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Summary

Tracking, reconstructing, and analyzing human motions constitute central topics in computer vi-
sion and computer graphics. Although marker-less motion tracking has beenan active research
field for more than two decades, there are still major challenges, in particularwhen dealing with
only few cameras, noise in the image data, occlusions, or fast motions. In thisthesis, we intro-
duce novel approaches for increasing the stability, accuracy, and efficiency of marker-less human
motion tracking and 3D human pose reconstruction. As one common underlyingconcept, the pre-
sented approaches contain a retrieval component making use of database knowledge in the form
of previously recorded marker-based motion capture (mocap) data. In particular, we contribute to
three different areas dealing with various types of sensors including video cameras, optical mocap
systems, inertial sensors, and depth cameras. Firstly, we introduce content-based retrieval tech-
niques for automatically segmenting and annotating mocap data that is originally provided in form
of unstructured data collections. Secondly, we show how such robust annotation procedures can
be used to support and stabilize marker-less motion tracking. Thirdly, we develop algorithms for
reconstructing human motions from noisy depth sensor data in real-time. In allthese contributions,
a particular focus is put on efficiency issues in order to keep the run time as low as possible.

Zusammenfassung

Die Analyse und Rekonstruktion von menschlichen Bewegungen aus Sensordaten stellt ein zentra-
les Thema in den Forschungsgebieten der Computer Vision und Computergrafik dar. Insbesondere
die markerfreie Bewegungsschätzung aus Bilddaten weist trotz langjähriger Forschungsaktivitäten
noch Defizite auf, die prim̈ar bei schnellen Bewegungen oder verrauschten und unvollständigen
Sensordaten sichtbar werden. In dieser Arbeit führen wir neue Ans̈atze zur markerfreien Rekon-
struktion menschlicher Bewegungen ein, welche den aktuellen Stand der Forschung im Hinblick
auf Stabiliẗat, Genauigkeit und Effizienz signifikant erweitern. Dazu entwickeln wir datengetriebe-
ne Methoden, die Vorwissen in Form von Bewegungsdatenbanken nutzen. Insbesondere tragen wir
zu drei Teilgebieten bei, die sich mit der Analyse und der Rekonstruktion menschlicher Bewegun-
gen aus Sensordaten von Videokameras, optischen Motion Capture-Systemen, Inertialsensoren
und Tiefenkameras beschäftigen. Zun̈achst erforschen wir inhaltsbasierte Retrieval- und Anno-
tationstechniken im Hinblick auf die Identifikation und Extraktion von geeigneten Ausschnitten
aus unstrukturierten Sammlungen von Bewegungsdaten. Dann zeigen wir,wie Retrievaltechniken
zur Stabilisierung von markerfreiem Tracking eingesetzt werden können. Schließlich entwickeln
wir Algorithmen zur Rekonstruktion von menschlichen Bewegungen in Echtzeit aus verrauschten
Tiefendaten. In allen Teilen dieser Arbeit spielen Effizienzaspekte eine große Rolle und es werden
schnelle Algorithmen entwickelt und implementiert.
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Chapter 1

Introduction

1.1 Motivation

Commonly, motion capturing is referred to as the process of recording movingobjects and cre-
ating three-dimensional digital representations of these motions[Gleicher, 2000]. The resulting
motion capture data or simply mocap data constitutes the basis for applications in various fields
such as gait analysis, rehabilitation, physical therapy, bio-mechanics research, sports sciences, or
performance analysis. With increasing importance, mocap data is used in computer animation to
create realistic motions for both movies and video games.

In general, we distinguish betweenmarker-basedandmarker-lessmocap. To date, mocap data
for commercial purposes is predominantly generated using marker-basedmocap systems. These
systems rely on some sort of markers or other tracking devices that are attached to the actor’s body.
Although the use of markers might impair or even restrict the actor’s movements, in many applica-
tion scenarios the advantages of marker-based mocap systems greatly outweigh the disadvantages
coming from markers being attached to the body.

The goal of marker-less motion tracking is to track the actor’s movement without using any mark-
ers or other special tracking devices, thus allowing the actor to move in a morenatural way.
Marker-less motion tracking constitutes a central task in computer vision with many yet unsolved
research problems. Most commonly, existing approaches rely on a calibrated set of optical cam-
eras supplying temporally synchronized streams of image data. In order to describe the actor’s
motion, skeletal mocap data in terms of 3D positions, orientations, and angles ofbody joints are
extracted from this data. To make the tracking task feasible, most of the current systems require
further a-priori knowledge. Such knowledge may be given in form of asurface mesh modeling
the actor’s body, which is often obtained by using a body laser scanner.Another kind of a-priori
knowledge may consist of a specific activity the actor is expected to perform. Here, additional
knowledge in form of suitable example motions may be used to stabilize the trackingprocedure.
Although powerful approaches exist that permit stable tracking in studio setups, tracking algo-
rithms still have to be improved in order to meet or possibly exceed the quality andefficiency of
marker-based systems. In particular, in view of applications such as surveillance, rehabilitation,
and electronic monitoring, there is a high demand for stable, accurate, and easy-to-use tracking
algorithms that do not require the use of external markers.

1
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1.2 Contributions and Organization

This thesis is motivated by the fact that existing algorithms for marker-less motiontracking still do
not reach the robustness and efficiency of marker-based mocap systems. To stabilize and improve
marker-less motion tracking, we investigate the combination of robust retrieval-based algorithms
with existing tracking methods. In both the retrieval and the tracking steps of such data-driven
algorithms, efficient concepts are investigated and implemented in order to reduce the overall run
time of motion reconstruction. In this thesis, we explore multiple sensor types each exhibiting
different noise characteristics. Among others, we show how one can analyze and reconstruct mo-
tions on the basis of data with problematic noise characteristics as obtained from inertial sensors
or depth cameras.

