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Summary

Tracking, reconstructing, and analyzing human motions constitute ceryies$ o computer vi-
sion and computer graphics. Although marker-less motion tracking hasameactive research
field for more than two decades, there are still major challenges, in partightw dealing with
only few cameras, noise in the image data, occlusions, or fast motions. liésis, we intro-
duce novel approaches for increasing the stability, accuracy, fingtrecy of marker-less human
motion tracking and 3D human pose reconstruction. As one common undectyiicgpt, the pre-
sented approaches contain a retrieval component making use of dakaioagedge in the form
of previously recorded marker-based motion capture (mocap) datartinylar, we contribute to
three diferent areas dealing with various types of sensors including video csjoptecal mocap
systems, inertial sensors, and depth cameras. Firstly, we introducetsbased retrieval tech-
niques for automatically segmenting and annotating mocap data that is origireadigigut in form
of unstructured data collections. Secondly, we show how such rohastation procedures can
be used to support and stabilize marker-less motion tracking. Thirdly, wedagealgorithms for
reconstructing human motions from noisy depth sensor data in real-timettesd contributions,
a particular focus is put orfleciency issues in order to keep the run time as low as possible.

Zusammenfassung

Die Analyse und Rekonstruktion von menschlichen Bewegungen ausr8aten stellt ein zentra-
les Thema in den Forschungsgebieten der Computer Vision und Compfikedgralnsbesondere
die markerfreie Bewegungsstilzung aus Bilddaten weist trotz laabfiger Forschungsaktiéten
noch Defizite auf, die pridr bei schnellen Bewegungen oder verrauschten und urdsdigten
Sensordaten sichtbar werden. In dieser Arbd@irén wir neue Arétze zur markerfreien Rekon-
struktion menschlicher Bewegungen ein, welche den aktuellen Stand dehEog im Hinblick
auf Stabilitit, Genauigkeit undfzienz signifikant erweitern. Dazu entwickeln wir datengetriebe-
ne Methoden, die Vorwissen in Form von Bewegungsdatenbankemnuizbesondere tragen wir
zu drei Teilgebieten bei, die sich mit der Analyse und der Rekonstruktioschéoher Bewegun-
gen aus Sensordaten von Videokameras, optischen Motion Captussr®ys Inertialsensoren
und Tiefenkameras besatigen. Zutchst erforschen wir inhaltsbasierte Retrieval- und Anno-
tationstechniken im Hinblick auf die Identifikation und Extraktion von geeignétesschnitten
aus unstrukturierten Sammlungen von Bewegungsdaten. Dann zeigenenRetrievaltechniken
zur Stabilisierung von markerfreiem Tracking eingesetzt werdsmé&n. Schliel3lich entwickeln
wir Algorithmen zur Rekonstruktion von menschlichen Bewegungen in Eitlatze verrauschten
Tiefendaten. In allen Teilen dieser Arbeit spieldfifienzaspekte eine grof3e Rolle und es werden
schnelle Algorithmen entwickelt und implementiert.
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Chapter 1

Introduction

1.1 Motivation

Commonly, motion capturing is referred to as the process of recording mobijegts and cre-
ating three-dimensional digital representations of these mofi@rscher, 200 The resulting
motion capture data or simply mocap data constitutes the basis for applicationfoimsvields
such as gait analysis, rehabilitation, physical therapy, bio-mecharsieara, sports sciences, or
performance analysis. With increasing importance, mocap data is used intewrapimation to
create realistic motions for both movies and video games.

In general, we distinguish betweemarker-basedcand marker-lessmocap. To date, mocap data
for commercial purposes is predominantly generated using marker-beassap systems. These
systems rely on some sort of markers or other tracking devices that atecatti@ the actor’'s body.
Although the use of markers might impair or even restrict the actor's movenientany applica-
tion scenarios the advantages of marker-based mocap systems greadighutwe disadvantages
coming from markers being attached to the body.

The goal of marker-less motion tracking is to track the actor's movement witlsing any mark-
ers or other special tracking devices, thus allowing the actor to move in a matweal way.
Marker-less motion tracking constitutes a central task in computer vision witly yeirunsolved
research problems. Most commonly, existing approaches rely on a tadilset of optical cam-
eras supplying temporally synchronized streams of image data. In ordestoilte the actor's
motion, skeletal mocap data in terms of 3D positions, orientations, and andleslyfoints are
extracted from this data. To make the tracking task feasible, most of thentsystems require
further a-priori knowledge. Such knowledge may be given in form sidace mesh modeling
the actor’s body, which is often obtained by using a body laser scaAnether kind of a-priori
knowledge may consist of a specific activity the actor is expected to perfétere, additional
knowledge in form of suitable example motions may be used to stabilize the trgmkiogdure.
Although powerful approaches exist that permit stable tracking in stuetigps, tracking algo-
rithms still have to be improved in order to meet or possibly exceed the qualitgfaciéncy of
marker-based systems. In particular, in view of applications such asikkamee, rehabilitation,
and electronic monitoring, there is a high demand for stable, accurate aapdceuse tracking
algorithms that do not require the use of external markers.

1



2 CHAPTER 1. INTRODUCTION

1.2 Contributions and Organization

This thesis is motivated by the fact that existing algorithms for marker-less maodicking still do

not reach the robustness arfi@ency of marker-based mocap systems. To stabilize and improve
marker-less motion tracking, we investigate the combination of robust rdthasad algorithms
with existing tracking methods. In both the retrieval and the tracking stepsabf data-driven
algorithms, @ficient concepts are investigated and implemented in order to reduce th# nwera
time of motion reconstruction. In this thesis, we explore multiple sensor typésesdibiting
different noise characteristics. Among others, we show how one can amadgizeconstruct mo-
tions on the basis of data with problematic noise characteristics as obtaineth&dial sensors

or depth cameras.

Part | of the thesis deals specifically with retrieval and annotation of markedbaseap data.
There are many ways to generate marker-based mocap dataaigjinmertial, mechanical, mag-
netic, or optical systems. Each technology has its own strengths and egsakn and we refer
to [Elson, 1994; Gleicher, 2000; Wikipedia, 23 ar overviews and discussions about the advan-
tages and drawbacks of such systems. In Part |, we deal with mocapataiag from optical
systems. Although such systems can record accurate mocap datafic@enty, the high cost
of creating mocap data (coming from specialized and expensive teclkqjcgiment and the hu-
man resources in form of actors, techniciagts,) motivates the reuse of existing collections of
recorded mocap data. Therefore, automated methods for analyzingustrg and organizing
mocap data are needed. A further motivation for developing such metlousscfrom the fact
that mocap data coming from a recording session often has to be segmedhtthatated before
it can be applied ire. g, the production of movies or computer games.

We present three major contributions in the first part of this thesis, workiwgrds the goal

of creating a robust andfecient framework for automated segmentation and annotation of mocap
data. Here, one mainffiiculty is due to the fact that similar types of motion may exhibit significant
spatial as well as temporal variations. To cope with such variations, exéfogthms often make
use of computationally expensive warping and alignment techniques. Wfedly summarizing

in Chaptef R the basic concepts as used throughout the thesis, wet preseel keyframe-based
search algorithm that significantly speeds up the retrieval procesgastitdlly reduces memory
requirements (Chaptgf 3). In contrast to previous index-based s¢éstegr recursive algorithm
can cope with temporal variations. In particular, the degree of admissifdentiion tolerance
between the queried keyframes can be controlled with an explifitessis parameter. While our
algorithm works for general multimedia data, we concentrate on demonsttiaéimyacticability

of our concept by means of the motion retrieval scenario. Our experirsbotg that one can
typically cut down the search space from several hours to a couple aftesimf mocap data
within a fraction of a second.

As a second contribution, in Chapler 4 we introduce a genetic algorithnafomeatically learning
keyframes for a given motion category. The presented algorithm reléebulds on the fficient
keyframe-based search algorithm as presented in CHdpter 3. As theangibution of Part |,
we introduce anf@icient approach to segment and label mocap data according to a prddsdine
of motion categories, each specified by a suitable set of positive examplexs@@baptel5). In
our novel annotation procedure, the unknown motion data is segmenteshaothted by locally
comparing it with the available motion classes. In this framework, the keyftzamed search algo-
rithm (Chapte[B) along with the learned keyframes (Chapter 4) are ibéelgyselding significant
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improvements in the annotation quality arfi@ency.

In Part Il of the thesis, we combine retrieval techniques described in Part | witiopisty devel-
oped tracking techniques. In particular, we introduce a novel iteratairadwork for stabilizing
marker-less human motion tracking in a data-driven manner (CHapter &islframework, we
start to track without applying prior knowledge to the tracking algorithm. Eselting 3D motion
sequences, which may be corrupted due to tracking errors, are loleabjfied according to avail-
able motion categories using an algorithm similar to the one presented in Haptgweénding on
the classification result, a retrieval system supplies suitable motion prioich ate then used to
regularize and stabilize the tracking in the next iteration step. Experiments witfuimanEVA-II
benchmark show that tracking and classification are significantly imprdvedfew iterations.

As a further contribution, in Chaptelr 7 we introduce a novel framewarkditomatically evaluat-
ing the quality of 3D tracking results obtained from marker-less motion trackingur approach,
we use additional inertial sensors to generate suitable reference itifmmmin contrast to pre-
viously used marker-based systems, inertial sensors are inexpezasyeto operate, and impose
comparatively weak additional constraints on the overall recording sgthpegard to location,
recording volume, and illumination. As our main contribution, we show how inactesults can
be analyzed and evaluated on the basis of suitable limb orientations, whidie aerived from
3D tracking results as well as from inertial sensors fixed on these limhsexperiments on var-
ious motion sequences offfiirent complexity demonstrate that such limb orientations constitute
a suitable mid-level representation for robustly detecting most of the traekiogs. In particular,
our evaluation approach reveals also misconfigurations and twists of thethatlbsan hardly be
detected from traditional evaluation metrics.

In Part Il of the thesis, we develop a data-driven approach for reconstruatimg motions,
where we use monocular input from a depth camera instead of multiview vicksms. Depth
cameras have become a widely available sensor type that captures depth anhegegl-time frame
rates. A depth image can be imagined as a “pinpression”, where densilydpiittle iron nails
are pushed forward to create a blueprint of a certain shape. In gri@dbe pinpression, each
pixel of a depth image stores the distance to the closest object in the scegeitaleiewing
direction. Since this representation contains more depth information than al@bmage and
less information than a full 3D representation, such images are alsoectfierras 2.5D data.
Even though recent approaches have shown that 3D pose estimatromfyoocular 2.5D depth
images has become feasible, there are still challenging problems due torgtisag the captured
depth data and self-occlusions in the motions. In our data-driven agpresge make use of a
previously recorded database of full-body poses to stabilize the motiongteaction. As one
main contribution, we develop affieient algorithm for extracting semantically meaningful pose
features from the depth data. These features are then used to retaiglizisg pose candidates
from the database. By combining such a data-driven technique with anambpfor marker-
less tracking we achieve stable pose estimates even for complex motionsfaiglediectively
prevented. In our framework, we contribute with several technical ivgments that lead to
speed-ups of an order of magnitude compared to previous approaChesexperiments show
that the combination of the introduced techniques facilitates stable and teceahtime tracking
even for fast and complex motions, making it applicable to a wide range ofaitez scenarios.
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1.3 Publications of the Author

The core parts of this thesis are based on five main publications of the .alnhbe following,
the publications are listed in chronological order, and their relations to thsssthee explained. In
further publications, similar techniques and methods as developed in thislihesibeen applied
to related application scenarios. The corresponding publications willdielsd at the end of this
section.

[Baaket al,, 2008] Andreas Baak Meinard Miller, and Hans-Peter Seidel. Affieient algo-
rithm for keyframe-based motion retrieval in the presence of temporafrmetions. In
Proceedings of the 1st ACM SIGMM International Conference on Mulienkdorma-
tion Retrieval (ACM MIR)pages 451-458, Vancouver, British Columbia, Canada, October
2008.

In this publication, a novel technique for keyframe-based motion retrigiatroduced. The
developed search algorithm is described and evaluated in Chapter 3.

[Miller et al., 2009] Meinard Miller, Andreas Baak and Hans-Peter Seidelfffeient and robust
annotation of motion capture data. fioceedings of the ACM SIGGRAMdrographics
Symposium on Computer Animation (SO#gges 17-26, August 2009.

In this work, a novel framework for automated annotation of mocap dataided. More-
over, a genetic algorithm for learning keyframes from a set of positiden@gative example
motions is sketched. In Chapfer 4, this algorithm is described in more detakebibie
framework for mocap annotation is explained and evaluated in CHapter 5.

[Baaket al,, 2009] Andreas Baak Bodo Rosenhahn, Meinard iMer, and Hans-Peter Seidel.
Stabilizing motion tracking using retrieved motion priorsIBEE International Conference
on Computer Vision (ICCVYpages 1428-1435, September 2009.

In this contribution, retrieval techniques as developed in Part | of thestlaes used to
retrieve motion priors for stabilizing marker-less motion tracking. The resuli@tg-driven
tracking procedure is described in Chapfer 6.

[Baaket al,, 2010] Andreas Baak Thomas Helten, Meinard Mler, Gerard Pons-Moll, Bodo
Rosenhahn, and Hans-Peter Seidel. Analyzing and evaluating maskenégion tracking
using inertial sensors. IRAroceedings of the 3rd International Workshop on Human Motion.
In Conjunction with ECCVvolume 6553 of_ecture Notes of Computer Science (LNCS)
pages 137-150. Springer, September 2010.

In this article, we develop a method that enables the automated evaluation of-heaske
motion tracking also in outdoor scenarios by using data recorded fronain@ensors as
reference information, see Chagtér 7.

[Baaket al,, 2011] Andreas Baak Meinard Miller, Gaurav Bharaj, Hans-Peter Seidel, and
Christian Theobalt. A data-driven approach for real-time full body pesenstruction
from a depth camera. IEEE International Conference on Computer Vision (ICQMges
1092-1099, November 2011.

In this publication, we introduce novel algorithms for reconstructing humationsfrom
depth camera data. In Part Ill (Chagtér 8), we significantly expand ttiééeaand present
more algorithmic details and results.
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Publications with related application scenarios which are not further detaita thesis:

[Pons-Mollet al,, 2010] Gerard Pons-MollAndreas Baak Thomas Helten, Meinard Mler,
Hans-Peter Seidel, and Bodo Rosenhahn. Multisensor-fusion foul8Bddy human mo-
tion capture. INEEE Conference on Computer Vision and Pattern Recognition (CVPR)
pages 663-670, June 2010.

In this work, we designed and implemented an approach for fusing videondtn orien-
tation data obtained from inertial sensors to improve and stabilize full-boahahumotion
tracking. To this end, a previously developed local optimization-basewagipfor tracking
is enhanced and stabilized. The performance of the tracking is evaluaiedaor studio
recordings.

[Pons-Mollet al,, 2011] Gerard Pons-MollAndreas Baak Juergen Gall, Laura Leal-Taéx
Meinard Miller, Hans-Peter Seidel, and Bodo Rosenhahn. Outdoor human motimecap
using inverse kinematics and von Mises-Fisher samplintEEE International Conference
on Computer Vision (ICCVYpages 1243-1250, November 2011.

In this publication, we integrate orientation data obtained from inertial sefsora parti-

cle filter framework for marker-less motion tracking. In contrast to the lop&imization-
based algorithm ifPons-Mollet al, 201, the particle filter framework enables a much
more stable tracking at the cost of higher run times. As one main technicibtaion,

we show how the recorded inertial sensor data can be used to reduiedresionality of

the tracking task with anficient analytic inverse kinematics approach. We demonstrate
that complex motions can be tracked in an outdoor scenario with image datgusofour
unsynchronized consumer cameras and orientation data from just fitialisensors.
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Chapter 2

Basic Concepts

This chapter presents a brief review of basic concepts that are usedfiout this part of the the-
sis. We begin with a brief summary of marker-based mocap data in SEcflontzi, vie summa-
rize relational features as introduced[uller et al, 2009 and fix some notation in Sectién 2.2.
Relational features are used as an underlying feature representatiue and the subsequent
chapters. Such features transform mocap data into a space that isrint@igdobal translations
and rotations. Moreover, by projecting the mocap data onto semantically rgagamelations,
important and discriminative aspects of the motion are retained while a higeedefmvariance
to subtle and person-specific details in the motions is achieved. Using reldtianaes as a basis,
we outline in Sectiofi 213 the concept of motion templates, which capture thecessfemmotion
class in a semantically interpretable maffi&iiller and Rder, 2005. In the subsequent chapters,
we show how motion templates can be used in a robust fiiwieat manner for segmenting and
annotating mocap data.

2.1 Marker-based Motion Capture Data

Modern marker-based mocap technology is capable of accurately weakthrecording human
motions at high spatial and temporal resolutions. Such systems use canmnger ito record im-
age data of the scene that contains markers. The markers either sdleet ¢, [Vicon, 2013),

(@) et (b) (©)

Figure 2.1. (a) 3D Marker positions as recorded from a commercial motigtuwa system(b): Skeletal
kinematic chain with joints (gray) and bones (bladk): Reconstructed skeletal pose.

9



10 CHAPTER 2. BASIC CONCEPTS

Figure 2.2. Seven poses of a side kick sequence (top) and a front kickesegubottom). Even though
the two kicking motions are similar in some logical senseytbxhibit significant spatial and temporal
differences. From Mler and Ryder[2007.

or actively emit (seeg. g, [PhaseSpace, 20/)2ight. In order to ease the detection of the marker
positions, some systems use infrared light sources and cameras thainwbek infrared do-
main[Vicon, 2013. From the recognized 2D pixel positions and the calibration of the cangas,
positions of the markers can be computed, see Flgure 2.1 (a) for an exdmptethe 3D marker
positions, the motion of the underlying skeleton can be reconstructed. Tertthjighe skeleton
is modeled as a kinematic chdiilller, 2007. Although methods for automatically computing
a suitable skeleton from just a sequence of 3D marker positions[&a&iet al, 2004, a tem-
plate skeleton (similar to Figute 2.1 (b)) is typically provided. In contrast toraatically gen-
erated skeletons, one gains full control over the admissible degreesedbim of the movements
by using a manually designed template skeleton. Using inverse kinematics optimigeize-
dures[Murray et al, 1994, joint angles of the skeleton can be determined from the 3D marker
positions, see Figufe 2.1 (c) for a resulting 3D pose of the skeleton. A tahgeguence of joint
angles or joint positions is referred to as mocap data.

Mocap data is used in a variety of applications ranging from motion synthedéandriven com-
puter animation to motion analysis in fields such as sports sciences, biomeglzamicomputer
vision [Kovar and Gleicher, 2004; Mier, 2007; Rosenhahet al,, 2007¢. Although there is a
growing corpus of free mocap da&,g, [CMU, 2003; Miller et al,, 2007 Tenortret al,, 2009,
there is still a lack of fiicient motion retrieval systems that work in a purely content-based
fashion without relying on manually generated annotations. Here, the méiculty is due to

the fact that similar types of motions may exhibit significant spatial as well asaeiyparia-
tions [Kovar and Gleicher, 2004; Mier, 2007. For example, the two kick sequences shown in
Figure[2.2 are logically related even though thejaticonsiderably with respect to motion speed
as well as the direction, the height, and the style of the kick.

Most of the previous approaches to motion comparison are based orefetitat are semantically
close to the raw data, using 3D positions, 3D point clouds, joint anglegeptations, or PCA-
reduced versions thereof, seeg, [Forbes and Fiume, 2005; Hstial, 2005; Keogret al, 2004;
Kovar and Gleicher, 2004; Sakamatbal,, 2004; Wuet al, 2003. One problem of such features
is their sensitivity to pose deformations which may occur in logically related motiBngher-
more, computationally expensive techniques such as dynamic time warpin)(8€ necessary
to establish temporal correspondence between related fifi&oesr and Gleicher, 2044 To cope
with spatial variations, Nller et al. [200H introduce the concept @élational featureswhich is
based on the following observation. As opposed to other data types swih shape, image, or
video, 3D mocap data is explicitly based on a kinematic chain that models the hkgiatos.
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Figure 2.3. Various boolean relational features that encode sp@jalvelocity-basedb), as well as
directional informatior(c) between the joints of a pose. FrdM{ller et al, 2004.

This underlying model can be exploited by looking for semantically meanifgfolean relations
between specified points of the body.

2.2 Relational Features

In the following, a stream of mocap data is modeled as a sequ2rcéPy, P, ..., Py) of poses
PhePforne[l:N]:=1{12,...,N} (wrt. afixed sampling rate), wher denotes the set of
all poses. Here, each pose consists of a full set of 3D coordinateslgiag the joint positions of

a skeletal kinematic chain for a fixed point in time, see Figure 2.1. The idedational features
as introduced by Mller et al. [2009 is to describe semantically interpretable, boolean aspects
of a pose or a short sequence of poses expressing actions or tiotesauf certain body parts.
Mathematically, a relational feature is a boolean funcon ¥ — {0, 1} that assumes only the
values zero and one. As an example of a relational feature, considaieh&ed plane determined
by the center of the hip (the root), the left hip joint, and the left foot indichtethe green plane
in Figure[2.8 (a). When the right foot lies in front of that plane, this relatideature, which we
refer to asF1°, is defined to assume the value zero, otherwise one. Interchangimgponding
left and right joints in the definition of > and flipping the orientation of the resulting plane, we
obtain another feature function denoted B3f. Relational features may also encode velocity-
based information. For example, one may check whether the absolute velbtity right foot
exceeds a certain velocity threshold, see Figure 2.3 (b). By checkinglihaty of the right hand
projected onto the direction determined by the belly and chest, one obtaiasuaeféhat tests
whether the right hand is moving upwards or not, see Figute 2.3 (c).

Forming a vector off boolean features for somie> 1, we obtain a combined featufe: £ —
(0,1} referred to as deature function Applying a feature functiofF with f components to a
motion data streand of lengthN in a pose-wise fashion yieldsfaature matrix Xe {0, 1N
see Figur€Z]4. The" column ofX then contains the feature values of frammand will be denoted
by X(n) := F(Py),ne [1: NJ.

In this thesis, we use relational features as outlined in Table 2.1. Herergh8%ifeatures are
defined and described [Muller and Ryder, 2005; Miller, 2007{ Miller et al, 2004 to which we
refer to for further details including the specification of various genemtures and a discussion
of threshold selection. The #feature expresses whether the angular velocity of the root joint is
high or not.

A feature functionF with f components can be used to characterize semantic properties of a
motion. As example, consider the feature functior= (F1°, F16) which gives hints about the
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5 10 15 20 25 30 35
Time in frames sampled at 30 Hz
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Figure 2.4. Skiing exercise motion(a): Poses of the motion at frame positions 10, 15, 19, 23, and 28,
sampled at 30 Hz(b): Feature matrix of the skiing motion used in (a). The labehbars of the features
correspond to the features used|Miller and Rdder, 200p. Black encodes the feature value one, white
encodes the value zero.

motion of the lower part of the body, see Figlrel 2.4, rows 15 and 16., lfeedeature values
for one execution of a skiing exercise motion have been visualized, vidheck corresponds to
feature value 0 and white corresponds to feature value 1. In the begiphase of the motion
(frame 10), the actor has the right foot in the back and the left foot inrtre.f This corresponds

to F15(P10) = 1 andF%(Pyg) = 0. Subsequently, none of the feet are in the back in frame 19,
corresponding t&1°(P10) = 0 andF8(P1g) = 0. Finally, the positions of the feet are interchanged
in frame 28.

As another example, consider the featuF&S/F2¢ which encode whether the riglft foot is
fast. Clearly, during the phases in which the feet are moving in the air, fasges show the
value 1 in Figuré 2J4. The values of the featuFes(right hand moving upwards) arfeP (left
hand moving upwards) are also depicted in Figuré 2.4.

In this manner, Miller and Rder[200€ defined a set of = 39 features, see Talle 2.1 for an
overview. In addition to these features, in the Chapters 4 and 5 we willruadditional feature
F40 that expresses whether the angular velocity of the root orientation is higotoWe chose
to integrate such an additional feature in order to better discriminate motionsowitihatation,
e. g, turning motions, from motions without root rotation. This feature set isipaity designed
to focus on full-body motions. Note that even though relational featuresidisa lot of detail
contained in the raw motion data, important information regarding the overailgcoation of a
pose is retained. Moreover, relational motion features are invariamr gtobal orientation and
position, the size of the skeleton, and local spatial deformations of a pose.

2.3 Motion Templates

We now review the concept of motion templates which was introduced lifleM and
Roder[2006. As underlying feature representation, we revert to relational feaaseescribed
in Sectior Z.P.
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ID description

Fi/F>  rhand moving forwards
Fs/F4  rhand above neck
Fs/Fe  rhand moving upwards
F;/Fs  relbow bent
Fo hands far apart, sideways
F1o hands approaching each other
F11/F12  rhand moving away from root
F13/F14 rhand fast
Fis/F1s  rfoot behind lleg
Fi7/F1g  rfoot raised
Fio feet far apart, sideways
Fx/F21 rknee bent
Fa feet crossed over
Fas3 feet moving towards each other, sideways
Fos feet moving apart, sideways
Fas/Fs  rfoot fast
F27/F2s  rhumerus abducted
Fo/F30 rfemur abducted
Fa1 root behind frontal plane
Fao spine horizontal
Fs3/Fs4  rhand lowered
Fss/Fss  shoulders rotated right
Fa; Y-extents of body small
Fis XZ-extents of body large
Fag root fast
Fao root rotates arounyl

Table 2.1. Description of the 40 relational features used in this pathe thesis. For details of the first
39 features we refer tfMUller and Roder, 200b. The 4@ feature depicts whether the magnitude of the
rotational velocity of the root joint is high.

Given a clas¥ consisting ofy € N example motions, such as the four motions from the class
‘sitDownFloor’ shown in Figuré 215 (a), the goal is to automatically learn a mafiass represen-
tation that grasps the essence of the class. One starts by computing theaéfatidure vectors
for each of they motions. The corresponding feature matrices are shown in Higdre 2v#{b)e,

for the sake of clarity, we display a subset comprising only eleven of thelO features.

Next, a semantically meaningful average over ghfeature matrices is computed. To cope with
temporal variations in the example motions, an iterative warping and averalgiogthm is em-
ployed which converges to an output matkx referred to asnotion templat€¢MT) for the class

C. The matrixXc has real-valued entries between zero and one and has a length (number o
columns) corresponding to the average length of the training motions. FZg@ifa) shows a
motion template obtained from = 4 motions of the class ‘sitDownFloor’. The class MT con-
stitutes a combined representation of all four input motions. The importaenai®on is that
blackwhite regions in a class MT indicate periods in time (horizontal axis) whetaindeatures
(vertical axis) consistently assume the same valuegamean all training motions, respectively.
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Figure 2.5. (a)Selected frames from four fiierent motions of the class ‘sitDownFloor{b) Resulting
boolean feature matrices for selected relational featgmasbered in accordance with the features defined
in [MUller and Rder, 200$). The columns represent time in frames (using 30 framesquarsl), whereas
the rows correspond to boolean features encoded as blaakdOyhite (1).

10 20 ?:0 40 &;0 éo 7‘0 86 9‘0 10 20 30 40 50 60 70 80 90

Figure 2.6. (a)Class MT for ‘sitDownFloor’ based on the = 4 training motions shown in Figufe 2.5.
(b) Corresponding quantized class MT.

By contrast, colored regions indicate inconsistencies mainly resulting faoiations in the train-
ing motions (and partly from inappropriate temporal alignments). In othedsydine blackvhite
regions encode characteristic aspects that are shared by all moti@reawthe colored regions
represent the class variations coming frorfietent realizations. Finally, one obtaingaantized
MT by replacing each entry of; that is below a quantization threshaidby zero, each entry
that is above 1 6 by one, and all remaining entries bynddcard character: indicating that the
corresponding value is left unspecified, see Figurke 2.6 (b).

In our experiments in Sectign 5.4, we use the threshetd0.05, which has turned out to yield a
good trade-ff between robustness to motion variations and discriminative power. Only ip-Cha
terl4, where an algorithm for learning keyframes is described, we uséritieguantization thresh-
old 6 = 0 in order to determine the features that do not show any variations amotgitiag
motions.



Chapter 3

Efficient Keyframe-based Retrieval

This chapter is based on the publicat[@aaket al, 200§ and constitutes one main contribution
of this thesis. We introduce a novel algorithm for retrieving subsequ@eoicemocap documents
based on keyframes. The algorithm is inspired by the following observa@Gomsider the two
kicking motions illustrated by Figurie 2.2. Even though there may be large vasalietween
different kicking motions, all such motions share some common characterisgtthdiright knee
is stretched, then bent, and finally stretched again, while the right foasexrduring this process.
Afterwards, the right knee is once again bent and then stretched, wailegtit foot drops back
to the floor. Therefore, by simply checking some characteristic poses fartiporal context, one
can exclude all motions in the database that do not share the characteoigtiegsion of relations.
These characteristic poses are calegframes We use the ternkeyframe queryo refer to a
sequence of keyframes, where each keyframe is specified by a bdedtare vector that describes
characteristic relations of a specific pose. Then, the general sdeatdgyg using the keyframe
query is to extract all parts from the mocap database that exhibit featgters matching the
keyframe feature vectors in the correct order within suitable time bournusir@portant property
of our search algorithm is that it allows us to explicitly control the degreenopteal deformations
in the retrieval process. Intuitively spoken, the neighboring querframes are connected with
elastic springs which can be expanded and compressed by a certamsfaatdied by what we
refer to asstiffness parametersee Figuré 3]1. Even though our algorithm can handle temporal
variations, it works with a standard inverted file index as used in text ratfjéitten et al, 1999.
Significantly speeding up retrieval and drastically reducing memory regeines, our strategy
is ideally suited to cut down the search space in a preprocessing stap hefadying a more
refined analysis to rank and further process the reduced datasetil\emonstrate such a two-
stage retrieval procedure by combining our keyframe-based seittcthe DTW-based retrieval
strategy using motion templates as describefMiller and Roder, 2005, see also Chaptér 2 for
a brief introduction.

The remainder of this chapter is organized as follows. We start by givilngerview about related
work for this and the following chapters in this part (Secfioq 3.1). Next, e g motivating ex-
ample for keyframe-based retrieval (Secfiod 3.2). Then, we desavibeve build up an inverted
file index (Sectiom_313). In Sectidn 3.4, we introduce the query, hit, and ncaictepts, respec-
tively. The details of the main algorithm and a discussion of its run time behangqurasented
in Sectior 3.6, where we also illustrate the operation mode of our recutgivgtam by means of

15
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Figure 3.1. (a) In a keyframe query, the keyframes can be thought of as bedngected by elastic
springs. (b): A database hit has to contain the queried keyframes in the gader and within specified
time bounds controlled by a fiiless parameter. Note that the query and the two hits exHifbérent
temporal deformations.

an explicit example. We then describe our experiments in Sdcfibn 3.6 anddet Sectiof 3]7.

3.1 Related Work

Motion synthesis. The usage of prerecorded human 3D mocap data to create new, nat-
urally looking motion sequences has become a standard procedure in teongmima-

tion. Here, motion graphshave become a popular tool which is used tfiicently
combine fragments of existing motions, séKovaretal, 2002; [Chai and Hodgins, 2005;
Shin and Oh, 2006; Heck and Gleicher, 2007; Lee and Lee |Z00&n&ad and Hodgins, 2007;
Beaudoiret al, 2007; Beaudoirt al, 2008] Kovaret al,, 2008; Zhacet al, 2009.

Many approaches for motion synthesis rely on morphable models or suileblding strategies
to create new motions from recorded sets of motion capture [fBiEese and Poggio, 2000;
Kovar and Gleicher, 2004; Arikaet al., 2005; | Mukal and Kuriyama, 2005| Hs al,, 2005;
Zordanet al, 2005; | Zordaret al, 2007;[Leeet al, 2009. Other approaches rely on having
specified keyframes, annotations, they use procedural rules, @icpHyased simulation in
order to synthesize motiongPullen and Bregler, 2002; Lest al, 2002; [Arikanet al, 2003;
Cooperet al, 2007; |[Metoyeet al, 2008; |Mukal and Kurtyama, 2009; | Lesal, 2010;
Wei and Chai, 201l By contrast, Lauet al. [2009 and Min et al. [201d follow a differ-
ent line in which new motions are created by a generative model learnedafrfew example
clips. For a further in-depth review of example-based motion synthesisefe to the
survey[Pejsa and Pandzic, 20110

Current data-driven motion controllers allow us to generate a wide rahtgslo-specific mo-
tion sequences satisfying additional spatial and temporal constraintg. oflibe proposed con-
trollers are built upon carefully compiled sets of prototype motions that ¢cheettesired range of
tasks and execution modes. For example, Ras#. [199¢ group similar example motions into
“verb” classes to synthesize new, user-controlled motions by suitablgatédion techniques.
For synthesizing new motions from motion graphs, Kaetal. [2004 integrate annotation con-
straints given by a user. Acquisition, capturing and annotation of suitabliemsdor building
up specialized datasets is a labor and cost intensive[@séperet al, 2001. Therefore, var-
ious strategies have been described to reuse previously recorded srsttioad in a database.
In this context, ahorough and reliable annotatioaf the stored motions is of great importance
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and such a system will be developed and explained in the forthcoming chafiieen though
there is a rapidly growing corpus of freely available mocap @MU, 2003; Miller et al, 2007;
Eyes, JAPAN Co. Ltd., 2012; Ohio State University, 2 18ere is still a lack of #icient systems
that automate the annotation process without manual intervention. Hermainehallenge is to
deal with significant spatial as well as temporal variations that may bemirgseemantically
related motion§Kovar and Gleicher, 2004; Mier, 2007.

