, which largely corresponds to the middle voice.

In the third segment, we proceed in a similar way as in the second step. This time, however,

we exclude the time-frequency region that lies above the F0 trajectory of the middle voice and

again impose a “safety margin” of 50 cents. The resulting F0 trajectory for our running example

is shown in Figure 4.7c.

Note that our approach assumes the middle voice to be sung strictly below the lead voice.
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Figure 4.8: F0 trajectory computed with our constrained F0 estimation algorithm for our running
example “Da Sulisatsa” (dark blue trajectory). The reference trajectory is visualized in bold red.
Zero-frequency values denote unvoiced parts.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 1.00 0.98 0.98 0.93

Segment 2 1.00 1.00 0.54 0.79 0.45

Segment 3 1.00 1.00 0.44 0.47 0.39

Table 4.7: Evaluation results for the three-stage approach for our running example.

Accordingly, we assume the bass voice to be sung strictly below the middle voice. Although

we could observe this behavior in many recordings, this cannot be generalized to Georgian

vocal music. Furthermore, our approach disregards the fact that in many Georgian chants, all

three voices end on the same pitch (“perfect unison”), thus leading to an error in the estimated

frequency value (see end of second and third segment in Figure 4.8).

The evaluation results for our running example are given in Table 4.7. As expected, Recvx =

FAvx = 1 due to a missing voicing detection. In the first segment, the three-stage approach

achieves almost perfect pitch accuracy with no octave errors. Note that in the first segment,

the evaluation values are equal to the results of the DGM algorithm, since both algorithms are

constrained equally in this segment. In the second segment, the estimated trajectory mostly

stays on the reference except at the end, where it is forced to jump to a lower octave due to

the restrictions mentioned above. This in turn leads to a good chroma accuracy. In the third

segment, we observe the same problem with the unison part. Further, we see that errors that are

made in early stages (such as around 26 s) propagate through subsequent segments, leading to

further estimation errors. Despite these problems, the approach still delivers reasonable results

in the third segment.

52 Master Thesis, Sebastian Rosenzweig



4.7 EVALUATION

F
re

q
u

e
n

c
y
 [
H

z
]

Time [sec]

Figure 4.9: F0 trajectories for our running example plotted in one figure.

4.7 Evaluation

In this section, we will evaluate the above introduced F0 estimation algorithms on all given

Georgian chant recordings. More specifically, we compare YIN, pYIN, the two parameter

settings of DGM, Melodia, and our three-stage algorithm using the evaluation measures defined

in Section 4.3. Again, we evaluate the trajectories only within the three segments of a recording.

As a reference, Figure 4.9 shows a superposition of the trajectories of all six algorithms together

with the reference annotations for our running example “Da Sulisatsa”.

The segment-wise evaluation results averaged over all recordings and rounded to two decimals are

shown in Tables 4.8-4.13. The corresponding standard deviations are given in brackets. Note that

the averaging was conducted with equal weight for each recording, regardless of the recording

length. Again, the chant “Adide sulo chemo” (GCH 048 Erkomaishvili.wav) was excluded from

our evaluation. The evaluation is based on trajectories computed with a window length of

N = 1024 samples and a hopsize of H = 256 samples. Since changing the default parameter

settings of the Melodia VAMP plugin led to unresolvable crashes, we computed the Melodia

trajectories with the standard hopsize of H = 64 samples and downsampled the trajectories

afterwards by a factor of four. For the evaluation of pitch accuracy, we set ε = 0.5 semitone

(50 cents).

In the monophonic scenario of the first segment, as expected, all algorithms performed well. The

values for the pitch accuracy lie in the range of 0.78−0.92. Interestingly, the 10 cents-constrained

DGM algorithm performs worst in this regard, which is assumed to be due to the strong constraint,

which does not allow large jumps in the trajectory. The 50 cents-constrained DGM algorithm and
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Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 (0.00) 1.00 (0.00) 0.86 (0.08) 0.93 (0.02) 0.77 (0.07)

Segment 2 1.00 (0.00) 1.00 (0.00) 0.61 (0.13) 0.78 (0.11) 0.53 (0.11)

Segment 3 1.00 (0.00) 1.00 (0.00) 0.47 (0.16) 0.64 (0.15) 0.40 (0.14)

Table 4.8: Evaluation results for YIN averaged over all recordings.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 0.97 (0.01) 0.70 (0.14) 0.84 (0.12) 0.92 (0.02) 0.77 (0.11)

Segment 2 0.93 (0.02) 0.76 (0.08) 0.69 (0.14) 0.82 (0.10) 0.59 (0.12)

Segment 3 0.90 (0.03) 0.76 (0.07) 0.64 (0.15) 0.69 (0.13) 0.53 (0.13)

Table 4.9: Evaluation results for pYIN averaged over all recordings.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 0.87 (0.10) 0.13 (0.09) 0.85 (0.07) 0.88 (0.03) 0.75 (0.10)

Segment 2 0.82 (0.08) 0.21 (0.11) 0.77 (0.17) 0.82 (0.11) 0.66 (0.15)

Segment 3 0.63 (0.12) 0.18 (0.15) 0.45 (0.28) 0.67 (0.21) 0.36 (0.19)

Table 4.10: Evaluation results for Melodia averaged over all recordings.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 (0.00) 1.00 (0.00) 0.78 (0.05) 0.79 (0.05) 0.70 (0.06)

Segment 2 1.00 (0.00) 1.00 (0.00) 0.75 (0.16) 0.78 (0.11) 0.65 (0.14)

Segment 3 1.00 (0.00) 1.00 (0.00) 0.44 (0.32) 0.62 (0.22) 0.38 (0.28)

Table 4.11: Evaluation results for DGM (pitch offset: 10 cents) averaged over all recordings.

Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 (0.00) 1.00 (0.00) 0.92 (0.08) 0.95 (0.01) 0.83 (0.07)

Segment 2 1.00 (0.00) 1.00 (0.00) 0.82 (0.18) 0.87 (0.12) 0.70 (0.15)

Segment 3 1.00 (0.00) 1.00 (0.00) 0.42 (0.28) 0.66 (0.22) 0.36 (0.24)

Table 4.12: Evaluation results for DGM (pitch offset: 50 cents) averaged over all recordings.
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Description Recvx FAvx Accpitch Accchroma Accov

Segment 1 1.00 (0.00) 1.00 (0.00) 0.92 (0.08) 0.95 (0.01) 0.83 (0.07)

Segment 2 1.00 (0.00) 1.00 (0.00) 0.61 (0.17) 0.84 (0.10) 0.53 (0.15)

Segment 3 1.00 (0.00) 1.00 (0.00) 0.54 (0.15) 0.64 (0.14) 0.46 (0.12)

Table 4.13: Evaluation results for three-stage approach averaged over all recordings.

the three-stage approach perform best in this regard with an average score of 0.92. Furthermore,

we observe few octave errors among all algorithms in this segment.

In the second segment, where the scenario becomes polyphonic, the algorithms achieve pitch

accuracies in the range of 0.61− 0.82 with YIN and the three-stage approach performing worst,

and the 50 cents-constrained DGM algorithm performing best. Compared to the first segment,

there are noticeably more octave errors except for the 10 cents-constrained DGM algorithm.

In the third segment, where the task is most difficult, all algorithms deliver a reasonable

performance. The pitch accuracies of most algorithms lie in the range of 0.42 to 0.47. However,

pYIN is an exception with a score of 0.64. One reason for this might be that the frequency

resolution of pYIN is not restricted for lower frequencies as for salience-based algorithms.

Remarkably, the 10 cents-constrained DGM version achieves a slightly better score in this

segment than the 50 cents-constrained DGM version. Except for pYIN, we also observe a high

number of octave errors for all algorithms. Compared to the other segments, the standard

deviations for the evaluation measures in the third segment are noticeably higher, especially for

both DGM variants and Melodia. This indicates strong differences in the performance of the

algorithms in the third segment.

As expected, Recvx = FAvx = 1 for the algorithms without voicing detection. Comparing the

voicing detection of pYIN and Melodia, Melodia exhibits a much lower false alarm rate than

pYIN at the cost of a lower voicing recall rate. This means that pYIN tends to mark a frame

as voiced in most cases, whereas Melodia is more careful in detecting voiced frames. In terms

of overall accuracy, pYIN performs better than Melodia in the first and third segment while

performing worse in the second segment. Note that algorithms without voicing detection that

achieved a high pitch accuracy perform better in this regard.

In a second evaluation procedure, we have a more detailed look at the raw pitch accuracy measure.

More specifically, instead of fixing a maximum deviation ε as in our first evaluation, we now run

the evaluation with ascending values of ε in the range of 0 cents to 200 cents with a stepsize of

0.1 cents. The resulting curves for each algorithm and segment are shown in Figure 4.10.

Regarding the overall pitch accuracy, we again observe for all algorithms the highest accuracy in
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Figure 4.10: Raw pitch accuracy with running threshold ε for all five algorithms averaged over
whole dataset. The threshold for our averaged evaluation results (ε = 50 cents) is marked by a
dashed black line.

the first segment and the lowest accuracy in the third segment. For low values of ε < 50 cents

the raw pitch accuracy drops significantly. For larger values of ε > 50 cents the curves stay on an

almost constant level. This indicates that most of the pitch errors lie in the range of 0 cents to

50 cents. Furthermore, there are remarkable differences between the curves’ appearances. While

the curves for the time domain algorithms are rather smooth, the curves for the salience-based

algorithms exhibit stair-like structures, which is due to the limited frequency resolution of the

salience-based algorithms.

The performance of the three-stage approach relative to the other algorithms strongly varies.

In the first segment, it performs best, together with the underlying 50 cents-constrained DGM

algorithm, since both algorithms are equally constrained in this segment. In the second segment,

the three-stage approach performs worst (together with YIN) contrary to DGM, which performs

best. An improvement over DGM can be observed in segment three, where the three-stage

approach performs over average in terms of pitch accuracy. In Appendix C, we visualize examples

with low and high average pitch accuracy for the three-stage approach.
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4.8 Conclusions and Further Notes

In this chapter, we described the task of fundamental frequency estimation and explained the

approaches and properties of different F0 estimation algorithms. Additionally, we introduced a

three-stage F0 estimation approach tailored to the three-part structure of the given Georgian

chant recordings. In a subsequent step, we evaluated all algorithms on the collection of recordings

using standard evaluation measures. The experiments showed that our three-stage approach

does not bring improvements in monophonic or simple polyphonic scenarios such as in segments

one and two, but can help to increase the performance in more difficult scenarios as in segment

three. On average, pYIN delivered the most solid performance throughout all segments, with a

surprisingly good result in segment three.

Future research should aim at further improving the three-stage algorithm with specific focus

on the unison parts, which are likely to be the reason for comparatively bad evaluation results,

especially in the first two segments. One possible refinement would be to relax the constraints

at the end of each segment in order to allow for an unison ending. In order to eliminate the

influence of unison parts on the evaluation results, one could also restrict the analysis to frames

where all three voices differ at least ε cents.