Part I of the thesis deals specifically with retrieval and annotation of marker-based mocap data.
There are many ways to generate marker-based mocap data using,e. g., inertial, mechanical, mag-
netic, or optical systems. Each technology has its own strengths and weaknesses, and we refer
to [Elson, 1994; Gleicher, 2000; Wikipedia, 2012] for overviews and discussions about the advan-
tages and drawbacks of such systems. In Part I, we deal with mocap datacoming from optical
systems. Although such systems can record accurate mocap data very efficiently, the high cost
of creating mocap data (coming from specialized and expensive technicalequipment and the hu-
man resources in form of actors, technicians,etc.) motivates the reuse of existing collections of
recorded mocap data. Therefore, automated methods for analyzing, structuring and organizing
mocap data are needed. A further motivation for developing such methods comes from the fact
that mocap data coming from a recording session often has to be segmented and annotated before
it can be applied in,e. g., the production of movies or computer games.

We present three major contributions in the first part of this thesis, workingtowards the goal
of creating a robust and efficient framework for automated segmentation and annotation of mocap
data. Here, one main difficulty is due to the fact that similar types of motion may exhibit significant
spatial as well as temporal variations. To cope with such variations, existingalgorithms often make
use of computationally expensive warping and alignment techniques. Afterbriefly summarizing
in Chapter 2 the basic concepts as used throughout the thesis, we present a novel keyframe-based
search algorithm that significantly speeds up the retrieval process and drastically reduces memory
requirements (Chapter 3). In contrast to previous index-based strategies, our recursive algorithm
can cope with temporal variations. In particular, the degree of admissible deformation tolerance
between the queried keyframes can be controlled with an explicit stiffness parameter. While our
algorithm works for general multimedia data, we concentrate on demonstratingthe practicability
of our concept by means of the motion retrieval scenario. Our experimentsshow that one can
typically cut down the search space from several hours to a couple of minutes of mocap data
within a fraction of a second.

As a second contribution, in Chapter 4 we introduce a genetic algorithm for automatically learning
keyframes for a given motion category. The presented algorithm relies and builds on the efficient
keyframe-based search algorithm as presented in Chapter 3. As the main contribution of Part I,
we introduce an efficient approach to segment and label mocap data according to a predefined set
of motion categories, each specified by a suitable set of positive example motions (Chapter 5). In
our novel annotation procedure, the unknown motion data is segmented andannotated by locally
comparing it with the available motion classes. In this framework, the keyframe-based search algo-
rithm (Chapter 3) along with the learned keyframes (Chapter 4) are integrated yielding significant
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improvements in the annotation quality and efficiency.

In Part II of the thesis, we combine retrieval techniques described in Part I with previously devel-
oped tracking techniques. In particular, we introduce a novel iterative framework for stabilizing
marker-less human motion tracking in a data-driven manner (Chapter 6). Inthis framework, we
start to track without applying prior knowledge to the tracking algorithm. The resulting 3D motion
sequences, which may be corrupted due to tracking errors, are locally classified according to avail-
able motion categories using an algorithm similar to the one presented in Chapter 5. Depending on
the classification result, a retrieval system supplies suitable motion priors, which are then used to
regularize and stabilize the tracking in the next iteration step. Experiments with the HumanEVA-II
benchmark show that tracking and classification are significantly improved after few iterations.

As a further contribution, in Chapter 7 we introduce a novel framework for automatically evaluat-
ing the quality of 3D tracking results obtained from marker-less motion tracking. In our approach,
we use additional inertial sensors to generate suitable reference information. In contrast to pre-
viously used marker-based systems, inertial sensors are inexpensive, easy to operate, and impose
comparatively weak additional constraints on the overall recording setupwith regard to location,
recording volume, and illumination. As our main contribution, we show how tracking results can
be analyzed and evaluated on the basis of suitable limb orientations, which canbe derived from
3D tracking results as well as from inertial sensors fixed on these limbs. Our experiments on var-
ious motion sequences of different complexity demonstrate that such limb orientations constitute
a suitable mid-level representation for robustly detecting most of the trackingerrors. In particular,
our evaluation approach reveals also misconfigurations and twists of the limbsthat can hardly be
detected from traditional evaluation metrics.

In Part III of the thesis, we develop a data-driven approach for reconstructing human motions,
where we use monocular input from a depth camera instead of multiview video streams. Depth
cameras have become a widely available sensor type that captures depth images at real-time frame
rates. A depth image can be imagined as a “pinpression”, where densely packed little iron nails
are pushed forward to create a blueprint of a certain shape. In analogy to the pinpression, each
pixel of a depth image stores the distance to the closest object in the scene along its viewing
direction. Since this representation contains more depth information than a 2D color image and
less information than a full 3D representation, such images are also referred to as 2.5D data.
Even though recent approaches have shown that 3D pose estimation from monocular 2.5D depth
images has become feasible, there are still challenging problems due to strongnoise in the captured
depth data and self-occlusions in the motions. In our data-driven approach, we make use of a
previously recorded database of full-body poses to stabilize the motion reconstruction. As one
main contribution, we develop an efficient algorithm for extracting semantically meaningful pose
features from the depth data. These features are then used to retrieve stabilizing pose candidates
from the database. By combining such a data-driven technique with an approach for marker-
less tracking we achieve stable pose estimates even for complex motions and drift is effectively
prevented. In our framework, we contribute with several technical improvements that lead to
speed-ups of an order of magnitude compared to previous approaches. Our experiments show
that the combination of the introduced techniques facilitates stable and accurate real-time tracking
even for fast and complex motions, making it applicable to a wide range of interactive scenarios.
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1.3 Publications of the Author

The core parts of this thesis are based on five main publications of the author. In the following,
the publications are listed in chronological order, and their relations to this thesis are explained. In
further publications, similar techniques and methods as developed in this thesishave been applied
to related application scenarios. The corresponding publications will be sketched at the end of this
section.