Indexing and DTW. Most existing retrieval and annotation approaches use indexing methods
of some sort in order to speed up the retrieval process. Kovar andnét¢g004 propose to
compute a so-called “match web” which is based on a self-similarity matrix of ttaddse. This
data structure describes potential matches between any pair of motiomsebses and can be
used to €iciently search for similar motions. In their approach, results for a querysed as new
queries in order to grow a set of similar motions from just a single example matmnever, the
match web might be infeasible to build for large mocap databases and themusirye part of

the mocap database.

Miiller and his colleagudd/iller et al, 2005] Miller and Ryder, 2006; Demutet al,, 2004 pro-
pose to use semantically motivated relational features to represent motiommecdpta. Using
these features, they develop a fast index-based motion retrievalduredd/tller et al, 2005;
Demuthet al, 2004. However, given a query motion, the user has to make an informed choice
about the features used in the query in order to obtain satisfying retriesialts. In the same
retrieval scenario, Gaet al. [2006a; 2006bintroduce a scene description language and a pre-
computation strategy that reduces the run time for processing a query. aldteuse retrieval
techniques to build up a motion graph.iNer and Rdder[200d develop the concept of motion
templates which capture consistent and varying aspects of a set of moidtis motion tem-
plates, retrieval can be performed without manually selecting featuréidasdor each query.
However, since DTW is used in the retrieval step and no further indexnagegies are used,
the method lacksf&cient query processing for large databases. In the following chaptensill
show how keyframes can be learned and used in order to assist a motidateebgsed annotation
procedure.

An indexing approach that proceeds in two stages was proposed tgt Wi200d. First, start
and end frames of possible candidate clips are identified utilizing a pose-ralex and then the
actual distance from the query is computed via DTW. However, the meth@duadt al. [200d
does not enable explicit control over temporal deformations of the &eds which imposes a
strong limitation on their preprocessing method. kiual. [Liu et al, 2003 index mocap data
using a hierarchical data structure that exploits the skeletal structure edpraata. Based on
the indexing method, mocap documents in the database are identified as taotp$awhich
are further analyzed by a DTW-based comparison. In their appréaemocap database has to
be segmented a priori, whereas our indexing and retrieval techniqudie harsegmented mo-
cap sequences. As another related work, Gitial. [Chiuet al, 2004 partition the skeleton
into nine body parts and construct a separate index map for each bddyspeay self-organizing
map (SOM) clustering. Given a query motion, these maps are used in ordeictdy iden-
tify candidate clips in a database which are further analyzed using DT@/clibsen indexing
method uses a bag-of-postures representation of a motion and is thuaritvarthe temporal
order of the poses. By contrast, our method explicitty models the chronalogiider of and
temporal deformation between keyframes. Similar to the work of @hiai., Wu et al. [2009D;
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20094 use SOM clustering on the joint angle data in order to perform index-lmesedp retrieval.
A hierarchical indexing structure consisting of independent index &aek corresponding to a
different sub-part of the body is used by Pradbaal. [2009. A hierarchical part-based repre-
sentation is also used in the work of Deagal. [2009. In their method, a fast string matching
algorithm on the discovered movement patterns is employed. Forbes and [20@kidentify
characteristic poses in both the database and query motions. Thesangosesd to constrain and
speed up a DTW-based similarity computation.

Most of the above mentioned motion retrieval approaches try to cope witineantemporal
deformations in the motions with variants of DTW. By contrast, Keegél. [2004 observe that
in many cases nonlinear temporal variations of motions do not have to be madeaeetrieval
scenario. Instead, they propose an indexing technique that accaoupt®iouniform scaling of
mocap data in the temporal domain.

Dimension Reduction Techniques. In order to reduce the complexity and redundancy of the
raw mocap data, several approaches employ dimension reduction tezhnigu et al. [2004
represent a pose by a stacked vector of 3D marker locations. Theged¢ke dimensionality
with principle component analysis (PCA) and represent a motion by a pieeénear model. An
indexing method that builds upon a clustering of the poses in a motion is emplogetkinto €fi-
ciently identify similar motions. In a followup work, they show how a piecewisedimaodel can

be used to also reconstruct motions from a reduced markéiiseét al, 2004. Li et al.[2007

use singular value decomposition on a joint angle matrix of a motion clip to captenaajor
geometric structure of the matrix. A support vector machine is employed fssifitang hand-

as well as full-body motions. The ISOMAP dimension reduction techniquedd ursthe work

of Xiang et al.[2007 and Guocet al.[2011]. After compacting the mocap data, the subsequence
DTW algorithm is employed for the computation of retrieval results.

Kriigeret al. [201d show that faskd-tree-based nearest-neighbor searches along with viable
medium-dimensional feature sets can lead to drastic speed-ups forl sxistiag approaches

to motion retrieval. Remt al. [2011] precompute a BIRCH-based incremental clustering of the
database. Then, they project each pose onto the nearest clusterRetrieval is performed using

a variant of a longest common subsequence algorithm which is used to itwpssequences of
cluster centers identifiers.

Several approaches to classification and recognition of motion patteznsaged on Hidden
Markov Models (HMMs), which are also a flexible tool to capture spatio-tmalpvariations,
see.e. g, [Brand and Hertzmann, 2000; Xiang, 2007; Wang and Lee, R0@9nporal segmenta-
tion of motion data can be viewed as another form of annotation, whereaanse, logically
related frames are organized into groups, seg, [Barbi et al, 2004.

Real-time approaches. Recently, real-time applications of motion retrieval and classification
were discussed. For example, Deetgal. [2011] perform real-time recognition of dance mo-
tions. To this end, they subdivide the representation of a human body ietpdits and project
joint angle representations for each part onto cluster centers obtaoradriining data. Using

a variant of DTW on the projected data, the input motion is continuously cadpartemplate
motions in real-time. Based on distance scores to template motions, a motion of hdartaeng
double is played back. Raptet al. [201]] develop a real-time classification system for dance
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motions. The classifier relies on an alignment of the performed motions to amivsical beat.
Numaguchiet al. [2011] use an actual puppet equipped with rotational sensors in order to allow a
user to intuitively formulate a query and obtain retrieved motions interactively.

Most of the above cited procedures use motion representations thanaaatically close to the
raw data. Here, problems occur when one has to cope with strong pfisendgons within

a class of logically related motions. Approaches suclflas et al, 2005;| Miller et al, 2004
absorb spatial and temporal variations already on the feature level, t@nHacilitates a more
robust and fiicient motion comparison. In this thesis, we cope with spatial variations by using
relational features as introduced[M{ller et al, 2005. As for temporal variations, we introduce

an dficient keyframe-based indexing technique in the forthcoming chapters fésgher tool, we
make use of the DTW algorithm for more refined temporal alignments.

3.2 Motivating Example

As a motivating example for the use of keyframes, consider a skiing eermsion class as the
one sketched in Figufe 3.2 (a). Such a motion class is characterized byetidéal backward and
forward swinging of arms and legs coupled with a joint air and landing pHabe owo feet. Note
that by considering only the sketched poses or even a subset treeheimfian can easily distinguish
this motion class from many other types of motion. Intuitively, we want to find @ nav to
efficiently encode and search for characteristic aspects of a motion clagse €haracteristic
aspects correspond keyframesvhich should carry the discriminative essence of a motion class.
We now consider two dierent executions of the skiing exercise motion and plot the corresponding
feature matrices in Figute 3.2 (b) and (c). Note that the two feature matigaggree in length and
the sequence of feature values because both executions of the méf@orindspeed and style. In
spite of this, the characteristic poses as sketched in Higure 3.2 (a) egsaried using the same
feature vectors in both executions of the motion, respectively. In thesfigug highlight the feature
vectors of the corresponding poses using green boxes. Suctefeatiiorse {0, 1}, however, do

not constitute a practical representation of a keyframe because ndaintes in the poses are
expressed. In fact, only two example motions are shown and only the mosidisative 6 out of

the 39 features described in Section| 2.2 are plotted in the figure. The reqi&iming motions

as well as the other features can exhibit more variations dfereinces since the skiing motion
class permits significant flerences in the style of execution. For example, consider a feature
that expresses whether the arm moves upwards. Amdregeht executions of the motion, strong
inconsistencies can be found in the values of this feature since some tectit® lift the hands
while moving forwards, and others keep the hands on the same height sptctdo the body.

We express such uncertainties using the wildcard charaasrused in quantized motion tem-
plates, see Sectidn 2.3. A quantized motion template for the skiing motion classl thaime15
example motions is depicted in Figurel3.2 (d). Inconsistencies in the execofitims training
motions are reflected by the wildcard charaetégray regions in the figure). For example, con-
sider frame 16 of the motion template. In this phase of the motion, some actorstreedeft hand
and some actors kept the left hand at the same height. This is reflected\slube in the row
corresponding té¢ in the motion template.

As will be explained in the following section, in view offecient retrieval using a standard inverted
file index, we use boolean keyframe vectors as queries. In order tihehamcertainties represented
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(b)

(©)

(d)

Figure 3.2. Skiing exercise motion(a): Poses of a motion at frame positions 10, 15, 19, 23, and 28 (30
Hz). (b): Feature matrix of the skiing motion used in (a). The labehbars of the features correspond
to the features used {MUller and Rdder, 200p. Black encodes the feature value one, white encodes the
value 0. (c): Feature matrix of another execution of the skiing exerc{s: Quantized motion template

of the skiing motion class trained with 15 training motionsm the HDMO5[M{iller et al, 2007 motion
database.

Figure 3.3. A keyframe with a wildcard character is handled by expandigwildcard character and
creating a set of keyframes.

by wildcard characters in the query vectors, we expand the wildcardcieas and create a set of
boolean keyframe vectors as indicated in Fidquré 3.3.

Recall from Sectiofl 2|3 that a motion template can be thought of as a gengfa@are ma-

trix which is obtained by suitably averaging the feature matrices of the traininigpmso Muller

et al.[2006 suggest an MT-based motion retrieval method using a variant of dynamic tmpe w
ing (DTW) to locally compare a motion template with the feature matrices of the unknastion
data. In the following section, we explain our keyframe-based algorithaneaamplify its ca-
pabilities by an application which speeds up an MT-based retrieval teankdgre, we first run
our keyframe-based search algorithm fiiogently reduce the dataset. Then, we rank the reduced
dataset by applying an MT-based retrieval component.

3.3 Indexing

LetD = (D1,D,,...,D)) denote a database consisting of mocap data streams or docubpents
i € [1:1]. For simplicity, we may assume that the datab&seonsists of one large document
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D = (Py,...,PyN). This can be achieved by concatenating the docuni2nts ., D, while keeping
track of document boundaries in a supplemental data structure. Noteuthad dheir boolean
nature, relational features are ideally suited for indexing.ALbe a fixed feature function having
f relational features as its components, see SeCfion 2.2. Then, for edctefeectow € {0, 1}
one stores thaverted list L(v) consisting of the indicea € [1 : N] with v = F(Py). In other
words, L(v) shows which of the poses @f exhibit the feature vector. In a preprocessing step,
we construct a query-independent index struclé)re:onsisting of the 2inverted listsL(v), v €
{0, 1}". Note that one only has to store the non-empty lists. Furthermore, to corgnolithber of
index words, one can also split up the feature function into severaréfamctions and then work
with the resulting smaller indices in parallel, $&&ller et al, 2004. The elements of the inverted
lists are stored in ascending order, accounting fidcient union and intersection operations in the
subsequent query stage. To further reduce the size of the indexetherds of each ligt(v) are
run-length encoded. Using this encoding, only one entry in an invertad fignerated for a time
section in a feature sequence in which the features do not change.

3.4 Query, Hit, and Match Concept

As mentioned in the introduction of this chapter, certain types of motions typicetifpie char-
acteristic relations that already discriminate these motions from most otherdypegions. For
example, a cartwheel motion can be distinguished from most other motions signphebking
whether the body is upside down in the execution of the motion. The idea isiessdhe charac-
teristic relations of a keyframe pose by a suitable feature vecta0, 1}f with respect to a fixed
feature functior-. Since using all components Bfis often too restrictive, we allow an entire set

V c {0, 1}f (3.1)

of alternative feature vectors to describe the characteristic relationsseTdets can be derived
from a quantized motion template as indicated in Figuré 3.3. As an alternatole keyframes
can be generated in an automated way from example motions by employingtic gégarithm,
see Chaptérl4. In the following, such a ek simply referred to akeyframe

A keyframe quenof lengthK is a tuple ¥, d) consisting of a sequencé = (Vi,...,Vk) of
keyframesVi C {0,1}f, k € [1 : K], and a sequence = (d,...,dk_1) of keyframe distances

dk € No, k e [1: K - 1]. Here,dk specifies the distance (in frames) of the neighboring keyframes
Vk and Vi;1. To account for temporal deformations, we introducstifiness parameteor =
(01,...,0k-1), ok € [0, 1], which controls the degree of expansion and compression allowed in
the matching process.

A hit in the database documebt= (P,..., Pn) with respect to the query/( d) is a sequence
(ng,...,Nnk) of increasing indices k¥ n1 < ... < ng < N such that the following two conditions
are fulfilled:

Vke[l:K]:  F(Py) € Vi (3.2)

1
Yke[l:K-1]: Ok Ok < Ne1 — N < — - d (3.3)
ok

Here, Condition[(3]2) implies the occurrences of the characteristic kegfigoses and Condi-
tion (3.3) ensures that the distances of two consecutive keyframesithie the tolerated time
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Figure 3.4. To compute the inverted keyframe list of a keyframe-= {v;, V»}, corresponding inverted lists
are combined. The run-lengh-encoding step can reduce tddentanber of segments.

bounds specified by- and keyframe distances in the query. Note that choosing 1 implies

that the keyframe distance of keyframdsand V.1 within a hit have to coincide with the dis-
tances within the quenyi.., there is no deformation tolerance). On the other handgfoe 0

(we then Set(,lk = oo0) there are no deformation bounds—the keyframes within a hit simply have
to appear in the order as specified by the query.

The number of dferent hits may explode with decreasingtsiss. For example, a small devi-
ation in one of the keyframe positions already defines, in mathematical terrifferzt hit. In
applications, one is typically not interested in all hits but only in a set of sgpitative hits. We
therefore soften the frame-based notion of a hit and assume a segmestedoview. For each
guery keyframe/y, k € [1 : K], we define annverted keyframe list

A= ANV = ] L). (3.4)

veVy

Note that all inverted lists are sorted in lexicographic order which allows wusrt@an dficient
merging algorithm inO(} ey, IL(V)). Further, note that each segment in an inverted list corre-
sponds to a run of feature vectors in a document. Thus, by construdttbe mverted lists, all
considered segments are pairwise disjoint and we do not have to coasatpping segments

in the merging algorithm. We again look for maximal runs of consecutive indiicés merged

list (similar to run-length encoding) and store the resulting inverted keyfltameee Figuré314.
Each such run is defined bysegmen{s: t] with integerss < t, wheres denotes the start frame
andt denotes the end frame of the segment. Then, one can encode the inesfftadnie listAy

by a sequence

Ak = ([sc1tals - [Seac tead)) (3.5)

of segments, wheré denotes the number of segments. Note that because of the maximality of
the runs, one has

Vie[l:0—1]: ti+1<s1 (3.6)

Now, a sequenc®! = (p1,..., px) With px € [1 : 4], k € [1 : K], is called amatchin D with
respect to the query/(, d), if there exists a hiH = (ny, ..., nk) with

Vke[l:K]: sgp <Nk <tip,. (3.7)

In this case, we also say that the mahtcontainsthe hitH. In other words, a match specifies a
sequence of segments (rather than a sequence of frames) contaieigt ahe hit. In the follow-
ing, we think of px being a pointer to the segmersi |, : tk p ], see Figuré€ 3]5. The motivation of
this notion becomes clear in Section]3.5 when we describe the main algorithm.
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Figure 3.5. Two inverted keyframe lista; andA,. Here,p; points to the segmets(p;) = [2:4] andp;
to the segment,(p2) = [7:8].

|
I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.6. RangesR(M;) (indicated by arrows) of four elierent matched;, i € [1 : 4]. The ranges
R(M1) = [1:7], R(IM2) = [2:11] andR(M3) = [4:10] overlap, whereaB(M,) = [13:15] is disjoint to the
other ranges.

Of course, a match may contain several hits. For a given mdtiet R(M) = [s:t] be the segment
(given by start frames and end frame) of minimal length that comprises all hits contained in
M. We also refer taR(M) as hit relevant rangeof M. For example, assume that the match
M = (p1, p2) = (1, 3) of Figure[3.b contains exactly the three Hits = (3,7), H, = (4,7), and
Hs = (4, 8), thenR(M) = [s:t] = [3:8].

In the case that hit relevant ranges of several matches overlap nsileqg as a further reduction,
the union of these ranges instead of the individual ranges. This is maotibgt®ur strategy
of running a multistage retrieval procedure. Here, in the first stagesdoh document in the
database it dtices to extract coarse candidates that contain the keyframe querytatrieagas a
kind of preselection). As an example, consider the four ranges shotigime[3.6. The ranges
R(M1) = [1:7], RIM2) = [2: 11], andR(M3) = [4: 10] overlap, whereaR(Mg) = [13: 15]
is disjoint to the other ranges. The union of the first three ranges ddfiresegment [1 : 11].
Note that the union does not change when considering only the first tvgesdeaving out the
rangeR(M3). We then say thaltl is anirrelevant match Our keyframe-based search algorithm
to be presented next may actually leave out some matches, but for thesarosieow that they
are irrelevant matches.

3.5 Main Algorithm

Before describing our main algorithm, we introduce some further notationei@kzing the above
notion, asegments an element of the set

S:={[s:t]: se Np,t € NgU {oo0},s< t} U{0}. (3.8)
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Algorithm 1 Keyframe-based Search

Input:  (V,d): keyframe query comprising keyframes
o stiffness parameter
|2 inverted file index

Output: hitRanges: the union of all hit relevant ranges

Global: (p1,..., pk): pointers into the keyframe lists
hitRanges

1: procedure KeyrraMEBAsSEDSEARCH(V, d, 0, I?)
2 for k — 1to K do

3 Ak < Uvey, L(v)

4. Pk < 1

5: end for

6 for pp « 1to ¢1 do

7 admissibleRange- ui1(A1(p))

8 RecursiveSEArcH(2, admissibleRange)
9 end for

10: end procedure

11: procedure RecursiveSEARcH(K, [S:t])
12 while px < fk A tgp, < sdo

13: Pk < pk+1

14: end while

15: pointerincremented- FALSE

16: intersection— Ag(pk) N[s:t]

17: while intersection= 0 do

18: if k=K then

19: hitRanges— hitRangesR((p1, .. ., Pk))
20: else

21: admissibleRange- uk(intersection)

22: RecursiveSearch(K + 1, admissibleRange)
23: end if

24: Pk < pk+1

25: pointerincremented- TRUE

26: if px > ¢k then

27: intersection— 0

28: else

29: intersection— Ag(px) N [s:t]

30: end if

3L end while

32: if pointerincrementee TRUE then
33: Pk — pxk—1

34: end if

35: end procedure
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Figure 3.7. Keyframe query of our running example.

The intersection of two segments is defined &s case one of the segments is empty. Otherwise,
for segmentsd; :t1] € S and [s:t] € S, we define

0,if h<sporth<s

[S]_:tl] N [52:t2] = { [max(sl, 32):min(t1,t2)], else

(3.9)

Our keyframe-based search algorithm (see Algorithm 1 on page 24)st®mf a main proce-
dure called KyrraMEBASEDSEARCH, and a recursive procedure calledcBrsiveSearca. The in-
put consists of the inverted file indd?, a keyframe query\(,d) with V = (V1,...,Vk) and

d = (dy,...dk_1), as well as a sfiness parameter = (o1...,0k_1). Recall from Sectiof 313
that the index? does not depend on the query. The algorithm outputs unions of hit ntlergges
which comprise all matches except for possibly some irrelevant oneseHieranges as well as
the pointers g1, ..., pk) are given by global variables and are consistent in both procedures
the following, we illustrate the functioning of our algorithm by means of an ex@i@mple with
three keyframe¥ = (V1, V2, V3) and frame distances = (3,5). As for the stifthess parameter,
we useo = (0.5, 0.6), see also Figufe 3.7.

The procedure KyrramMeBasepSEARrcH takes care of the initialization and the first step. In Lihe 3,
the inverted keyframe lista;, ..., Ak are computed, see Equati¢n (3.4). Recall that eachlist

k € [1 : K], consists of a sequence 6f segments, see Equatidn (3.5). In Lide 4, the pointers
(p1,..., pk) are all initialized to the value one, thus pointing to the first segments of thectap
lists. For our running example, this state is also illustrated by Figuie 3.8 (&)thfee keyframe
lists are

A1 = ([3:4],[6:7]),
A = ([1:2],[4:6],[9:10]), and (3.10)
Az = ([1:3],[5:8],[11:12] [14:15]).

Now, thefor-loop in Line[6 sweeps over all segmemts(p1), p1 € [1 : ¢1]. Note that these
segments exactly contain the database frames that match the first keyrarireother words,

for each hitH = (ny,...,nk) one hasy € A;(py) for somep; € [1 : ¢1]. Line[d specifies an
admissible search range(A1(p1)) for the second keyframé,. More generally, given a segment
of candidate frames for tHé" keyframe u computes the admissible range, which is specified by
dx anda, for the k + 1) keyframe. Here, the function, := s, g 0 S — S, ke [1: K - 1], is
defined as

[s+ow-ddit+| 2 dkl. if o>0

[S:OO], if ox=0. (311)

[s:1] |—>{

00
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To illustrate this definition, we consider our running example for the pasel. Then,A1(p1) =
[3:4] and

#1([3:4]) = tory.ar([3:4]) (3.12)
= uo53([3:4]) (3.13)

. 1
=[3+70.5-3]:4+ {E'Q’J] (3.14)
=[3+2:4+6] (3.15)
= [5:10]. (3.16)

In other words, if the first keyframe lies within the segment [3:4], then doesd keyframe must
lie within the segment [5:10] to fulfill Conditioh (3.3), see Figlire] 3.8 (a). Bmaine @ triggers
the recursion starting with the second keyframe and the admissableurgngép;)).

The procedure RursiveSearc starts with fast forwarding the current poingay (Line[13) until

the list end is reached or until the current segmeglpx) = [Scp : tkpJ does not lie entirely
to the left of the admissible rangs [ t]. In our example, this is the case fgp = 2, where
A2(p2) = [4:6]. Line[18 calculates the intersection of the current segment anddthessible
range. The intersection defines a segment of candidate frames that regheneVy and fulfill

the distance conditioi (3.3) for at least one frame of the previous segmer{tpx-1). In our
example, the intersection is [4:6][5:10] = [5:6].

In thewhile-loop, starting at LinE~17, all segmentsAn that lead to a non-empty intersection with
the admissible ranges|t] are considered. Here, the increment of the poipteaind computation
of the intersections is handled between Liné 24 and [Lide 30. In thelcaseK, each such
intersection contributes to a hit (this directly follows from what was said epoVherefore, in
Line[19, the hit relevant range of a resulting match is computed and the urfimmmied with the
previously computed hit relevant ranges. An example for this step will maisked later. In the
casek < K, a new admissible range is computed (Liné 21), and a recursion is triggétethe
(k + 1) keyframe (Liné2R).

We continue our example with, = 2 and the non-empty intersection [5 : 6]. In Lih€gl 21, the
admissible rangg,([5:6]) = [8:14] is computed, see Figure B.8 (b) for the state of the algorithm
at this step. Liné_22 triggers another call ofcBrsiveSearch for the third keyframe. At this
recursion levelps is incremented tgs = 2 (Line[I13) and the intersection of the current segment
Az(ps) and the admissible range is [5:8]8:14] = [8:8], see Figuré_318 (c). Now, the condition
k = K is fulfilled. The pointers |1, p2, p3) = (1,2, 2) define a match and Line 19 extends the
union of the hit relevant ranges IR((1, 2, 2)) = [3:8]. At this point we note that the hit relevant
range E:t] of a given match can be computeftieiently. Here, the end frame of the intersection,
calculated in Lin€16, yields To calculates, one has to backtrack from the intersection in ki
keyframe list to the first keyframe list. Then, Linel 24 spis= 3 and the resulting intersection is
[11:12]n [8:14] = [11:12] (Line[30). The pointerspg, p2, p3) = (1, 2, 3) define another match
with R((1, 2, 3)) = [3:12], which is merged with the previously found hit relevant range bsumse

of the union operator in Line_19. After incrementingfe = 4, Line[27 sets the intersection to
[14:14] andR((1,2,4)) = [3:14] is processed in Ling19. Now, incrementing the poifem
Line[24 exceeds the list boundary, so that the empty intersection as conipltiee 24 causes
thewhile-loop to stop. In Liné_33, the pointgy; is decremented to the previous value, where the
intersection was non-empty. In our example, we then hmve 4. Note that the decrementation



3.5. MAIN ALGORITHM 27

(@) As
A
Ay

I
12 13 14 15 16 17 18

4\ 5
1

Pointers py, p2, ps):

)

15 16 17 18

Pointers py, p2, ps):

4 5 5
BEE

©) As pF— — .:::..

j1(3-4]) = [5:10]

—
i
7

@ as p—o —
N T g

Ay |—§| — M 5:10]
| | | | | | | | | | | | | | | | | |
| | | | |
8 9 10 11

12 13 14 15 16 17 18

© A p—o —

4 - 6 7
Pointers 1, p2, Ps):

Figure 3.8. Keyframe listsA;, A,, andAj of our example keyframe querga): The pointers 1, P2, P3)
are initialized to point to the first segments of the respedist. The admissible ranga([3:4]) is indicated
by the gray dotted are#b)—(e) show intermediate states of the algorithm, see the textfoliaeations.
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M Hits R(M)
(1,2,3) (35,11), (3,6,11), (3,6,12), (4,6,11), (4,6,12) [3:12]
(L2,4) (36,14), (4.6,14) [3:14]

(1,3,4) (39,14), (3,9,15). (4,9,14), (4,9,15), (4,10,14), (4,10,15) [3:15]

(6,9,14), (6,9,15), (6,10,14), (6,10,15)

(2.3.4)  (7,9,14) (7.9.15), (7.10,14), (7,10,15) [6:15]

Table 3.1. Matches found by the proposed algorithm for our running eashits that are contained in
these matches, and their hit relevant ranig@d).

is necessary to find all hit relevant ranges which could possibly alsodedtame 15. Although
the matches already comprise the last segment of the third inverted keyfranteeligit relevant
ranges of the matches found so far do not include frame 15. Decremgmntiagd continuing
the algorithm ensure finding the correct hit relevant ranges. Thesieoureturns to the point
where RcursiveSearcH(3, (8,14)) was called (Line22). The pointes is incremented tg, = 3
(Line[24) and the intersectioa[9:10]N[5:10] = [9:10] is calculated (LinE-30). Thehile-loop
is repeated and in Life 21 the admissible range is set({8: 10]) = [12:18], see Figure_38 (d).
The subsequent recursive call (Linel 22) leads to the match 4L Finally, the pointerp; is
increased leading to another match32), see Figure 318 (e).

Table[3.1 shows all matché4 found by our algorithm along with all hits contained in the respec-
tive match and the resulting hit relevant randM). Actually, there are two matches,, @ 3)
and (23, 3), which are not found by the algorithm. These matches, however, rateviint since
R((1,3,3)) = [3:12] andR((2, 3, 3)) = [6:12] are contained in unions of hit relevant ranges of the
other matches. Also recall that the actual output of the algorithm consitte ahion of allR(M),
thus avoiding an explosion of the output size. In our example, this resultsiimgée segment
[3:15].

The recurrence in our algorithm is a property that follows from the follgvdonsideration. When
searching inside an admissible range, one has to set some frames aatearfdica hit and search
in the next inverted keyframe list for suitable frames fitting to the next keydraAfter finishing
the search in the next keyframe list, one still has to know the admissible raatgeetd before the
search was started. Therefore, a recursion is an appropriate wgyrass such a condition.

3.6 Experiments

Our keyframe-based search algorithm works for general time-depénmdultimedia data and

is designed for ficiently handling temporal deformations between the query and the database
keyframes. We will demonstrate the practicability of our concept by meathe shotion retrieval
scenario, where one typically encounters such deformations betweamteally related motion
sequences. In Section 3.6.2, we describe some experiments showingrtiaégarithm is often

able to cut down the search space from several hours to a couple dafeshiofumotion capture
data within few milliseconds (ms). The so reduced dataset can then belranileanalyzed by
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Figure 3.9. Histogram of stifness values in the manually defined queries.

more refined alignment techniques. We will demonstrate such a two-stageakstrategy by us-
ing motion template§M{iller and Rder, 2005 for postprocessing the keyframe-based matches,
see Sectiop 3.6.3. Here, we also report on some experiments to demonstefiiecttof the stif-
ness parameter on the final retrieval result. Information on the experihtatéset and the used
keyframes can be found in the following Section 3.6.1.

3.6.1 Experimental Data Set and Keyframes

For our experiments, we used the freely available HDMO05 dataldag#er et al, 2007, which
consists of 210 minutes of motion data contained in 324 files. Making up aage/é&ngth of 39
seconds, each file consists of a sequenceftérdint actions. A detailed description of the motion
files can be found ifMduller et al, 2007. From the HDMO05 database we cut out 1327 short
motion clips which were organized into 57 motion classes, each containing I0r&akzations
executed by various actors. These motion classes were used to gdmsfedenes in a semi-
automatic process. Here, using one half of the motion clips of each classirsiagrdata, we
computed quantized motion templates based on the 39 relational featuresctes[3.2. These
features were divided up into three feature sets: One upper bodipwaebody, and one mixed
set. We then selected 3 to 9 representative columns along with their distdeeeh @lass motion
template as keyframes. For details of a similar procedure we refffiitler and Rder, 2005. To
avoid false negatives (at the expense of having more false positiveshanually post-processed
the keyframes by adding or removing suitable feature vectors from tHeakegs. For each query,
we also manually define the vector offBiess values, see Figure13.9 for a histogram of these
values. Among our 57 queries, fitiess values between20and 10 were used. Only 31% of
the values occur in the more f§trange ofo- = 0.9 or o = 1.0 which shows that overall, a fair
amount of temporal deformations is permitted in the keyframe queries. Asfugtieries, we
concatenated the motion class keyframes to generate longer and more cqueslies describing
sequences of fierent actions, see Section 316.3.

At this point, we note that the focus of this chapter is not on the fully automateditey of
keyframes, but on thefigcient and deformation-tolerant retrieval based on a given set of suit-
able keyframes. In order to fully automate the creation of keyframes, ipt€id we employ a
genetic algorithm to learn keyframes from positive as well as negativértgaimotions. Once suit-
able keyframes are generated for a specific motion class, they candasigaeries to arbitrary
databases.

To prove the applicability of our algorithm, we conducted several expetsnebhe presented
algorithm has been implemented in a mixtur€af+ and MarLas. All experiments were executed
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Figure 3.10.Run time of the keyframe-based search algorithm vs. the puoftsegments in the processed
inverted lists, plotted on a log-log scale.

on an AMD Athlon 64 X2 500@ (using only 1 core) with 5GB of RAM.

3.6.2 Data Reduction

As shown in Table_3]2, we used the generated keyframes as an input dgorithm to reduce the
search space for 57 query motion classes. For each dGeBnotes the number of keyframes, and
Avg. o is the average of the fithess vector used for this query. We give the number of segments in
the inverted lists that have to be processed in the query with the value in tiercotrresponding

to 3 l,. To demonstrate thefficiency of our algorithmiX shows the keyframe search time in
milliseconds, and %§) shows the size of the reduced search space in percent with regael to th
database size.

The time taken to reduce the search space using our algorithm amounts t@.éntyslon average.
Effectively, the search space is reduced to less than 5% of the entire databbagerage. As the
table shows, the search time depends on the size of the processed iligestedimall searching
times, like 03 ms for query ID1, are due to queries that contain keyframes desciitfireguent
poses in the database. For query ID1, characteristic poses for eheatfwvhich occur only in
few other motions in the database, were used as keyframes. In contts, tasing the 39 full
body motion features frorfiMller and Rder, 2008, the class ID49 (turnRight) can not be dis-
tinguished from the standing pose. Here, using a total of 9 keyframes, tihem 60000 segments
have to be processed. Because of the unspecific keyframes, alingtgru$es in the database
are contained in the reduced search space. It is important to notice tlaigiltthe number of
keyframes in this case is rather high, the search time does not explodeallctine run time
grows linearly with the size of the processed keyframe lists as demonstsakegiurel 3.10. Here,
we plot the run time$X against the length of the processed IStk for all queries of Tablg3]2.

As for the percental size of the reduced search space, for most ofabses, sizes of less than
3% can be achieved. For many classes, like ID6, even better redudiésrara reached, returning
less than 1% of the HDMO5 database. Unlike these results, some queriesréduce the search
space well. As already mentioned, the keyframes for query ID49 arermatispecific. As a result,
for this query more than 20% of the database is returned. Similarly, foreu&50 to ID57, some
of the reduction rates are not so good due to the large number of walkingnaati®iDMO5 and
due to some confusion between various walking styles.