Another interesting study would be to examine the influence of the chosen reference annotations on

the evaluation results. In this context, instead of using the manually generated annotations with

the introduced GUI, one could think of conducting the experiments with reference trajectories

created with the Tony software. Furthermore, our evaluation showed that different continuity

constraints for the DGM algorithm strongly influenced the performance. In future work, we will

therefore conduct more detailed analyses on this effect.
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Chapter 5

Applications to Georgian Vocal

Music Research

In this chapter, we will have a closer look at the previously introduced reference F0 annotations.

Because of the historical importance of the recordings by Artem Erkomaishvili, these trajectories

may serve as a starting point for a whole set of subsequent analysis steps including the anal-

ysis of the historical tuning system, transcription-free documentation, harmonic analysis, and

quantitative comparison of chants. Additionally, the computational analyses may also be an

interesting reference for classic, non-computational ethnomusicological studies. As an example,

in Section 5.1, we analyze the sung intervals in the given recordings. Then, we use median filters

to smooth the trajectories and show the effect on the interval distributions. In Section 5.3, we

again use median filters in a slightly different way to find stable parts within the trajectories.

Finally, we draw conclusions and outline further research tasks in Section 5.4.

5.1 Interval Analysis

The analysis in this section follows the idea of Scherbaum [38] and description in Müller et

al. [30].

Using our running example “Da Sulisatsa”, the interval analysis procedure is illustrated in Fig-

ure 5.1. First, the reference F0 trajectories of the lead, middle, and bass voice (see Figure 5.1a)

are superimposed (see Figure 5.1b). Note that, in this step, we only consider the F0 trajectories

within the three segments given by the segment annotations. In a subsequent step, the intervals

(given in cents) between the F0 trajectories of the lead and middle voice, the lead and bass voice,

as well as the middle and bass voice are computed for each time position (see Figure 5.1c). Note

that the occurrences are given in seconds, indicating how long a certain interval is sung in the
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Figure 5.1: (a) Reference F0 trajectory for our running example. (b) Superposition of the F0
trajectories estimated for the three voices. (c) Illustration of the interval computation (using a
zoomed section of (b)). (d) Resulting interval distribution.

recording by a certain voice pair. The resulting interval distribution is shown in Figure 5.1d.

In our experiments, we computed and averaged such distributions over the 100 recordings

by Erkomaishvili (again excluding GCH 048 Erkomaishvili.wav). The three resulting average

distributions along with an accumulated distribution (considering all three cases jointly) are

shown in Figure 5.2. The accumulated distribution indicates how long a certain interval is sung

in an average recording of the given collection. Looking at these distributions, one can make

some interesting observations. Disregarding the peaks close to the unison interval (0 cents) and

octave interval (1200 cents), the most prominent peak occurs close to the fifth interval (702 cents

in just intonation, 700 cents in the 12-tone equal-tempered scale). This reflects the fact that the
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Figure 5.2: Interval distributions averaged over all recordings.

fifth interval plays an important role in Georgian chants and that this interval is sung with high

intonation accuracy.

Interestingly, there is another noticeable peak located at about 350 cents. From a Western music

perspective, this is an unusual interval, since it lies between the minor third (315.6 cents in just

intonation, 300 cents in the 12-tone equal-tempered scale) and the major third (400 cents in

the 12-tone equal-tempered scale). The peak may be the result of the non-tempered nature of

traditional Georgian vocal music [38]. From a Western music perspective, the role of the third

interval in Georgian music seems ambiguous and, in combination with a fifth, evokes in the listener

a sound that somehow lies between a minor and major chord. For an extended musical analysis

of the Erkomaishvili recordings, we refer to [41]. Our observations agree with the results of the

much more detailed study by Scherbaum [38], which was conducted on the larynx-microphone

field recordings mentioned in Section 2.1.3. Comparing the interval distribution for our running

example with the averaged distribution, we see that “Da Sulisatsa” reflects many characteristics

of the averaged distribution, except for the octave interval.

5.2 Trajectory Smoothing

In this section, we add an intermediate filtering step to the interval analysis procedure described

above. More specifically, we smooth the F0 trajectories using a median filter before computing

the interval distributions. With this refinement, we attempt to enhance the peaky structure of

the histograms while reducing the influence of pitch variations or sudden pitch changes.

Median filters are a commonly used tool in image processing for removing salt and pepper or

impulse noise [18, Chapter 4.4], while recently, they have also been used in audio signal processing

for harmonic/percussive source separation [13]. A median filter replaces a given signal value

by the median of all signal values in its neighborhood. Let us again consider an F0 trajectory
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Figure 5.3: Superposition of unfiltered F0 trajectory (red) and median filtered F0 trajectory
(blue) of our running example “Da Sulisatsa”. (a) Whole audio file. (b) Detail.

as a vector with one frequency value per time frame. Similar to Section 4.3, let us denote our

reference trajectory vector as f∗(n). Following [13], the median filtered trajectory vector f∗MF(n)

is then obtained by

f∗MF(n) = median{f∗(n− k : n+ k), k = (l − 1)/2} , (5.1)

with the median filter length l being an odd number given in frames. In our work, we used a

median filter of length 87 frames =̂ 0.5 s.

The unfiltered and filtered reference trajectories for our running example are visualized in

Figure 5.3. It is clearly visible that tiny pitch variations and even large pitch drops (as around

11 s) in the trajectory are smoothed out. This is also reflected by more distinct peaks in the

accumulated interval distribution visualized in Figure 5.4 (dashed line). Especially the peaks

around 0 cents, 700 cents and 1200 cents are significantly enhanced. The peak locations are not

(visibly) affected by the filtering operation.
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Figure 5.4: Comparison of accumulated interval distributions.