[Baaket al., 2008] Andreas Baak, Meinard Müller, and Hans-Peter Seidel. An efficient algo-
rithm for keyframe-based motion retrieval in the presence of temporal deformations. In
Proceedings of the 1st ACM SIGMM International Conference on Multimedia Informa-
tion Retrieval (ACM MIR), pages 451–458, Vancouver, British Columbia, Canada, October
2008.

In this publication, a novel technique for keyframe-based motion retrievalis introduced. The
developed search algorithm is described and evaluated in Chapter 3.

[Müller et al., 2009] Meinard M̈uller,Andreas Baak, and Hans-Peter Seidel. Efficient and robust
annotation of motion capture data. InProceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pages 17–26, August 2009.

In this work, a novel framework for automated annotation of mocap data is described. More-
over, a genetic algorithm for learning keyframes from a set of positive and negative example
motions is sketched. In Chapter 4, this algorithm is described in more detail, before the
framework for mocap annotation is explained and evaluated in Chapter 5.

[Baaket al., 2009] Andreas Baak, Bodo Rosenhahn, Meinard M̈uller, and Hans-Peter Seidel.
Stabilizing motion tracking using retrieved motion priors. InIEEE International Conference
on Computer Vision (ICCV), pages 1428–1435, September 2009.

In this contribution, retrieval techniques as developed in Part I of the thesis are used to
retrieve motion priors for stabilizing marker-less motion tracking. The resultingdata-driven
tracking procedure is described in Chapter 6.

[Baaket al., 2010] Andreas Baak, Thomas Helten, Meinard M̈uller, Gerard Pons-Moll, Bodo
Rosenhahn, and Hans-Peter Seidel. Analyzing and evaluating marker-less motion tracking
using inertial sensors. InProceedings of the 3rd International Workshop on Human Motion.
In Conjunction with ECCV, volume 6553 ofLecture Notes of Computer Science (LNCS),
pages 137–150. Springer, September 2010.

In this article, we develop a method that enables the automated evaluation of marker-less
motion tracking also in outdoor scenarios by using data recorded from inertial sensors as
reference information, see Chapter 7.

[Baaket al., 2011] Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter Seidel, and
Christian Theobalt. A data-driven approach for real-time full body posereconstruction
from a depth camera. InIEEE International Conference on Computer Vision (ICCV), pages
1092–1099, November 2011.

In this publication, we introduce novel algorithms for reconstructing human motions from
depth camera data. In Part III (Chapter 8), we significantly expand this article and present
more algorithmic details and results.
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Publications with related application scenarios which are not further detailedin this thesis:

[Pons-Mollet al., 2010] Gerard Pons-Moll,Andreas Baak, Thomas Helten, Meinard M̈uller,
Hans-Peter Seidel, and Bodo Rosenhahn. Multisensor-fusion for 3D full-body human mo-
tion capture. InIEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 663–670, June 2010.

In this work, we designed and implemented an approach for fusing video data with orien-
tation data obtained from inertial sensors to improve and stabilize full-body human motion
tracking. To this end, a previously developed local optimization-based approach for tracking
is enhanced and stabilized. The performance of the tracking is evaluated on indoor studio
recordings.

[Pons-Mollet al., 2011] Gerard Pons-Moll,Andreas Baak, Juergen Gall, Laura Leal-Taixé,
Meinard Müller, Hans-Peter Seidel, and Bodo Rosenhahn. Outdoor human motion capture
using inverse kinematics and von Mises-Fisher sampling. InIEEE International Conference
on Computer Vision (ICCV), pages 1243–1250, November 2011.

In this publication, we integrate orientation data obtained from inertial sensors into a parti-
cle filter framework for marker-less motion tracking. In contrast to the localoptimization-
based algorithm in[Pons-Mollet al., 2010], the particle filter framework enables a much
more stable tracking at the cost of higher run times. As one main technical contribution,
we show how the recorded inertial sensor data can be used to reduce thedimensionality of
the tracking task with an efficient analytic inverse kinematics approach. We demonstrate
that complex motions can be tracked in an outdoor scenario with image data fromjust four
unsynchronized consumer cameras and orientation data from just five inertial sensors.
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Part I

Retrieval and Annotation
of Motion Capture Data





Chapter 2

Basic Concepts

This chapter presents a brief review of basic concepts that are used throughout this part of the the-
sis. We begin with a brief summary of marker-based mocap data in Section 2.1. Then, we summa-
rize relational features as introduced by[Müller et al., 2005] and fix some notation in Section 2.2.
Relational features are used as an underlying feature representation inthis and the subsequent
chapters. Such features transform mocap data into a space that is invariant to global translations
and rotations. Moreover, by projecting the mocap data onto semantically meaningful relations,
important and discriminative aspects of the motion are retained while a high degree of invariance
to subtle and person-specific details in the motions is achieved. Using relational features as a basis,
we outline in Section 2.3 the concept of motion templates, which capture the essence of a motion
class in a semantically interpretable matrix[Müller and R̈oder, 2006]. In the subsequent chapters,
we show how motion templates can be used in a robust and efficient manner for segmenting and
annotating mocap data.

2.1 Marker-based Motion Capture Data

Modern marker-based mocap technology is capable of accurately tracking and recording human
motions at high spatial and temporal resolutions. Such systems use cameras inorder to record im-
age data of the scene that contains markers. The markers either reflect (see,e. g., [Vicon, 2012]),

(a) (b) (c)

Figure 2.1. (a): 3D Marker positions as recorded from a commercial motion capture system.(b): Skeletal
kinematic chain with joints (gray) and bones (black).(c): Reconstructed skeletal pose.