As a further application, the keyframes can be combined to describeyafquan entire sequence
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ID  Query class K Avg.o Sy tK %(D) tR
1 cartwheelLHandStart1Reps 3 .70 75 0.3 12 234
2 claplReps 5 O 39326 36.6 140 5094
3 clapAboveHead1lReps 5 & 11959 118 17 328
4 depositFloorR 5 6 18565 175 6.0 1063
5 depositHighR 7 ® 20860 215 22 375
6 elbowToKneelRepsLelbowStart 3 .70 265 05 0.6 78
7 elbowToKneelRepsRelbowStart 4 .60 1631 20 0.6 63
8 grabFloorR 7 B 20664 193 25 344
9 grabHighR 6 o0/ 18560 179 29 656

10 hopBothLegslhops 5 0D 23808 220 10 125

11 hopLLeglhops 3 3] 4358 45 05 31

12 hopRLeglhops 4 ® 16965 158 11 109

13 jogLeftCircle4StepsRstart 4 o 2115 28 14 203

14  jogOnPlaceStartFloor2StepsRStart 5 8 0 28583 276 304 8766

15 jogRightCircle4StepsRstart 3 60 1451 1.8 13 188

16  jumpDown 4 B 5726 56 12 188

17  jumpingJacklReps 3 .0 780 15 0.9 109

18  kickLFrontlReps 5 8 30918 269 20 250

19 kickLSidelReps 4 0 1516 2.0 11 141

20  kickRFrontlReps 5 8 4302 53 11 188

21  kickRSidelReps 4 9 11610 105 12 172

22  lieDownFloor 3 ® 1784 22 27 813

23  punchLFrontlReps 5 D 11214 125 14 234

24  punchLSidelReps 6 0D 29549 298 26 375

25 punchRFrontlReps 6 O 16880 193 25 406

26  punchRSidelReps 6 .0 45343 428 17 266

27  rotateArmsBothBackward1Reps 3 .60 837 10 15 172

28 rotateArmsBothForward1Reps 6 .60 6009 65 0.7 78

29 rotateArmsLBackward1Reps 4 .70 6021 6.0 0.6 78

30 rotateArmsLForward1Reps 3 .70 508 0.8 0.7 94

31 rotateArmsRBackward1Reps 3 50 1618 21 0.6 63

32 rotateArmsRForward1Reps 3 .60 298 0.6 07 78

33 runOnPlaceStartFloor2StepsRStart 5 .9 0 24522 229 04 31

34  shdfle2StepsRStart 8 31395 316 20 359

35  sitDownChair 6 2793 38 24 422

36 sitDownFloor 5 3911 45 47 1109

37 sitDownKneelTieShoes 3 372 07 22 609

38 sitDownTable 6 18393 199 293 16766

39 skierlRepsLstart
40 sneak2StepsLStart
41  sneak2StepsRStart

5 4157 5.2 0.8 78
4
6
42  squatlReps 4
5
5

4935 5.6 15 250
18126 183 20 328
848 12 10 141
9644 105 6.5 1469
2860 4.0 17 281
463 0.7 17 375
7969 7.9 3.6 672
5624 6.9 3.0 563
34548 338 106 4063
63819 618 201 9844
12956 148 105 4609
18547 184 132 5875

43  staircaseDown3Rstart

44 staircaseUp3Rstart

45  standUpLieFloor 3

46  standUpSitFloor 6

47  throwBasketball 5

48  turnLeft 7

9

6
5

49  turnRight
50 walk2StepsLstart
51 walk2StepsRstart

gggacgga&B%aaagg'@gg'@@pQ@@

52 walkBackwards2StepsRstart 5 8641 9.8 11 141
53  walkLeft2Steps 3 312 0.5 09 141
54  walkLeftCircle4StepsRstart 6 11447 138 135 3953
55  walkOnPlace2StepsLStart 5 14792 160 359 17422
56  walkRightCircle4StepsRstart 7 10196 141 115 2719
57  walkRightCrossFront2Steps 3 6545 57 4.0 875

[%) 4.8 0.75 12314 125 48 1657

Table 3.2. Retrieval results on the HDMO5 databaseés(Bours of mocap datak: Number of keyframes
used in the query. Avgo: average of the dfness vector.), l,: Number of segments in the processed
inverted liststX: Keyframe search time in ms. @): Size of the reduced search space in percent (w.r.t. the
size of HDMO05).tR: Time for motion template retrieval on the reduced searettspn ms.
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Figure 3.11. (a) The two keyframe queries ‘elbowToKnee’ and ‘squat’ are borad to yield a new
keyframe query(b): Corresponding combined MT.

ID query class K Avg.o Sy X %(D) R
58 ID6+1D42 7 Q7 1114 18 12 281
59 ID13+ID15 7 a7 3566 51 13 438
60 ID19+1D23,ID 26 16 07 63739 727 18 797
61 ID22+1D 22 6 Qa7 3568 4.2 21 1656
62 ID27+1D 28 10 Q7 12030 144 10 219
63 ID39+ID6 8 0.7 4423 58 08 234
64 ID44+1D43 10 Q7 12505 167 10 281
65 ID52+ID57 8 07 15186 175 17 594
66 ID55+1D 33 10 Q7 39314 425 10 391
(%} 9.1 07 17272 201 13 543

Table 3.3. Retrieval results on the HDMO05 databaseb(Bours of mocap data) using combined queries.
The combined queries are used to search for a sequenceaisictee also Tahle3.2.

of various actions. As an example, the concatenation of the queries &bkmee and squat is
shown in Figuré¢ 3.11 (a). By setting the distamgeand the corresponding Stiess parameters
between the last keyframe of the first motion class and the first keyfrarie afecond motion
class, one can control the time that may elapse between the two actions. A siopitaaeh
to scene description has been sketchefMiller et al, 2004. To demonstrate the applicability
of this scenario, we have created nine combined queries. The retrgsdtsr are documented
in Table[3.B. Although more keyframes are used, the keyframe search tesendbexplode. For
example, in query 60 comprising 16 keyframes, a total of 63 739 segmergsdkan processed
in 727 ms. In comparison to query ID49, which exhibits a similar number of precessgments,
but a smaller number of keyframes, only a small increase in the search tingeoaloserved.
Additionally, for all combined queries the size of the reduced searclkespaery small. Generally,
the more keyframes are used in a query, the less data fits to these keyframes

3.6.3 Retrieval Quality

To show the ffectiveness of our algorithm in a two-stage retrieval system, we apply motion te
plate retrieval[Muller and Rder, 2005 as a ranking of the reduced search space. For queries
ID1 to ID57, class motion templates have been used. For queries ID58 & B class motion
templates have been combined as indicated in Figuré 3.11 (b). In this exanepihdiv-to-knee
motion template and the squat motion template have been concatenated with a Bléekadiies,
assigning zero cost for this clipping during the ranking process. Tthemutput of the MT-based
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Figure 3.12. Run time of the MT-based ranking on the reduced search spadbessize of the reduced
search space on a log-log scale.

retrieval step is a set of ranked motion clips contained in the reducechssgzace.

In Tabled 3.2 anf 3.3, the columtisdepict the time in ms required for the ranking step. Using

a variant of DTW, the run time depends linearly on the product of the sitieeafeduced search
space and the size of the motion template. Since in practice the size of the motiontésngpla
similar among dterent queries, the run time can be assumed to grow linearly with the size of the
reduced search space. This is also documented in Higure 3.12, whetetwlee run time of the
ranking step over the size of the reduced search space. Note thahkiregratep takes less than

a second for most of the queries. The speed-up with regard to motion tengiiédeal on the
whole database is equal to the reduction rate of the keyframe basel.searc

To demonstrate the quality of the results, precision-recall diagrams for querées are shown
in Figure[3.IB. For these queries, 15 to 75 relevant documents are ezhiaithe HDMO05
database. The recall is very high among all queries, which means thadiheed search space,
obtained by our algorithm with $tness values around@) still contains most of the relevant
documents. Unlike the other queries, on query ID36 (“sit down on f)o@ise positives occur
early in the hit list. Most of the false positives are motions of the class “lie dmwihoor”, which
starts in most cases in the HDMO5 database with a “sit down on floor”-phase.

To quantify the influence of the finess parameter, Figure 3114 shows the results for the queries
of the first two rows of Figure_3.13, where thefBtess parameter has been set.@ thus creating
rigid keyframe queries where any time deformation between the keyframegmhibited. In
comparison to the corresponding diagrams in the first two rows of Flgu@® any relevant
documents were missed due to the denial of temporal deformations, sirred mss parts of the
database can be explained by the rigid queries. However, often, thmnegaits still contain true
positives which might be motions that were executed at the same speed asthe@r example,
nearly all jumping jack motions (query ID17) are missed when setting tifaess to 10, but the
remaining hits are all true positives. This suggests that most of these jumpinm{ations have
been performed with varying speed in the HDMO05 motion database. By strftan query ID12
(jump on the right foot), only one relevant hit has been masked out in aisopao the original
keyframe query. Here, the actors seem to have performed the motiontimea canstant speed.
As a third example, consider query ID28. Again, the majority of the hits is mis$eh denying
any temporal deformation.

A further experiment shows thefect of varying the sffness parameter. Figure 3.15 (a) shows
precision-recall diagrams for query ID59 with modifiedifstéss values. Some false positives
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Figure 3.13.Precision-recall diagrams of hits obtained by queries thithindicated IDs (see Talle_B.2).

T = m—— IW 1 = 1
08 08 08 0.8 08
06 0.6 06 0.6 06
0.4 0.4 0.4 0.4 0.4
02/ ID 10 %2/ D12 021D 16 021D 17 021 |D 22

0 0 0 0 0
0 02 04 06 08 1 0 0204 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

1 1 1F 1 %
0.8 0.8 0.8 § 0.8

1 s

08

0.6 06 0.6 06 0.6

0.4 0.4 0.4 0.4 0.4

021D 27 021D 28 %21 1D 36 021D 44 021D 45

0 0 0 0 0
0 02 04 06 08 1 0 020406 08 1 0 02 04 06 08 1 0 020406 08 1 0 02 04 06 08 1

Figure 3.14. Precision-recall diagrams of some queries of Fidure]3.1@asewe modified the $fhess
values tao- = 1.0.

occur when setting = 0, which are eliminated when using higheffstess values. Far = 0.6,

the precision-recall diagram is the same as the one with manually determifiadsstivalues.

A further raise of the sfiness results in a loss of some relevant documents. A similar behavior
is demonstrated for query ID60 in Figure 3.15 (b) and query ID61 in EIi@UE5 (c). Again, no
difference in ther = 0.6-diagram can be noticed in comparison to the manually optimized query
stiffness values. However, the sizes of the reduced search spacesthedimes for the ranking
steps are smaller for queries ID59, ID60 and ID61 than fowtlre0.6-modified queries.

3.7 Conclusions

In this chapter, we introduced a novel algorithm for keyframe-based muligmretrieval which
can be used to drastically cut down the search space. In contrastvioysr@pproaches, our
index-based algorithm can cope with significant temporal deformationswtiteeorting to com-
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Figure 3.15. Precision-recall diagrams fda) queries ID59(b) ID60, and(c) ID61, whereas the manually
determined sfiness values have been modified to the specified values.

putationally expensive techniques such as dynamic time warping. To prqwedscability, we
applied our algorithm within a two-stage motion retrieval scenario, where tltapndatabase is
pre-filtered in the first stage using the described search algorithm. Asi@dwut, the tempo-

ral flexibility introduced by our sffiness concept is necessary to avoid a large number of false

negatives in the pre-filtering step. In our experiments, we showed thatithiéme of our algo-
rithm scales well with the number of frames in the database. In particulareifeakne-based
search takes only a couple of milliseconds for a database comprising 3% dfomocap data.
In this chapter, the keyframes were generated in a semi-automatic pracdbs. next chapter,
we will develop an algorithm for automatically learning keyframes from argiset of example

motions, where the keyframe-based search will be executed repeasealisud-component. The

high dficiency of our keyframe-based search is one major reason why the rupfttimelearning
algorithm is kept within acceptable bounds.
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Chapter 4

A Genetic Algorithm for Learning
Keyframes

As shown in the previous chapter, carefully selected and designechkeyfjueries can lead to a
successful andficient retrieval. When designing keyframes, the following consideratioosld
be taken into account. On the one hand, since the keyframes are used asitstraints in a query,
they should generalize well to avoid a large number of false negatives ipttiwval step. On the
other hand, the keyframes must have a high discriminatory power to yielé#wed pruning and
data reduction capability. As the main contribution of this chapter, we dedwilbeharacteristic
keyframe queries can be learned automatically from positive and negatweple motions using
a randomized genetic algorithm. Generally, such algorithms are populatset-logtimization
techniques to find approximate solutions to optimization probl#o&lheim, 199R This chapter
is based on the publicatidMller et al, 2009 and extends ideas frofiM{iller et al,, 200§. One
drawback of the approach described iiilMr et al. [200d is the modeling of temporal flexibility
in the query, which is dependent on the chosen feature function. Ifioomulation based on
keyframes and admissible temporal deformations between them, a morelgeoded that is
invariant to the chosen feature function is obtained. Furth@erginces arise from the choice of
our more general model and include changes in the initialization, the recaimbiaad mutation
steps of the genetic algorithm. Note that our work is fundamentdligreint to keyframe selection
methods likdAssaet al, 2004, where keyframes as used for visual summaries are computed. In
contrast to our approach, such methods do not consider in how fakeyframes might be useful
for discriminating motions in a retrieval scenario.

Based on the general paradigm of evolutionary algoritffR@hlheim, 1998 we describe our
keyframe learning algorithm in the subsequent sections. We first shewvkanodel a population
and its individuals (Section 4.1). Then, we describe how we model the qaalfitness of an
individual (Sectiori 4.2). After that, we show how we generate an initiatfatjon (Sectiof 4]3)
and discuss the main algorithm with its genetic operations (Seciion 4.4). Finalldegcribe
our experiments (Sectidn 4.5). For further experiments in the retrievaéxiprwe also refer
to Chaptei b where keyframes learned with the algorithm described in thidechare used to
assist an MT-based annotation procedure.

37
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4.1 Modeling Individuals

A populationconsists of a set ahdividualsthat represent candidate solutions for the optimization
problem. In our scenario, an individual is represented by a keyfrarag/q

Ind = (V,d"). (4.1)

In the following, we describe how we compute such candidate solutionsdrest of example
motions. Recall the case of motion templates, where a set of positive examplesiotiavas
used to compute a representation of a motion ofasdn addition to7*, we assume a set of
negative example motions™ that discriminate the clagsto other motion classes. Then, the goal
is to generate a keyframe query,(d) yielding characteristic constraints shared by all motions
belonging toC but not by motions from other classes. In other words, a keyframelsedth
(V,d) conducted on the set

T =T uT" 4.2)
should return exactly the motions containedin.

For the sake of clarity in the following notation, we slightly modify the represemtaf keyframes

in comparison to the representation as introduced in Chapter 3. Insteaglwitly reverting

to keyframe distanced and stifness parameteks, we implicitly represent these values by the
minimal and maximal admissible distances between keyframes

d’ = (", dM®), ..., (dF", d') . (4.3)
with
Vke[l:K-1]: (" d") e NxN, d" <dn. (4.4)

Note that as carried out also in the functignsee Equatiori (3.11), one can easily map from the
representation\(, d) to (V, d’) by
A" = o - dy] (4.5)
1 .
L.d] ifox>0,
d = [ffk 4.6
k { o0 if o =0, (4-6)

fork e [1: K —1]. The inverse map fromM, d’) to (V, d) directly follows by

4o { 0,/dkm'”/dkmax i dmaX £ oo, @7

if M2 = oo,

N min | 4max if Amax
dk:{ Jamin. gmax i gmax s oo, @9

oo if 43X = oo,

for k € [1 : K - 1]. Note that because of the rounding operations in Equationk (4.5)a8)X (
(c]k, 0) might not be equal ta, o). However, they are compatible in the sense that the same val-
uesdlznin andd,"* are computed fromdg, ) and @, o) by means of Equations(4.5) aid (4.6),
respectively.

To simplify notation, we do not explicitly distinguish between both representatitren it is clear
from the context which representation is used.
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4.2 Fitness Function

We measure the quality or tHignessof an individual in terms of precision and recall by evalu-
ating the individual on the example motions. More preciselyH€Ind) € 7 denote the mocap
documents retrieved by the keyframe query Ind. Then, we define e&dnd) through

P(Ind) := FH(Ind) (4.9)
and recalR(Ind) through
R(Ind) := = . (4.10)

Intuitively, the precision function measures the accuracy of a quealating the fraction of
relevant among the retrieved documents. On the contrary, the recdibinconstitutes a measure

of completeness, indicating how many of the relevant documents are acetaigyved. Having
both P(Ind) = 1 andR(Ind) = 1 describes the ideal query for which only the relevant documents
are retrieved. In general, however, such queries are hard to design

We now define a fitness value iind) to an individual Ind with respect to a weighting parameter
B. To this end, we make use of the weighted F-measure of Equéfidn (4.9)omadidh [4.10) by

. _ (1+8?) - (P(Ind) - R(Ind))
Fitg(Ind) := 7 Pind) + Rind) (4.11)

Typically, keyframes will be used to cut down the search space using,our keyframe-based
algorithm described in Chaptel 3. The resulting search space will thendbgzad in a further
refinement step, see Chapiér 5 for an example in the context of automatadtaon of mocap
documents. In such a scenario, we want to avoid that hits are alrealdyleddy the keyframe-
based preprocessinige., we want to avoid false negative hits. We permit false negative hits even
if it possibly comes at the expense of having less precision, meaning thaiaweto tolerate
more false positive results. The main reason is that we assume that the ¢esediiced search
space will be processed further by a more refined analysis, wheegpfaddtive results can still be
eliminated. Therefore, we stress the recall value in our fitness functisetlings = 2.

4.3 Initialization

For the start of the optimization, we generate an initial populdiiboonsisting oM individuals.
To this end, we first compute a quantized motion temp¥ate{0, 1, «} N from 7+ for a motion
classC, see Section 2.3. Intuitively speaking, we then pick a small number of colfnomsX
as a keyframe query. Here, we refer to tif&column of X by X(:,n), n € [1 : N]. Following
our strategy of trying to avoid false negative results, we use a strictigatian threshold = 0
to compute the quantized motion template. This reveals also the slightest incazisst&mong
the relational features of the training motions. As a consequence, elrhrcoorresponds to a
keyframe which is guaranteed to have at least one match in each of thegraiations. In other
words, choosing one column from the motion template quantizedswit® will guarantee perfect
recall on the training motiong™ given suitable keyframe distances
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Algorithm 2 Initialization of an Individual

Input: X € {0, 1, «}™N: quantized motion template
N(a, b): normally distributed random number generator with
meana and standard deviatidm
U(a, b): uniformly distributed random number generator that
generates numbers in the intervallj]

Output: (V,d): Individual modeled by a keyframe query

K « max(2 N(3,2))

P « K randomly selected frames from the range NJ:

sort(P)

for k — 1to K do > Initialize keyframes
Vi <« X(:, P(k))

end for

fork —1to K-1do > Initialize admissible temporal variations
6 « P(k+1)- P(k)
dmin < Max(Q¢/2 — roundf/2 - U(0, 2)))
Omax < 9/2 + round¢/2 - U(0, 2))

: end for

e
= o

Remember that a motion templaXereveals the consistent aspects of the example motions and
expresses characteristic properties of the afasslowever, using the columns of directly as
keyframes does not account for the negative training exampl&s in As a consequence, the
precision values of such keyframe queries might be comparatively low.idea is to use the
motion template only for the initialization followed by a successive refinementeokefiframes,

as summarized by Algorithid 2. To this end, for each of Mhénitial individuals we first choose

a natural numbeK based on a normally distributed random number generator with a mean of
3 and a standard deviation of 2 (Lihé 1). The numKecorresponds to the initial number of
keyframes in the individual. We fixed the parameters of the random nuneéloerator by virtue

of our experience with manually designed keyframe queries as evalua®thjtef B. Here, we
found that using 48 keyframes on average yielded good retrieval results, see alsd Tdb@e

that our general strategy is to avoid false negative results. Thus,taestightly lower mean of

3 (instead of setting.8 as the mean), since using less keyframes leads to higher recall values in
general.

After choosingK, we define the keyframe query (d). First, we randomly pickk columns of

X to define the keyframe¥,, . .., Vk (Lines[2 td6). Then, the distance parameters are initialized
based on the distances of the chosen keyframes admitting some randondn thlesance, see
Lines[7 td 11.

4.4 Genetic Operations

After the initialization, the three genetic operations referred teedsction recombination and
mutation are used to iteratively breed a new population from a given populationt I1Be
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(@) (b) i i

Figure 4.1. (a) Two parents are combined to generate &isming. (b): The dfspring is mutated by
either addingemoving a keyframétop), generalizingspecializing a keyframémiddle), or by changing
the admissible keyframe distandg®ttom).

()
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g € N, denote the current population. Then, using the concept of univet@ehastic sam-
pling [Baker, 198}, we selectr individuals fromII9, which are referred to asarents In the
recombination step, the keyframes of any two of these parents are contbidedve new indi-
viduals, referred to agffsprings To this end, we randomly choose a number of keyframes of
each of the two parents and merge these keyframes to form a singlerkeyd§exjuence, see Fig-
ure[4.1 (a). The new distance parametbeze determined similarly to the initialization step. To
avoid an early convergence of the optimization procedure towards dquaboptimum, additional
modifications to the fisprings are applied by suitable random operations referred to as mutations
see Figuré4]1 (b). In our case, affispring is mutated by randomly choosing and applying one of
the following operations:

e Add or remove a randomly chosen keyframe.

e Specializei( e., change:to 0 or 1) or generaliza.(e., change a value 0 or 1 t) a randomly
chosen keyframe.

e Randomly increase and decrease the valués in

After the recombination and mutation steps, we obfﬁgql—) offsprings. We arrange thd indi-
viduals of 19 and ther('—z_l) offsprings in a sorted list with decreasing fitness. Finally, the new
populationII9+ is obtained by picking théV fittest individuals from this list. This entire pro-
cedure is iterated fog = 1,...,G, whereG denotes a fixed number of generations. The fittest
individual of TI® is the solution of the optimization procedure, see Algorithm 3 for an overview o
the keyframe learning algorithm.

In our implementation the population size is setMo= 50, the number of parents to= 5,

and the number of generations@ = 100. The exact values of these parameters, which have
been determined experimentally, are not of crucial importance for theréisalt. However, as
typical for evolutionary algorithms, fierent runs of the overall procedure may result in significant
differences between the keyframes of the various solutions. Therefwreaéh motion class,
we run the overall genetic algorithm several times (in our experiments Q0QiHmes) and then
generate an individual with keyframes that most frequently occur in thii@aes. To this end, we
accumulate the resulting keyframes of each run of the genetic algorithm ai-ealeed matrix,
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Algorithm 3 Genetic Algorithm for Learning a Keyframe Query

Input: 7 *: positive training motions

7~ negative training motions

M: number of individuals in a population.

G: number of generations

r: number of individuals to select as parents
Output: TI®: population of generatio®

1: for m« 1to M do > Initialize populationI*

2 11(m) is generated with Algorithiial 2 (pagel40).

3: end for

4: forg«— 1toGdo > loop over all generations of the population
5: for m « 1to size(19) do > loop over all individuals of one generation
6 Ind « (V,d) = I19(m)

7 Obtain hits by querying™ = 7+ U7~ with Ind using Algorithnil (page24)

8 Each document ifi” with at least one hit is regarded as a retrieved document.

9 Evaluate Fif(Ind), see Equatiori(4.11).

10: end for

11: 19 « The M fittest individuals off19. > Keep the population at a constant size
12: Selectr individuals inIT9 using stochastic universal sampling.

13: Creater(r—z‘l) offsprings by recombining any two parents.

14: For each @ispring, mutate it using a randomly chosen mutation operation.

15: 91 « 19 {all mutated springs.

16: end for

Vi V2

15 (dmin,L dmaxl)

Figure 4.2. (a) After adding up the results of 300 runs of the genetic atborj frequently occurring
keyframes stand oufb): The most frequently occurring keyframes are extracted.

whereas we represent the wildcard character with the vatyes@e Figure4]2 (a). Here, columns
with white and black regions correspond to frequently occurring keydsa Using this matrix
representation, we then extract the most frequently occurring key$resee Figurg 412 (b), and
optimized using a similar strategy as with the genetic algorithm.
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4.5 Experiments

We implemented the learning algorithm in Matlab while passing time critical parts tostites
implemented in @C++. The computations were performed on an AMD Athlon X2 560Gth
3.5 GB of RAM.

In our experiments, we used the described algorithm to generate keyfnaenies for a set of

P = 69 motion classe€p, p € [1 : P]. To this end, we took the motion classes as indicated
in Table[3.2, and added additional classes. With the additional classescugeid motions like
throwSittingHigh and throwSittingLow, as well as throwStandingHigh and tBtewvdingLow.
These motions are very similar to each other despite from the height of tlis,haspectively,
and therefore pose a challenging test for generating keyframes. oMoreve incorporate mo-
tions that are diicult to distinguish even for a human observer. For example, we included the
classes grabFloorR and grabHighR. Notably, the onffedince to the already existing classes
depositFloorR and depositHighR (classes 4 and 5 in Table 3.2), is the asd phthe motion
where the actor grabs or deposits a small object, respectively. Additipnalincluded motion
classes which describe grabbing and depositing motions of an object alve stt medium and
low height, respectively.

We assembled a training database of 24 minutes length in total (42586 fravhed),consists of
nine example motions for each motion class, servingasrespectively. These example motions
were manually cut out from documents of the HDMO5 mocap databagter et al, 2007. In a
first step, the relational features, which are needed for learning themetitplates as well as the
keyframe queries, are computed and stored for the entire training exaftgdesy 137 seconds
for the 24 minutes of data). From the features, we computed the quantissdvddion templates
using an iterative warping and averaging algorithm (see Sdctibn 2.3)y¢duk roughly 3 seconds
on average for each MT. To learn the keyframe queries, we also reggdive example motions
for each class. Here, we simply defifigg to be the union of all example motions that do not
belong to the class:

75= | 75 (4.12)
GelLP]\p

Applying the genetic operations in an iterative fashion leads to significanbiaprents in the
discriminatory power of the keyframes. As illustration we refer to Figurka&).8/fich shows the
discriminatory power of the learned keyframes over the iterations in termgeof@e precision,
recall, and fitness (using Bjton the training data. Here, averages are taken over the individuals
of a population and over all motion classes. In particular, note that thit vatiges on the training

set stay relatively stable at a high level around, Ivhereas the precision values quickly rise to
values above 8.

Further, we show how the queries generalize by means of additional ndocapnents serving
as a verification set. Similar to the training set, we select on averageadditional motions per
class, comprising 37 minutes of mocap data, or 66 749 frames. The camt@sg performance
of the learned keyframe keyframe queries is illustrated in Figure 4.3 (bde that although the
overall performance on the verification set is lower than the performandbe training set, the
fithess also on the verification set always increases with the number ¢ioiterand stable values
around 075 are reached.
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Performance on training data Performance on verification data
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Figure 4.3. Average precision (black), recall (red), and fithess (gredrthe learned keyframe queries
evaluated orfa) the training data an¢b) on the verification data as a function of the number of itereti
used in the genetic algorithm.
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Figure 4.4. Histogram of stifness values in the automatically learned queries.

Remember that for the initialization of the keyframe queries, we pick columns &rquantized
MT. Using a quantization thresholtl = 0 (being very strict to variations in the training data),
this quantized MT typically contains many wildcard characters. On the on, iz so-chosen
gueries have a recall close to one on the training data, but on the othégrthardiscriminative
power against other classes is low, yielding a small precision value. Vée this strategy to steer
the generated keyframe queries to a high recall with the goal to avoid fedseive hits already in
the keyframe-based search. During the iterations, keyframe quegiesfared and tuned towards
a higher fitness. As summarized in Figlire]4.3, a strong increase in theigmeleiads to the
improvement in the fitness of the queries, at cost of a small decreasailh rec

In order to visualize in how far temporal variations are taken into accouhieitearned queries,

we computed the histogram of thefBiess values occurring in all 57 queries, see Figuie 4.4. More
than 87% of the sfiness values occur in the range offstéss values up to.®, which shows that
temporal flexibility is needed in order to achieve a high recall. In comparisdhetananually
defined queries, see Figure 3.13, morérsdiss values occur in the highly flexible range around
o = 0.25. One main reason for this behavior is that a decrease in fffieesg often leads to

an increase in the recall on the training set which is preferred in the Igaatgorithm. Overall,
despite of the low sfiness values, the automatically learned keyframes are well suited to cut down
the search space as explained in Chdgter 5. In the annotation scentvidltba described, we
report a 15-fold speedup of the procedure when keyframes aggaset down the search space.

As for the run times of the learning procedure, using the genetic algorithmthetiparameters
as specified in Sectidn 4.4, it took roughly 10 seconds on average toddayframe query for
a given motion class. Since we run the overall genetic algorithm several ¢(f86s500 times)
to derive more characteristic keyframes, run time increases by a conaisg factor. The run
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times are mainly determined by the operation that computes the fithess of antadlidigre, one
needs to perform a keyframe-based retrieval on the 24-minute trainiagat®. On average, the
retrieval took roughly 3 milliseconds for one query. This retrieval opanehas to be performed
several thousand times for each run of the genetic algorithm. Thudfittiercy of the keyframe-
based search algorithm as described in Chapter 3 constitutes one of theeaagms why we are
able to reach acceptable run times for the presented genetic keyfranmiadeslgorithm.
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Chapter 5

Automated Annotation

This chapter is based on the publicatidfiiller et al, 2009. As a main contribution of this thesis,
we describe a novel MT-based annotation procedure that is usedn@stgnd label an unstruc-
tured mocap document on the basis of a given set of motion classes. dfeassigned label
corresponds to the motion class that best explains the respective motinargedglo solve this
challenging task, several components described in the preceding rshagégact with a novel
annotation procedure introduced in this chapter. In a preprocessipgkstgrames are learned
using the genetic algorithm described in Chapter 4 and motion templates aratgendien, in

the annotation procedure, we first prune the unknown mocap documsiagtthe fast keyframe-
based search algorithm described in Chdgter 3. Hereafter, the ndvieabkd annotation strategy

is conducted only on a small subset of the document. Unlike previous worlgnnotation pro-
cedure shows a high degree of robustness to large numeriteretices that may exists between
semantically related motions €., motions that belong to the same motion class). By employing a
keyframe-based search, wiieiently narrow down the set of candidate motions related to a spe-
cific motion class and also improve the annotation quality by eliminating false posititehes,

as shown in our experiments.

The remainder of this chapter is organized as follows. After giving a lmtebduction (Sec-
tion[5.1), we describe our novel MT-based annotation procedurdi¢8€g2). Then, we show
how dficiency and precision can be significantly improved by employing a keyflzased pre-
selection step (Sectidn 5.3). In Sectlonl5.4, we demonstrate the practicability oferall an-
notation procedure by describing various experiments conducted anrfasgap databases. Our
conclusions are given in Sectibn b.5.

5.1 Introduction

In this chapter, we present a system for automatically dficlently annotating large unstructured
collections of mocap data. Given an unknown mocap document, the anndttiononsists of
segmenting the document into logical units and then classifying each segroerdiag to a given
set of motion classes. Note that the problemogfally annotating unknown motion data on the
subsegment level is a much harder task tplbally comparing and classifying motion data on
the document level. In our annotation scenario, we assume that each masisiscspecified by a

a7
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set of semantically related example motions which reflect the range of spa@ital variations
appearing in valid motion realizations. As motion class representation, we textbe concept
of motion template$MTs) as introduced by Miler et al. [200d, see also Sectidn 2.3 for a short
introduction. Such templates capture common as well as varying aspectsiofitiying training
motions in an explicit and semantically interpretable matrix representation.

Most related to our work, Arikaet al. [2009 propose a semi-automatic annotation procedure,
where a user is required to annotate only a small portion of the databaseis&ls annotations
are then generalized to the entire database in a framewise fashion usingl&s8iliers. Our an-
notation approach ffiers from their approach in various ways. Firstly, our annotation strasegy
segment-based instead of frame-based, thus resulting in semantically moiaghdainits. Sec-
ondly, using concepts such as relational features and dynamic time waspirepproach is more
robust to spatial and temporal variations than the one by Arétaal. [2003, where normalized
joint positions and fixed temporal windows are used. Finally, our strategyésrn the necessary
class representations (motion templates, keyframes) only once prior tottiz aenotation step.
Based on these representations, the annotation can then be perforsnediciently on large and
arbitrary sets of mocap documents.