5.3 Detection of Stable Pitches

In a further experiment, we again use median filters, but apply them in a different way. This time,

the task is to compute the interval distributions exclusively on stable parts of the trajectories,

characterized by similar pitches over a longer period of time. This can also be seen as step

towards transcription of the audio recordings. While in the previous section, we filtered along the

trajectories, we now slice each trajectory horizontally and filter each of the slices, which we again

consider as vectors, separately with a median filter. Looking again at the reference trajectory

in Figure 5.3b, ideally, the sparse entries in a slice e.g. at 160 Hz are filtered out, while a slice

around 200 Hz with many consecutive entries will keep a filtered version of its entries. In this

way, only stable parts, where the trajectory stays in the same slice for a longer time, remain

after filtering. The procedure is explained in further detail in the following.

In a first step, the values in the reference trajectory vector are quantized according to a logarithmic

frequency axis Fq. Note that in this step, the quantization stepsize can be interpreted as a

parameter tuning the “strictness” of the stable pitch detection. A fine quantization (strict)

results in more slices and less values per slice, hence less values will be indicated as stable after

filtering. A coarse quantization (soft), in turn, results in less slices and more values per slice,

hence more stable pitches. In our work, we use a quantization stepsize of 50 cents.

In a second step, the goal is to represent the quantized trajectory vector as a matrix. To this

end, we construct a matrix where each row corresponds to a frequency value in Fq and each

column corresponds to a time frame of the quantized trajectory vector (see Figure 5.5). In this

way, every element of our quantized trajectory vector can be assigned to one time-frequency bin

in our matrix. Time-frequency bins, where the trajectory is active, are set to 1, whereas bins,

where the trajectory is inactive, are set to 0.

In a third step, we filter each row of the constructed matrix with a median filter as described
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Frames

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0
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...

𝐹𝑞 45 ≈ 196.0 Hz

𝐹𝑞 46 ≈ 201.7 Hz

𝐹𝑞 47 ≈ 207.7 Hz

𝐹𝑞 48 ≈ 213.7 Hz

𝐹𝑞 49 ≈ 220.0 Hz

𝐹𝑞 50 ≈ 226.4 Hz

..
.

..
.

Figure 5.5: Matrix containing trajectory for row-wise median filtering.
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Figure 5.6: Reference F0 trajectory for our running example with stable pitches marked in black.

in Section 5.2. We again use a median filter of length 87 frames =̂ 0.5 s in this experiment.

Finally, the resulting filtered matrix can then be transformed back to a trajectory vector by

reversing step two. Taking the column-wise maximum of the matrix yields a vector indicating

stable pitches by ones and an unstable or non-existent pitches by zeros.

The result of this procedure, using a median filter of length 87 frames =̂ 0.5 s, is shown in Figure 5.6,

where the detected stable parts of the reference trajectory are colored in black. Note that “stable”

zero-parts of the trajectory are neglected in this visualization. The filtering results for our running

example mostly correspond to the auditory impression. However, tones that are perceived as

stable, such as the tone at the end of the first segment, may get cut into two or more pieces.

Detecting long tones as stable while avoiding short tones to be smoothed out requires a fine

tuning of quantization stepsize and filter length, which is not discussed here. The accumulated

curve for the row-wise filtered trajectories is marked as a dotted line in Figure 5.4. It is clearly

visible that the resulting distribution is even more enhanced than the distribution obtained
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by median filtering along trajectories. A significant improvement is again visible at the peaks

around 0 cents, 700 cents and 1200 cents. Furthermore, the local minima of the curve are much

more distinct compared to the other curves.

5.4 Conclusions and Further Notes

In this chapter, we showed through interval analysis how audio processing techniques can be

used to examine the nature of Georgian vocal music. Our analysis results confirmed the non-

western-tempered nature of Georgian vocal music. Furthermore, we showed how median filters

can be used to enhance the computed interval distributions and obtain stable pitches from F0

trajectories.

An evaluation of the chosen filtering parameters as well as of the effects on the interval distributions

was beyond the scope of this thesis and is left for future research. The analyses in this chapter

should rather be seen as a starting point or an inspiration for similar studies on the so-called

“Georgian sound-scale controversy”. Future research in this domain will also require cooperation

and exchange of knowledge between signal processing experts and (ethno-)musicologists.
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Chapter 6

Summary and Future Work

In this thesis, we developed and examined audio processing techniques for analyzing a historically

important set of Georgian chant recordings by the former master chanter Artem Erkomaishvili.

We saw that the segmentation of the recordings (Chapter 3) can be achieved by multiple means.

Our audio matching-based approach performs well in a rather artificial scenario where information

about the first segment is given. The machine-learning-based approach is more suitable in a

real-world scenario where usually no prior knowledge is available. However, this approach needs

much data to work properly. In general, we assert that analyzing audio material requires carefully

choosing feature representations and parameter settings, since they turned out to have a great

impact on the final analysis results. Exhaustive trial and error is often necessary to find “optimal”

parameter settings, including trade-offs for time-frequency resolution, or computing time.

Our comparison of fundamental frequency estimation algorithms in Chapter 4 showed that all

algorithms perform well in the first monophonic segment but have problems in the second and

third polyphonic segments. Based on the performance of our three-stage approach, we can

infer the following tendency for salience-based algorithms: The more voices are present in the

recording, the more guidance is needed for the algorithms in order to achieve reasonable results.

Although our comparison may not suffice to make general statements about the performance of

the compared F0 estimation algorithms, it at least indicates strengths and weaknesses of the

algorithms and also serves as a starting point for further research.