9



10 CHAPTER 2. BASIC CONCEPTS

Figure 2.2. Seven poses of a side kick sequence (top) and a front kick sequence (bottom). Even though
the two kicking motions are similar in some logical sense, they exhibit significant spatial and temporal
differences. From M̈uller and R̈oder[2007].

or actively emit (see,e. g., [PhaseSpace, 2012]) light. In order to ease the detection of the marker
positions, some systems use infrared light sources and cameras that workin the infrared do-
main[Vicon, 2012]. From the recognized 2D pixel positions and the calibration of the cameras,3D
positions of the markers can be computed, see Figure 2.1 (a) for an example. From the 3D marker
positions, the motion of the underlying skeleton can be reconstructed. To thisend, the skeleton
is modeled as a kinematic chain[Müller, 2007]. Although methods for automatically computing
a suitable skeleton from just a sequence of 3D marker positions exist[Kirk et al., 2005], a tem-
plate skeleton (similar to Figure 2.1 (b)) is typically provided. In contrast to automatically gen-
erated skeletons, one gains full control over the admissible degrees of freedom of the movements
by using a manually designed template skeleton. Using inverse kinematics optimization proce-
dures[Murrayet al., 1994], joint angles of the skeleton can be determined from the 3D marker
positions, see Figure 2.1 (c) for a resulting 3D pose of the skeleton. A temporal sequence of joint
angles or joint positions is referred to as mocap data.

Mocap data is used in a variety of applications ranging from motion synthesis indata-driven com-
puter animation to motion analysis in fields such as sports sciences, biomechanics, and computer
vision [Kovar and Gleicher, 2004; M̈uller, 2007; Rosenhahnet al., 2007c]. Although there is a
growing corpus of free mocap data,e. g., [CMU, 2003; Müller et al., 2007; Tenorthet al., 2009],
there is still a lack of efficient motion retrieval systems that work in a purely content-based
fashion without relying on manually generated annotations. Here, the main difficulty is due to
the fact that similar types of motions may exhibit significant spatial as well as temporal varia-
tions [Kovar and Gleicher, 2004; M̈uller, 2007]. For example, the two kick sequences shown in
Figure 2.2 are logically related even though they differ considerably with respect to motion speed
as well as the direction, the height, and the style of the kick.

Most of the previous approaches to motion comparison are based on features that are semantically
close to the raw data, using 3D positions, 3D point clouds, joint angle representations, or PCA-
reduced versions thereof, see,e. g., [Forbes and Fiume, 2005; Hsuet al., 2005; Keoghet al., 2004;
Kovar and Gleicher, 2004; Sakamotoet al., 2004; Wuet al., 2003]. One problem of such features
is their sensitivity to pose deformations which may occur in logically related motions. Further-
more, computationally expensive techniques such as dynamic time warping (DTW) are necessary
to establish temporal correspondence between related frames[Kovar and Gleicher, 2004]. To cope
with spatial variations, M̈uller et al. [2005] introduce the concept ofrelational features, which is
based on the following observation. As opposed to other data types such as 3D shape, image, or
video, 3D mocap data is explicitly based on a kinematic chain that models the human skeleton.
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(a) (b) (c)

Figure 2.3. Various boolean relational features that encode spatial(a), velocity-based(b), as well as
directional information(c) between the joints of a pose. From[Müller et al., 2005].

This underlying model can be exploited by looking for semantically meaningfulboolean relations
between specified points of the body.

2.2 Relational Features

In the following, a stream of mocap data is modeled as a sequenceD = (P1,P2, . . . ,PN) of poses
Pn ∈ P for n ∈ [1 : N] := {1,2, . . . ,N} (w.r.t. a fixed sampling rate), whereP denotes the set of
all poses. Here, each pose consists of a full set of 3D coordinates describing the joint positions of
a skeletal kinematic chain for a fixed point in time, see Figure 2.1. The idea ofrelational features
as introduced by M̈uller et al. [2005] is to describe semantically interpretable, boolean aspects
of a pose or a short sequence of poses expressing actions or interactions of certain body parts.
Mathematically, a relational feature is a boolean functionF : P → {0,1} that assumes only the
values zero and one. As an example of a relational feature, consider theoriented plane determined
by the center of the hip (the root), the left hip joint, and the left foot indicatedby the green plane
in Figure 2.3 (a). When the right foot lies in front of that plane, this relational feature, which we
refer to asF15, is defined to assume the value zero, otherwise one. Interchanging corresponding
left and right joints in the definition ofF15 and flipping the orientation of the resulting plane, we
obtain another feature function denoted byF16. Relational features may also encode velocity-
based information. For example, one may check whether the absolute velocityof the right foot
exceeds a certain velocity threshold, see Figure 2.3 (b). By checking thevelocity of the right hand
projected onto the direction determined by the belly and chest, one obtains a feature that tests
whether the right hand is moving upwards or not, see Figure 2.3 (c).

Forming a vector off boolean features for somef ≥ 1, we obtain a combined featureF : P →
{0,1} f referred to as afeature function. Applying a feature functionF with f components to a
motion data streamD of lengthN in a pose-wise fashion yields afeature matrix X∈ {0,1} f×N,
see Figure 2.4. Thenth column ofX then contains the feature values of framen and will be denoted
by X(n) := F(Pn), n ∈ [1 : N].

In this thesis, we use relational features as outlined in Table 2.1. Here, the first 39 features are
defined and described in[Müller and R̈oder, 2006; M̈uller, 2007; M̈uller et al., 2005] to which we
refer to for further details including the specification of various generic features and a discussion
of threshold selection. The 40th feature expresses whether the angular velocity of the root joint is
high or not.