5.2 Annotation Procedure

As basis for our annotation procedure, we introduce a distance furtb@meveals all motion
subsegments of an unknown mocap docunigrassociated with a given motion clags Let

X € {0, 1, %} 7N be the quantized class MT 6fof lengthN andY e {0, 1}"*L the feature matrix of

D of lengthL. We first define a cost measw® for comparing thei columnX(n) of X and the

&M columnY(€) of Y,ne [1: N], € € [1: L]. Let X(n); denote thé" entry of then™ column ofX.
Now, for all columnan € [1 : N], we define the indices of the rows that do not contain a wildcard
character as follows:

I(n) = (i e[1: f] | X(n)i # #), (5.1)

Then, if[I(n)| > 0, we set

Q.0 = 37 IX(rhi - YO, (5.2

1G] iel(n)

otherwise we set®(n, £) = 0. In other wordsgQ(n, £) only accounts for the consistent entries

of X with X(n); € {0, 1} and leaves the other entries unconsidered. Note that the wildcard entries
in a motion template represent admissible variations of a motion class which we igntite
distance measure by employih¢n). Based on this cost measure, we define a distance function
A [1:L] » RU {oo} betweenX andY using dynamic time warping (DTW):

A(f) = % arer[11i:r}] (DTW(X, Y(a: 1)), (5.3)

whereY(a : ) denotes the subsequenceYos$tarting at indexa and ending at indexX € [1 : L].
Furthermore, DTWX, Y(a : ¢)) denotes the DTW distance betwesmndY(a : £) with respect to

the cost measure®. To avoid degenerations in the DTW alignment, we use the modified step size
condition with step sizes (2), (1, 2), and (11) (instead of the classical step sizes)}1 (0, 1), and
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Figure 5.1. (a)Distance functiona based on the quantized class MT ‘sitDownFlog} Corresponding
modified distance function® for r = 0.13.

(1, 1)). Note that the distance functiancan be computediciently using dynamic programming.
For details on DTW and the distance function we refMailler, 2007.

The interpretation ofA is as follows: a small valua(¢) for some¢ € [1 : L] indicates that
the subsequence of starting at framea, (with a, € [1 : £] denoting the minimizing index
in Equation [(5.B)) and ending at franfds similar to the class MTX. Here, the starting frame
indexa, can be recovered by a simple backtracking within the DTW procedurethir avords,
looking for all local minima inA below a suitable quality threshotd > 0 one can identify all
subsegments dd closely correlating to the clags As example, Figure 5.1 (a) shows a distance
function based on the quantized MT for the class ‘sitDownFloor’. Notettiere are two local
minima having a value close to zero that reveal the two ‘sitDownFloor’ suberts contained in
the mocap document.

Recall that a local minimum(¢) close to zero only indicates tlesad frameof a subsegment dd
corresponding to the clags We now modify the distance function in such a way thihframes

n € [a; : ] of the subsegment are distinguished by assigning to them the same dissduee v
A(¢). Furthermore, with the distance function we only want to consider thaseefs that closely
correlate taC. To this end, we use the quality thresheld- 0 and iteratively define a modified
distance function

A" :[1:L] > RU{oo}. (5.4)

First, we seT&T({)) = oo forall £ € [1 : L]. Then, iterating over all local miniméae [1 : L] of A
belowr, we defineA™(n) for n € [a, : £] to be the minimum of the hitherto defined valt&(n)
andA(n), see Figuré5l1 (b).

The basic idea of our annotation procedure is to locally compare a mocameat with the
various class motion templates and then to annotate all frames within a suitable mgtieense
with the label of the motion class that best explains the segmentD lbet an unknown mocap
document of length. and letCy,...Cp be the motion classes used for the annotation, where
p € [1 : P] denotes the label of clags,. In our procedure, we compute a modified distance
function A, for each clas€’, as described above. We then minimize the resulting functions over
all class label € [1 : P] to obtain a single function™" : [1 : L] — R U {co}:

min . ia AT
A™Y() = pg?ll:r;]Ap(f), (5.5)

¢ € [1 : L]. Furthermore, we store for each frame the minimizing ingex [1 : P] yielding a
functionA29:[1: L] — [0 : P] defined by:

APY(¢) = arg minA%(f), (5.6)
pe[1:P]
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functions using keyframes as preprocessing gEpAnnotation result using keyframes.
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ClassID class description

C1 neutral stand in a neutral position, hands lowered

C, tpose stand in t-pose, hands horizontally extended

Cs move 2 steps (starting left or right, walk, jog, run,)

Cy turn turn around left or right

Cs sitLieDown  sit down on chair or floor, kneel, lie down on floor
Cs standUp stand up from chair or floor

Cy hopOneLeg jump with left or right leg

Cs jump jump with both feet, jumping jack

Co kick kick to front or side with left or right leg

Cio punch punch to front or side with left or right hand

Cu rotateArms  rotate both or single arms front or back

C12 throwR throw an item with right hand, sitting or standing
Ci3 grabDepR grab or deposit with right arm high, middle, low
C14 cartwheeel cartwheel with left or right hand starting

Cis exercise elbow to knee, skier, squat

Table 5.1. Description of the 15 motion classes used in our experimdeseh class comprises various
subclasses.

whereA®9(¢) is set to 0 in casa™"(¢) = o (and to the smallest class label number to break a tie).
In principle, the functiomA?® yields the annotation of the mocap documénby means of the
class labelg € [1 : P]. Here, a value 0 means that the corresponding frame is left unannotated

For a first illustrative example, we use tRe= 15 classes indicated by Talple]5.1, see Se€tion 5.4
for a detailed discussion. Figure b.2 (a) shows the resulting 15 modified astanctionsAj

with = 0.13 in a color-coded form for a given mocap documBnof lengthL = 2800 frames

(~ 93 seconds). The resulting annotations are shown in Figure 5.2 (bje wWieecolor red corre-
sponds to the automatically generated annotations inducad@bsnd the color black corresponds
to manually generated ground-truth annotations. For a further discuasibevaluation of our an-
notation results, we refer to Section]s.4.

In the following, a maximal run of consecutive frames annotated by the sdmlddaeferred to as
segment. Note that our procedure cuts the documaento disjoint segments, where some of these
may be very short. For example, the ‘standUp’ annotation segment af@med 1500 comprises
only 13 frames# 1/3of a second). This is due to the fact that the beginning of the actual Yfnd
motion (actor is sitting) is annotated as ‘sitLieDown’. This makes sense sinbedgiening of the
‘standUp’ motion semantically overlaps with the end of the previous ‘sitLieDanation, where
the actor sits down. To enable overlapping annotations and semantically giedisegments

(i. e, segments that represent a complete motion of the corresponding cladajtiver extend the
annotated segments as follows. Suppose that the frames with indicgls gt € [1 : L], s<*t,
have been annotated with the class Igbel[1 : P]:

Ve e[s:t]: A2 = p. (5.7)

Then, letr < sbe the minimal index such thai, is monotonously increasing (or constant) on the
interval [r : s]. Similarly, letu > t be the maximal index such that, is monotonously decreasing
(or constant) on the interval [ u]. Then all frames with indices in the interval { u] will also be
annotated witlp, see Figuré 512 (c).
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5.3 Keyframe-based Preselection

As indicated by Figureé 512 (c), our annotation procedure as explainéd sway yield a number
of false positive annotations. For example, the motion class ‘grabDepgihveonsists of right
hand grabbing and depositing motions, causes a number of confusionstigthclasses. The
reason is that grabbing and depositing motions are short motions andggosbefew character-
istic aspects—basically, the right hand is moving and nothing else happercirsstent way.
This leads to a rather unspecific class MT, which yields small distance viauaany motion
fragments that are actually part of other motion classes (note the overatlistance values in
the ‘grabDepR’ row of Figurg 512 (a) despite of the absence of such n&)tido cope with this
problem, we propose to integrate an additional keyframe-based pesging step. For example,
for the class ‘grabDepR’ one may use a few keyframes enforcing tthatfeet do not move while
the right hand moves to the front (before grabbing) and is then pullekl (adter grabbing). By
employing such additional keyframe constraints, we can eliminate a large noffakse positive
annotations and, additionally, significantly speed up the annotation pnecedu

Recall that in our annotation procedure we want to assign class labelsittkaown mocap doc-
umentD. In a preprocessing step, we learn the characteristic keyframe q(épes,) for each
motion class from positive and negative example motions as described in Chapter A, 03ieg
the keyframe-based search algorithm as described in Chdpter 3, waeteatrmotion segments
from D that are relevant with respect t {, dp). Finally, the distance functionp is computed
on the relevant segments only (setting the value tfor the irrelevant frames). The resulting re-
duction is illustrated by comparing Figure b.2 (d) with Figurd 5.2 (a): the additiwhite regions
in (d) correspond to irrelevant information masked out by the keyfraraeeke The annotations
obtained from (d) are shown in Figure 5.2 (e). Note that the keyfrarmeebpreselection has
several benefits. Firstly, using additional constraints allows us to eliminatg fakse positive
annotations. Furthermore, the index-based retrieval step is ideally suited down the search
space to relevant subsegments, thus significantly speeding up andadisaséiducing memory
requirements in the subsequent steps. For details on the keyframeskasel algorithm we refer
to Chaptet B. Thefeect of the keyframe-based preprocessing step on the annotation quality a
performance is discussed in Section 5.4.

5.4 Experiments

We implemented the annotation algorithm invivlas while passing time critical parts to subrou-
tines implemented in C++. The computations were performed on an AMD Athlon X2 5600
with 3.5 GB of RAM. For our experiments, we assembled an evaluation datassisting of
109 mocap documents having an average length of 40 seconds eadbtaltength amounts to
roughly 74 minutes (133019 frames at 30 Hz). To illustrate the scalabilityradmmuotation proce-
dure, we used mocap data from twdtdrent sources: 60 minutes where drawn from the HDMQ05
databaséM{ller et al, 2007 and 14 minutes from the CMU databd&VU, 2003. We manu-
ally annotated all 109 documents on the subsegment level according to thas$bs described
in Table[5.1. These classes were assembled with respect to the actiarsperfn the HDM05
motion database. To illustrate the practicability of our annotation procedergsed various kinds
of classes including rather general motion classes such as ‘move’, perikized classes such
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as ‘cartwheel’, and rather uncharacteristic classes such as ‘gp&bDidere, the more general
classes are assembled from various subclasses. For instanceffienend subclasses (sit down on
a chair, sit down on the floor, kneel, lie down on the floor) contribute to ldmscsitLieDown’. To
obtain the annotations on the class level, one can simply combine the annotatitiessoibclass
level. At this point, we emphasize that the particular choice of the motion clessesof crucial
importance. The choice was driven by the availability of the mocap data aodrypotivation
to give a comprehensive demonstration of the algorithms’ performanea {e\the presence of
more critical classes such as ‘grabDepR’). The concepts presentieid ichapter are generic in
the sense that the underlying set of motion classes may easily be extendedified to satisfy a
user’s specific needs.

Prior to the actual annotation step, we learned the motion templates and keyfraries for each

of the classe€), p € [1 : P], see Chapterl2 and Chapiér 4 for an introduction to motion templates
and a description of the keyframe learning algorithm. Having completed tipequessing step,
our annotation procedure facilitatefieient annotatation of arbitrary and large sets of unknown
mocap documents according to the given set of motion classes (or sulesetsthTo automat-
ically annotate our evaluation database (109 documents, total length of 7#es)inue proceed
as follows. First, we extract the relational features and index the mocapramis using a stan-
dard inverted file indeXM{ller et al, 2009. In our implementation, the feature extraction takes
roughly 250 seconds, whereas the indexing takes 4 seconds. Usipgridg MT-based anno-
tation procedure as described in Secfion 5.2, it took 305 seconds to tnthaa 09 documents
(here, the index structure is not needed). Applying the keyframedi@asselection (Sectidn 5.3),
the run time of the overall annotation procedure decreased to 20 seemmoisnting to a 15-fold
speed-up. Here, processing a single keyframe query on the 74-miraitetion database takes
on average only 4 milliseconds (using the index structure), which is negligiotgpared to the
MT-based annotation step.

The keyframe-based preselection step not only yields a significardgpeé the overall annota-
tion procedure, but also has a considerable impact on the final annajatbity. First of all, false
positive annotations can be eliminated. As an example, consider the fai§gepasnotations
in Figure 5.2 (c) for the class ‘grabDepR’. After integrating the keyfrdrased preselection, most
of these false positives could be eliminated, see Figuie 5.2 (e). As an adtllienefit, false neg-
ative annotations have been corrected by the keyframe-based ptiesetess well. Consider the
missing missing ‘standUp’ annotation (frames 2250 to 2300 in Figute 5.2Td)s annotation
appears in the final annotation because the corresponding frames $itfr@vn’ class have been
masked out by the keyframe search. A similar consideration leads to tlempeasf the previously
missing ‘neutral’ annotation, frame 2500, where the false positive ‘turnbgation prevented the
‘neutral’ annotation from being found.

The observedféects are fiirmed by our quantitative experiments. Here, we evaluated various
variants of our annotation procedure. To this end, we compared the didaltlgayenerated anno-
tations with manually generated ground truth annotations by means of figoedit performance
measures. As first measure, we consider precision and recall valub®e frame level More
precisely, for a given mocap documdnf lengthL we define the sets

M(D) := {(¢, p)l frame¢ manually annotated with clagg and (5.8)
A(D) := {(¢, p)| frame¢ automatically annotated with clapgg (5.9)

where ¢,p) € [1:L] x[1:P]. In other words, the seM(D) describes the manually generated
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Figure 5.3. Example annotation result to illustrate our evaluatiorcfions, see the text for an explanation.

or relevantannotations, whereas the g§D) describes the automatically generatedeadrieved
annotations produced by our procedure. Then, precision and mdaalir annotation procedure
are expressed by

IM(D) N A(D)|

P1(D) := AD) and (5.10)
._ IM(D) n A(D)|
Ri(D) := —|M(D)| . (5.11)
Furthermore, let
Fi(D) := 2P1(D)R(D) (5.12)

P1(D) + Ry(D)

be the resulting F-measure. Note tRa{D) = 1 in case of all retrieved annotations being among
the relevant annotations (no “false positives”), whereg®) = 1 in case of all relevant annota-
tions being retrieved. The frame-based performance me&suneay be problematic, since the
beginning and ending of a motion of a specific class is often ambiguousx&apde, consider a
mocap document showing a person who sits down on a chair and remaied f@ea long time.
Then, it is not clear where exactly to set the end frame when manually aimgattae document
with respect to the class ‘sitDownChair’. Also certain motion transitions fraenaass to another
(e.g, from ‘move’ to ‘turn’) can often not be exactly specified. To accofantsuch ambigui-
ties, we use a second performance measure by considering precidioacati on thesegment
level Here, we only check for overlaps of a manually annotated motion segmeé @treautomat-
ically generated segment both bearing the same classpalM then define the segment-based
precisionP»(D), recallRx(D), and F-measurgE,(D) analogously to the frame-based case.

For an illustrative example, we refer to Figurel5.3. Here, the manual drouth annotation
for the class corresponding to the label ‘classl’ consists of the segii2ntd], [8 : 10]}. The
corresponding automatic annotation{[is : 3],[6 : 7]}. The overall number of annotated frames
amounts tgM(D)| = 10 for the manual annotations af&(D) = 13 for the automatic ones. In
this example, the evaluation functions result to

P1= Dfames~ 046, (5.13)
Ry = fianes. = 0.60, (5.14)
P2 = fesgmane= 050, and (5.15)
R = FocdTene~ 0.67. (5.16)

As also shown by this example, the segment-based measures are mord tolesaaller de-
viations in the annotations than the relatively strict frame-base measuresgaghthe segment-
based measure might sometimes tolerate also strong misalignments between thé@atahilae
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PP R F P R PR
without keyframes @8 Q078 060 057 091 Q70
with keyframes 069 079 074 078 088 082

total

without keyframes @9 080 061 061 091 073
with keyframes 070 080 075 080 088 083

HDM

without keyframes @1 075 053 039 090 054
with keyframes 066 074 Q70 065 091 Q76

CMU

Table 5.2. Various performance measures for our MT-based annotationedure without and with
keyframe-based preselection.

ground truth annotations. Therefore, the actual annotation quality isilbedavell by the range
defined by the valueB;(D) andF»(D).

To compute the performance measures on the entire evaluation databagsaplyeconcatenated
the 109 documents to form a single document and applied the above calcstatsnwhere we
performed our annotation procedure without as well as with the keyfizamed preselection step.
The results are shown in Takle 5.2. For example, the precRjorithout using keyframes is
0.48 and increases significantly t&0 when using our automatically computed keyframe queries.
At the same time, the recdR; slightly increases from.@8 to Q79. While the increase in preci-
sion is expected when using keyframes, the increase in recall is somswvhesing at first sight.
Here, one reason is that by eliminating false positives, some of the rekwvaotations that have
previously been “overlayed” by false positive annotations emerge whi&g our minimization
strategy, see Equatioh (5.5). This again demonstrates that the keyfesmme-preselection step
eliminates a large number of false positive annotations while not loosing ¢orygelding) rele-
vant annotations. Figufe 5.4 shows some representative examplescahusle, note that many
of the false positive annotations from the rather unspecific class ‘gqaRDcould be eliminated
across all shown documents using the keyframes. Next, consider timesegetween frames 50
and 150 in Figure’5l4 (a). Here, the actor shouts out having both haisés in front of the mouth.
As this motion is not related to any of the employed 15 classes, no manual Gomdias been
generated for these frames. Without using keyframes, our automatieden@cconsiders them
most similar to either a ‘throwR’ or a ‘grabDepR’ motion. Using keyframesaasl ltonstraints,
these false positives are eliminated. As a consequence, the precisies asleported below each
subfigure receive a significant boost. Next, consider the segmenedetirames 800 and 1000
in Figure[5.4 (b). Here, starting with both hands in front of the belly, therastings his arms
sideways into a horizontal position and then lets them drop back to the belly. agas motion
is repeated four times in a row. As this motion is not related to any of the empldyethdses,
no manual annotation has been generated for these frames. For thideextmgeyframe-based
preselection could mask out some false positive ‘throwR’ and ‘grabDapRotations, however,
a false ‘punch’ annotation still remains. In the same document, the desonitéeh is followed
by a combined walking and arm rotating motion, indicated by the simultaneous "mwg€ro-
tateArms’ ground truth annotation between frames 1100 and 1400. Notb¢habtion templates
as well as the keyframes have been trained using full body motions that d&hude the indicated
combined motion. Despite of this, parts of the motion are annotated correctthairttegration
of keyframes still improves the overall annotation quality. As another exafople combined
motion, consider Figule 5.4 (c). Here, the actor conducts a ‘skiing iseérotion with the upper
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Figure 5.4. Influence of the use of keyframes on the overall annotatisalte Left column: annotation
result without keyframes. Right column: correspondingaation result with keyframes.

body and a ‘jumping jack’ motion with the lower body, which is semantically most similérgo
‘exercise’ motion class. However, the manual annotator considered thismio be too difer-

ent to the indicated motion classes and did not give a ground truth annot&ittraugh even
with included keyframes some false positive annotations remain, the overaltagion quality

improves. As a final example, consider Figlrg 5.4 (d). Here, the integratikeyframes boosts
the segment-based precision and recall to a nearly perfect resultpasoafimed by a manual
qualitative inspection.

As expected, the segment-based precision and recall values are thigheéhe frame-based val-
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Figure 5.5. Representative annotation results for two HDM@¥),(b)) and two CMU (c),(d)) documents.

ues, see Table 8.2. For example, using keyframes, onBad.78 (opposed t¢; = 0.69). In
other words, only 22% of the retrieved annotated segments are falsevg@®sior the segment-
based recall, one obtaii® = 0.88 (opposed tdR; = 0.79). Here, only 12% of the relevant
annotations are missing. Note that the frame-based performance measugeserally too strict
whereas the segment-based ones are generally too tolerant. So, in sutheagtual perfor-
mance of our overall annotation procedure can be described by the-meaBured-; = 0.74
(being pessimistic) anB, = 0.82 (being optimistic).

As was mentioned above, the HDMO05 mocap data used for training is nofroeahia the evalua-
tion data. However, the various motions corresponding to a specific elzssthough performed
by various actors executed with significant variations, are still somewdrdtatled by general
performance specifications. We therefore also evaluated our precedlCMU documents con-
taining at least some subsegments corresponding to our 15 classesh.Pastews the various
performance measures separately for the HDMO05 and CMU documerggoBignificant motion
variations in the CMU data, some of which are not well reflected by the HDi#0Bing material,

one has a decline in performance. For example, the F-measures ofesall @rocedure for the
CMU data ¢1 = 0.70,F» = 0.76) are a bit lower than for the HDMO5 datgy(= 0.75,F, = 0.83.

Figure[5.5 depicts representative annotation results for both HDMO5 ktdlddcuments. Here,
Figure[5.5 (a) shows a document containing energetic kicking and punoiotions. In contrast
to the high recall values as reported below the subfigiRes:(0.9, R, = 1.0), the precision values
seem to fall shortP; = 0.54, P, = 0.62) mainly due to false positive annotations in the ‘move’
class. A manual inspection of this document showed that in fact the act@diwe steps before
each kick in order to gain momentum which gives another twist on the fal$vpannotations.
Also, the ‘move’ annotations during the punches correspond to foramaddbackward motions
with the feet. Finally, we inspected the false positive ‘throwR’ motion arouachés 900 - 1100
which actually contains two punching motions. Note that throwing and punchot@gpns share
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Figure 5.6. Impact of the quality threshold on the frame-based (left) and segment-based (right) per-
formance measures (using the annotation procedure withakeg-based preselection). Black: precision.
Red: recall. Green: F-measure.

common similarities. We found that from the mocap data of the false positivaatiomalone
without being able to see whether an actual object has been thrown itanéisohjudge to which
class the motion actually belongs. Thus, in some cases the subjective qualiyarinotations
can be much higher than indicated by the precision and recall values.

An example which contains motions of the class ‘grabDepR’ is shown in Hg8r). Although
this class is rather unspecific, it has been singled out by the annotatioedpre, yielding very
good precision and recall values on the segment level.

We show a document from the CMU mocap database in Flgufe 5.5 (c). Ttusramt contains
energetic jumping, kicking, and punching as well as moving and turning motidespite of the
different style of execution in comparison to the HDMO5 training data, these motwesheen
annotated correctly.

The annotation of a more problematic CMU document is shown in Figuie 5.5Hd)e, the

motion segment around frame 1000 erroneously received the annotatialeArms’. A manual
inspection showed that this segment actually consists of several armsswinmotion type that
is not reflected in the 15 motion classes used for the annotation. Furthemnarercise motion
(around frame 400) was not annotated. Here, it turned out that the natidomot satisfy the

keyframe constraints learned from HDMO5 data. The performed actemmbe reviewed on our
project homepagé@ttp://www.mpi-inf.mpg.de/resources/MocapAnnotation where we show
videos along with the manual and automatic annotations of all 109 evaluatiomeaots.

In all of the above experiments, we used the quality threshotd 0.13. Actually, the choice

of 7 influences the quality of the overall annotation result. Note that a small vélugases a
stronger condition on what to consider similar, thus leading to higher praasid lower recall,
while a large value of has the oppositefiect. To find a good tradefioof having high precision as
well as high recall, we computed the various performance measuredteredi values of, see
Figure[5.6. Our final choice af = 0.13 is motivated by the request of having high recall values
possibly at the expense of some additional false positive annotations.

5.5 Conclusions

In this chapter, we presented a robust afittient procedure for annotating large collections of
motion capture documents. Using motion templates, we were able to identify logilaligad mo-
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tions on the subsequence level even in the presence of significanticalhdéferences in the orig-
inal raw mocap data. Using keyframe queries, we were abléitdemtly prune the search space
and to eliminate false positives. We developed a purely content-basedvoaknehere keyframes
and motion templates were all generated automatically by means of user-supgléty mo-
tions. We reported on various experiments that demonstrated the practicabdity annotation
procedure.

Our concept is generic in the sense that it allows a user to easily adaptatify the annotation
types simply by exchanging the underlying motion classes. Because of tipdititesemantic
interpretation, even a manual design or tuning of motion templates and kegfrianfieasible

in case no suitable example motions are available. As for future work, wetglapply our
concept for automatically annotating various types of gesture. Fromasuubtations, statistical
models of a person’s particular gesture style could be learned in ordgnttiesize personalized
gesture§Neff et al, 200§. As shown in the subsequent chapter, a procedure for mocap annotatio
can also be used to generate suitable prior knowledge which can therdbdoustabilize and
support human motion tracking.
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Chapter 6

Stabilizing Tracking using Retrieved
Motion Priors

As one main contribution of this thesis, we introduce in this chapter an itera#iveefvork that
makes use of a retrieval and annotation component similar to the one ddscriBbaptef b in
order to stabilize an algorithm for marker-less motion tracking. This workbleas published
in [Baaket al, 2009. A flowchart of our framework is given in Figuie 6.1. As one component,
we use an algorithm for makerless motion tracking that estimates the 3D motiomofankactor
based on image data. The tracking system takes as input a multiview imagasediyideo’),
see Figuré 612, and returns as output mocap data given as a seqti@ioe angles over time
(‘3D Mocap’). Due to noise, occlusions, and other ambiguities in the image ttacking may
fail for parts of the sequence resulting in corrupted poses, see HogBireHowever, in spite of
these errors, the overall rough course or at least parts of the motiostitde recognized to a
reasonable degree. For example, a local tracking error in the arngdausivalking motion may
still permit an algorithm to recognize the motion class correctly. We use artaioroalgorithm
similar to the one presented in Chajiter 5 to locally assign class labels to thaltBirkeocap data
based on available motion classes (‘Database knowledge’). Thesaeaatsigss labels represent
an increased semantic knowledge about the tracked sequence thaileietskallocating priors
based on the obtained annotation results. For example, after recogniziaiging cycle in the
tracked sequence, this increase of knowledge can be used to allodatele srior such as ‘left
foot moves to the front’. The allocated priors are integrated into the tragkiogedure as regular-

3D Mocap

Annotation

Tracking

Regularizatio

Priors

Figure 6.1. Iterative motion tracking framework. Based on an automatetbtation of the tracking result,
priors are allocated that regularize the tracking in the iteration step.

Database
knowledge

Allocation

63
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Figure 6.3. Tracking without priors may lead to invalid poses.

ization terms, and the tracking step is repeated to yield an enhanced trasirig iterating such
a procedure, as shown by our experiments with the HumanEVA-11 ben&himgroves the result
significantly after few iterations.

The remainder of the chapter is organized as follows. We first give enview about related work
(Sectiori6.11) and summarize the tracking procedure (Seciion 6.2). Aftentbdriefly describe

the retrieval component (Sectibn1.3). Then we explain how to fuse thevadtresults with our

tracking procedure in Sectign 6.4. At the time of publication, such an iteragicking procedure
using retrieved motion priors had not been considered before to theflestknowledge. Besides
stabilization of 3D tracking we also gain an annotation, which bridges the giayebn the low-

level tracked 3D mocap data and the high-level symbolic representatioa ohtterlying actions.
Our experiments are presented in Sedtioh 6.5, before we conclude inr@étio

6.1 Related work

Marker-less motion tracking is an active field of research in computer visiohgraphics,
see[Moeslundet al, 2006;| Poppe, 2010; Sigat al, 2010; Moeslundtt al, 2017 for in-depth
reviews of the vast literature. The goal of marker-less mocap is to detethgnmoving and
deforming 3D surface geometry of an actor from image data. Applicatiemsnastly found
in the game and and movie industry, in biomechanics, medicine, and sportsesciein a
tracking scenario, it is common to assume that the input consists of a seqokenultiview
images of the performed motion as well as a static surface mesh of the aaidysab,e. g,

obtained via a body laser scanner. Commonly, a skeleton is used to drivaettenation
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of the surface geometry, see Figlire]6.4. Since the pose and joint pammetarsually un-
known and have to be estimated from the image data, one typically has to copéiglith
dimensional search spaces (often more than 30 dimensions for a fullrbodgl). In order to
reliably estimate pose parameters, recent approaches s{iGlalbst al, 2010a/ Liuet al, 2011,
Stollet al, 2017 either rely on global optimization methods (which are often computationally
expensive and thus prohibitive for real-time applications) or need mangres. To enhance the
stability and reliability of the tracking procedure and to enable tracking also avldw num-

ber of cameras, further sources of information can be integrated into tliemioacking pro-
cess,e. g, by capturing light sourcefBalanet al, 2007} or by using physically-based mod-
els and forces arising from a ground plaigrubakeret al, 2007; Vondralet al, 200§. An-
other strategy is to reduce the manifold of all virtually possible configurattona lower-
dimensional subspace. One possibility is to explicitly prevent self-occlasion to impose
fixed joint angle limits as suggested[iderdaet al, 2004{ Sminchisescu and Triggs, 2003ther
options include to directly learn a mapping from the image or silhouette space &péoe

of pose configuration§Agarwal and Triggs, 2006; Shakhnaroviehal, 2003, to learn a re-
stricted motion model from training dafdi et al, 201{, or to combine generative an dis-
criminative modeldSalzmann and Urtasun, 2410A very popular strategy for restricting the
search space is dimensionality reduction, either by linear or by nonlinegecton meth-
ods. In[Sidenbladret al, 2004, the low-dimensional space is obtained via PCA and the mo-
tion patterns in this space are structured in a binary tree[Sminchisescu and Jepson, 2D04
it has been suggested to learn a Gaussian mixture from pose configsirati®milarly,

in [Urtasunet al,, 2004, a nonlinear projection is employed, in this case via a Gaussian process
model.

A common problem with learning-based approaches is the need of suitablagrdata that re-
flects the statistics of the expected motions. For instance, if the user knawhbkeltgubject per-
forms a walking pattern, suited training data is selected and integrated in thendraystem.
Then, the tracking system might fail if the user does not restrict his motionatkinvg. As a
further problem, current probabilistic learning approaches are limited in dbdity to handle
large training sets. Only recently, local regression methods have beposed that allow for
coping with a large number of motion patterns in a tracking scef@imsun and Darrell, 2008
In activity recognition, many approaches rely on 2D descriptors or imalgeusttes, such as
presented idLiu and Shah, 2008; Tran and Sorokin, 2D08n approach that performs simulta-
neous motion tracking and action recognition has been presenf€tiemet al, 2009. Recently,
Gall et al. [2010H presented a tracking approach conceptually related to the one presented
this chapter. Similar to our approach, action-specific priors are appliecetegtuence to be
tracked by means of an annotation scheme. However, instead of runmiagnatation on the
3D tracked mocap data, they use an approach for activity recognitiorec2lthmage data. As
a further diference, in the annotation phase, our approach makes hard decisiethemdn ac-
tion has been detected or not, whereas @ahl. [2010 compute and use action probabilities
in a particle-based approach. According to the probabilities, the partielg@gsenting candidate
poses, are spread within corresponding learned pose manifolds afithites in order to stabilize
the tracking procedure. Using the action probabilities with action-specifie pmnifolds seems
to be advantageous at first sight with respect to hard decisions, silseeaihnotations might not
have a strongfeect on the tracking result. However, in the approach of &@édl. [2010H, pose
manifolds have to be created for all actions that occur in the sequenceracked, and actions
that have not been learned may lead to tracking errors. As we will showriexperiments, we
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(@) (b)

Figure 6.4. Model of the actor(a): Skeletal kinematic chair(b): Rigged mesh(c): Mesh in a new pose.

do not need prior knowledge for all actions present in the trackingesem since our annotation
procedure does not assign priors to unknown actions. Moreovesupgly priors on a logical
level like ‘foot moves to the front’. Such logical priors generalize well &miations in actor size
and motion styles. For example, both a small person with a staggering fflirghgait as well
as a large person with a normal gait will follow the same logical pattern ofrfisting one foot
and then the other foot to the front. Such logical priors stand in contrasitt@rical priors on the
distribution of joint angles as supplied in Gatlal. [20104.

6.2 Tracking Procedure

The input of our tracking procedure is a data stream of multi-view imagedsaitma from a set

of calibrated and temporally synchronized cameras) as well as a sunfesie of the subject to
be tracked (obtained by a body laser scanner). We further assuntbelraesh is rigged so that
all mesh points are associated in a fixed way to the joints of an underlying kiisechain, see

Figure[6.4. Then, the tracking problem consists of computing the configu@arameters (joint

angles as well as root orientation and translation) of the kinematic chaintfrergiven image

data. Here, the surface mesh should be transformed with the configypatiameters in such a
way that the projection of the mesh covers the observed subject in the imagesurately as
possible.

In the remainder of this section, we briefly summarize the tracking procesactin our frame-
work. After describing the kinematic chain model for the human skeletorti(®€6.2.1), we
summarize how we estimate its pose parameters based on image constrainta[(G2&)o Then,
in Sectior 6.2.13, we show how such image constraints are obtained.

6.2.1 Kinematic Chains

The subject to be tracked is modeled by a so-caliegmatic chain which is generally used
to model a flexibly linked rigid body such as a human skeld@regleret al, 2004, see Fig-

ure[6.4 (a) for an example. In the following, we use homogeneous cabegino represent 3D
points and exponential functions of twists to represent rigid body motiohs.configuration of
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a kinematic chain can then be described by a consecutive evaluation afesijab functions of
twists, sedBregleret al, 2004. More precisely, lei € R3 be a 3D coordinate of a joint in the
neutral configuration (standard pose) of the kinematic chainXL:e( {) be the respective homo-
geneous coordinate and definas the associated projection witfX) = x. Furthermore, lef be
arigid body motion, which can be represented asexpé) with a twisté andd € R. The overall
configuration of the kinematic chain is specified by a rigid body magienexp@é) encoding the
root orientation and translation as well as a sequénce exp@1él), . . ., &n = expBnén) of rigid
body motions encoding thejoint angles. Note that the twists, . . ., &, are fixed for a specific
kinematic chain. Thus, the configuration of a fixed kinematic chain is spetifi¢de following
(6 + n) free parameters:

x =(£,0) with © :=(64,...,6n). (6.1)

In other words, the configuration parameter vegt@onsists of the 6 degrees of freedom for the
rigid body motioné and the joint angle vecta®, see alsdRosenhahet al, 20084. Now, for

a given pointx on the kinematic chain, we defing(x) € {1,...,n} to be the ordered set that
encodes the joint transformationfiexcting x. Then, for a given configuration parameter vector
x = (&, 0), the pointx is transformed according to

Y =exp@d) || exp0iéx. (6.2)
€T (%)

6.2.2 Pose Estimation

In our setup, the vectgy is unknown and has to be determined from the image data. In the
following, instead of regarding points on the kinematic chain, we use pointtseosurface mesh.