The interval analysis on the reference F0 annotations conducted in Chapter 5 is only one of many

ways how audio processing techniques can support research on Georgian vocal music. In this final

chapter, we again want to emphasize the publicly available reference annotations for segmentation

and F0 estimation ([29]), which can be a useful starting point for ethnomusicological and MIR

studies. With this work, we hope to encourage ethnomusicologists and MIR researchers to further

collaborate for research on Georgian vocal music and beyond.
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Future research in this domain will focus on F0 estimation on the new dataset of Georgian

chants recorded by Scherbaum et al. (see Section 2.1.3). Especially the combination of throat

microphone recordings, which contain separate voices, and room microphone recordings, which

contain a mix of all voices, forms an interesting scenario for evaluating the performance of F0

estimation algorithms. Preliminary work will include syncing audio and video files, as well as

generating processing pipelines and interfaces to facilitate working with the data.
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Appendix A

Dataset Description

The original dataset of Georgian chant recordings by Artem Erkomaishvili as available at [43]

was renamed according to a unified naming convention in the course of this project. The table

presented in this chapter defines the mapping between the original file names and the new naming

convention.

The assigned song IDs follow the IDs introduced in [42]. The book contains transcriptions of

118 songs with the corresponding song names given in Georgian and English. Each file of the

publicly-available dataset was assigned to one transcription in the book by translating and/or

comparing the transcription with the recording.

Empty table fields indicate songs, which were transcribed in the book, but were not included

in the publicly-available dataset. The abbreviation GCH stands for Georgian Chant Hymns,

the appendix Erkomaishvili for the former master chanter Artem Erkomaishvili introduced in

Section 2.1.2.

In addition to renaming, all files of the dataset have been transcoded from the original 128 kbit/s

MP3 to mono WAV files with a sampling rate of 22 050 Hz.
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ID Title Georgian Web File New Name