A feature functionF with f components can be used to characterize semantic properties of a
motion. As example, consider the feature functionF = (F15, F16) which gives hints about the
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Figure 2.4. Skiing exercise motion.(a): Poses of the motion at frame positions 10, 15, 19, 23, and 28,
sampled at 30 Hz.(b): Feature matrix of the skiing motion used in (a). The label numbers of the features
correspond to the features used in[Müller and R̈oder, 2006]. Black encodes the feature value one, white
encodes the value zero.

motion of the lower part of the body, see Figure 2.4, rows 15 and 16. Here, the feature values
for one execution of a skiing exercise motion have been visualized, whereblack corresponds to
feature value 0 and white corresponds to feature value 1. In the beginning phase of the motion
(frame 10), the actor has the right foot in the back and the left foot in the front. This corresponds
to F15(P10) = 1 andF16(P10) = 0. Subsequently, none of the feet are in the back in frame 19,
corresponding toF15(P10) = 0 andF16(P10) = 0. Finally, the positions of the feet are interchanged
in frame 28.

As another example, consider the featuresF25/F26 which encode whether the right/left foot is
fast. Clearly, during the phases in which the feet are moving in the air, thesefeatures show the
value 1 in Figure 2.4. The values of the featuresF5 (right hand moving upwards) andF6 (left
hand moving upwards) are also depicted in Figure 2.4.

In this manner, M̈uller and R̈oder[2006] defined a set off = 39 features, see Table 2.1 for an
overview. In addition to these features, in the Chapters 4 and 5 we will use an additional feature
F40 that expresses whether the angular velocity of the root orientation is high or not. We chose
to integrate such an additional feature in order to better discriminate motions with root rotation,
e. g., turning motions, from motions without root rotation. This feature set is specifically designed
to focus on full-body motions. Note that even though relational features discard a lot of detail
contained in the raw motion data, important information regarding the overall configuration of a
pose is retained. Moreover, relational motion features are invariant under global orientation and
position, the size of the skeleton, and local spatial deformations of a pose.

2.3 Motion Templates

We now review the concept of motion templates which was introduced by Müller and
Röder[2006]. As underlying feature representation, we revert to relational features as described
in Section 2.2.
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ID description

F1/F2 rhand moving forwards

F3/F4 rhand above neck

F5/F6 rhand moving upwards

F7/F8 relbow bent

F9 hands far apart, sideways

F10 hands approaching each other

F11/F12 rhand moving away from root

F13/F14 rhand fast

F15/F16 rfoot behind lleg

F17/F18 rfoot raised

F19 feet far apart, sideways

F20/F21 rknee bent

F22 feet crossed over

F23 feet moving towards each other, sideways

F24 feet moving apart, sideways

F25/F26 rfoot fast

F27/F28 rhumerus abducted

F29/F30 rfemur abducted

F31 root behind frontal plane

F32 spine horizontal

F33/F34 rhand lowered

F35/F36 shoulders rotated right

F37 Y-extents of body small

F38 XZ-extents of body large

F39 root fast

F40 root rotates aroundY

Table 2.1. Description of the 40 relational features used in this part of the thesis. For details of the first
39 features we refer to[Müller and R̈oder, 2006]. The 40th feature depicts whether the magnitude of the
rotational velocity of the root joint is high.

Given a classC consisting ofγ ∈ N example motions, such as the four motions from the class
‘sitDownFloor’ shown in Figure 2.5 (a), the goal is to automatically learn a motionclass represen-
tation that grasps the essence of the class. One starts by computing the relational feature vectors
for each of theγ motions. The corresponding feature matrices are shown in Figure 2.5 (b),where,
for the sake of clarity, we display a subset comprising only eleven of thef = 40 features.

Next, a semantically meaningful average over theγ feature matrices is computed. To cope with
temporal variations in the example motions, an iterative warping and averagingalgorithm is em-
ployed which converges to an output matrixXC referred to asmotion template(MT) for the class
C. The matrixXC has real-valued entries between zero and one and has a length (number of
columns) corresponding to the average length of the training motions. Figure2.6 (a) shows a
motion template obtained fromγ = 4 motions of the class ‘sitDownFloor’. The class MT con-
stitutes a combined representation of all four input motions. The important observation is that
black/white regions in a class MT indicate periods in time (horizontal axis) where certain features
(vertical axis) consistently assume the same values zero/one in all training motions, respectively.
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Figure 2.5. (a)Selected frames from four different motions of the class ‘sitDownFloor’.(b) Resulting
boolean feature matrices for selected relational features(numbered in accordance with the features defined
in [Müller and R̈oder, 2006]). The columns represent time in frames (using 30 frames per second), whereas
the rows correspond to boolean features encoded as black (0)and white (1).
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Figure 2.6. (a)Class MT for ‘sitDownFloor’ based on theγ = 4 training motions shown in Figure 2.5.
(b) Corresponding quantized class MT.

By contrast, colored regions indicate inconsistencies mainly resulting from variations in the train-
ing motions (and partly from inappropriate temporal alignments). In other words, the black/white
regions encode characteristic aspects that are shared by all motions, whereas the colored regions
represent the class variations coming from different realizations. Finally, one obtains aquantized
MT by replacing each entry ofXC that is below a quantization thresholdδ by zero, each entry
that is above 1− δ by one, and all remaining entries by awildcard character∗ indicating that the
corresponding value is left unspecified, see Figure 2.6 (b).

In our experiments in Section 5.4, we use the thresholdδ = 0.05, which has turned out to yield a
good trade-off between robustness to motion variations and discriminative power. Only in Chap-
ter 4, where an algorithm for learning keyframes is described, we use thestrict quantization thresh-
old δ = 0 in order to determine the features that do not show any variations among thetraining
motions.