As the mesh is rigged, the mesh points are directly associated to a joint. Gigeaf88® surface
mesh pointsg, i € |, we assume for the moment that one knows corresponding 2D coordinates
of these points within a given image, and we refer to Se¢tion6.2.3 for aipigserof how such
correspondences can be obtained. Furthermore, we represer2@gmint as a reconstructed
projection ray given in 3D Ricker formL; = (n, m), see alsdMurrayet al, 1994. For pose
estimation, the basic idea is to apply the (unknown) rigid body motions on 3D peiatsording

to y and to claim incidence with the reconstructed projection rays. Due to theiegof Plicker

lines, this incidence can be expressed as

(r(exp@d) [ ] expiéXi)xm)-m =o. (6.3)
jeT (%)
To simultaneously account for the incidences of all poits € |, one minimizes the following
term in a least-squares sense:

N A 2

arg minZ H(n( expé) l_[ expB;é)X) x n) - m”2 (6.4)
X i jeg(x)

To solve for the unknown parameters in the exponential functions, weritbeeaach function

by using the first two elements of the respective Taylor series:0éxp{ 1 + 6. This leads

to three linear equations with 6 n unknowns for each exponential function. In case of many

correspondences €., in case there are many mesh poirtsvith correspondences), one obtains

an over-determined linear system of equations, which can be solved inatbtesipuares sense.

The approximation errors introduced by the linearization step are hangkgolllying an iterative

computation scheme, sfigosenhahet al, 20084 for details.
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Figure 6.5. Example forces (enlarged force vectors, green) acting erctimtour line of the projected
surface mesh.

6.2.3 Region-based Pose Tracking

The pose estimation procedure described in Se€fion]6.2.2 requires kioovespondences be-
tween 2D image points and 3D surface mesh points. In the following, we bdefigribe how
one can generate such correspondences from suitable foregrodnoiackground statistics de-
rived from the image data. Having correspondences, the soughtpaoameters can be com-
puted by solving Equatioi(6.4). In our framework we use the regioréb&rmcking approach
as presented ifiSchmalizet al, 2007, to which we refer for details. However, alternatively,
one could also use other techniques as presentf8ray et al,, 2006; Dambrevillest al, 2008;
Rosenhahet al, 2007h{ Stollet al., 2011).

The concept is to estimate pose paramegeysch that the projection of the resulting surface mesh
optimally splits the image into a foreground (subject) and a background tedara, the splitting

is regarded as optimal if suitable image features (color, texture) are maxirsaigndar in the two
regions with regard to estimated density functions [Sebdmaltzet al, 2007. Starting with a first
estimatey, the transformed mesh points(see Equatiori(612)) are projected onto image pgints
yielding correspondences in a natural way. One then considers onlysibée image pointg;
that lie on the contour line separating foreground and background, these points are shifted
inwards or outwards (orthogonal to the contour line) according to fegctors so that the resulting
points, sayg;, better explain the color distributions of the foreground and backgroegidns, see
Figure[6.5. Finally, using the pointg with the corresponding mesh points(obtained from the
transformed mesh pointg) we apply the minimizatiorf (614) to obtain an improved estimation of
the pose parameters. The entire process is iterated until convergeaf®csmaltzet al, 2007

for details.

6.3 Retrieval Component

In this section, we describe the retrieval component that is used to autoliyaa&sign priors to
a tracked sequence. We use an annotation procedure similar to the anibatksn Chaptells.
However, we do not integrate a keyframe-based search for twongagerstly, motions to be
tracked with marker-less mocap methods are comparatively short segueingp to a minute in
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Figure 6.6. (a) Marked motion template for motion class ‘walk2Stepslistafhe feature numbers
correspond to the features usediiiller and Rder, 2008, see also Table 2.1 on pdgd 13. The annotation
for the relational or logical constraint ‘leftFootOnGraliis indicated by the green rectangl®): Feature
matrix for the subsegment @gya consisting of the first three walking cycles. The second imglkycle
(frames 160 to 240) has not been tracked corredity. Feature matrix (b) with allocated priors (green
rectangles)(d): Feature matrix after regularized tracking using the griafr(c).

length. For such sequences, DTW-based retrieval can be perfovitied less than a second and
therefore no additional techniques to speed up the annotation procduneeded. Secondly,
we want the annotation procedure to be robust to tracking errorsewdey, a foot or a hand
might constantly assume incorrect poses. With hard-constraints comimgkEgframes, such
sequences containing tracking errors might be excluded from the si¢tahdidates if keyframe-
based preprocessing is used.

In the following, we briefly describe the annotation procedure as usedsrchiapter. In our
scenario, each motion category is given by a ctassnsisting of a set of logically related exam-
ple motions. For each class, we first compute a quantizedXMas summarized in Chapter 2,
see Figuré 616 (a) for a resulting template.

LetCy,...Cp be the available motion classes, where [1 : P] denotes the class label of class
Cp. Then, given a mocap sequendeof lengthL, the annotation task is to identify all motion
subsegments withiD that belong to one of the classes. To this end, we compute a distance
functionAp = Ac, for each clas€)p, see Equatiorl (53) in Chapr 5 on pagk 48, and minimize
the resulting functions ovep € [1 : P] to obtain a single functiodn™" : [1 : L] — R U {oo} for a
sequence comprisinlg frames:

AMN(e) = pg[lli:rll] Ap(0) (6.5)

for ¢ € [1 : L], see Figuré 617 for an example basedPr 2 motion classes. Furthermore, we
store for each frame the minimizing indexe [1 : P] yielding a functionA?9: [1: L] — [1: P]
defined by:

A9(£) = arg minAy(0). (6.6)
pe[1:P]
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Figure 6.7. Distance functionAc for Deya With respect to the clas¢éa) ‘walk2StepsLstart’ and
(b) ‘jog2StepsLstart’(c): Combined distance functio™" obtained by minimizing (a) and (b).

The functionA?9 yields an annotation of the mocap sequeBder every frame by means of the
class labelp e [1: P].

6.4 Allocation and Integration of Priors

In this section, we first explain how to generate suitable motion priors bases @annotation
of the tracked sequence (Sectlon 6.4.1). Then, we show how two typakcated priors are
integrated into the subsequent tracking iteration as soft constraints (862 and 6.413).

6.4.1 Allocation of Priors

We now explain how to generate suitable motion priors, which can then beasegularize the
tracking process. Recall that a class motion temp¥atexplicitly encodes characteristic motion
aspects (corresponding to blaekite regions) that are typically shared by motions of clasgéve
select some of these aspects by marking suitable entries within the tebiplabese entries are
also referred to aMT priors. As an example, consider Figure 6.6 (a), where the entries of row
26 between columns 22 and 58 are marked by the green rectangle. REaxgresses whether
the right foot rests (black, value 0) or assumes a high velocity (whiteevBluSince all entries
have the value 0 within the green rectangle, this MT prior basically exgdlaethe right foot
rests (stays on the ground) during this phase of the motion. Note that theitM$ a@re part of the
database knowledge and do not depend on the sequence to be tracked.

Now, let D be a mocap sequence of lendthobtained from some tracking procedure and let
Y € {0,1}*L be the corresponding feature matrix of relational features, see Figitb)6 The
goal is to automatically transfer suitable MT priors to the tracked sequendatatnavhat we
refer to astracking priors Let Cy,...Cp be the available motion classes with corresponding
motion templatesX, = Xc,, p € [1 : P, each equipped with suitable MT priors. We compute
the functionsA™" and A2 as described in Sectidn 6.3. Recall that a local mininduan[1 : L]
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Figure 6.8. Pose priors are allocated by looking for all subsequenc¥diirat align to the same MXp.

of A™N close to zero indicates the presence of a motion subsegmén(sthrting at a suitable
frame indexa, < ¢ and ending at frame inde¥j that corresponds to motion clas¥9(¢) € [1 : P].
Now, we fix a quality threshold > 0 and look for all essential local minimae [1 : L] with
A™N(¢) < 7. Here,essentiaimeans that we only consider one local minimum within a suitable
temporal window to avoid local minima being too close to each other. Using the Bamé
procedure that yields the distance functignin Sectiori 6.B, we then derive an alignment between
the motion templat&, with p := A*9(¢) and the feature subsequenceYofanging froma, to ¢.
Figure[6.6 shows an example, where the alignment is indicated by the regaiote that such
an alignment establishes temporal correspondences between semargiataly frames and thus
allows us to automatically transfer the MT priors with¥a to corresponding regions withiw,

see Figuré 616 (c). These regions, in the following referred toaaking priors are then used for
regularization in the tracking procedure as explained in the following section

As an additional stabilizing factor, we take further advantage of casesvgleveral subsequences
of Y align to the same MX,,. The idea is to us&, as a kind of mediator to generate additional
priors from the multiply aligned subsequences. We explain this idea by meassaple example
consisting of two subsegments as indicated by Figure 6.8. Here, eachderelées a correspon-
dence g, ¢) between framex, in X, and framef € [1 : L] of Y. In this example, essential local
minima were found for frames 7 and 12 (matching to the subsequencesgémyinframes 3 to 7
and from 9 to 12). Now, suppose that the green alignment has a costielzero A™"(12) ~ 0).

In practice, such an alignment corresponds to a subsequentehaf does not contain tracking
errors. By contrast, suppose that the subsequence correspdodimg red alignment contains
some tracking errors resulting in higher alignment cost. Then, the idea i tihn@eiposes of the
“green subsequence”, referred tgpase priorsto stabilize the tracking of the “red subsequence”.
The correspondence of poses between the subsequences is estiahbstie alignments tX,,
see Figuré 618. For example, frame 9Yoyields a pose prior for frame 3 of since both frames
are aligned to the first frame 0, (indicated by the dashed arrow line). To put it in simple words,
we first detect the presence of repetitions witkliby means of the MT-based local classification
and then generate pose priors from the established correspondences

6.4.2 Integration of Tracking Priors

Tracking priors provide information about certain logical movement biehsnof body parts
within a certain motion context. As an example, we consider the tracking pribrfdlet should
be on the floor at a certain point in time”. We use soft constraints to integiatetbrmation in
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Figure 6.9. Integration of the constrairfibot on floor Points on the sole are pushed onto the floor.

the tracking framework, where the amount of influence of a prior cambtalled by a weighting
parameter. In particular, soft constraints are formulated as additionatiegs that are included

in the minimization step depicted in Equatién {6.4). To implement the example trackargair
pointsys,s € S c I, on the sole of the foot (the plantar) are projected onto the ground plane,
yielding the pointzs. Then, we claim incidence

to push the sole onto the ground plane, see Figure 6.9. Related to this flusiradat is the
implementation as carried out [Rosenhahet al, 2008H. In their work, the constraint can only
be applied when penetrations of the foot with the ground plane are detédexh extension, in
our work, the constraint also has affieet if the foot is above the ground plane, thus reducing the
effect of “flying above the ground plane”.

Using Equation[{6]2) to express by the underlying kinematic chain, we integrate the set of
equations

n( exp@é) ]_I exp@iéj)Xs) - zs=0, s€S (6.8)
jeT (ys)
into the minimization sted_(6.4). Note that the unknowns are the same as for Eq(@#p aszg
are considered as constants for one frame. In a similar manner it is stoaigdntfl to integrate
motion dynamics like arms swinging forward or backwards.

6.4.3 Integration of Pose Priors

Unlike tracking priorspose priorsdenote that a certain joint angle configurat®mat framef;
[1 : L] should also be assumed in frarfiee [1 : L] \ {¢1}. For example, consider Figuire 6110
where the generated pose prior suggests to &ké frame ¢, = 157 for framef, = 310. To
this end, equations similar to Equatidn {6.8) can be integrated into the minimizatio@si¢po
regularize the joint angle configuration at frafidowards® in the subsequent tracking iteration.

6.5 Experiments

In our experiments, we used the Human EVA-Il benchmark daf&sgélet al, 201(. Here, a
surface model, calibrated multiview image sequences of four camerafqaaikdround images
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iteration 1
frame 310

initial result
frame 310

prior: initial result
frame 157

Figure 6.10. A well tracked frame (middle) is used as a prior for a framehwiiacking errors (left). After
the subsequent tracking iteration, the error has beenvessol

are provided. Note that our region-based pose tracking does natmmddpckground subtraction
and therefore the background information is not used in our method. thstearely on the
image data, projection matrices and a mesh model. Due to color similarities ofdonehand
background as well as the sparse number of cameras, tracking is giajemd the results are
likely to be corrupted if no priors are involved. Tracking results (as 3Dkerapositions) can
be uploaded to a server at Brown University for evaluation. As theesemuhas been captured
in parallel with a marker-based tracking systfviton, 2013, an automated script can evaluate
the accuracy of a tracking result in terms of relative errors in millimeters. drHiiman EVA-II
sequencéd, three diferent actions are performed consecutively, lasting fas400 frames at
60 Hz) each. A non-professional actor walks in a circle, jogs in a ciete, then balances on
each foot. We chose this sequence for several reasons: Firstlypuldialy available benchmark
dataset, which allows us to quantitatively compare to other existing appa&8szondly, the
sequence contains thredfdrent patterns and we want to test whether our system is able to classify
and single out the involved motions correctly (walking and jogging). Thisgdatking and jogging
are similar patterns, which allows us to get a good feeling about the sensitivityr approach
in classifying similar patterns. Fourthly, for the balancing part of the seopieve do not have
appropriate database knowledge. This means that the algorithm shouisisignt a class label in
the annotation stage, so that the tracking is only driven from the image datautvihy priors.
All these aspects can be covered by this sequence.

The database knowledge that is used by the retrieval system is genaratpreprocessing step.
To this end, we assembled a total of 232 short 3D mocap clips, which we ifyaouout from
the freely available HDM05 mocap databgBiller et al, 2007 (obtained from a Vicon system).
The mocap clips of an average length df & were categorized inte = 6 different motion cate-
gories, which are ‘walk two steps’, ‘jog two steps’, and ‘change froafkvto jog’, each for starting
with the left and right foot, respectively.
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Figure 6.11. (a) A™" for the initial tracking result. Essential local minima ar@rked by a cyan dot.
(b): Corresponding distance functiong for six MTs shown in a color coded fashion. Values greaten tha
7 = 0.7 are drawn in white.(c): Allocated tracking priors.(d)-(f): Corresponding plots after the first
iteration.(g)-(i): Corresponding plots after the fifth iteration.
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no additional noise  +40 px image noise
%) o max %) o max

Initial step 79.1 26.2 1659 75.2 282 184.0
lteration1 51.8 185 1341 650 242 1444
lteration3 47.9 128 1058 51.0 155 139.0

Table 6.1.Improvements of the tracking quality over various iteratioAverage errors, standard deviations,
and maximal errors (in millimeters) over all 1257 frameshs sequence are shown.

After extracting the relational features for each example motion at a samplie@f 60 Hz, we
computed a quantized motion template for each of Rhmotion classes and marked suitable
regions in the quantized MTs as MT priors, see Fidquré 6.6 (a). In oumasice we marked MT
priors corresponding to ‘leftight foot is on ground’, ‘leftright foot moves to front’, ‘leftright
hand moves to front’, and ‘lefight elbow is bent’. Note that the set of motion templates along
with the MT priors, which constitutes our database knowledge, is indepentithe sequence to
be tracked and has to be generated only once.

In the initialization step, tracking is performed without using any regularizirayg The resulting
tracked sequence is then locally classified according to the precomputedidur experiments,

a quality threshold of = 0.07 used in the allocation step (Section §.4.1) turned out to be a robust
choice. In Figur€ 6.11 (a), we show the resulting distance fun&f®h Essential local minima
below v are marked by a cyan dot. Note that for the walking part of the benchregikesce
(frames 1 to 400)A™" assumes lower values than for the jogging part (frames 400 to 800), which
indicates that the walking part contains less tracking errors than the jogaihgNote also that for
the balancing part (frames 830 to 1208Y!" is far abover revealing a strong éfierence to walk-

ing or jogging patterns. The functiax?'® assigns the essential local minima to appropriate motion
categories, see Figure 6111 (b). Furthermore, each motion subsequodaced by a local mini-
mum is aligned to the corresponding MT. Based on these local alignment&lstitecking priors
are allocated for the next iteration, see Fidurel6.11 (c). Figuré 6.1(f(dRew the corresponding
distance functions and allocated tracking priors after the first iteratioa.rfihima inA™" have
already received a significant qualitative boost. Note that the walkingshelee been stabilized
as visible in the lower distance values in Figlre 6.11 (d) during the first #00efs. Moreover,
many more instances of the jogging motion are detected, see [Figufe 6.11s(@)reault, more
priors could be allocated for the subsequent iteration, Figure 6.11K8.distance functions and
priors after the fifth iteration are shown in Figure 6.11(g)—(i). The detestlave received an
additional qualitative boost, and all occurring motions, including the tranditgaween walking
and jogging, have been annotated correctly. Furthermore, the oecearot the diferent motion
categories are revealed in a much more distinctive way in the fifth iteration,arenfp) and (e)

of Figure[6.11. This all indicates a stabilization of the tracking proceduzetbe iterations.

We now discuss the actual improvements in the tracking results achieved Impwel iterative
approach. Figure 6.12 shows representative poses overlaid with thengaesult (indicated by
the yellow meshes) after the initial step, the first iteration, the third, and theitéfition. As
seen, the initial tracking result contains various serious tracking estaris as a swap of legs
or an incorrect angle in the elbow joint. These errors are corrected wihiriterations. As
also visible, only minor changes can be detected between the third and thigefiftion. We
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Frame 210 Frame 750 Frame 1170

First iteration Initialization

Third iteration

Fifth iteration

Figure 6.12. Improvements obtained by our iterative tracking procedurke frames from left to right
show examples of the walking, jogging, and balancing paanfes 210, 750 and 1170), iterations from
top to bottom show results after the initialization, aftee first, the third, and the fifth iteration. Several
tracking errors (see arms and legs) are corrected.

show further comparisons between tracking results of the initialization anfiftthéeration in
Figure[6.1B. Here, the poses undergo a substantial qualitative improwvehtete that also the
arm tracking error in the balancing part of the sequence (rightmost imagesbeen corrected
although we did not assign any priors to this motion class. This can be explasi®llows. In
the initialization, the arm tracking error already appeared in the jogging motatmpthcedes the
balancing. The tracking procedure could not recover from that amd continued to track the
balancing with a wrong angle in the elbow joint. After a couple of iterations oframework, the
jogging motion has been corrected and the tracking starts the balancing mdtiothevcorrect
arm configuration. With the correct initialization in the beginning of the balandime tracking
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Figure 6.13. Example poses with tracking errors after the initializat{top row) and corrected poses after
fifth iteration (bottom row).
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Time in frames sampled at 60 Hz

Figure 6.14. Framewise tracking error (in millimeters) after the inlization (red), the first (blue), and the
third iteration (black).(a): Without image noise(b): With Gaussian noise (40 pixels standard deviation)
added to each frame.

procedure could correctly follow the motion of the actor throughout thepkastof the sequence.

As quantitative evaluation, the absolutéeience of the 3D joint positions of the tracking result
and the ground truth positions are indicated by Tablk 6.1 and by Figudeh&4e numbers were
obtained by the automated evaluation system supplied by Brown Univé&gslet al., 2010.
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(b) 77

Figure 6.15. Gaussian noise has been added to each image. Pose overtayef300 after the initial
tracking(a) and after the third iteratiofb). During the iterations, several tracking errors (see raght and
both legs) are corrected.

During the iterations, the average error is reduced from 79 mm to 48 mmfaiterterations,
see Tablé 6]1. The significant improvements are also indicated by Figuié®.hich shows
the framewise tracking errors of the initial tracking (red), the first iteraimuoe), and the third
iteration (black).

In another experiment, we added Gaussian noise to each frame suchdhatodor channel of
each pixel is the sum of the true pixel value and a random, Gaussian distriboise value with
standard deviation amounting to 15% of the full range of color values. kample frames af-
ter the initialization and after the third iteration are shown in Figurel6.15. Duri@dgténations,
the average error dropped from 75mm to 51 mm, see Table 6.1 and Eiddrébh Also, Fig-
ure[6.14 (b) shows the framewise tracking errors during the iteration® tNat due to the image
noise the convergence is slower than in the first experiment. These msoltnstrate the stabi-
lizing effects achieved by our iterative tracking approach. Note that our frarkeeguires that a
sequence is tracked several times. Currently, our tracking implementatjoma® 7 s per frame
resulting in 25 h run time for the entire 1257 frames. After tracking all frames, the annotatid
allocation steps require only 15 s in total.

6.6 Conclusions

In this chapter, we introduced an iterative tracking approach that dya#dyiategrates motion
priors retrieved from a database to stabilize tracking. Intuitively, ourigleapursue a combined
bottom-up and top-down strategy in the sense that we start with a rough irati&lrtg which is
then improved by incorporating high-level motion cues. These motion ceesllacated based
on an automated local annotation of the initial tracking result. In addition to stz the
local annotation also equips the tracked sequence with semantic motion cless B means
of the HumanEVA-II benchmark, we showed that even simple motion priotstleaignificant
improvements in the tracking.

There are still limitations in our approach. In particular, the presence afigtiracking errors
may lead to a confusion in the local annotation. Misallocated priors may thesewthe tracking
error. As for future work, we plan to develop techniques that can ai@besuch situationse. g, by
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integrating statistical confidence measures for the annotation and by sinouitdneonsidering
alternative motion priors.



80 CHAPTER 6. STABILIZING TRACKING USING RETRIEVED MOTION PRDRS



Chapter 7

Evaluating Markerless Motion Tracking

In this chapter, we present a novel framework for automatically evaluttenguality of 3D track-
ing results obtained from marker-less motion tracking. In previous aphesasuitable reference
information for evaluation was generated by means of an additional miaalsed motion capture
system. However, such systems are expensive and restricted to inskadvioreover, the fact that
markers are often visible in the video footage may interfere with the requitsroémarker-less
motion tracking. In contrast to previous approaches for evaluation ser@dditional inertial sen-
sors to generate suitable reference information. Inertial sensorsexygeimsive, easy to operate,
they can be hidden under clothing, and they impose comparatively we#ioadtconstraints
on the overall recording setup with regard to location, recording volume jlumination. On
the downside, acceleration and rate of turn data as directly obtained fichmireertial systems are
very local with respect to the temporal dimension and are therefore matlgisuited for detecting
the temporal extend of tracking errors. As our main contribution, we stawthacking results
can be analyzed and evaluated on the basis of suitable limb orientations, eglnidie derived
from 3D tracking results as well as from inertial sensors fixed on thesalimb

This chapter, which is based on our publicat[@aaket al, 2010, is organized as follows. We
first give a motivation (Section_4.1) and discuss related work (Section AfR¢r summarizing
basics on rotations and orientations (Secfioh 7.3), we then describe héaato orientation data
from the tracking result and from the inertial sensors (Se¢tioh 7.4). W shat the tracking
orientations and inertial orientations cannot be compared immediately. Bepegialcase of the
hand-eye calibration problem as known in robotics, we introduce a raipisnization method
for making this data comparable with only small calibration requirements (SécBynNext, we
present our evaluation framework and report on experiments comtoctihe basis of 24 motion
sequences using a marker-less tracking system in Sécfion 7.6. Finallisausgithe necessity of
a calibration procedure in Sectibn7.7 and conclude in Secfion 7.8.

7.1 Motivation

Marker-less mocap with the objective to estimate 3D pose information of a huwcctan a
from image data is a traditional field of research in computer vi§®idenbladret al, 2002;
Bregleret al, 2004;| Broxet al,, 2006; Schmaltet al, 2007;| Vlasicet al, 200§. Even though

81
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Figure 7.1. Raw data is recorded from video cameras and inertial senbotke tracking world, orienta-
tions are obtained by tracking. In the inertial world, otetions are derived from the sensor data.

motion capturing has been an active research field for more than two edeftamive, 1980;
Moeslund and Granum, 2001; Moeslueithl, 2006 Poppe, 2010; Moeslued al, 2017, recent
tracking procedures still tend to produce many tracking errors. In p&tiovhen dealing with
involved settings like only few cameras fiitiult lighting conditions, or challenging motion se-
guences, tracking errors are likely to occur.

In the process of developing and improving tracking algorithms, the anaysievaluation of
tracking results play a crucial role. In practice, the tracking results faea evaluated by manu-
ally inspecting the reconstructed 3D motion sequences or by looking atffleesdices between
the 2D projections of these sequences and the original imagd@atascher and Reid, 205
Obviously, such manual evaluations are tedious and prohibitive for tatgsets. Furthermore,
depending on the visual cues used for the analysis, such evaluatightotba unreliable, sub-
jective, and problematic in particular when one wants to compare the resultffarent track-
ing approaches. To automate the evaluation process and to make it objewd®eendent 3D
ground truth information is needed in addition to the image sequences. Smiiafew bench-
mark datasets with non-synthetic data suclSagalet al, 2010{ Tenortret al, 2009 are publicly
available making a fully automated evaluation possible. Such benchmarkidateesgenerated by
running a marker-based optical motion capturing system as a referetich,enables an accurate
estimation of ground truth 3D positions of markers placed on the actor’s lbtmlyever, the high
cost of marker-based mocap systems, inconvenient setup as well as timaring postprocess-
ing of the obtained marker data may be among the reasons why publicly avakaidiemarks are
rare. Also, many of the available marker-based mocap systems are Wléngrdright lighting
conditions and have to be run under low illumination. This is in discrepancy teethérements
of marker-less motion tracking, where one typically requires balancedaght illumination.
Furthermore, marker-based mocap systems typically pose additionalatotsstm the recording
volume and environmene(g, indoor studios). As an alternative to recording human motions
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Figure 7.2. Snapshots of a tracking result at the given timestamps dféloged sequence. Basis axes of
the limb coordinate systems of the left lower leg are drawrteoextracted from the tracking result (thin
axes, dark colors), and once from an enhanced inertial s@nsldl axes, light colors).

with real cameras, rendering software can be used to generate symsimiicealistic images,
yielding a ground truth representation in a natural WwAgarwal and Triggs, 20(J4 However,
such image data as generated from standard rendering packagess focbefSoftware, 201p
still looks unrealistic. Moreover, in such video footage, low-level compuitdon methods like
feature detection might benefit from the synthetic data.

As the main contribution of this chapter, we present a novel approacutomatically analyzing
and evaluating 3D tracking results using an inertial sensor-based sistgmerate suitable ref-
erence information. In the following, to clearly distinguish between these tpestpf data, we
speak of theracking worldto refer to data derived from marker-less motion tracking, and we speak
of theinertial world to refer to data derived from an inertial system, see also Figure 7.1ntrasb

to marker-based reference systems, inertial sensors impose conmgdgnaiiak constraints on the
overall recording setup with regard to location, recording volume, and illatioin. Furthermore,
inertial systems are relatively inexpensive as well as easy to operataanthin. On the down-
side, the acceleration and rate of turn data obtained from such inertiafrsysannot be directly
compared with the tracking result which is given in form of 3D positional datpint angles.
There seem to be two obvious ways to make the inertial data (accelerationadataf turn data)
comparable with the tracking results (3D positional data, joint angle datajlyi-wne could inte-
grate the inertial data to obtain 3D positional data. This, however, is nctigabsince inertial data

is prone to noise leading to very poor positional data when being intedBtetget al, 2004.
Secondly, one could fierentiate the 3D positional data of the tracking result to obtain velocities
and accelerations. Such data, however, is very local in nature witkaegpthe temporal di-
mension. For example, local deviations in only few frames on the acceletatielmay lead to
long-lasting significant deviations on the positional level. This makes theati@uprocess, as
also shown by our experiments, very susceptible to short-time artifactsravahted outliers.

In this chapter, we introduce a novel inertial sensor-based evaluasioreWork, where we use
orientation data as a common mid-level representation. The idea is as follovilse tracking
world, one obtains for each frame the estimated pose parameters of thiéyungd8D model of
the human actor. From this information, one can easily derive the 3D orientstertain limbs
(e. g, the lower legs), which we refer to dsacking orientations On the other hand, we use
inertial sensors rigidly attached to some of the actor’s limbs, from which weats® derive 3D
orientations of the respective sensors referred tnexial orientations Now, in case of marker-
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less motion tracking as well as the inertial measurement having workecctpritbe derived
tracking orientations and inertial orientations should agree. Howevea@sas tracking errors
occur, the two types of orientations should exhibit significaffitedénces, which can be easily
captured. This fact is illustrated by Figurel7.2. As a central result pteden this chapter, we
show that measuring the distance between the two types of limb orientations¥isiltiple and
robust method for detecting the occurrence as well as the duration kiftgaerrors. In contrast to
using velocities and accelerations, our orientation-based approaatufzaty suits this purpose
since typical tracking errors stem from misconfigurations of certain limkseffect the tracking
result over an entire period of time rather than occurring at certain iresapictime. Standard
error metrics are based on Euclidean distances between positions of joimaskers which reflect
positional errors fairly well. However, orientation errors, in particularasignated rotations of
cylindrical limbs, can lead to small deviations in the Euclidean distance metricedver, these
tracking errors are €licult to spot from visual cues. By contrast, our evaluation approacale
twists of rotationally symmetric body parts by an orientation-based distance m&sri further
contribution, we introduce a robust calibration scheme that enables thoe cliraparison of the
inertial and the tracking world.

7.2 Related Work

In this chapter, we show how data obtained from inertial sensors caedukta detect tracking
errors. A natural complementary approach is to investigate how such alataecused to stabi-
lize tracking. Such approaches have been investigated in PonseMadli[201d, where we use
orientation data obtained from a small set of inertial sensors attached totéreeatremities in
order to stabilize a local optimization-based marker-less motion tracking agprin a followup
work, Pons-Mollet al. [2011] use a similar setup of inertial sensors in a much more challenging
outdoor tracking scenario, where we integrate inertial sensor data inic@élter-based track-
ing framework. Within this framework, pose candidates are sampled direotly the space of
inertial sensor-compatible poses. This spacdiisiently generated by means of analytic inverse
kinematics using the inertial sensor data. To account for uncertainties getiser data, a noise
model that is based on the von Mises-Fisher distribution is employed.

To the best of our knowledge, this is the first approach for evaluatingan#ess tracking using in-
ertial sensors. However, there are several papers that deal wihkttheation of the 3D position of
a camera. In this context, inertial sensors attached attached to the camesad@to stabilize the
estimates of the position. Works in this field have in common that the reldfisetd®etween both
systems has to be obtained as a sub-task. Starting with works in rofiticsand Ahmad, 1989;
Park and Martin, 1994; Daniilidis, 1999; Strobl and Hirzinger, 40@6is task has also been ap-
proached in the vision communitg, g, [Seoet al, 2009. Also, Hol et al. [200d identifies the
task with the gray-box problem in the area of system identification. Applicatiemarios in-
clude the estimation of anfiset between a robot's endfector and a visual sensor attached to
it [Shiuand Ahmad, 1989; Strobl and Hirzinger, 2D0& between an inertial sensor and a cam-
era[Hol et al, 2008; Secet al, 2009. Analytically, both scenarios can be described byttaed-
eye calibrationequationAX = XB, to which we relate our work in Sectién ¥.5.

For activity recognition, Kunze and Lukowi§200§ evaluate how sensor displacement on a cer-
tain body limb influences recognition performance. They propose a hiedioisimproving detec-
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Figure 7.3. A global right-handed orthonormal coordinate systéfraRd a local right-handed orthonormal
coordinate system‘fFrelated by a rotation.

tion results when the exact sensor position on the limb is not known. Recaatlg, Torreet al.

from Carnegie Mellon University made a multi-modal activity database pubhelyable that also
contains inertial datéde Ta Torreet al, 200d. In biomedics, Dejnabadit al. [200€ use inertial
sensors fixed on a lower leg to reconstruct the one-dimensional kigée iarthe sagittal plane.
They compare the reconstructed angles with ground truth angles computesihly a reference
ultrasonic motion measurement system. To study biomechanical propertisgloboactivities,
GPS information can be combined with inertial send@dieet al, 200§]. Using a combina-
tion of inertial, magnetometer and GPS information, Fok#004 shows that accurate position
estimates for pedestrians can be obtained. By fusing the data modalities,n@oaroestimated
even if GPS information is not available. However, as the authors repemprtiposed techniques
using so-called zero velocity updates are not applicable to sensors mamtgher limbs than

the feet. Tacet al.[2007 reconstruct the motion of an arm model using inertial sensors. Slyper
and Hodgind200d retrieve motions from a database using few inertial sensor signals to obtain a
full body motion. Using only inertial and magnetic sensors, Roetengsieat) [2004 show that a

full body motion can be reconstructed. Having many sensors in a custommuaidure suit, a
plausible motion model in everyday surroundings can be reconstr[Mfasic et al, 2007. For
home entertainment, inertial sensors have been used actively in the yeaesitfor example, in

the Nintendo Wii game consol®intendo, 201P User interfaces based on such sensors have
been studied. g, in [Shiratori and Hodgins, 2008

7.3 Basics

Suppose a fixed global coordinate systethtRat is represented by a right-handed orthonormal
basis (like all coordinate systems in this thesis). Furthermore, supposal adocdinate system
F- that moves for a static observer iff FThe relative orientation of'Fwith respect to £ can be
modeled as a rotation, see Figlrel 7.3. Given the basis vectorg'X and 2 € R31! of F- in
coordinates of &, the rotation is defined by a rotation matRby

R= (X5 YR 2ZY). (7.1)

In the following, we represent a rotation (or orientation) by a unit lengthtemionq €
R4, |lgll2 = 1, which is a more compact representation than rotation matrice§Gsassia, 1998;
Shoemake, 1945 The composition of two rotations representecibyandg, is then given as the
compositiong, o q,. Furthermore, the inverse rotation @fis given by the quaternion conjugate
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§. Letdguar: R* x R* > R denote the following distance function:

dgual0y,dy) = ? arcco#|<q19 q2>”2 ) (7.2)

which expresses the angle in degrees between the rotations defined, Bnd q,,
see[Huynh, 2009 for a proof. We use the notation

FA —> B (7.3)

to describe a transformation of coordinate syst&fhso F& using the rotation defined hy. For
time dependent quantities we append a discrete frame injl@nd assume that co-occurring
quantities are subject to the same sampling rate.