001 Qrist’e aghsdga Artemi - Kriste Agdga.mp3 GCH 001 Erkomaishvili.wav

002 Aghdgomasa shensa Artemi - Agdgomasa Shensa.mp3 GCH 002 Erkomaishvili.wav

003 Qrist’e aghsdga Artemi - Kriste Agdga3.mp3 GCH 003 Erkomaishvili.wav

004 Qrist’e aghsdga Artemi - Kriste Agdga4.mp3 GCH 004 Erkomaishvili.wav

005 Aghdgomisa dghe ars Artemi - Agdgomisa Dge Ars.mp3 GCH 005 Erkomaishvili.wav

006 Ganvits’midnet satsnobelni Artemi - Ganvicmidnet Sacnobelni.mp3 GCH 006 Erkomaishvili.wav

007 Tsani q’ovlad ghirsabit Artemi - Tsani Kovlad Girsebit.mp3 GCH 007 Erkomaishvili.wav

008 Movedit da vsvat Artemi - Movedit Da Vsvat.mp3 GCH 008 Erkomaishvili.wav

009 Ats’ q’ovliturt aghivso Artemi - Ats Kovliturt.mp3 GCH 009 Erkomaishvili.wav

010 Gushin shentana Artemi - Gushin Shentana.mp3 GCH 010 Erkomaishvili.wav

011 Saghmrtosa sakhmilavsa zeda Artemi - Sagmrtosa Sakhmilavsa.mp3 GCH 011 Erkomaishvili.wav

012 Esa ars ts’mida da chinebul dghe Artemi - Ese Ars Tsminda.mp3 GCH 012 Erkomaishvili.wav

013 Mamao q’ovlisa mp’q’robelo Artemi - Mamao Kovlisa Mpkrobelo.mp3 GCH 013 Erkomaishvili.wav

014 Adidebs suli chemi Artemi - Agdgomis IXdzilispiris Chasartavi.mp3 GCH 014 Erkomaishvili.wav

015 Angelozi ghaghadebs Artemi - Angelozi Gagadebs.mp3 GCH 015 Erkomaishvili.wav

016 Ganatldi, ganatldi Artemi - Ganatldi Ganatldi.mp3 GCH 016 Erkomaishvili.wav

017 Adidebs suli chemi Artemi - Agdgomis IXdzlispiri.mp3 GCH 017 Erkomaishvili.wav

018 Angelozi ghaghadebs Artemi - Angelozi Gagadebs2.mp3 GCH 018 Erkomaishvili.wav

019 Ganatldi, ganatldi Artemi - Ganatldi Ganatldi2.mp3 GCH 019 Erkomaishvili.wav

020 P’aseki brts’q’invaled Artemi - Paseki Brtskinvaled Mshvenieri.mp3 GCH 020 Erkomaishvili.wav

021 Da chven mogvanich’a

022 Meokhebita ghvtismshobelisata Artemi - Agdgomis Antiponebi.mp3 GCH 022 Erkomaishvili.wav

023 Gvatskhovnen chven dzeo ghmrtisao

024 Eklesiasa shina Artemi - Eklesiasa Shina.mp3 GCH 024 Erkomaishvili.wav

025 Qrist’e aghsdga Artemi - Kriste Agdga2.mp3 GCH 025 Erkomaishvili.wav

026 Tsiskarsa mstvad movida mariam Artemi - Tsiskarsa Mstvad.mp3 GCH 026 Erkomaishvili.wav

027 Daghatsatu nebsit tvisit Artemi - Dagatsatu Nebsit Tvisit.mp3 GCH 027 Erkomaishvili.wav

028 Shobaman shenmam, ghvtismshobelo

029 Adidebs suli chemi Artemi - Gvtismshoblis IXdzlispiris Chasartavi.mp3 GCH 029 Erkomaishvili.wav

030 Romelman shev mtiebi Artemi - Romelman Shev.mp3 GCH 030 Erkomaishvili.wav

031 Qrist’es shobasa vadidebdet Artemi - Kristes Shobasa Vadidebdet.mp3 GCH 031 Erkomaishvili.wav

032 Sasts’aulita ikhsna eri upalman Artemi - Sastsaulit Ikhsna Eri Tvisi Upalma.mp3 GCH 032 Erkomaishvili.wav

033 Ghmerto, mokheden monata galobasa Artemi - Gmerto Mokheden.mp3 GCH 033 Erkomaishvili.wav

034 Kvertkhi ieses dzirisagan Artemi - Kvertkhi Ieses.mp3 GCH 034 Erkomaishvili.wav

035 Adide, sulo chemo Artemi - Shobis IXdzlispiris Chasartavi.mp3 GCH 035 Erkomaishvili.wav

036 Saidumlo, utskho da didebuli Artemi - Saidumlo Utskho Da Didebuli.mp3 GCH 036 Erkomaishvili.wav

037 Saidumlo, utskho da didebuli

038 Meokhebita ghvtismshobelisata

039 Gvatskhovnen chven dzeo ghmrtisao

040 Sashod mtiebisa Artemi - Sashod Mtiebisa.mp3 GCH 040 Erkomaishvili.wav

041 Shobaman shenmam, qrist’e ghmerto Artemi - Shobaman Shenman.mp3 GCH 041 Erkomaishvili.wav

042 Qalts’uli dghes arsebad Artemi - Kaltsuli Dges Arsebad.mp3 GCH 042 Erkomaishvili.wav

043 Meokhebita ghvtismshobelisata Artemi - Natlisgebis Antiponebi.mp3 GCH 043 Erkomaishvili.wav

044 Gvatskhovnen chven dzeo ghmrtisao

045 Kurtkhul ars momavali Artemi - Kurtkheul Ars Momavali.mp3 GCH 045 Erkomaishvili.wav

046 Razhams iordanes natel ighe Artemi - Rajams Iordanes.mp3 GCH 046 Erkomaishvili.wav

047 Raodenta qrist’es mier Artemi - Raodenta Kriste Mier.mp3 GCH 047 Erkomaishvili.wav

048 Adide sulo chemo Artemi - Natlisgebis IXdzlispiris Chasartavi.mp3 GCH 048 Erkomaishvili.wav

049 Vershemdzlebel vart didebad shenda Artmi - Ver Shemdzlebel Vart.mp3 GCH 049 Erkomaishvili.wav

050 Gikharoden mimadlebulo Artemi - Gikharoden Mimadlebulo.mp3 GCH 050 Erkomaishvili.wav

051 Ghvtismshobelo qalts’ulo, sasoebao Artemi - Mirqmis IXdzlispiris Chasartavi.mp3 GCH 051 Erkomaishvili.wav

052 Ts’erilta mier sjulisata Artemi - Tserilta Mier Sjulisata.mp3 GCH 052 Erkomaishvili.wav

053 Ats’ ganut’eve Artemi - Ats Ganuteve.mp3 GCH 053 Erkomaishvili.wav

054 Dghes tskhovrebisa chvenisa Artemi - Dges Tskhovrebisa Chvenisa.mp3 GCH 054 Erkomaishvili.wav

055 Aghaghe p’iri chemi

056 Kidobansa nas sjulisasa Artemi - Kidobansa Mas Sjulisasa.mp3 GCH 056 Erkomaishvili.wav

057 Ghirsad gabriel qalts’uls akhara Artemi - Girsad Gabriel.mp3 GCH 057 Erkomaishvili.wav

058 Meokhebita ghvtismshobelisata Artemi - Peristsvalebis Antiponebi.mp3 GCH 058 Erkomaishvili.wav

059 Gvatskhovnen chven dzeo ghmrtisao

060 Upalo mogvivline nateli Artmi - Upalo Mogvivline.mp3 GCH 060 Erkomaishvili.wav

061 Mtasa zeda peri itsvale qrist’e Artemi - Mtasa Zeda.mp3 GCH 061 Erkomaishvili.wav

062 Adide sulo chemo Artemi - Peristsvalebis IXdzlispiris Chaartavi.mp3 GCH 062 Erkomaishvili.wav

063 Shoba sheni ukhrts’nel ars Artemi - Shoba Sheni Ukhrtsnel Ars.mp3 GCH 063 Erkomaishvili.wav

064 Dghes saghmrtoman madlman

065 Mots’apeta ra ikhiles Artemi - Bzobis IXdzlispiris Chasartavi.mp3 GCH 065 Erkomaishvili.wav

066 Ghmerti upali Artemi - Gmerti Upali.mp3 GCH 066 Erkomaishvili.wav

067 Nateli natlisagan movlinebuli Artemi - Nateli Natlisagan.mp3 GCH 067 Erkomaishvili.wav

068 Amaghldi didebit qrist’e ghmerto Artemi - Amagldi Didebit.mp3 GCH 068 Erkomaishvili.wav

069 Adidebs suli chemi Artemi - Amaglebis IXdzlispiris Chasartavi.mp3 GCH 069 Erkomaishvili.wav
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070 Shev, qalts’ulo Artemi - Shev Kaltsulo.mp3 GCH 070 Erkomaishvili.wav