Chapter 3

Efficient Keyframe-based Retrieval

This chapter is based on the publication[Baaket al., 2008] and constitutes one main contribution
of this thesis. We introduce a novel algorithm for retrieving subsequences of mocap documents
based on keyframes. The algorithm is inspired by the following observation. Consider the two
kicking motions illustrated by Figure 2.2. Even though there may be large variations between
different kicking motions, all such motions share some common characteristics: first the right knee
is stretched, then bent, and finally stretched again, while the right foot is raised during this process.
Afterwards, the right knee is once again bent and then stretched, while the right foot drops back
to the floor. Therefore, by simply checking some characteristic poses in thetemporal context, one
can exclude all motions in the database that do not share the characteristic progression of relations.
These characteristic poses are calledkeyframes. We use the termkeyframe queryto refer to a
sequence of keyframes, where each keyframe is specified by a boolean feature vector that describes
characteristic relations of a specific pose. Then, the general search strategy using the keyframe
query is to extract all parts from the mocap database that exhibit feature vectors matching the
keyframe feature vectors in the correct order within suitable time bounds. One important property
of our search algorithm is that it allows us to explicitly control the degree of temporal deformations
in the retrieval process. Intuitively spoken, the neighboring query keyframes are connected with
elastic springs which can be expanded and compressed by a certain factor specified by what we
refer to asstiffness parameter, see Figure 3.1. Even though our algorithm can handle temporal
variations, it works with a standard inverted file index as used in text retrieval [Wittenet al., 1999].
Significantly speeding up retrieval and drastically reducing memory requirements, our strategy
is ideally suited to cut down the search space in a preprocessing step before applying a more
refined analysis to rank and further process the reduced dataset. We will demonstrate such a two-
stage retrieval procedure by combining our keyframe-based search with the DTW-based retrieval
strategy using motion templates as described in[Müller and R̈oder, 2006], see also Chapter 2 for
a brief introduction.

The remainder of this chapter is organized as follows. We start by giving an overview about related
work for this and the following chapters in this part (Section 3.1). Next, we give a motivating ex-
ample for keyframe-based retrieval (Section 3.2). Then, we describe how we build up an inverted
file index (Section 3.3). In Section 3.4, we introduce the query, hit, and matchconcepts, respec-
tively. The details of the main algorithm and a discussion of its run time behavior are presented
in Section 3.5, where we also illustrate the operation mode of our recursive algorithm by means of

15
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Keyframe query

Keyfr. 1 Keyfr. 2 Keyfr. 3

Database {
hit 1

{

hit 2

(a)

(b)

Figure 3.1. (a): In a keyframe query, the keyframes can be thought of as beingconnected by elastic
springs. (b): A database hit has to contain the queried keyframes in the same order and within specified
time bounds controlled by a stiffness parameter. Note that the query and the two hits exhibit different
temporal deformations.

an explicit example. We then describe our experiments in Section 3.6 and conclude in Section 3.7.

3.1 Related Work

Motion synthesis. The usage of prerecorded human 3D mocap data to create new, nat-
urally looking motion sequences has become a standard procedure in computer anima-
tion. Here, motion graphs have become a popular tool which is used to efficiently
combine fragments of existing motions, see[Kovaret al., 2002; Chai and Hodgins, 2005;
Shin and Oh, 2006; Heck and Gleicher, 2007; Lee and Lee, 2006; Safonova and Hodgins, 2007;
Beaudoinet al., 2007; Beaudoinet al., 2008; Kovaret al., 2008; Zhaoet al., 2009].

Many approaches for motion synthesis rely on morphable models or suitable blending strategies
to create new motions from recorded sets of motion capture data[Giese and Poggio, 2000;
Kovar and Gleicher, 2004; Arikanet al., 2005; Mukai and Kuriyama, 2005; Hsuet al., 2005;
Zordanet al., 2005; Zordanet al., 2007; Leeet al., 2009]. Other approaches rely on having
specified keyframes, annotations, they use procedural rules, or physics-based simulation in
order to synthesize motions[Pullen and Bregler, 2002; Leeet al., 2002; Arikanet al., 2003;
Cooperet al., 2007; Metoyeret al., 2008; Mukai and Kuriyama, 2009; Leeet al., 2010;
Wei and Chai, 2011]. By contrast, Lauet al. [2009] and Min et al. [2010] follow a differ-
ent line in which new motions are created by a generative model learned from a few example
clips. For a further in-depth review of example-based motion synthesis we refer to the
survey[Pejsa and Pandzic, 2010].

Current data-driven motion controllers allow us to generate a wide range of task-specific mo-
tion sequences satisfying additional spatial and temporal constraints. Most of the proposed con-
trollers are built upon carefully compiled sets of prototype motions that coverthe desired range of
tasks and execution modes. For example, Roseet al. [1998] group similar example motions into
“verb” classes to synthesize new, user-controlled motions by suitable interpolation techniques.
For synthesizing new motions from motion graphs, Kovaret al. [2002] integrate annotation con-
straints given by a user. Acquisition, capturing and annotation of suitable motions for building
up specialized datasets is a labor and cost intensive task[Cooperet al., 2007]. Therefore, var-
ious strategies have been described to reuse previously recorded motions stored in a database.
In this context, athorough and reliable annotationof the stored motions is of great importance
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and such a system will be developed and explained in the forthcoming chapters. Even though
there is a rapidly growing corpus of freely available mocap data[CMU, 2003; Müller et al., 2007;
Eyes, JAPAN Co. Ltd., 2012; Ohio State University, 2012], there is still a lack of efficient systems
that automate the annotation process without manual intervention. Here, onemain challenge is to
deal with significant spatial as well as temporal variations that may be present in semantically
related motions[Kovar and Gleicher, 2004; M̈uller, 2007].