7.4 Obtaining Two Types of Orientation Data

We now describe how to obtain orientation data in the inertial as well as in tharigaworld.

In the inertial world, as described ifHaradaet al, 2007, an orientation estimation device can
be used to measure its orientation in a static global coordinate syterm (X, Y%, z%). In

this coordinate system, thé*Zaxis points to the negative gravity direction, th& Xlirection is

the orthogonalized direction of the magnetic North, arfti ¥ chosen to form an orthonormal
right-handed basis. Measurements of accelerometers, gyroscogesnaagnetic field sensor, as
described in AppendixJA, are fused in a Kalman filter method, which prowddésree estimates

of the sensor’s orientatiog (t). This orientation maps from the sensor’s local coordinate system
FY to F®, see Figuré 7]4. We refer tp(t) with the terminertial orientation In our experiments,

we use an orientation estimation device MTx provided by X§&isens, 201p

In the tracking world a global coordinate systeR?" is defined by camera calibration. Tracking
results are typically given by a mesh-based surface representatieneigr frame in coordinates
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of FCT. To obtain the orientation of a certain limb in the surface mesh, one needs e defi
local coordinate system™ that is rigidly attached to the limb. By selecting three non-collinear
vertices of the limb, an orthonormal basis Bf can be build. To ensure that the coordinate
system is well defined, one has to claim one-to-one vertex correspomti@moughout the entire
motion sequence. In many cases, tracking results are given as joins afglskeletal kinematic
chain which drives the animation of the mesh surface. In this case, witlamindto resort

to the vertices of the mesh surface, a local coordinate system for everycéimbe defined by
forward kinematic§Murray et al, 1994. This way, atracking orientationg (t) can be obtained,
see Figuré714.

In order to makeg'(t) and q'(t) comparable, one needs a correspondence between the global
coordinate systems® and FCT as well as between the two local coordinate systéthsand

FY. These correspondences, however, are generally not knowa gibbal inertial coordinate
systemF® is defined by physical quantities, whergd¥ is defined by an arbitrary placement

of a calibration cube in the recording volume. Ig&t denote the resultingfiset, see Figure 7.4.
Furthermore, the local coordinate systeth is defined by the placement of the sensor on a limb
of the human actor, where&' is defined either by mesh vertices or by means of a kinematic
chain. Letq" denote the resultingftset. The estimation af® andq" is referred to as calibration,
which is a tedious and error-prone task when done manually. Therelai@mated calibration is

an important concern that we deal with in Secfiog 7.5.

7.5 Calibration and Error Measure

In this section, we present a robust arfidogent solution for the calibration problem, namely how
g~ andg® can be obtained. We show that the described problem is closely relatedtothiment
hand-eye calibratiomask in robotic§Tsai and Lenz, 1988 The orientation' (t) can be described
by two distinct compositions of rotations in the diagram of Figuré 7.4, once veitkimg and once
with inertial orientations:

¢ e 9O er 9 e
—=F —F —==F (7.4)

q'(®)

With quaternion algebra, this equality can be expressed as

FLl

qd®=9%cq"(®)oq". (7.5)

Now, we can express the rotation that is needed to transfbtrat framesto FH at framet. In

Figure[7.4, there are two distinct compositions of rotations, startimglaif'-' and ending asin
FLI .

. L
eu & a0 por 4 FGI @ FGT q=(s)> e 4 FLI
(7.6)
I (= —_—
q'@ a'(9
Here, tracking orientations in the upper path and inertial orientations in the [matle are used.
The equality of the paths can be expressed with quaternion algebrag tileedtsetq® cancels

out: _ o
qd(9edt)=g-oqT(9oq’(t)oq". (7.7)
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Substitutingg® = g'(s) o g'(t), g := qT(s) o 7 (t), andg® := q-, we get
gt od* =g oq®. (7.8)

In robotics, a more general equation of the same form, in which homogstremsformations are
used instead of sole rotations, describes the hand-eye calibrationrmpradidi@nifold solutions to
this problem have been published, segqy, Strobl and Hirzinget200d and references therein.
Unique solutions can be found as soon as two measuremegfsaidq® are available. How-
ever, in the presence of noise, an approximate solution using many nmeassas preferable to
diminish the influence of measurement errors. Therefore, we suggesgib> 2 measurements
based on a calibration tracking result. The solution of

argmin > ligh o g* - g% o gBl (7.9)
q* ne[1:N]

yields a best approximate solution under the Euclidean norm. Park and NIE®84 present
an dficient and easy to implement solution for this subproblem of the hand-eyeatalibusing
exponential coordinates, which we adapt for our needs. Denoting#h@art of a quaternioq
with q,, and the imaginary part with,,,, the quaternion logarithm is defined as

log(q) := 2 arccosqw)q—xyz e R¥L. (7.10)
|[ePA

Intuitively, log(g) extracts a representation for rotations in which the direction ofglpdénotes
the axis and the length denotes the angle of the rotation. Then, we definettheivha R¥ as

an = log(ah) (7.11)

Bn = log(aR) (7.12)

M = Z PBn - trans(y), (7.13)
ne[1:N]

where transg) is the transpose af. The solution to Equation _(4.9) as a rotation matrix is given
by
M* := (trans(M)- M) 72 . trans(M). (7.14)

To convert M to the quaternionqx, we refer to[Shoemake, 1945 Using this formulation, the
offsetq- can be found ficiently from Equation[{7]7). Analogously, one can also regard the dual
equation

q'(9oa't) =aCoq'(s)oqT(t)oq® (7.15)

to find a solution for the globalftsetq®. After alignment, we use a thresholding strategy based
on Equation[(7]5) to detect whether a tracking error in framecurs by evaluating

dquat(ql(t)’q_G oq'(t)o qL) > T, (7.16)

where the threshold parametecan be set to tradefiobetween the number of correctly detected
tracking errors and false detections, see Settion|7.6.4.
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Figure 7.5. Cross-correlation error on absolute acceleration datdefirtertial and the tracking world
for the sequence used in Figurel7.2. The sharply peaked minineveals the temporalffset used to
synchronize the inertial and the tracking data.

7.6 Experiments

In this section, we give an overview of the proposed pipeline for the tieteof tracking errors.
After describing the acquisition of data (Sectlon 7.6.1), we sketch the tqgkimcedure used
for obtaining the tracking orientations (Sectlon 7.6.2), and describe @brataon method (Sec-
tion[7.6.3). Finally, we evaluate the proposed framework in detail on a latgset of tracked
motions (Section 7.614).

7.6.1 Data Acquisition

For our experiments, we recorded image sequences using eight calinateemporally synchro-
nized cameras as well as inertial data for fiiedient body parts using MTx devices manufactured
by the company Xser[2014. By systematically recording two human actors performing various
actions including motion classes such as walk, sit down, stand up, hop, gampheel, rotate
arms, and throw, we obtained 24 takes with a total length of 14 131 framé&8@e8onds of data.

We selected dierent body points where we fixed the sensors. Firstly, to represdwptliibabs that
are influenced by a small number of degrees of freedom, we selectechitelégs as mounting
position. Secondly, to represent body limbs that are influenced by a langeber of degrees of
freedom, we selected the hands as mounting positions. Thirdly, the fiftorseas fixed on the
upper torso. This way, we fixed the sensors at points corresponditiffecent kinematic levels
of the skeleton. Finally, we needed to temporally align the inertial data and tke digta. To
this end, we first obtained absolute acceleration data from both world=n, Tve used a cross-
correlation method in order to obtain a robust estimate of the tempfisatdetween both data
streams. Note that absolute acceleration data is invariant to the spatialteatilofeboth systems
and therefore suited to derive a temporiset. However, the acceleration data obtained from the
tracking might be impaired by tracking errors. In our sequences, sadkinig errors occurred only
temporally local and thus did not influence the accuracy of a constant tahgéfset estimated
over a whole tracked sequence. As an example, Flgufe 7.5 shows tisecomelation error for
the sequence which is also used in Figuré 7.2. Despite of the strong tramkorgn the leg,
the cross correlation measure reveals the tempdfakowith a sharp peak. All data streams
were sampled at 40Hz. For research purposes, we made the wholetgathkicly available
in [Pons-Mollet al., 200.
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Multiview video Silhouettes Mesh with skeleton Projected mesh

Figure 7.6. Overview of the silhouette-based tracking proced@®esenhahet al, 20073. Starting from
multiview video, silhouettes are extracted by chroma kgyiA skeleton-enhanced 3D model of the actor
is then fit to the silhouettes based on optimization of joirdla parameters as well as the root orientation
and translation.

7.6.2 Tracking

Our framework is thought for evaluating tracking results independerthefspecific track-

ing method. In our experiments, we exemplarily used a tracking algorithm similar
to [Rosenhahet al, 20073, see Figuré_716. First, we extract silhouettes from captured images
by chroma keying. We generate a surface mesh of the actor using a 3Dsbadner and fit

a skeletal kinematic chain to it. Then, the surface deformation of the mesh iedddy joint
angle parameters as well as root orientation and translation of the kinemaitic ¢bsing a lo-

cal optimization-based approach, pose configuration parameterstarmiged to minimize the
distance between the transformed 3D mesh projected back onto the 2D inmalgtree asilhou-
ettes. This way, we generated tracking results for all 24 takes, whicthaneevaluated in our
experiments.

7.6.3 Calibration

To compare orientation data fronfidirent worlds, the global coordinate systefisetq® and local
offsetsgs have to be estimated for each of the sensotq1 : 5] as explained in Sectidn 7.5. For
this purpose, we propose a solution using a calibration take. There lgravorequirements for

the calibration take that are easy to meet in practice. Firstly, the orientatidhe tiinbs should

be represented reasonably well by the tracking result. Secondly, tm eistambiguous fisets,

the take should contain poses irfftdient orientations. To this end, we selected a take containing
relatively slow motions which are rather easy to track. Since ffeebfor the local and global
orientations are constant for each actor, local tracking errors dbawvat a significant impact on
the final estimations.

7.6.4 Automatic Evaluation

In our experiments, we resort to a studio setup for the multiview recordiaystracking outdoor
recordings, a more advanced tracking method than the one we used vweaequired. However,
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Figure 7.7. Distance measuréy,, and threshold- used to reveal tracking errors in an example tracking
sequence fofa) the left leg andb) the left hand. Using these curves, automatically detecsstting errors
are marked by red boxes, s@. Manual annotations conducted by two subjects are mark#udgnay and
black boxes, respectively.

our evaluation concepts transfer without modification to more advancekingascenarios. In
particular, inertial sensors do not depend on a studio setup and dieaajfor outdoor settings.

To automatically detect tracking errors, we evaluate the distance meaddguation [[7.16) for
every limb and frame. In this equation, the calibratédetsy- andq® are used to make the inertial
orientations as measured by an inertial sensor and the tracking orientaiesimated from the
tracking result comparable. In Figurel7.7, the quaternion distance fusdtio (a) the left leg and
(b) the left hand are drawn. In Figurelr.7 (c), the detected trackingssior the body segments are
marked with red boxes, which we refer toagomatic annotationdn our experiments, we chose
the quality threshold = 45° (dashed line), which turned out to be a suitable trafidsetween
error detection capability and robustness. The threshold selection wilkbesded later, see also
Figure[7.12.

Since we aim to assess the quality of our procedure for tracking ertectd®), we asked two
people (hereafter referred to as A1 and A2) of our working group toually annotate each frame

of the tracking results according to tracking errors in the limbs, see Highife)7 We refer to these
annotations amanual annotationghe gray and black rectangles show the manual annotations of
Al and A2, respectively. For this task, the annotators were providedtiatioriginal multiview
videos as well as with a tool to view the reconstructed 3D mesh from arbitrampoints. As it
turned out, both annotators did not notice any tracking errors in the tdtsis.is also reflected

by our distance measure, which stays well within a small range df Mean and 7° standard
deviation. Therefore, we only regard the other four sensors in @iuation below.

In Figure[Z.Y (a), high distance values correspond to a tracking erttoe Ieft leg. The correspond-
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Figure 7.8. Left: Calibrated inertial orientation for point in time2s of the example tracking sequence.
Right: Tracking orientation. A tracking error can be detected medrorientation distances.

(@) (b) ()

Figure 7.9. Tracking error in the left hand for a running motion.

ing motion sequence is also indicated by Figuré 7.2. Here, both annotateed as the automatic
annotations agree. However, we found that the automatic annotatiordpreagenerally marked
more frames as erroneous than the annotators did. For an annotatoe Aeeds to distinguish
between false positives (automatic annotations, where A has not segnRnand false negatives
(A has seen a tracking error, but the automatic annotation proceduretdidtected it). In fact, by
examining the false positives in more detail, we found that they often camedp subtle tracking
errors that are hardly visible when looking at the reconstructed mesingtance, in the example
sequence at.2 s, the procedure has marked a tracking error in the left hand. Eiglish@ws that

the palm faces the actor’s hip, represented by the blue axis of the calilmatéal orientation. In

the 3D reconstruction (right), however, the palm faces backwardanias tracking error can be
observed in Figure_7.9. Here, the actress performed a run-on-platien. In the tracking, the
orientation of the hand slowly drifted towards a false orientation which bes@pparent when
looking at the diferences of the inertial and the tracked orientations in Figuie 7.9 (b) &nd (c

At this point we emphasize that such a tracking error might appear subtlenamportant, because

it is hardly noticeable in the visual appearance of an untextured 3D mesteudr, when using a
textured mesh in a rendered scene, this kind of orientation error will leatitanted and visually
annoying artifacts. Such an error is not well reflected by previoukiatran metrics like the
ones presented ifSigalet al, 2010; Balanet al, 2004. In these metrics, ground truth marker
trajectories are compared to trajectories extracted from the 3D mesh, suedren error results

in only negligible diferences on the positional level. Yielding similar results, other works evaluate
joint location errors in the 2D image domdinee and Nevatia, 2009With the proposed method
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Figure 7.10.Comparison of automatic (red) and manual annotations (btagk) of (a) cartwheels an¢b)
locomotion.

Figure 7.11.In a cartwheel sequence, both hands show tracking errors.

Al A2
P R P R

Legs 0.65 091 0.64 0.96
Hands 0.36 0.78 0.45 0.69

Table 7.1.Precision and recall values for= 45°.

based on orientation data, however, this error can be revealed.

Figure[7.10 (a) shows the annotations of a take containing cartwheels é&saeple for a false
positive, consider the point in time®s. Both annotators agreed on a tracking error in the actor’s
left hand. In Figur€7.11, this error is visible even without the additionabywirinertial orienta-
tions (left) and tracking orientations (right), since the left hand points intavtbeg direction. By
contrast, the tracking error in the right hand is much less visually appéandiatt, the orientation

of the whole arm is estimated incorrectly, coming from a misconfiguration in theldér joint.
This error is revealed by the orientation error of the effdetor in the kinematic chain. Again,
this error could not be captured well with traditional metrics.

To evaluate the accuracy on all takes, we calculated precision and vatsdk, taking each of
the manual annotations as baseline. We separately report on the valtles liands and the legs
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Figure 7.12. Precision (black), recall (red) and F-measure (green) eagations ofr for (a) legs andb)
hands. Solid and dashed lines represent values belongit and A2, respectively.

representing two kinematic levels, see Table 7.1. For both the legs and tandatomatic anno-
tations show relatively small precision values of arour@b@nd 036, respectively. As discussed
above, the low precision is coming from a large amount of automatically deteatgdng errors
that the annotators did not see. This shows that the manual evaluatiolohgraesults is not
suficient to find all tracking errors. By contrast, the recall values for the d&g quite high, show-
ing that the automatic annotation procedure detected nearly all manually tetheteors. The
hands, however, have a lower recall in comparison to the legs. Note thas tmainly due to
the per-frame annotations we pursued. In case of short trackings éhat mainly occur in the
tracking results of the hands, small misalignments in the results lead to low rakedby see Fig-
ure[Z.10 (b). Although most of the boxes coming from manual annotatiorséheertain overlap
with an automatic annotation, the automatic annotations achieve a low recall seigmaent-based
rather than frame-based values may be better suited.

As for quantitative evaluations, a combined recording setup with a madssdboptical motion
capture system would have been beneficial. In our setup we did noailraaeker-based reference
system at hand. [Herent sources of errors like sensor noise and bias, calibratiors esearsors
getting out of place, or errors due to the approximation of the human bodyawitilyed surface
mesh are thus flicult to quantify. However, our experiments show that the influence obalices
of noise are small. For example, the distance measure of the upper tosew eger all 14 131
frames of our evaluation data stays within a small error range with a meanddfditl a standard
deviation of 77°, and the manual inspection shows that there are no noticeable trackingjiarr
the torso region. This observation suggests that the overall noise lies withiamall order of
magnitude. In particular, it follows that the accuracy of the obtained inextiahtations is high
enough for a quantitative evaluation of tracking results. Moreoverepperiments show that the
proposed distance metric is able to cover most of the manually observeahtrackors, which
is supported by high recall values. Finally, a manual inspection showedhindalse positive
detections correspond to tracking errors that wefigcdit to perceive for the manual annotators.
This supports the statement that our orientation-based distance measeitesisted for detecting
tracking errors.

To evaluate the influence of the threshold parametexre computed precision, recall, and F-
measure for variations af, see Figur€ 7.12. Selecting a laweads to a high recall, since many
parts of the evaluated takes are annotated. However, also many pa&tegeohio tracking errors

are annotated, yielding a low precision. Our final choice ef45° is motivated by the request of
having high recall values without having too many false detections.

As described in Sectidn 4.4, orientation data from the inertial world is obtdigecbmbining
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Figure 7.13.Calibrated inertial data (red) and tracking data (black}te left leg of the example sequence
used in Figuré717 (a)a): Local rate of turn data(b): Local acceleration data. The presence and duration
of tracking errors is dficult to determine from this data.

different sensors. These sensors naturally provide 3D acceleratioatartd turn data, as further
explained in Appendik’A. Thus, a method comparing these types of data witsponding data
generated from the tracking world could also reveal tracking errarsractice, however, this
does not work well. In Figure_7.13, we show a comparison of the rate nfdata (a) and the
acceleration data (b) corresponding to the left leg for the example traskipgence also used in
Figure[Z.Y (a). The severe tracking error in the left leg occurred #ds to 66 s. During this
period of time, theX- andY-components of the angular velocity show some deviations, and also
in the acceleration someftirences between the inertial and the tracking data can be revealed.
However, on the basis of this data, it igfdiult to isolate the tracking error from spurious detec-
tions coming from noise in the signals. Three more properties make this kiredaohdt suited for

our task of tracking error detection. Firstly, these quantities are veryitonature with respect to

the temporal dimension. This makes it hard to detect the duration as well asnperée starting

and ending point of an error. Secondly, filtering techniques negessatetermine meaningful
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acceleration and rate of turn data may not only suppress the sensobuabisay also smooth out
peaks coming from actual tracking errors. Thirdly, slowly moving limbs geiedow amplitudes

in these guantities, which makes it hard, if not infeasible, to detect ewposith motions. With

orientation data, as shown in this chapter, these considerations do npthhusgielding a robust
procedure for tracking error detection.

7.7 Discussion

As one contribution of this chapter, we described a calibration framewatkitas used to make
orientation data from both worlds comparable. In this section, we motivatethighgalibration
step is important and needs to be performed prior to evaluating distanceragesisch aggyaton
orientation data from the inertial and the tracking world. To this end, wed#&Bhe a distance
curve Aq,q, 1 [1 @ T] + [0°,360°] based on Equatiori (7.1L6), which is parametrized by two
calibration dfsetsq, andqy:

Agaa, () = dguar(a' (). a0 (1) © ). (7.17)

For a given sequence of inertial orientatiafié) and a sequence of corresponding tracking ori-
entationsg" (t), we can use Equatiofi (7]17) to evaluate tfea of wrong calibration fisets by
shifting q, and g, away from the true fisets. It is tempting to think that a modification of the
offsetsg, andq, just leads to a shift in the distance function by a fixed R. If that was true

in general, then we could avoid the calibration by relying on the assumptiomth&ttframes of
the sequence were tracked correctly. In that case, the most freqoeatisring distance valug
would represent the correctly tracked frames. Then, the distance canld be shifted by* in
order to obtain the correctly calibrated distance curve. However, moditfia dfsets in Equa-
tion (Z.17) leads to a non-linear distortion of the distance curve due to thdimearity of the
quaternion multiplication and the arccos function withinsee Equatiori(7]2).

In the following, we will show the ffect of missing or wrong calibrationfisets by means of an
explicit example. To this end, we first generate a synthetic sequenice-@40 unit quaternions
g'(t). Then, to simulate the tracked sequencé), we copyq'(t) and introduce two tracking er-
rors from frames 50 to 200 and from frames 400 to 600 by modifyit(¢). Now, q'(t) represents
the measured inertial orientations aqdt) represents the tracked orientations. For these streams
of orientations, the correctiisets are both the quaternion identf§. The corresponding ground
truth distance curve is obtained by evaluating q, see Figuré 7.14 (a). In this curve, the tempo-
ral extend and the magnitude of the errors are correctly represent®g.sNppose that only one
offset is known and the otheffset is unknown or wrong. This setting is simulated by evaluating
Aqld’qb for a fixed quaterniom,, see Figuré 7.14 (b). As for the correctly tracked regions, one
can see by comparing with Figure /.14 (a) that the error curves aredshifta certain amount

of degrees. However, in the frames containing tracking errors, two rdggtartions are visible.
Firstly, the magnitude of the tracking errors are no longer representsztty. For example, the
ground truth error in frame 200 is 70In the same frame in Figure 7114 (b), théfeience to the
level of correctly tracked frames amounts to only 48econdly, some frames with tracking errors
cannot be distinguished from correctly tracked frames. For examphsjdar the region around
frames 485. Here, the same error 1@8 for the correctly tracked frames is computed, rendering
the detection of a tracking error in these frames impossible. The situatiombea@ven more in-
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Figure 7.14. A synthetic example for quaternion distance curves witfedént calibration fisets. The
ground truth distance curve is shown (@) (both calibration €fsets are correct)(b) and(c) show the
curves when oneftset and both fisets are wrong, respectively.

tricate if both dfsets are wrong. We simulate this setting by evaluating, , see Figuré 714 (c).
Detecting the tracking errors from this representation seems to be impossible.

However, there is a solution which could circumvent the need for calibrafenall that in practi-

cal scenarios, the two calibratioffeets to be estimated correspond to the global coordinate system
offsetq® between the two global coordinate systems and the IdEsgtg- between the local co-
ordinate systems of the sensor and the bone. In such a scenario, thaticalilior the global
offsetq® can be avoided already in the preprocessing step where the camecaditanaed. In

this step, the object used for calibrating the cameras can be placed manghlthat the tracking
coordinate systeri®" coincides withF®. Once the global fiset is known (in the described case,

it is the identity), the local fisetsg- can be computed from a tracked frame of a sequence where
the pose of the actor is already estimated. For example, if the first frame watkéng is manu-

ally initialized, this frame could be used to obtain thesetg-. While this scenario represents a
practicable way of avoiding the calibration steps, the errors made by maaligiiyng the camera
calibration object and by manually initializing the tracking in one frame might leadstortions

of the error function. By contrast, our calibration procedure is fully enattic and yields a robust
solution by taking a whole sequence of frames into account for the calibratio

7.8 Conclusions

As a main result of this chapter, we showed that limb orientations constitute hlsuial-level
representation for detecting tracking errors in marker-less motion trackingontrast to con-
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ventional evaluation techniques with marker-based optical systems, the okmertial sensors
provides an unobtrusive andferdable way to generate ground truth data. Furthermore, inertial
sensors impose comparatively weak additional constraints on the owarailtling setup with re-
gard to location, recording volume, and illumination. We showed that ouregioe can reveal
even subtle orientation mistakes which are hard to detect from a visuakanafithe tracking
result or from previously used evaluation metrics based on positionahiatgon.

Further applications of inertial sensors can be found in sports sciedss marker-based mocap
technology is sometimes filcult to apply. For example, obtaining marker-based mocap data
from an athlete performing trampoline jumps is problematic due to the large megorolume

and self-occlusions during the motions. Moreover, the rapid motions ampaiane contacts

can cause optical markers to falffo To make automated motion analysis in such a scenario
possible, Helteret al.[2017] investigate an approach for automated segmentation and annotation
of trampoline jumps using data obtained from inertial sensors.
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Chapter 8

A Hybrid Approach for Reconstructing
Human Motion

The 3D reconstruction of complex human motions from 2D color images const#uieallenging
and sometimes intractable problem. The pose estimation problem becomes rsdrie fe@aen
using streams of 2.5D monocular depth images as provided by a depth cdioaraver, due to
low resolution of and challenging noise characteristics in depth camera iraagesll as self-
occlusions in the movements, the pose estimation task is still far from being sinupteefmore,
the reconstruction task becomes even more challenging in real-time scendéos the usage of
computationally expensive global optimization strategies is generally nabpamss

In this chapter, we introduce a data-driven hybrid strategy that comkinakpose optimization
with global retrieval techniques to facilitate reconstruction of full-body hammtions from a
single depth image stream. In contrast to tliéiree method for stabilizing marker-less motion
tracking presented in Chapidr 6, we focus in this chapter on online real-tuwi@rtg. In all steps
including the feature extraction, the retrieval, and the tracking steps, vedogeand implement
efficient algorithms in order to achieve real-time frame rates. In order to alsinabtabust
reconstruction of the performed motions, we combine tracking with retriesfahtques. The final
pose estimate for each frame is then determined from tracked and retrasetypotheses which
are fused using a fast voting scheme. Our algorithm reconstructs cofofiody motions in
real-time and fectively prevents temporal drifting, thus making it suitable for various tieed-
interaction scenarios.

This chapter is based on the publicatifBaaket al, 20111 and[Baaket al, 2013H. Atter giv-
ing a motivating introduction (Sectidn 8.1), we discuss related work (Seéci)n\8/e then briefly
introduce depth cameras and the basic processing steps of the captiaré8ettiof 813). As main
contribution of this chapter, in Sectign 8.4 we describe in detail tiferént steps of our frame-
work for motion reconstruction. Our quantitative and qualitative experinasnigell as limitations
are discussed in Sectibn 8.5, before we conclude in Sectibn 8.6.

!Reproduced with kind permission of Springer Science and Busines@Med
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8.1 Introduction

In recent years, several approaches for marker-less humareptis&tion from multiple video
streams have been preseniBdegleret al, 2004] Balanet al, 2007a| Deutscher and Reid, 2005;
Gall et al, 2009 Stollet al, 2011. While multi-view tracking already requires solving challeng-
ing non-linear optimization problems, monocular pose estimation puts currémiolegy to its
limits since, with intensity images alone, the problem is underconstréiMedslundet al, 2006;
Poppe, 2010; Bo and Sminchisescu, 24010 order to have a chance to reconstruct human move-
ments, non-trivial inference or optimization steps are needed in combinatibrstnong priors.

In general, real-time reconstruction of complex human motions from monaodotarsity image
sequences can still be considered an open problem.

New depth sensors, such as time-of-flight (ToF) cameras or the Mitrdgeect sensor, pro-
vide depth images at video frame rates. In such images, each pixel stdeggttavalue in-
stead of a color value. Since this representation of a scene stands sen@dwhthe mid-
dle between a pure 2D color-based representation and full 3D scameeygy, depth im-
ages are also referred to as 2.5D délémlbetal, 201(. It turns out that with depth
cameras, the 3D reconstruction of human motion from a single viewpointni@Tanore
feasible [Bleiweisset al, 2009; Friborget al, 2010; Ganapatret al, 2010;/ Knoopet al,, 2009;
Pekelny and Gotsman, 2008; Shottiral, 2011;[ Zhuet al, 2008, see also our discussion of
related work in Sectiof 8.2. In this chapter, we present a tracking frarketat yields ro-
bust motion reconstruction from monocular depth image sequences. Worear framework
enables significant speed-ups of an order of magnitude compared toofibst previous ap-
proaches. In fact, we reach similar run time behavior as the algorithm implegnientee Mi-
crosoft Kinect|Shottonet al, 2011, whereas we do not need GPU implementations.

Our procedure follows a hybrid strategy combining generative andiglis@tive methods, which

is an established paradigm for pose reconstruction and tracking probighike local optimiza-
tion strategiegKnoopet al, 2009 have proven to yield high frame rates, such techniques tend
to fail for fast motions. Algorithms using global optimization techniques providee reliable
pose estimates, but are typically slow and prohibitive for real-time scenado®us data-driven
approaches have also been suggested to overcome some of theseeisahlksg fast yet robust
tracking from intensity image streams, $&kada and Stenger, 2008; Rosales and Sk[&2600);
Shakhnarovicket al, 2003; Wang and Popovic, 2009These approaches rely on databases that
densely cover the range of poses to be tracked, and fail on posear¢habt contained in the
database. Moreover, due to the high variability of general human motiaistrooting such a
database might become intractable. Hybrid strategies that combine gemaratidiscriminative
methods have proven to be a suitable methodology for pose estimation aridgracdcedures,
see Chaptef]6 ofDemirdjianet al, 2005; Ganapatret al, 2010; Rosales and Sclaro2006;
Salzmann and Urtasun, 2010; Sigakl, 2008 Yeet al, 2011. In these works, the main idea is
to stabilize generative optimization algorithms by a discriminative component basedatabase
lookup or a classification scheme. Using this strategy, the risk of getting stle&al minima is
significantly reduced, while time-consuming global optimization methods areetoid

In our approach, we employ a data-driven hybrid strategy conceptsiatiijar to the work of
Demirdjianet al. [2004, where local optimization is combined with global retrieval techniques,
see Figuré_8]1 for an overview. In our scenario, an actor may perfeen complex and fast
motions in a natural environment facing a single depth camera at a reésdistance. Similar to
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Figure 8.1. Overview of our proposed framework for reconstructing msi from depth data. Using
features extracted from the raw depth data, we retrieve a lpgsothesis using a database lookup scheme.
An additional hypothesis is obtained by running a local mptation algorithm that is initialized with the
final pose of the previous frame. Then, a hypothesis votinigés for the either of the candidates.

Demirdjianet al. [2004, we retrieve a pose hypothesis from a large database of 3D poses using
sparse features extracted from the depth input data. Additionally, @furyipothesis is generated
based on the previously tracked frame. After a local optimization of boththgses, a late-fusion
voting approach combines the hypotheses to yield the final pose. While ¢hallgsrocedure is
inspired by previous workDemirdjianet al, 200%; Ganapattet al, 201(, we introduce a num-
ber of novel techniques which add robustness and significantly sgeeohuputations at various
stages includingfécient feature computationfficient database lookup, anéfieient hypothesis
voting. In our experiments, we also compare our reconstructed motionswiops work using the
publicly available benchmark datag&anapathet al, 201(. We gain significant improvements
in accuracy and robustness (even for noisy ToF data and fast motibite)achieving frame rates
of up to 100 fps (opposed to 4 fps reported[i@anapathet al, 201Q).