071 Razhams mokhvide ghmerti Artemi - Rajams Mokhvide Gmerti.mp3 GCH 071 Erkomaishvili.wav

072 Razhams didebulni mots’apeni Artemi - Rajams Didebulni Motsapeni.mp3 GCH 072 Erkomaishvili.wav

073 Shvenierman ioseb Artemi - Mshvenierman Ioseb.mp3 GCH 073 Erkomaishvili.wav

074 Razhams shtakhed saplavad Artemi - Rajams Shtakhed.mp3 GCH 074 Erkomaishvili.wav

075 Siq’varulman mogiq’vana

076 Zetsisa mkhedrobata mtavarangelozno Artmi - Zetsisa Mkhedrobata.mp3 GCH 076 Erkomaishvili.wav

077 T’q’veta ganmatavisuplebelo Artemi - Tkveta Ganmantavisuplebelo.mp3 GCH 077 Erkomaishvili.wav

078 Barbares ts’midasa p’at’ivs vstsemdet Artemi - Barbares Tropari.mp3 GCH 078 Erkomaishvili.wav

079 Q’ovelsa qveq’anasa Artemi - Basili Didis Tropari.mp3 GCH 079 Erkomaishvili.wav

080 Sit’q’visa ghvtisa Artemi - Sitkvisa Gvtisa.mp3 GCH 080 Erkomaishvili.wav

081 Motsiquli qrist’esagan gamorcheuli Artemi - Motsikuli Kristesgan Gamorcheuli.mp3 GCH 081 Erkomaishvili.wav

082 Dghes mokharul ars eri qartvelta

083 Ts’inamorbedisa didebulisa Artemi - Tsinamorbedisa Didebulisa.mp3 GCH 083 Erkomaishvili.wav

084 Mertskhalo mshveniero

085 Mrts’amsi Artemi - Mrtsamsi.mp3 GCH 085 Erkomaishvili.wav

086 Ts’q’aloba, mshvidoba Artemi - Tskaloba Mshvidoba.mp3 GCH 086 Erkomaishvili.wav

087 Da sulisatsa Artemi - Da Sulisatsa.mp3 GCH 087 Erkomaishvili.wav

088 Gvaqvs uplisa mimart Artemi - Gvakvs Uplisa Mimart.mp3 GCH 088 Erkomaishvili.wav

089 Ghirs ars da martal Artemi - Girs Ars Da Martal.mp3 GCH 089 Erkomaishvili.wav

090 Ts’mida ars, ts’mida ars Artemi - Tsmindao Tsmindao.mp3 GCH 090 Erkomaishvili.wav

091 Shen gigalobt Artemi - Shen Gigalobt.mp3 GCH 091 Erkomaishvili.wav

092 Ghirs ars ch’eshmarit’a Artemi - Girs Ars.mp3 GCH 092 Erkomaishvili.wav

093 Q’ovelta da q’ovlisatvis Artemi - Kovelta Da Kovlisatvis.mp3 GCH 093 Erkomaishvili.wav

094 Mamao chveno Artemi - Mamao Chveno.mp3 GCH 094 Erkomaishvili.wav

095 Mamao chveno Artemi - Mamao Chveno2.mp3 GCH 095 Erkomaishvili.wav

096 Shen, upalo

097 Amin Artemi - Amin.mp3 GCH 097 Erkomaishvili.wav

098 Ert ars ts’mida Artemi - Ert Ars Tsminda.mp3 GCH 098 Erkomaishvili.wav

099 Khortsi qrist’esi movighot Artmi - Khortsi Kristesi.mp3 GCH 099 Erkomaishvili.wav

100 Dideba mamasa da dzesa Artemi - Dideba Atsda.mp3 GCH 100 Erkomaishvili.wav

101 Upalo romelman q’ovladts’mida Artmi - Upalo Romelman.mp3 GCH 101 Erkomaishvili.wav

102 Guli ts’mida dabade Artemi - Guli Tsmida Da Romelman.mp3 GCH 102 Erkomaishvili.wav

103 Romelman meeqvsesa dghesa

104 Romelman metskhresa zhamsa Artemi - Romelman Metskhresa Jamsa.mp3 GCH 104 Erkomaishvili.wav

105 Upalo ghaghadvq’av shendami Artmi - Upalo Gagadvkav.mp3 GCH 105 Erkomaishvili.wav

106 Ts’aremarten lotsva chemi Artemi - Tsaremarten Lotsva Chemi.mp3 GCH 106 Erkomaishvili.wav

107 Ats’ dzalni tsatani Artemi - Ats Dzalini Tsatani.mp3 GCH 107 Erkomaishvili.wav

108 Shendami ikharebs Artemi - Shendami Ikharebs.mp3 GCH 108 Erkomaishvili.wav

109 Zetsit gamochinebulisa Artmi - Zetsit Gamochinebulisa.mp3 GCH 109 Erkomaishvili.wav

110 Isp’ola Artemi - Ispola.mp3 GCH 110 Erkomaishvili.wav

111 T’on desp’ot’in Artemi - Ton Despotin.mp3 GCH 111 Erkomaishvili.wav

112 Kirieleison Artemi - Kirie Leison.mp3 GCH 112 Erkomaishvili.wav

113 Aqsios Artemi - Aksios.mp3 GCH 113 Erkomaishvili.wav

114 Isaia mkhiarul iq’av Artemi - Esaia Mkhiarul.mp3 GCH 114 Erkomaishvili.wav

115 Ts’mindano mots’ameno Artemi - Tsmindano Motsapeno.mp3 GCH 115 Erkomaishvili.wav

116 Dideba shenda qrist’e ghmerto Artemi - Dideba Shenda Kriste Gmerto.mp3 GCH 116 Erkomaishvili.wav

117 Mosvlisa shenisa

118 Shen khar venakhi
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Appendix B

Diagonal Matching Outliers

In this chapter, we list the matching curves belonging to the recordings where the peak-picking

on the matching curves did not succeed in finding the ground truth positions (∆ti1 > 10 s,

s. Figure 3.8). The figures were created using refined log-frequency representations for database

and query based on a STFT with N = 4096 samples and H = N/8.
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Figure B.1: Matching curve for GCH 001 Erkomaishvili.wav. Lead voice barely audible in second
and third segment. (a) Euclidean distance.(b) Cosine distance.
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Figure B.2: Matching curve for GCH 015 Erkomaishvili.wav. Lead voice barely audible in third
segment. (a) Euclidean distance; a slight rise in dynamics is visible. (b) Cosine distance.
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Figure B.3: Matching curve for GCH 048 Erkomaishvili.wav. Recording contains two times the
same piece. Presumably, due to similar peak characteristics, the first recording is simply repeated
a second time. (a) Euclidean distance; fluctuations in dynamics are visible. (b) Cosine distance.
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Figure B.4: Matching curve for GCH 107 Erkomaishvili.wav. Decreasing velocity and pitch in
the course of the recording. (a) Euclidean distance; a drop in dynamics is visible. (b) Cosine
distance.
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Appendix C