Indexing and DTW. Most existing retrieval and annotation approaches use indexing methods
of some sort in order to speed up the retrieval process. Kovar and Gleicher [2004] propose to
compute a so-called “match web” which is based on a self-similarity matrix of the database. This
data structure describes potential matches between any pair of motion subsequences and can be
used to efficiently search for similar motions. In their approach, results for a query are used as new
queries in order to grow a set of similar motions from just a single example motion.However, the
match web might be infeasible to build for large mocap databases and the querymust be part of
the mocap database.

Müller and his colleagues[Müller et al., 2005; Müller and R̈oder, 2006; Demuthet al., 2006] pro-
pose to use semantically motivated relational features to represent motion capture data. Using
these features, they develop a fast index-based motion retrieval procedure [Müller et al., 2005;
Demuthet al., 2006]. However, given a query motion, the user has to make an informed choice
about the features used in the query in order to obtain satisfying retrievalresults. In the same
retrieval scenario, Gaoet al. [2006a; 2006b] introduce a scene description language and a pre-
computation strategy that reduces the run time for processing a query. They also use retrieval
techniques to build up a motion graph. Müller and R̈oder[2006] develop the concept of motion
templates which capture consistent and varying aspects of a set of motions.With motion tem-
plates, retrieval can be performed without manually selecting feature functions for each query.
However, since DTW is used in the retrieval step and no further indexing strategies are used,
the method lacks efficient query processing for large databases. In the following chapters, we will
show how keyframes can be learned and used in order to assist a motion template-based annotation
procedure.

An indexing approach that proceeds in two stages was proposed by Wuet al. [2003]. First, start
and end frames of possible candidate clips are identified utilizing a pose-based index and then the
actual distance from the query is computed via DTW. However, the method ofWu et al. [2003]
does not enable explicit control over temporal deformations of the keyframes which imposes a
strong limitation on their preprocessing method. Liuet al. [Liu et al., 2003] index mocap data
using a hierarchical data structure that exploits the skeletal structure of mocap data. Based on
the indexing method, mocap documents in the database are identified as candidate clips which
are further analyzed by a DTW-based comparison. In their approach,the mocap database has to
be segmented a priori, whereas our indexing and retrieval techniques handle unsegmented mo-
cap sequences. As another related work, Chiuet al. [Chiuet al., 2004] partition the skeleton
into nine body parts and construct a separate index map for each body part using self-organizing
map (SOM) clustering. Given a query motion, these maps are used in order toquickly iden-
tify candidate clips in a database which are further analyzed using DTW. The chosen indexing
method uses a bag-of-postures representation of a motion and is thus invariant to the temporal
order of the poses. By contrast, our method explicitly models the chronological order of and
temporal deformation between keyframes. Similar to the work of Chiuet al., Wu et al. [2009b;
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2009a] use SOM clustering on the joint angle data in order to perform index-basedmocap retrieval.
A hierarchical indexing structure consisting of independent index treeseach corresponding to a
different sub-part of the body is used by Pradhanet al. [2009]. A hierarchical part-based repre-
sentation is also used in the work of Denget al. [2009]. In their method, a fast string matching
algorithm on the discovered movement patterns is employed. Forbes and Fiume[2005] identify
characteristic poses in both the database and query motions. These posesare used to constrain and
speed up a DTW-based similarity computation.

Most of the above mentioned motion retrieval approaches try to cope with nonlinear temporal
deformations in the motions with variants of DTW. By contrast, Keoghet al. [2004] observe that
in many cases nonlinear temporal variations of motions do not have to be modeled in a retrieval
scenario. Instead, they propose an indexing technique that accounts only for uniform scaling of
mocap data in the temporal domain.

Dimension Reduction Techniques. In order to reduce the complexity and redundancy of the
raw mocap data, several approaches employ dimension reduction techniques. Liu et al. [2005]
represent a pose by a stacked vector of 3D marker locations. They reduce the dimensionality
with principle component analysis (PCA) and represent a motion by a piecewise linear model. An
indexing method that builds upon a clustering of the poses in a motion is employed inorder to effi-
ciently identify similar motions. In a followup work, they show how a piecewise linear model can
be used to also reconstruct motions from a reduced marker set[Liu et al., 2006]. Li et al. [2007]
use singular value decomposition on a joint angle matrix of a motion clip to capture the major
geometric structure of the matrix. A support vector machine is employed for classifying hand-
as well as full-body motions. The ISOMAP dimension reduction technique is used in the work
of Xiang et al. [2007] and Guoet al. [2011]. After compacting the mocap data, the subsequence
DTW algorithm is employed for the computation of retrieval results.

Krüger et al. [2010] show that fastkd-tree-based nearest-neighbor searches along with viable
medium-dimensional feature sets can lead to drastic speed-ups for several existing approaches
to motion retrieval. Renet al. [2011] precompute a BIRCH-based incremental clustering of the
database. Then, they project each pose onto the nearest cluster center. Retrieval is performed using
a variant of a longest common subsequence algorithm which is used to compare two sequences of
cluster centers identifiers.

Several approaches to classification and recognition of motion patterns are based on Hidden
Markov Models (HMMs), which are also a flexible tool to capture spatio-temporal variations,
see,e. g., [Brand and Hertzmann, 2000; Xiang, 2007; Wang and Lee, 2009]. Temporal segmenta-
tion of motion data can be viewed as another form of annotation, where consecutive, logically
related frames are organized into groups, see,e. g., [Barbǐc et al., 2004].