Contributions. In this chapter, we present a system for full-body motion reconstructan f
monocular depth images that requires only 10 to 16 milliseconds per frametandasd single-
core desktop PC, while being able to track even fast and complex full-badipns. Following

a data-driven hybrid strategy that combines local pose estimation with gkthialval techniques,
we introduce several technical improvements. Firstly, in the feature &ginastep, we introduce

a variant of Dijkstra’s algorithm that allows us tffieiently compute a large number of geodesic
extrema. Secondly, in the retrieval step, we employ fficient database lookup scheme where
semantic labels of the extrema are not required. Thirdly, we describeeh late-fusion scheme
based on anficiently computable sparse and symmetric distance measure. It is the combina-
tion of all these techniques that avoids computational bottlenecks while prgviobust tracking
results.
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8.2 Related Work

Intensity-image-based tracking. Monocular 3D human pose reconstruction from intensity im-
ages has become an important research topic. In order to deal with geslleoming from
occlusions and missing 3D information figirent approaches have been pursued making use of
statistical body modelfGuanet al, 2009, physical constraintfWei and Chai, 201)) object in-
teraction[Romeroet al,, 201(, or motion capture datfRosales and Sclafip 2004. For exam-

ple, Guanet al. [2009 fit a statistical model of human body pose and shape to a single image
using cues such as silhouettes, edges, and smooth shading. In a simil&tasaret al. [2010
present a method for estimating human body pose and shape from singlesiosigg a bi-
linear statistical model. Physics-based constraints are used in Brugiake201d, where a
physically-based modeling of the lower body helps to track walking motioms fnrmnocular im-
ages. INWei and Chai, 201)) the authors propose to annotate parts of image sequences with 2D
joint positions, bone directions, and environmental contacts. From sunchations and the image
data, they compute physically realistic human motions. Adfardint type of constraint, the inter-
action with objects can be exploited as demonstrated in the the work of Retrair201d. Fur-
thermore, some approaches derive a direct mapping from image femtardataset of admissible
poses recorded with a marker-based sysfi@kada and Soatto, 2008; Okada and Stenger,|2008;
Rosales and Sclaffo 2000{ Shakhnarovickt al, 2003] Wang and Popovic, 200With such dis-
criminative approaches, poses that are not contained in the databadifiewlt to recover. The
combination of generative and discriminative approaches can yieldtrabdsmooth monocular
motion estimate§Fossateet al, 2010; Rosales and Sclafo2006; Salzmann and Urtasun, 2010;
Sigalet al, 2009.

Depth-image-based tracking. 3D human motion reconstruction based on a single depth image
stream has received increasing attention in the last years. While aidirsit&ppears simpler than

its corresponding problem with monocular color images, one still has to disah@ise in the input
data, low resolution sensors, lack of color information, and occlusidolgmas. Nowadays, com-
mercial packagefBleiweisset al, 2009 or software libraries exist that can compute joint posi-
tions from depth images for multiple people in real time (Microsoft Kinect $BliCrosoft, 2012,
Primesense NITE middlewalPrimesense, 2012 While the algorithm behind the NITE middle-
ware is not revealed to the public, Microsoft published the approachshiaplemented in the
Kinect SDK in [Shottonet al, 201]. The authors use randomized decision forests trained on a
huge set of various body poses and shapes in order to hypothesizbgaitions from features

on the raw depth input data. The approach was recently combined withessemn scheme to
predict joint locations more accuratd§girshicket al, 2017. Also, positions of occluded joints
can be estimated.

Some approaches ugtobal optimizationmethods to solve the motion reconstruction task. For
example, Friborgt al.[201( use a GPU-accelerated particle filter to fit a surface mesh consisting
of rigidly connected generalized cylinders to stereo depth data. Howexer with GPU imple-
mentations, such approaches are often not real-time capable.l0@af®ptimizationstrategies
have also been explored, which are implemented as variants of the itelagestgoints (ICP)
method|Besl and McKay, 1992 For example, Pekelny and Gotsn{200¢ simultaneously track
and reconstruct the shape of limbs through depth images. Kebap[2009 show that a com-
bination of ToF and stereo data enables full-body motion reconstructi@aktime frame rates.
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Also using ICP, Grestt al.[2007 combine depth and silhouette data to track articulated motion
with ten degrees of freedom in real time. Although yielding high frame rate$, smiethods often
fail due to noise and motion blur present in the depth data. In particular vatinfations, local
optimization easily gets stuck in erroneous poses which are hard to réomwver

In order to yield a more robust tracking, many approaches stabilize the ogtiomzlgorithms
using additionalprior knowledge For example, Schwaret al. [2010 include a database of
motions as prior knowledge for a particle filter-based optimization method. Wawmotions
not present in the database cannot be tracked. As a complementarigtecfor stabilization,
many approachedetect features in a bottom-up fashidinectly from the depth input data. Here,
geodesic distances are used in some works in order to detect anatomicrksidradiowing such

a scheme, Ganapatti al. [201d classify geodesic extrema features extracted from depth images
according to the class labels ‘hand’, ‘foot’, and ‘head’. With thesedlietes, the search space
of a particle filter is constrained. Integrating constraints into similar optimizatiomtques,
anatomical landmarks are identified using feature tracking or heuristif8zadet al, 2008;
Lopez-Mendezet al, 2011; Siddiqui and Medioni, 201.0Using object detectors to estimate the
position of the head and the hands, Galkil.[201]] stabilize a local optimization-based algorithm
for tracking the upper body from depth data. Also, constrained inkemsenatics has been used on
anatomical landmarks ifSchwarzet al, 2011 Zhuet al, 201(. In our approach, we also make
use of bottom-up detected features in order to stabilize a local optimizationabprAs for the
feature extraction, we build on the idea of accumulative geodesic exfflagemanret al, 2010
and contribute with anficient feature computation strategy.

Depth cameras seem to be an ideal type of sensor to facilitate intuitive humamteorimer-
action based on full-body motion input. Therefore, many approaches foe achievingeal-
time performance and try to findfiécient algorithms for the motion reconstruction task. Al-
though dficiency is clearly one of the key aspects to make motion reconstruction apelicab
home use, most approaches with a focus on robustness reach onlgtiméeran times around
10 FPSGanapathet al, 2010; Greset al, 2007; Zhuet al, 201{. Only recently, methods have
been published that perform robust motion reconstruction within just pleadf milliseconds per
frame[Girshicket al, 2011 Shottoret al, 2011. Such approaches for motion reconstruction are
interesting from a practical point of view since they leave enough CPl¢syee for applica-
tions or games that use the reconstructed motion as input. Exceeding tberzerte of most
published methods, we can report nearly 100 FPS for full body motiamstiction. Apart from
the methodology of combining discriminative and generative models, the key @haient and
stable motion reconstruction procedure is a compoundfwient feature computation flicient
database lookup, and affieient voting strategy.

8.3 Acquisition and Data Preparation

In this section, we first summarize the concept of depth cameras while fiasig botation (Sec-
tion[8.3.1). After that, we describe the model of the person to be trackedd8&.3.2). Our pose
database is introduced in Section 813.3. Finally, we describe how we norrttaiziepth data
(Section 8.3.8). Such a normalization is important in order to facilitAieient computations in
the forthcoming steps.
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Figure 8.2. Point cloud obtained by a ToF camd without and(b) including a method for removing
lens distortion &ects. Note the straighteningfect on the left edge of the door.

8.3.1 Depth data

Before ToF cameras and the Kinect sensor became popular, stereasameee predominantly
used to obtain depth data in real-time. In order to compute depth values, assivepstereo
systems need to identify corresponding features in the two images captureeratime step.
However, computing and matching such features is computationally expearsivoften fails for
objects without texture or for objects with repeating texture.

Current depth cameras based on active illumination with infrared light omegd¢hese limitations.
Moreover, current ToF cameras are robust to background illuminatidgiald stable distance val-
ues independent of the observed textures. In principle, ToF camepase deptidistance data
at video frame rates by measuring the round trip time of infrared light emitted mdtoeflected
from the scene. Several successive measurements have to be matky ito @stimate the phase
shift of the infrared light from which the round trip time is deriiiblb et al, 201(. Moreover,
further measurements are taken over a longer period of time in order toeredise in the mea-
surements. For static scenes, this process leads to measurements witlthighias in the range
of millimeters. For dynamic scenes with moving objects, however, this proeesead to errors
in the estimation of depth values. Problematic are edges that separate anfroimjeanother,
more distant object, resulting in strongly corrupted depth measurementsaléstmixed pixels
Furthermore, low resolution, strong random noise and a systematifKaitiset al, 201( lead to
data that is dficult to handle.

A depth camera returns a distance image: Z?> — R with Z2 being the pixel domain. Since
the camera also produces an amplitude image in the infrared domain, we usdadfaattern-
based camera calibrati{Matlab, 2012 to recover the camera matrix and parameters for the lens
distortion. To remove lens distortiortects, we apply the method of Heikkila and SilM&997
which yields stable and accurate metric distance values, see FEiglire 8.2eaample. We do
not calibrate for systematic bias of the camera, since for full-body moticonstiction slight
constant deviations in the measurements do not play an important role. &oerd method that
calibrates for systematic bias using an intensity-based approach weorfifardneret al, 2010.
Using the calibration information, we transform the per-pixel distances inteetsic 3D point
cloud M, c R2 for every input frame of our online motion reconstruction framework, Rige
ure[8.3 (a). We then perform background subtraction using a statiegoreled background model
and delete contour pixels to mitigate the influence of mixed pixels. Finallyk & Biedian filter is
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(b)

Figure 8.3. (a} Original depth point cloud(b): Point cloud after background subtraction and filtering.
Some mixed pixel artifacts remain, seegq, the left leg.

used to reduce noise in the measurements, see [igurre 8.3 (b).

In contrast to a ToF camera, the Microsoft Kinect depth sensor usastae stereo approach.
More specifically, a camera records an image of a projected structurégéitiarn in the infrared
domain. Then, from the recorded pattern, a depth map is derived. irasbto a ToF camera, only
one image is analyzed in every time step. Thus, the Kinect camera is lesptfisa® mixed
pixels in dynamic scenes. However, the data also exhibits significant hoigarticular, artifacts
like holes in the data appear when the projected pattern cannot be resmhgitoreover, the
coarse depth quantization limits the accuracy in the far field from the camleeagwor example,
a 25 cm quantization gap occurs at 3 meters distance to the camera. Thetgdeslgorithms in
this article have been applied to depth data coming from ToF cameras as dafhaoming from
the Microsoft Kinect. Without changing or tuning the proposed algorithnefjtial pose estimates
with each of the cameras are qualitatively very similar as shown in the {iB&aket al, 20113
accompanying the corresponding paper.

8.3.2 Model of the actor

The body of the actor is modeled as a kinematic cidurray et al, 1994. We useJ = 20
joints that are connected by rigid bones, where one distinguished joirfinedeas the root of the
kinematic chain, see Figure 8.4 (a). A pose is fully determined by the coafignmof a kinematic
chain specified by a pose parameter vegt@ontaining the position and orientation of the root
joint as well as a set of joint angles. Through forward kinemdiMarray et al, 1994 using

X, 3D joint positions represented by a stacked veB{oe R3%1 can be computed. Using linear
blend skinnindLewis et al,, 2004, we attach a surface mesh with a set of 1170 vertieggo the
kinematic chain to model the deforming body geometry, see Figure 8.4 (b).linittathe body
model to the shape of a specific actor is beyond the scope of this article odiegixist to solve
this task using image data and a large database of scanned humarsgsé@panet al, 2009;
Hasleret al, 201(. Recently, Weis®t al. [201]] have shown that the body shape of a person
can be determined using depth images from fotfiedent views. As shown in our experiments
(Sectiori 8.6), even with a fixed body model we can track people for @ mirdjfferent body sizes.
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Figure 8.4. (a)Skeletal kinematic chain with a root joinfb) Rigged mesh(c) Highlighted end &ectors
(hands, feet, and head).

8.3.3 Pose database

Motion tracking approaches based on local optimization update the modehegars (in our case
the joint angles) by optimizing a specified cost function, where conveggenly to a near local
minimum can be guaranteed. Although such methods typically run very fagtfdaihehen the
initialization is too far away from the actual pose. For such a failure casawthat the algorithm
loses track. This is often the case for fast motions where body parts canfardrom frame to
frame. One strategy to overcome such limitations is to reinitialize the local optimizatien w
the track is lost. In the proposed algorithm, we use global pose estimatesdigrom database
knowledge for such reinitializations. To this end, we create a databasevarfull body poses
obtained with a marker-based motion capture system. The actor performiey wd motions
including hand gestures and foot motions to span a large rangetefedit poses. To enable
invariance under global transformations, the obtained ppsage then normalized according to
the positions of the root joint and the viewing direction. Furthermore, to maxith&eariety and
minimize the number of poses in the database, we select a subset of thaeteposes using a
greedy sampling algorithfWang and Popovic, 2009In this algorithm, the distance of two poses
specified byy; andy, is measured based on the distance of the corresponding joint positions

dP(Xl’XZ) =1 ||PX1 - P,\(2||2~ (81)

In contrast to Wang and Popo\i2z009, we truncate the sampling as soon as the minimal distance
between all pairs of selected poses reaches a certain threshold. Usingntated sampling, we
obtain roughly 25000 poses in which any two selected poses have aiptss&ddp larger than

1.8 cm. For each selected pose, we then consider ffadter positions of the lefight hand, the
left/right foot, and the head, modeled&3 := (€], ....€) € (M,)°, see Figuré8l4 (c).

The following three reasons motivate the use of effidotor positions as features. Firstly, end ef-
fector positions can befeciently estimated for a large set offidirent poses even from depth data
alone, see SeLt 8.4.2. Secondly, for many poses these positions mretetistic, thus yielding a
suitable representation for cutting down the search space. Thirdly, théyddow-dimensional
feature vectors which facilitate the usage fifaéent indexing methods. Thus, enffextor posi-
tions constitute a suitable mid-level representation for full-body posesiththemne hand abstract
away most of the details of the noisy input data, yet on the other hand retadigtriminative
power needed to cut down the search space in the pose estimation peocedu
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Figure 8.5. Normalization of the geodesic extrema with respect to a adatpviewing direction.

For indexing, we use &d-tree[Cormenet al, 2001 on the 15-dimensional stacked vectﬁ§

since they provide logarithmic search time in the size of the database and haa dut to be an
efficient search structure for low-dimensional feature vectors. Sincezbefkthe skeletond g,

body height or arm span) varies withffidirent actors, the pose database has to be adapted to the
actor. While not implemented in the system presented, this task can be salvg@ustargeting
framework. Even without retargeting, by manipulating the depth input pdinidcA, we are

able to track motions of people if body proportions are not too fathe database skeleton, see
Sectior 8.5.

8.3.4 Normalization

In the proposed tracking framework, we allow the actor to move freely witharfitdd of view

of the camera, while we restrict variations of the viewing direction to the rafgdout+45°
rotation around the vertical axis with respect to the frontal viewing directiRecall that in our
database all poses have been normalized with regard to the position obth@mband the view-
ing direction. Thus, in order to query the database in a semantically meanvefuwe need
to cope with variations in global position and orientation of the actor. We norenalz with
respect to global position by means of a 3D ellipsoid fit arourd using a mean-shift algo-
rithm similar to[Wang and Popovic, 2009To cope with global rotations, one could augment the
database to contain pose representations from several viewing disf@@mirdjianet al., 2005;
Shakhnarovictet al, 2003; Wang and Popovic, 2009In this case, the retrieval time as well as
the risk of obtaining unwanted poses would increase. Instead, in ouefvark, we normalize
the depth input point cloud according to an estimated viewing direction. Torbisiee compute
a least-squares plane fit to points corresponding to the torso, whichsumado be the points
that are closer than.06 m to the center oM, see Figur€ 8]5. The normal of the plane, as indi-
cated by the cyan arrow in Figdre B.5, corresponds to the Eigenvectatheifimallest Eigenvalue
of the covariance matrix of the points. The viewing direction is its projection antonagined
horizontal ground plane. We then rotate the positions of the geodesienexéigout the vertical
axis through the center such that the normal of the rotated plane pointanto fo cope with
frames in which the viewing direction cannot be estimated becaugethe torso is occluded, we
adaptively smooth the estimated directions over time. We detect whether théstocstuded by
inspecting the Eigenvalues of the above mentioned covariance matrix.ddeheding body parts
often lead to a stronger curvature in the regarded points (smallest Eigensaelatively large)



110 CHAPTER 8. AHYBRID APPROACH FOR RECONSTRUCTING HUMAN MOTI®D

Figure 8.6. (a) Subset of vertice§, € M,. (b): From posg (left), correspondences for mesh vertices in
C, are estimated (middle). Local optimization using the cspmadences yields an updated pgséight).

or a less circular fit (largest Eigenvalues are not similar). Then, we minitheafluence of the
estimated normal. As a consequence, the detected viewing direction remaiesesten if the
arms occlude the torso or the centerMf does not correspond to the torso.

8.4 Motion Reconstruction Framework

As explained in the previous section, in thélioe preprocessing phase, the camera matrix is
obtained and the background model is created. We now describe qaseaonline framework,
see also Figurie 8.1. At a given frarehe first steps are to compute the point cloug from the
distance imagé, to perform background subtraction, to filter out noise and to normalzerding

to the viewing direction. Let; , be the final pose estimate of the previous frame. Fromy; ,,
we obtain a pose hypothesjg°°OP! by refining X:_, With a local optimization procedure that
takes the input depth data into account (Sedtion B.4.1). A second posthbgis is obtained as
follows. We extract a 15-dimensional feature vector frafy, representing the 3D coordinates
of the first five geodesic extrema (Section 8.4.2). Being a low-dimensi@taharacteristic pose
representation, the features permit rapid retrieval of similar full-bodgpdom a large pose
database (Secti¢n 8.4.3). From the set of retrieved poses we chdogéegsse hypothesjgPB
using a distance function which takes the influence of the estimated poseoétheus frame; ;
into account. Based on a late-fusion voting scheme that combines two sistes&es measures,
our algorithm decides betweg#® andy-°OP!to find the final posg;, see Section 8.4.4.

8.4.1 Local Optimization

In our local pose optimization, we follow a standard procedure as deskcrib, e.g,
[Rosenhahet al, 20084. Here, the goal is to modify an initial pogesuch that the modified
posey’ fits to the point cloud\; more accurately. To this end, we seek correspondences between
vertices inM, and points inM;.

Finding correspondences for all vertices M, is not meaningful for three reasons. Firstly, many
vertices do not have semantically meaningful correspondendet,ie. g, the vertices in the back
of the person. Secondly, the number of correspondences for tloevtordd be much higher than
the number of correspondences in the limbs, which would disregard thetamperof the limbs
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for pose estimation. Thirdly, the computation time of local optimization increasesheitiumber
of correspondences.

Therefore, we use a predefined 6gtc M, of mesh vertices as defined in Figlire]8.6 (a). Here,
we make sure that we select a couple of vertices for each body partg Bl$otalkd-tree built

up in every frame, wefiiciently obtain thef nearest neighbors i, of each vertew € C, and
claim correspondence gto the median of itg nearest neighbors to reduce the influence of noise.
Using these correspondences, we obtain updated pose parapidtespplying an optimization
framework similar to the one ifRosenhahet al, 20084.

8.4.2 Feature Computation

To obtain a sparse yet expressive feature representation for thiepoiod cloud M,, we revert

to the concept of geodesic extrema as introducd®iagemantet al, 201(. Such extrema often
correspond to endfiector positions, yielding characteristic features for many poses as irdlicate
by Figure[8.1ID. FollowindPlagemanmt al, 201(, we now summarize how one obtains such
features. Furthermore, we introduce a novel variant of Dijkstra’sritkgo that allows us to féi-
ciently compute a large number of geodesic extrema. We model the tuple ofstired@odesic
extremal points as

EM:=(g,.... ) e (M)". (8.2)

To computeE], the point cloud data is modeled as a weighted graph where each point in
{p1,..., pL} := M, represents a node in the graph. We refer to a node by its ifhddgs : L]. To
efficiently build up the edge structure of the graph, we exploit the neighbdrkwacture in the
pixel domainZ? of the underlying depth image. Here, we consider the 8-neighborhoedabf

p; € M, in the domain of the underlying image. For each such neighboring pgirt M,, we

add an edge betweenand¢ of weightw = ||pm — pell2 if wis less than a distance thresheld

This way, we obtain a weighted edge structure in form of an adjacency list

&) :={(mw) e [1:L] xR, | pmandp, share an edge of weighit (8.3)

for € € [1 : L]. Here, note that when building up the edge structure, the distance lreangdwo
points in M, has to be evaluated only once.

In our approach, in contrast to the methodfagemanet al, 201(, we need to obtain a fully
connected graph with only one connected component in order to obtainnmg&dmeodesic ex-
trema. In practice, however, the graph computed as described abateidiynconnected if, for
example, the depth sensor misses parts of the thin limbs, or due to occlusiefsgseré 8]7. To
cope with such situations, we use dhaent union-find algorithnfShapiro and Stockman, 20102
in order to compute the connected components. To reduce small artifactoeedpixels, we
discard all components that occupy a low number of nodes. Furthermegessume that the torso
is the component with the largest number of nodes. All remaining compormentsem connected
to the torso by adding an edge between the respective closest pair Isfiptke edge weight is
less than b m, see the red dotted lines in Figlrel8.7. This allows us to find meaningfuégieod
extrema even if the initial graph splits into separate connected componentSigsed 8.10 (b)
and (h) for the resulting geodesic extrema of the graphs shown in Figdire 8
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Figure 8.7. Graph obtained from the depth image (black lines) and a ziodnem a more lateral viewpoint
for two poses with self-occlusions. The initially discootel graph is automatically connected using edges
indicated by the red dashed lines, respectively.

Figure 8.8. Computation of geodesic extrema using a variant of Dijstedgorithm.(a): Graph structure
and source node (cyan circl€h): Geodesic distances and first geodesic extremainUpdated geodesic
distances and second geodesic extrem(ain.The first ten geodesic extrema.

We now show how a large number of extrema can be compliieteatly. Basically, we follow an
iterative computation strategy. In each iteration, we use Dijkstra’s algofi@ormenet al, 2001
to compute the geodesic distances from a centroid fig¢leferred to asource nodgto all other
nodes in the graph. We then pick the node with the maximal distance as thepooding extremal
point. The diciency of our algorithm is based on the observation that only in the firstidaraf
our algorithm, a full pass of Dijkstra has to be computed. In all remaining iteimboe needs to
consider only a small fraction of the nodes. As another observationnlyeneed to obtain the
geodesic distances of each node and do not need to store the acttestgbath information which
is usually saved in a predecessor array in Dijkstra’s algorfi@ormenet al, 2001. Therefore,
we save additional time in each iteration by omitting the predecessor array.

As input to AlgorithnT4, we use the graph structure with nodes, edgedhartksignated source
nodefy, see Figur€8]8 (a). Additionally, we use a priority qu€uthat stores tuplesi{ w) € [1 :

L] x R, of nodes and weights sorted by increasing weight. The priority queuesallswo extract
the tuple with the minimal weight by th®.getMin() operation. To keep track of the distance
values of each node, we use an auxiliary arkdyavingL entries.

We start the algorithm by initializing\, see Lines 1-3. Then, we insert the source node into
the previously empty priority queu® in Line[ . We then iterate over all geodesic extrema to
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Algorithm 4 Computation of Geodesic Extrema

Input:  {p1...pL} = M;: 3D point cloud with pointg, € R® and node¢ € [1 : L]
E(C) = {(mw) € [1: L] x R|pm andp, share an edge of weigit:
edge adjacency list defined o,
{o € [1 : L]: index of the designated source node
Q: priority queue for elementsi,w) € [1: L] xR
n: number of geodesic extrema to be computed
Output: (el,...,€") € (M|)™ then first geodesic extrema &

1: for { —1toLdo
2 A[f] « oo > Initialize distance array
3: end for
4: Altog] <O > Distance to source
5. Q.insert( ¢o,0))
6: fori < 1tondo > Compute the firsh extrema
7 while Q # 0 do
8: ¢ « Q.getMin() > Get entry with minimal weight
9: Q.removeMin() > Remove the entry fror@
10: for each (m,w) € &§(¢) do > For all nodes connected by an edgepto
11: if A[£] +w < A[m] then
12: Alm] = A[€] +w > A shorter path has been found
13: Q.insert( m, A[m]) )
14: end if
15: end for
16: end while > A now contains the geodesic distances
17: (" —argmaxg.;Al¢] > Note: the argmax must ignore nodes that were not reached
18 € « pp > Storei extremum
19: A[¢*] <0 > Simulate edge insertion betwepp and p,
20: Q.insert( ¢*,0)) > Let £* act as new source
21: end for

be computed. The first pass of Dijkstra (Lirigs 7119 16) stores the shoreskesic distances
from the source node to any other node in the graph in the draee Figuré 818 (b). Then,
the point corresponding to the nofiewith the largest distance i is taken as the first geodesic
extremume,1 (Lines[17 toIB). Note that if there are still nodes which are not reacHedre
the source nodé,, they bear the same distance valuess set in the initialization. Of course,
such unreachable nodes should not be considered as geodesiceexirberefore, the arg max
operator in Liné_II7 must ignore these nodes in order to recover the tagegje extremum. In
Figure 8.8 (b), the detected extremei‘n's indicated by the gray sphere on the left foot. According
to [Plagemantet al, 201(, the next step is to add a zero-cost edge betwgamd/* and then to
restart Dijkstra’s algorithm to findlz, and so on. This leads to a run time@fn - D) for n extrema
with D being the run time of Dijkstra’s algorithm for the full graph. Note that the sdawoin of
Dijkstra’s algorithm shows a high amount of redundancy: the entries irrthg & corresponding
to all nodes in the graph that are geodesically closép tihan to the node oéll will not change
in the second run. For example, in Figlrel 8.8 (c), only the distance valties nodes within the
highlighted area have changed.
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Figure 8.9. (a)Number of nodes visited ar(®) run time in milliseconds to find the" geodesic extremal
point for the baseline (black) and our optimized algoritlgreén). Average values and standard deviation
bars for a sequence of 400 frames from the datadi&ahapathét al, 201 are reported.

Therefore, to compute thé®@pass, we keep the distance values of tH@ass and let the nodé
corresponding te! act as the new source, see Lifies 19[and 20. This way, the second iteviitio
be by an order of magnitude faster than the first iteration, as also conflsynedr experiments
described in the subsequent paragraphs. Ugirgs the new source, we updatewith a pass

of Dijkstra’s algorithm and piclel2 as the point with the maximal distance in the updatedee
Figure8.8 (c). For the'8pass we let the node correspondin@ﬁ@ct as the new source by setting
the corresponding value it to 0, and run Dijkstra again. This way, in th& pass, only nodes

in the graph that are closer to the nodeef)ﬂhan to all other previously used source nodes are
touched. We proceed iteratively to compute the subsequent extremal, geiatSiguré 818 (d) for
the resulting distance values and extrema after 10 iterations.

Our computational strategy leads to drastic improvements in the run time for asshTo exper-
imentally verify this, we evaluated the algorithm on a depth input sequenc@Oofrdmes taken
from the dataset diGanapathet al, 201(4. We computed the first 20 geodesic extrema for each
of the 400 frames using both a baseline algorithm that runs a full Dijstrapassh iteration and
our optimized algorithm. We traced the number of nodes visited in each iteratiegllass the ac-
tual run time for each iteration. Figure 8.9 shows that in the first iterationathable nodes iM,

(on average there were more than 6000 nodes in the graph) were vigitibde. second iteration,
only 413+ 61 nodes (average standard deviation over all frames) were visited. This substantial
reduction is also reflected by the run time of the algorithm, which drops from 1 eaidisd in the
first iteration to about @58+ 0.0085 milliseconds in the second iteration, see Fifgure 8.9 (b). As a
result, the overall run time for computing the first 20 geodesic extrema is bgihglg higher than

the run time of the original Dijkstra algorithm for computing the first geodesieexum. Thus,

the algorithm allows us tofciently compute a large number of geodesic extrema.

The overall approach enables the detection of semantically meaningfeffentbr positions even

in difficult scenarios. Figurfe 8.110 shows a number of challenging exampless Vegs occlude
each other (b)-(c), multiple body parts occlude each other (d)-(fastgunching motion with
occlusions is performed (g)-(k), a leg is bent to the back (l), and thdshare outstretched to the
camera (m). However, in poses where the effidotors are very close to other parts of the body,
the topology of the graph may change and the detected extrema fferyfidim the actual set of
end dfectors, see Figufe 8111(a)—(c). In these poses, the left elbow, tlehtefider, and the left
hip are selected a:? respectively. Also, flying mixed pixels can cause the topology of thetgrap
to change, as depicted in Figure 8.11 (d), where we show a pose amseaffrontal view and
once from a side view. Note that although the left hand keeps a redsdisiance from the head,
mixed pixels build a bridge in the graph from the hand to the head. Thus, thefifremum is
located at the elbow. Figure 8111(e) shows a similar situation in which the heatldstected due
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Figure 8.10.Example poses with the first five geodesic extrema drawn asgigres, and extrema 6 to 20
drawn as smaller blobs. For many poses, the first five extremragpond to the endfectors, even when
self-occlusions are present.

Figure 8.11. (a}(c): Problematic example poses. In particular when the handeeadose to the body,
end dfector detection becomesfiidicult. (d)-(e): Flying mixed pixels lead to deviations in the enfleetor
detection.

to mixed pixels. Instead, the fifth extremum is located at the hip.

In the subsequent section, we will explain the discriminative componentrdfamaework, where
pose candidates are obtained from the database by using the positioesfioéttfive geodesic
extrema as a query. If the enffectors are not revealed by these extrema, however, the obtained
pose candidates are often meaningless. As will be explained later, thengdloé such mean-
ingless poses on the final pose estimates can be minimized with our combinedtigenand
discriminative framework.

8.4.3 Database Lookup

As for the database lookup component, the goal is to identify a suitable fayl-bosey°® from
our pose database using the extracted geodesic exEéraa the query input. However, as op-
posed to the database motions where the semantics of thefentbe positions are known, the
semantic labels of the extrema on the query side are not known. To partibly oo miss-
ing semantics, the methd@anapathet al, 201( uses a classifier trained on ‘hand’, ‘head’, and
‘foot’ patches of distance images. This process, however, is relatgignsive (taking 60 ms
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per frame according tiPlagemanet al, 201() and is thus not directly suitable in real-time sce-
narios. Also, when using depth data alone, misclassification of patches oaigint because of
missing color information, strong noise, and the low resolution of the measntema order to
circumvent the classification problem, we propose a query strategy thatria rely on having
a-priori semantic labels for the extracted geodesic extrema. Intuitivebkspe we use dierent
queries that reflect ffierent label assignments. As explained in the following, from the retrieved
poses, we then choose a candidate pose that most likely corresponedstortct labeling.

Let S5 be the symmetric group of all five-permutations. For a permutati@md a five-tupleE,
we denote the permuted tuple bye. Now, letS C Ss be a subset containing permutatians
such that the positions iorE|5 are close to the endfectors of the previous framg' ;. More
specifically, we define

S:={oeSs¥ne[1:5]: g™ - e Il <p) (8.4)

In our experiments, we use a distance threshold-6f0.5 meters to ffectively and conservatively
prune the search space while still allowing for large jumps in the éi@tter positions which
may be present in fast motions. In frames with clear geodesic extrema,rtiteenof considered
permutationdS| typically drops to one. To further increase robustness to false estimations in
the previous frame, we add additional permutations b we detect jumps in the positions of
the geodesic extrema. To compute the additional permutations, we assumesttva towest
extremaw.r.t. the vertical axis, sag ande?, correspond to the feet. This leads to two possible
label assignments where the label ‘left foot’ is assigned to eihar €. For each of the two
assignments, the remaining three extrema can receive @!different labelings. This leads to

2 -6 = 12 additional permutations added$o

By querying thekd-tree of the pose database fmearest neighbors for each permutatiorsin
we obtainK - |S| pose candidategy» with k € [1: K] ando € S. For eachK, o), we define a
distance value between the pose candigateand the permuteEI5 by

S(xko» EY) = 15 - |Ey,, — TE7Il2. (8.5)

Note that to compute the distan(gy ., Ef), we stack the tuples,, . andaEl5 into 15-dimensional
vectors, respectively. The result of the database logkup- for framet is then chosen by also
considering temporal consistency using

K, o") = ar(gK rr)1in/l - 8(ke» EY) + (L= 2) - dp(xkors X 1) (8.6)
with a weighting factort that balances out the influencedy (defined in Equatioi(8l1)) and
In our experiments, we use = 0.5. Finally, we refineyy + to the hypothesigP? using local
optimization as described in Section 814.1.

8.4.4 Hypothesis Voting

At this stage, two alternative pose hypotheses have been derivedlyngf&P! from the gen-
erative and¢°® from the discriminative component. In the next step, we need to createle,sing
final posey; taking both hypotheses into account. Recall that the pose hypoi{&sisight be
inaccurate when the endfectors are not revealed. Therefore, it is not meaningful to take the
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average pose of-°cOPt and yPB as final pose. Instead, for this late-fusion step, we propose a
novel voting scheme that decides for eithg¢PCPt or yPB as the final posg; based on an ef-
ficiently computable sparse and symmetric distance measure. With the projdisedstrategy,

the local optimization and database lookup schemes benefit from each®©thtre one hand, if
the database lookup component fails, then the local optimization compomecortinue to track

the motion. On the other hand, the local optimization might fail to track fast angbtimotions.

In such situations, the database lookup can reinitialize the tracking.

In the proposed voting scheme, we want to avoid a dominant influenceexiti errors coming
from the feature extraction or from the database lookup. Therefozaysg distance measures
that revert to the original input point cloutll; rather than to derived data. One possible distance
measure could be defined by projecting, into a distance image and comparing itlto In
practice, however, because of the relatively low number of pixels in thdithids, such a distance
measure is dominated by the torso. For this reason, we propose a naaatdisetric that can
be computedféiciently and that accounts for the importance of the limbs for pose estimation.