F0 Estimation Outliers

In this chapter, we illustrate the performance of our three-stage approach by showing two

examples with low average pitch accuracy (Figure C.1) and two examples with high average pitch

accuracy (Figure C.2). The examples are based on a STFT with window length N = 1024 samples

and hopsize H = 256 samples. The maximum pitch offset is set to 50 cents.
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Figure C.1: F0 trajectory generated with three-stage approach (dark blue). The reference trajec-
tory is visualized in bold red. (a) GCH 097 Erkomaishvili.wav. (b) GCH 093 Erkomaishvili.wav.
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Figure C.2: F0 trajectory generated with three-stage approach (dark blue). The reference trajec-
tory is visualized in bold red. (a) GCH 015 Erkomaishvili.wav. (b) GCH 016 Erkomaishvili.wav.
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[37] J. Salamon, E. Gómez, D. P. W. Ellis, and G. Richard, Melody extraction from polyphonic

music signals: Approaches, applications, and challenges, IEEE Signal Processing Magazine, 31 (2014),

pp. 118–134.

[38] F. Scherbaum, On the benefit of larynx-microphone field recordings for the documentation and

analysis of polyphonic vocal music, in 6th International Workshop on Folk Music Analysis, Dublin,

Ireland, 2016, pp. 80–87.

[39] F. Scherbaum, W. Loos, F. Kane, and D. Vollmer, Body vibrations as source of information

for the analysis of polyphonic vocal music, in Proceedings of the International Workshop on Folk

Music Analysis, vol. 5, Paris, France, 2015, pp. 89–93.

[40] , On the benefit of larynx-microphone field recordings for the documentation and analysis of

polyphonic vocal music, in Proceedings of the International Workshop on Folk Music Analysis, Dublin,

Ireland, 2016, pp. 80–87.

[41] F. Scherbaum, M. Müller, and S. Rosenzweig, Analysis of the Tbilisi State Conservatory

recordings of Artem Erkomaishvili in 1966, in Proceedings of the 7th International Workshop on Folk

Music Analysis, Málaga, Spain, 2017, pp. 29–36.

[42] D. Shugliashvili, Introduction, in Georgian Church Hymns, Shemokmedi School, 2014, pp. 23–29.

[43] Tbilisi State Conservatory, Folklore Department, Artem

erkomaishvilis sagaloblebi. Website http://www.alazani.ge/

old-archives-Artem-Erkomaishvilis-Sagaloblebi-folk-songs-ans59.html, last accessed

August 29, 2017.

81 Master Thesis, Sebastian Rosenzweig

https://www.audiolabs-erlangen.de/resources/MIR/2017-GeorgianMusic-Erkomaishvili
https://www.audiolabs-erlangen.de/resources/MIR/2017-GeorgianMusic-Erkomaishvili
https://www.upf.edu/web/mtg/melodia
https://www.upf.edu/web/mtg/melodia
http://www.alazani.ge/old-archives-Artem-Erkomaishvilis-Sagaloblebi-folk-songs-ans59.html
http://www.alazani.ge/old-archives-Artem-Erkomaishvilis-Sagaloblebi-folk-songs-ans59.html


BIBLIOGRAPHY

[44] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective, .NET Developers

Series, Elsevier Science, 2015.

[45] Z. Tsereteli and L. Veshapidze, On the Georgian traditional scale, Tbilisi, Georgia, 2014,

pp. 288–295.

[46] R. Tsurtsumia and J. Jordania, Echoes from Georgia: Seventeen Arguments on Georgian

Polyphony, Nova Science Publishers, 2010.

82 Master Thesis, Sebastian Rosenzweig



CURRICULUM VITAE

Curriculum Vitae

Sebastian Rosenzweig was born in Erlangen, Germany.
He received his B.Sc. in Mediatechnology from Ilmenau
University of Technology in 2015. At the moment, he is a
M.Sc. student in Communications and Multimedia Engi-
neering at Friedrich-Alexander University Erlangen-Nürn-
berg. His research interests are audio signal processing
and machine learning, with focus on musical audio.

83 Master Thesis, Sebastian Rosenzweig


	Erklärung
	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Structure of this Thesis
	Main Contributions

	Background
	Georgian Vocal Music Research
	Time-Frequency Representations

	Audio Segmentation
	Reference Annotations
	Matching-Based Segmentation
	Classification-Based Segmentation
	Conclusions and Further Notes

	Fundamental Frequency Estimation
	Background
	Generating Reference Annotations
	Evaluation Measures
	Time Domain Algorithms
	Salience-Based Algorithms
	Three-Stage F0 Trajectory Estimation
	Evaluation
	Conclusions and Further Notes

	Applications to Georgian Vocal Music Research
	Interval Analysis
	Trajectory Smoothing
	Detection of Stable Pitches
	Conclusions and Further Notes

	Summary and Future Work
	Dataset Description
	Diagonal Matching Outliers
	F0 Estimation Outliers
	Bibliography
	Curriculum Vitae