To this end, we combine two sparse distances measures. The first distpnesses how well the
mesh is explained by the input data:

1

Ay, om = — min ||p — V2. 8.7

MM |CX|V€ZCpeM|”p l2 (8.7)
X

Here, we revert to only the subsg{ < M, of vertices as defined in Sectign 8J4.1, see also
Figure[8.6 (a). Likewise, the second distance measure expressesdibwiwis explained by
M,:
1
dypgom = — min ||€' — V||5. 8.8
MM, = 55 ne[;zow% €] = il (8.8)

To emphasize the importance of the limbs, we take only the first 20 geodegmexuf the input
depth data, which largely correspond to points on the limbs rather than tle $eesFigurg 8.10.
Since also for the mesh we take only a subset of vertices, see Eigureg, 8@ (@istance measures
are sparse. Both distance measures can be compfiicidrely because firstly, geodesic extrema
can be extracted venyficiently (Sectiori 8.4]2), and secondly, only a small number of points are
taken into account. The final poggis then given through

xi = argmin  (drom +dpom)- (8.9)
)(E{ XtDB’ XtLocOpt}

8.5 Experiments

We implemented the proposed hybrid tracking strategy #+@nd ran our experiments on a
standard 6-the-shelf desktop PC with a&@GHz CPU. To numerically evaluate and to com-
pare our hybrid strategy with previous work, we used the publicly availabtehmark dataset

of [Ganapathéet al, 2010. In this dataset, 28 sequences of ToF data (obtained from a Mesa Imag-
ing SwissRanger SR 4000 ToF camera) aligned with ground truth markiéiopegobtained from

a marker-based motion capture system) are provided. This dataset asvif#@0 frames in to-

tal. In addition to numerically evaluating on this dataset, we demonstratdéfdativeness of the
proposed algorithm in a real-time scenario with fast and complex motions eddtom a PMD



118 CHAPTER 8. AHYBRID APPROACH FOR RECONSTRUCTING HUMAN MOTIOD

0.25] ||

©
N

0.5 L | [+

o
-

i
0.05| Wl

0.25

o
N

0.15

o
[

0.05] il

Avg. Pose Error [m] Avg. Pose Error [m]
o

o

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 8.12. Average pose error and standard deviation of sequences 27 &b the dataset
of [Ganapathét al, 201(. Bars left to right: Using only local optimization, usinglgthe database lookup,
results using the proposed fusion scheme, and values eednyiGanapathet al, 201( (without standard
deviations).

Camcube 2 in a natural and unconstrained environment, see Eigule 8. Fgane[8.14. In the
accompanying videfBaaket al, 20114, we show that the same framework also works with the
Microsoft Kinect depth sensor without any further adjustments.

8.5.1 Feature extraction

First, we evaluate theflectiveness of the proposed feature extractor on the benchmarktdatase
Not all ground truth markers in all frames are visible, thus, for this evaloati@ use only the
3992 frames in which all five endfector markers are visible. A good recognition performance
of the feature extractor is needed for a successful subsequebadattokup. In 86% of the
3992 frames, each of the found five geodesic extrthés less than @2 meters away from its
corresponding ground truth marker position. This shows that we ffantieely detect the end
effector positions for most motions contained in the test dataset.

8.5.2 Quantitative evaluation

We run our motion reconstruction algorithm on the benchmark dataset. Smceittace mesh
of the actor is not part of that dataset, we scale the input point cloud datesit roughly fits

the proportions of our actor. We manually fix correspondences beteaem motion capture
marker and a mesh vertex. For a test sequence Wiitames, letM; be the number of visible
motion capture markers in franiglet m; be the 3D position of thé" visible marker in frame
t andfi; the position of the corresponding mesh vertex of the reconstructed pssaso used
in [Ganapathet al, 201(, the average pose error for a sequence is computed as

T M

_ 1 -
Gavg = DT limy = myllz. (8.10)

T
Zt:l Mt t=1 i=1
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Total ~ Preparation Local Optim. E?  Lookup Voting

. 16.6 ms 12ms 57ms 62ms 12ms Q09ms

Full resolution
100% 7% 34% 37% 7% 5%
. 100ms 11ms 46 ms 15ms 12ms Q09ms

Half resolution
100% 11% 46% 15% 12% 9%

Table 8.1. Average run times in milliseconds over all frames of the iemark dataset.

Whereas the overall accuracy of the tracking algorithm is expressetwhys of Equation (8.1.0),
potential local tracking errors can be averaged out. Therefore sev¢his evaluation measure to
show tendencies in the accuracy by comparirffedint pose estimation strategies for all bench-
mark sequences, see Figlre 8.12. To this end, we report how the fgalzation component
(Sectior{8.4.11) and the database lookup component (Séction 8.4.3)pénttividually, without
being combined with the late-fusion hypothesis voting. When using only |gtahization (£
bar) the method often gets stuck in local minima and loses track. When using adtabase
lookup (29 bar), poses where the enffextors are not revealed by the first five geodesic ex-
trema may cause a false lookup result. Thus, in terms of the average posebeth meth-
ods, when run separately, do not perform well on all sequences. 3ftbar shows the result
of the proposed hybrid strategy which leads to substantial improvements. irAlsomparison

to [Ganapathet al, 201( (last bar, std. dev. values were not available), we achieve comparable
results for basic motions and perform significantly better in the more compieresees 20 to 27.
Only for sequence 24, the methff@anapathet al, 201( performs better than our approach. The
reason for this is that this sequence contains & 8&@tion around the vertical axis, which cannot
be handled by our framework. However, our system can cope with rotaiticthe range 0£45°
since we normalize the input data based on the estimated viewing direction.eHoertbhmark
dataset, the hypothesis voting component decided i %2of the frames for the retrieval com-
ponent, and in 75 % for the local optimization from the previous frame. With our hypothesis
voting, we significantly reduced the average pose error of the final @stimate in comparison to
either method ran individually.

8.5.3 Runtime

In Table[8.1, we report the average run times of our motion reconstruatomefvork in mil-
liseconds per frame. lIfiGanapathet al, 201(, the authors report a performance of 4 FPS on
downsampled input data. By contrast, with our proposed algorithm, weveddgl FPS (166 ms
per frame) on average on the full resolution input data, and 100 FR@r{iHper frame) with half
of the resolution which we track with nearly the same accuracy. The run tireeoeparable to
or even better than other state-of-the art approacheg§3ikettonet al, 2011 where the authors
report “at least 18" speedup with respect tfGanapathet al, 201(. As for a more detailed
analysis, we also give the run time of each algorithmic component, namely thpréatration
phase (Sectidn 8.3), the local optimization component (Selctiod 8.4.1), thesfeattaction (Sec-
tion [8.4.2), the database lookup (Section 8.4.3), and the voting (Séctioh. 8Mof¢ that our
efficient algorithms lead to run times that are well distributed among tffiereihnt components,
such that no clear bottleneck is present. For the full resolution, the run fifnead optimization
and the feature extraction are approximately the same. The latter benefitfanostownsam-
pling the data.
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Figure 8.13. Snapshots of our results on fast and complex motions on datared with a PMD camera.
For every motion we show a video frame of the actor (not usedréaking), ToF data overlaid with the
reconstructed skeleton, and a rendering of the correspgmiéesh.

8.5.4 Qualitative evaluation

In Figure[8.18, we show example results of fast and complex motions cedjptuaa unconstrained
environment. The considered motions are much faster and contain morengivajlposes than the
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ones used ifiGanapathet al, 201(. The leftmost image in each subfigure shows a video frame
of the motion captured from a separate video camera not used for the nmetmrstruction. In the
room where we recorded the data, the video camera was standing to thietheftdepth camera.
The middle image shows the depth data overlaid with the estimated skeleton of éyg pdse
rightmost image depicts a rendering of the surface mesh in the correspmutie.

The first row (Figurd_8.13 (a)) shows some frames of a successfutigeiamotion sequence.
Even though the left foot is bent to the back and is nearly hidden fromeapthad¢amera, the 3D
geometry of the legs has been recovered correctly. Flguré 8.13(Imxsléjfficult bending mo-
tions. Despite of the fact that such poses were not part of our paabat®, the motions were
tracked successfully. For such motions, the regBh of the lookup step does not reflect the true
pose of the actor. Thus, our voting scheme decided in each frametbpfoe¢he local optimiza-
tion component which successfully tracked the motions. Figurd 8.13(¢qiosrtypical failure
cases. The first two images show poses with severe self-occlusion afeictill a challenge for
motion reconstruction. Nonetheless, the overall pose is reliably captodesian tracking quickly
recovered once the occlusion was resolved. The rightmost image shcage avhere the right
arm was not visible in the depth input data. Since the proposed method adkateadeast parts
of all limbs are still visible in the depth data, the pose of the right arm is noéctiyrrecovered.
Figure[8.18(d) shows examples of fast jumping, punching, and kicking ntidere the first
two motions are additionally rotated to more tha#5° around the vertical axis with respect to
the frontal viewing direction. The poses in this row are roughly recakelowever, small mis-
alignments of some limbs might occur as visible in the right leg and the right arpeateely.
Also note the inaccuracy in the left leg (third pose). Such minor inacciwa&eir locally occur
and are typically resolved after a few frames. Fidurel8.13(e) shows goses of a successful re-
construction of a sequence with fast and complex kicking motions. Note ttieg second pose of
Figurd8.13B (e) itis dficult to distinguish the left leg from the right leg when having only the depth
data of a single frame. However, since the local optimization and the datialb&se components
use temporal continuity priors, the legs can be tracked successfullylyfFFigure[8.13 (f) con-
tains a very fast arm rotation motion in a pose where the arms are close todusatigetched to
the camera (first image), and a jumping motion in a similar pose (second imagejugtitionly

a small part of the arm is visible to the depth camera due to self-occlusiordDtijeometry of
the arm is successfully recovered. The last image shows a pose whdrarttis touch éierent
parts of the body. Despite of the fact that in such poses not all geceldsitna inEf’ correspond
to the end #ectors, the motion has been tracked successfully since the voting scheinhedder
the local optimization component. In the accompanying vilBaaket al, 20114 we show the
performance of our prototype implementation also with the Microsoft Kinggtideamera.

First experiments showed that actors witlffelient body proportions can be tracked if they are
not too diferent from our body model. Therefore, we scaled the input data tdlpuagatch the
proportions of the model, see Figlre 8.14 and the accompanying videxeimpées.

8.5.5 Limitations

In the proposed framewaork, we rely on certain model assumptions inadetages of the frame-
work. For example, we use a rigged surface mesh that is assumed to éspextive actor to be
tracked. Therefore, we cannot directly track persons with substardiéigrent body proportions
than the ones reflected by the surface mesh. However, as shdWfisset al, 2017, the depth
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Figure 8.14.Experimental results with afierent person (ToF data from a PMD camera).

input can be used to estimate the body shape of the actual person. pestents have shown
that one can use the same motion reconstruction pipeline after applyingraqasging step where
the pose database is retargeted to correspond to the estimated body shape.

A second limitation arises in situations where only parts of the actor are visibleifietldl of
view of the depth camera. Two assumptions within our framework lead to fakeegstimates in
these situations. Firstly, in the local optimization component, corresponslbetgeen the mesh
and the depth data for all body parts of the mesh are established. If somealienbst visible in
the depth data, then the correspondences will inherently be semanticallisectcésecondly, the
geodesic extrema will not correspond to the limbs anymore and retrievelobdataoses can no
longer stabilize the pose estimation. Therefore, the full body of the actoitdalways be visible
in the depth data.

Another problematic situation can occur when the effdotors are not revealed for a longer
period of time. Although we run two pose estimation components in parallel, @achanent in
isolation does not give satisfying pose estimates as shown in the accompaiggn—it is the
combination that facilitates stable and accurate results. Therefore, iffaéhe components fails
for an extended period of time, the results might become unstable. For ex#rtipend éectors
are not revealed by the geodesic extrema for many successive frammedgorithm continues to
track using only local optimization. Then, fast motions lead to unstable ptiseatisn results,
which are resolved as soon as the effdaors are detected again. To overcome this limitation,
additional techniques for detecting enffieetors could be employed. For example, a fast method
for detecting body parts similar {&hottonet al, 2017 could be used to identify the enéfectors
and supplement the geodesic extrema detections.

Finally, we expect the user to face the camera and rotate the body only wityical range for
interaction £45°). We make use of this assumption in the normalization step in Sécfioh 8.3.4. By
normalizing the depth data with respect to the estimated viewing direction, weseanaompar-
atively small pose database that contains each pose only in one normaiedtmon. However,

with our proposed method, the estimates for the viewing direction become lenstede the user
leaves the admissible range of rotations. Since the database lookup corn@dies on a correct
normalization of the input data, the retrieved pose hypotheses will nottréfketrue pose in such
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cases. Another problem with strong rotations of the body is that then limimsaeelikely hidden
behind the body. To meliorate pose estimates in these situations, one could engyogmic
model for simulating hidden limbs.

8.6 Conclusions

In this chapter, we introduced a combined generative and discriminaiveswork that facilitates
robust as well asficient full-body motion reconstruction from noisy depth image streams. As one
main ingredient, we described affieient algorithm for computing robust and characteristic fea-
tures based on geodesic extrema. These extracted geodesic extrarsadaas query to retrieve
semantically meaningful pose candidates from a 3D pose database,netreeq@iori semantic la-
bels of the extrema are necessary. Finally, a stable fusion of local optinmzettbglobal database
lookup is achieved with a novel sparse distance measure that also ectmuhe importance of
the limbs. For all components of the pipeline, we have descrifisiest algorithms that facilitate
real-time performance of the whole framework. In our experiments we ingpron the results of
previous work, both in terms ofiéciency and robustness of the algorithm, as well as complexity
of the tracked motions.

As for future work, we plan to integrate a dynamic model for achieving stabligon reconstruc-
tion also for 360-rotations and for occluded limbs. Furthermore, the fast run time of our metho
is one main building block that could spur further research for captuewgral interacting people.
Finally, we aim to integrate a method for automatically estimating the surface mesh péiton
from depth data only.
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Chapter 9

Conclusions

Analyzing, tracking, and reconstructing human motions constitute importaicstapcomputer
vision and computer graphics. In the analysis, one main challenge comethgdact that seman-
tically similar motions may exhibit significant spatial and temporal variations. Aghauarping
and alignment techniques caffextively cope with temporal variations, they may be prohibitive
when dealing with large collections of mocap data due to complex computatiotigmahemory
requirements. Further challenges can be found in the tracking andstaaction tasks, where a
3D representation of the human pose from camera- or other sensor datbeésestimated. In
particular when using a small number of cameras, the task is consideratdy-constrained.
Moreover, noise in the underlying data, fast motions, or self-occlusemder the problem even
more dificult.

In this thesis, we introduced novel data-driven algorithmsfitectively tackle challenges in mo-
tion analysis, tracking, and reconstruction. As one main contribution, welaj#ed a robust
framework for content-based annotation of unstructured collections cdmdata. In particular,
we introduced a novel keyframe-based search algorithm which canwibip significant tempo-

ral variations in the motions. By applying this algorithm in the annotation framewee were
able to dficiently handle large collections of mocap data. As a further contribution eweloped
novel data-driven approaches for marker-less tracking and s@cation. As common underly-
ing methodology, we dynamically extracted and integrated prior knowledgentime from a
database of mocap data using content-based retrieval techniques. Wwathis/e significantly
increased the accuracy of the tracking aff@aively prevented tracking errors. The application
of novel sensor types in motion analysis and reconstructions represmttger main contribution

of this thesis. Here, we showed how inertial sensors can be usefidotiwely detecting tracking
errors. Moreover, we introduced a novel approach for dateednmotion reconstruction from a
single depth camera which greatly improved accuracy, stability, ficdescy in comparison to
previous state-of-the-art algorithmsffi€iency issues played a major role in all parts of the thesis.
We developed and implementefiieient content-based techniques for retrieval and annotation of
large mocap collections. Furthermore, in the last part of the thesis, we uciddfficient algo-
rithmic components for data-driven motion reconstruction that lead to aalomen time of about

16 milliseconds per frame, which exceeds the requirements for real-timbiligpa

There are several interesting directions of research for future indi&ated by this thesis. Chal-
lenging open problems for mocap annotation can be found for the anafyggstures. Here, the
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automated temporal segmentation into the basic movement phases, whichresemtgd by the
succession preparation—hold—stroke—hold—retraction, is still an opmsigm. Also, detect-
ing and automatically labeling fierent types of gestures is dftiult research topic. The main
challenges come from the high inter- and intra-person variability for the $gpeeof gesture.
Also, the extreme dierences in the temporal extend offdrent gestures increases thé&idulty
of the annotation task, where some gestures last for several seéomngelsaimple, a ‘calm’ gesture
with an extended ‘hold’-phases), and other gestures might only laatffaction of a second (for
example, a ‘pointing’ gesture).

Invariance to dferent motion style represents one main challenge of robust mocap annotation
procedures. As a complementary goal, strategies for identifying a spacific in mocap data
could be explored in future work. Here, the extraction of motion nuanlegs jan important role.
Such automated analyses may be applied in areas such as medical rehabiagi@one goal is

to detect anomalies in motion style. Moreover, the amount of deviation fronmnaahgait could

be measured.

As for the data-driven stabilization of tracking, we explored a method fiegiating retrieved

motion priors from a mocap database. In this context, techniques for autattyatinhancing

the database knowledge in an online learning manner could be subjectr® fesearch. In one
possible scenario, motions which are correctly tracked with a high corfidaruld be integrated
into the database. Therefore, a suitable confidence measure wouldohbgedeveloped that
correctly predicts whether a motion contains tracking errors. Hereigdpace has to be taken in
order to avoid that false predictions lead to an inclusion of motions with traekirays into the

database.

Our approach for real-time tracking from a depth camera may open numapmlications in the
areas of human computer interaction, virtual reality, medical rehabilitatiosparts sciences.
However, some applications require even more robustness and stabiligcthiamed with current
state-of-the-art algorithms. For example, in our current approach, linsibgre not visible in the
depth datad. g, because of self-occlusions), might be mapped to the nearest visibjephat
One possible approach for improving tracking in such situations might ina@uatgtom-up de-
tection of limb visibility with an approach similar f&hottonet al, 2017. Then, limbs could be
included or excluded from the motion reconstruction based on the detésiieitity. As a further
improvement, approaches that are also capable of reconstructifig@@0ons could be explored.
At least two problems would have to be solved for this task. Firstly, rotatiangd the longitudi-
nal body axis inevitably lead to strong occlusion of the limbs. Secondly, tmglback ambiguity
would have to be solved: for many body shapes, the depth data for dguisg the camera is
similar to the depth data for a corresponding pose facing away from theaa@ee possible so-
lution for this problem could exploit temporal continuity assumptions. Howdwenan motions
can be abrupt and unpredictable, where continuity assumptions might faékefbre, the inte-
gration of knowledge derived from additional sensors could assistaslks For example, a color
camera could be used to estimate whether the front or the back of the perésible based on a
detection of skin color in the region of the head. Another solution could beddy combining
motion reconstruction based on a depth camera with an additional inertiat séffsen placed on
the back of the person, the sensor could be used to resolve thg&okhambiguity. Moreover,
orientation data from the inertial sensor may lead to a stabilized detection déthieg direction,
which could lead to improved pose reconstructions also in challenging bashtations.
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A further extension is motivated by body-controlled computer games. ler éodcontrol a game,
a full 3D pose reconstruction of the player might not always be requidetvever, the raw depth
input data might not carry enough information to control the game. InstBadyrogression of
the game might be controlled by a mid-level representation comprising semanticrolatsses.
For example, the input of a simple rafting game could consist of the motion slasaék to the
left”, “walk to the right”, or “jump”, which could be detected from the playerhotion. One
advantage of such a strategy is that local tracking errors which still paroaitrect classification
of the motion would not influence the gameplay. In the game, the motions of thel\éHaracter
could be played back based on the mid-level motion class input using psgvie@gorded mocap
data. In particular, the displayed motion of the virtual character would @dgmble the rough
order of motion events instead of exactly copying the poses of the playativaied by such a
scenario, classification methods similar to the ones in Part | could be extandedmbined with
methods for real-time motion reconstructions as described in Part Il im tydmiild a real-time
input controller for computer gaming applications.
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Appendix A

Inertial Measurement Unit

An inertial measurement unit (IMU) consist of two basic sensors, nhame&ly accelerometer and

a 3D angular rate sensor. Often, such an IMU is enhanced by an addlitiaignetic field sensor.

In this appendix, we describe theffdrent sensors contained in an IMU (Sectibnsl A.1}-A.3) and
briefly motivate how orientation data is commonly derived from the measuted Saction A.4).

As a prerequisite, we first define a global, fixed coordinate system ohémngal world F®, see
Figure[A. In this coordinate system, tieaxis points towards the north pole, tEeaxis is
the vertical axis pointing upwards, and tieaxis is chosen to yield a right-handed orthonormal
coordinate system. The coordinate system is defined in this way since @alisensor is able to
measure the direction towards north using a magnetometer as well as thelsipvaction using
the accelerometer. The orientation of the sensor is defined as a rajaticat rotates the basis
vectors ofF to the basis vectors ©.

A.1 Magnetic field sensor

In the process of estimating the orientation of an IMU, the magnetic field sptess a crucial
role. In the following, we will explain that the magnetic field sensor allows abl id estimate

Z% (Vertical) |FY AY"
A xu

ZLI

FG| YGI q|

» X% (North)

Figure A.1. Relation between the global inertial coordinate systthand the local sensor coordinate
systemfF"
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Magnetic north pole Geographic north pole

Figure A.2. Sketch of the earth magnetic field. Underlying image of ththeabtained with Google Earth.
Copyright note: Google eartf©2012, TerraMetricg92012, CnetSpot Image.

a fixed reference direction. As sketched in Figurel A.2, the magnetic fiekngeon the surface
of the earth are observed as horizontal vectors parallel to the graeardtime equator, and are
perpendicular to the surface near the magnetic poles. The magnetic fietat &ea 3-dimensional
compass that measures the direction of the magnetic field. For estimating a siziation of
the sensor, we need to estimate the direction towards the magnetic north polgé&oneasured
magnetic field. Note that this is only possible when bein@jcently far away from the magnetic
poles.

The term “magnetic north pole” is confusing in the sense that it actually ibesathe south pole
end of a bar magnet approximation of the earth magnetic field, see EigureTAereason for
this is historic: magnets are used in a compass to determine the direction towsetdsMore

specifically, the needle of a compass itself consists of a bar magnet. Tihepate end of this
needle is labeled with “N”. Since the north pole end of one magnet attract®thle gole end
of another magnets, the “N” on the compass needle is attracted by magneticpstel of the

earth. Thus, the north pole on earth should more correctly be named-$eeking” pole. In the
following, we will choose the conventional naming of the north pole althoughdpposed to its
physical interpretation.

The direction and magnitude of the magnetic field vectors mostly depend on thdifetitaoor-
dinates on earth. For example, on the equator, the direction of the magndtiefieors would be
approximately parallel to the ground, pointing towards the magnetic north'plaéemagnetic field
vectormis commonly described by the inclination and declination angien@6) as well as the
magnitudg|ml|, in Tesla units. The inclinatiop depicts the angle with respect to the horizontal
plane, where positive values represent the downwards directiomemadive values represent the
upwards direction. The declinatieris defined as the angle offtirence between true geographic
north and the magnetic north. The meaning of a positive declination is that thgdngraphic
north is located west of the measured magnetic north. All three quantitiegelstowly in time
and can be looked up in the database of the National Oceanic and Atmicsftierinistration
(NOAA) [2017 for a given location and time. For Saaiilbken in 2012, the corresponding values
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Figure A.3. Computation of the magnetic field vectorin the global inertial coordinate systeft using
the inclination and declination angles.

are
¢ = 64° 53 = —66.883 (A.1)
9=1°8 =1133 (A.2)
Imil, = 48.255uT (A.3)

For an algorithm with the goal of estimating the global coordinate systérby using the mag-
netic field vectorm it is crucial to know how to mathematically express the measured vettor
in F®. In the following, we show hown given in the global coordinate systefff' can be easily
computed from the quantities inclination, declination, and magnitude. In Higiew® draw a
sketch of the geometric relations of the quantities with respelePtoThe inclination is depicted
as—¢ since positive values are defined as pointing downwards in the definitibd@&A, 2017,
and we want it to point upwards in the sketch. Similarly, the declination is delésted since we
draw it in the direction opposite to its definition. From elementary geometry, waletermine
the components of the magnetic field vector as follows:

m; = [Imll2 sin—¢ = —|Imilz sing (A.4)

7 = [Imil2 cos—¢ = ||mi]2 cosy (A.5)
My = 7 C0S—6 = ||m||2 COSp COSH (A.6)
my = 7Sin—6 = ||m||2 cosy Sin—6 = —||M|2 COSp SiNné. (A.7)

Using these computations, the ground truth vector of the earth magnetic figledserd in the
coordinate syster®® can be computed. The magnetic field sensor can estimate this direction
expressed in its local coordinate systéth. By claiming correspondence of the ground truth
direction expressed iR® and the estimated direction expresse#in the directional information

can be used as a constraint for estimating the rotatidfsgin'. However, a directional constraint
alone does not carry enough information to fully determjhe Also, the magnetic field sensor
reacts comparatively slow on changes of the IMU’s orientation since teagitr of the earth
magnetic field is low. Moreover, the earth magnetic field is often disturbed tgnfiagnetic
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materials or electronic devices which emit an electromagnetic field. Additionallromments
can even be completely shielded against the influence of the earth magnéticTfierefore, in
practice, special care has to be taken when incorporating these nraastsdor estimating the
orientation of the device. For example, if the measured magnitude of the mafjeleticector
deviates from the ground truth magnitude, then it is likely that the earth magredtiadieither
shielded or superimposed by disturbing fields. Then, the measurementd asbbhave a strong
influence on the overall estimated orientation of the device. In an IMU, additisensors as
presented in the next sections also have an influence on the estimatediorierita

A.2 Angular rate sensor

The angular rate sensor measures the change of the orienfatioer time,i. e., the first temporal
derivative ofg'. Thus, given an initial orientation, the measurements can be used to upelate th
orientation of the sensor over time. Although theoretically this sensor alots ywaough infor-
mation to update the orientation estimates over time, noise in the measurements qaig&liole
drift in the orientation estimates.

In the following, we show how one can perform computations with rotatioakcities. There-
fore, we derive an algorithm that can be used to compute rotational vefo@@isemeasured by
an inertial sensor) from a given stream of orientatighs-similar computations can be applied
for the opposite task of updating orientations given a stream of rotati@hatities. The vector
w = (wx, wy, ;)" represents the 3-dimensional angular velogity, the sensor’s angular veloc-
ity around itsX, Y, andZ axis. By = (0, wx, wy, wZ)T, we embed the angular velocity into a
quaternion with a zero real part. In physics books, the definition of tlgelanvelocity in the
time-continuous case is noted as:

§ = % = %é)(t)q(t) with (A.8)
da(t)—
o) = 2%V (A.9)

Let us transform this equation into the discrete time case using a sampling ratatof Let
g(t — At) andq(t) be the orientations of the previous and the current sampled instances pf time
respectively. Then, the derivative discretizes to

da(®) _ a®)-a(t- A

=~

dt At

(A.10)

Now, in order to extract the rotational velocity (a 3-dimensional vectamfthe 4-dimensional
guaternion, we extract the imaginary components using the loperator:

A - alt-AY

A q(t— At (A.11)

wl)=2 Im(

Note that the dference in the numerator is implemented as a pointwifferdince of the scalar
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Algorithm 5 Computation of rotational velocity

Input:  q(t): Current orientation, mapping froft' to F.

q(t — At): Previous orientation, mapping froft' to F&.

At: Time that has passed between the current and the previmuation.
Output:  w: Rotation that maps from the previous time to the currenetigiven inF- .

if (q(t),q(t — At))) < Othen
q(t) < (-a®)

end if

w — ﬁ Im (q(t) oq(t-— At))

components of the quaternions. Equation (A.11) simplifies to

w(t) = % Im (q(t) o q(t - Af) — q(t - At) o q(t - At)) (A.12)
= A%Im(q(t) oq(t— At) - (1,0,0,0)) (A.13)
= A%Im(q(t) o q(t— At)) (A.14)

The last simplifications is possible since the subtraction of the quaternion idéogisynot change
imaginary components extracted by the(liroperator.

Care has to be taken when the quaternidfedencey(t) o q(t — At) is implemented. The reason is
that there are two quaterniogsnd—q that represent the same rotation in the sense that g/loen
—q are used to rotate a vector, they yield the same rotated vector. Howeyagpinesent dferent
rotation paths in the sense that they rotate abouftfardnt axis with a dferent angle. Assuming
thatq represents a rotation about the axiwith an anglew, then—q represents a rotation about
—r with an angle 2 — « (or —a):

a .
q= (cosz, rsin 5) (A.15)
a .
—-q=(- cosz, —rsin 5) (A.16)
- (cos?, (1) sin%). (A.17)

This shows its fflect when computing the mentioned quaternidfedénce. Only if the dot product
between both quaternions is larger than 0, the quaternibereince reflects the shortest possible
rotation. With a sfficiently small temporal quantizatiofit, the shortest possible rotation will
always reflect the correct representation of the rotational velocity.cbirect way to compute the
rotational velocity in local sensor coordinates is summarized in Algoiithm 5.

A.3 Accelerometer

The linear acceleration of a rigid body is the second temporal derivdtihe positional trajectory
of its center of mass, given in the continuous time case as

A=V=X (A.18)
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Figure A.4. The measured acceleratianis an overlay of the acceleration due to the mof@oand the
acceleration due to gravity.

In the following, we show how the gravityffects the acceleration readings of an acceleration
sensor in order to motivate how one can make use of the gravity for the taskimating the
orientation of the IMU. To this end, we derive equations in the discrete timefoasimulating
sensor readings given the trajectory of its center of mass in coordirfaf&s o

First, Equation[{A.IB) has to be discretized. The derivative can beetiized in diferent ways,

in the simplest case by a one-sideffelience. Let the position of the center of mass of the sensor
p(t) be given in coordinates &©'. In the following, we use the superscrigtto indicate that the
computed velocity and acceleration are giveRfhas well. We derive the formula for computing
the acceleration of the moticaf:

p(t) — p(t - At)

v(t)© = N (A.19)

v(t — At = Pt - AY ;tp(t — 2AY (A.20)
P Ul Z(tt - Ay° (A.21)

_ P(t—2A0) - 2p(t - At) + p(t) (A22)

At?

An accelerometer measures an overlay of the accelerafiodue to motion and the acceleration
due to gravityg® ~ (0,0,9.81)" m/s?, see Figur& Al4.

a®(t) =a%(t) + g® (A.23)

Note that at first sight the measuremeg® ~ (0,0,9.81)" m/s’> seems to be unintuitive since
the measured vector points upwards although the gravitational field onpeantis towards the
center of the earth (downwards). This can be explained as follows. mE@sured component
of the gravity is zero ife. g, the sensor is far away from any gravitational influence in space.
Also, if the sensor within the gravitational field of the earth falls down in agmrfacuum, the
measured gravity component will be zero. However, in a non-vacuunajttifriéction slows down
falling objects (resulting in a measured upwards acceleration) and asstloa terminal velocity

of a falling object is reached, the full gravitational compongft (in upwards direction) will

be measured. Exactly the same situation is present when the sensor liesta susface—the
upwards acceleration that prevents the sensor from falling down will lzsuned.
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As shown in[Boynton, 200}, the magnitude of the gravity on earth is not constant but varies
mainly with latitude and altitude. Therefore, in order to simuldfeas of the gravity on the sen-
sor, the exact magnitude of the vector should be looked up. The ad@mdraglobal coordinates

a® has to be transformed into the local coordinate system of the sensor usiogrtint orienta-
tion of the sensoq(t) to yield the sensor reading (t). Let q[v] be the vectow rotated withg.
Then,

a' (t) = q(©O[a%(1)]. (A.24)

Now, suppose that the acceleration due to moads zero. In this case, only the gravitational
componentg® is measured by the sensor. Then, we know that for the sought orientgt)onf
the device the property

a'(t) = a@®[o®] (A.25)

has to hold. Sinca (t) is measured by the sensor ag¥l is known, Equation (A.25) can give a
hint about the orientation of the IMU.

A.4 Orientation Data

For obtaining orientation data, all available measurements should be takegdotma As John
L. Crassidis has shown in his survi2001, there is a multitude of methods for solving this task
described in a large body of literature. However, as he points out, the Kdifltex framework
“remains the method of choice for the great majority of of applicatiddshn L. Crassidis, 2007

In the following, we will give a high-level idea about the Kalman filter and eferto Welch and
Bishop[1994 and references therein for a more in-depth introduction. The Kalman fiketyjse
of recursive predictor-corrector framework. It is used to estimate tinesiot state vector which
can be thought of as being a vector containing the current orientatiore afethsor, the current
acceleration, the rate of turn and the magnetic field vector. In the firsttbiegurrent state is
predicted one timestep into the future by means of a user-supplied linear mbdemaddel could
in the simplest case assume that the orientation is updated with the currerit ttaie data and
the remaining state variables stay constant. In the second step, the prethitéeid corrected by
integrating all available measurements. The corrected state is the outputcofrtaet time step
and it is used as the starting point for the next time step.

What makes the Kalman filter interesting is the thorough modeling of noise in afi sfejne

framework. For example, in addition to the available measurements, theirtainties can be
taken into account. For example, if a disturbed magnetic field is detected feomagnetic field
sensor, its estimate of the north direction should be integrated with only a iggryhcertainty.
As a result of modeling the noise, not only the current state vector, baotitalsovariance is
estimated. Therefore, the certainty of the estimated orientation is suppliecdatpamhas well. In
fact, it can be shown that a Kalman filter is optimal in the sense that it minimizes tiheated

error covariance—when some presumed conditions ar¢\Welth and Bishop, 2001
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