Real-time approaches. Recently, real-time applications of motion retrieval and classification
were discussed. For example, Denget al. [2011] perform real-time recognition of dance mo-
tions. To this end, they subdivide the representation of a human body into five parts and project
joint angle representations for each part onto cluster centers obtained from training data. Using
a variant of DTW on the projected data, the input motion is continuously compared to template
motions in real-time. Based on distance scores to template motions, a motion of a virtual dancing
double is played back. Raptiset al. [2011] develop a real-time classification system for dance
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motions. The classifier relies on an alignment of the performed motions to a givenmusical beat.
Numaguchiet al. [2011] use an actual puppet equipped with rotational sensors in order to allow a
user to intuitively formulate a query and obtain retrieved motions interactively.

Most of the above cited procedures use motion representations that are semantically close to the
raw data. Here, problems occur when one has to cope with strong pose deformations within
a class of logically related motions. Approaches such as[Liu et al., 2005; Müller et al., 2005]
absorb spatial and temporal variations already on the feature level, whichthen facilitates a more
robust and efficient motion comparison. In this thesis, we cope with spatial variations by using
relational features as introduced in[Müller et al., 2005]. As for temporal variations, we introduce
an efficient keyframe-based indexing technique in the forthcoming chapters. Asa further tool, we
make use of the DTW algorithm for more refined temporal alignments.

3.2 Motivating Example

As a motivating example for the use of keyframes, consider a skiing exercise motion class as the
one sketched in Figure 3.2 (a). Such a motion class is characterized by a diametrical backward and
forward swinging of arms and legs coupled with a joint air and landing phase of the two feet. Note
that by considering only the sketched poses or even a subset thereof,a human can easily distinguish
this motion class from many other types of motion. Intuitively, we want to find a way how to
efficiently encode and search for characteristic aspects of a motion class. These characteristic
aspects correspond tokeyframeswhich should carry the discriminative essence of a motion class.
We now consider two different executions of the skiing exercise motion and plot the corresponding
feature matrices in Figure 3.2 (b) and (c). Note that the two feature matrices disagree in length and
the sequence of feature values because both executions of the motion differ in speed and style. In
spite of this, the characteristic poses as sketched in Figure 3.2 (a) are represented using the same
feature vectors in both executions of the motion, respectively. In the figure, we highlight the feature
vectors of the corresponding poses using green boxes. Such feature vectors∈ {0,1} f , however, do
not constitute a practical representation of a keyframe because no uncertainties in the poses are
expressed. In fact, only two example motions are shown and only the most discriminative 6 out of
the 39 features described in Section 2.2 are plotted in the figure. The remaining training motions
as well as the other features can exhibit more variations and differences since the skiing motion
class permits significant differences in the style of execution. For example, consider a feature
that expresses whether the arm moves upwards. Among different executions of the motion, strong
inconsistencies can be found in the values of this feature since some actorstend to lift the hands
while moving forwards, and others keep the hands on the same height with respect to the body.

We express such uncertainties using the wildcard character∗ as used in quantized motion tem-
plates, see Section 2.3. A quantized motion template for the skiing motion class trained from 15
example motions is depicted in Figure 3.2 (d). Inconsistencies in the executionsof the training
motions are reflected by the wildcard character∗ (gray regions in the figure). For example, con-
sider frame 16 of the motion template. In this phase of the motion, some actors raised the left hand
and some actors kept the left hand at the same height. This is reflected by thevalue∗ in the row
corresponding toF6 in the motion template.

As will be explained in the following section, in view of efficient retrieval using a standard inverted
file index, we use boolean keyframe vectors as queries. In order to handle uncertainties represented
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Figure 3.2. Skiing exercise motion.(a): Poses of a motion at frame positions 10, 15, 19, 23, and 28 (30
Hz). (b): Feature matrix of the skiing motion used in (a). The label numbers of the features correspond
to the features used in[Müller and R̈oder, 2006]. Black encodes the feature value one, white encodes the
value 0. (c): Feature matrix of another execution of the skiing exercise. (d): Quantized motion template
of the skiing motion class trained with 15 training motions from the HDM05[Müller et al., 2007] motion
database.

≡ ,

Figure 3.3. A keyframe with a wildcard character is handled by expandingthe wildcard character and
creating a set of keyframes.

by wildcard characters in the query vectors, we expand the wildcard characters and create a set of
boolean keyframe vectors as indicated in Figure 3.3.

Recall from Section 2.3 that a motion template can be thought of as a generalized feature ma-
trix which is obtained by suitably averaging the feature matrices of the training motions. Müller
et al. [2006] suggest an MT-based motion retrieval method using a variant of dynamic time warp-
ing (DTW) to locally compare a motion template with the feature matrices of the unknown motion
data. In the following section, we explain our keyframe-based algorithm and exemplify its ca-
pabilities by an application which speeds up an MT-based retrieval technique. Here, we first run
our keyframe-based search algorithm to efficiently reduce the dataset. Then, we rank the reduced
dataset by applying an MT-based retrieval component.

3.3 Indexing

LetD = (D1,D2, . . . ,DI ) denote a database consisting of mocap data streams or documentsDi ,
i ∈ [1 : I ]. For simplicity, we may assume that the databaseD consists of one large document
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D = (P1, . . . ,PN). This can be achieved by concatenating the documentsD1, . . . ,DI while keeping
track of document boundaries in a supplemental data structure. Note that due to their boolean
nature, relational features are ideally suited for indexing. LetF be a fixed feature function having
f relational features as its components, see Section 2.2. Then, for each feature vectorv ∈ {0,1} f

one stores theinverted list L(v) consisting of the indicesn ∈ [1 : N] with v = F(Pn). In other
words,L(v) shows which of the poses ofD exhibit the feature vectorv. In a preprocessing step,
we construct a query-independent index structureIDF consisting of the 2f inverted listsL(v), v ∈
{0,1} f . Note that one only has to store the non-empty lists. Furthermore, to control the number of
index words, one can also split up the feature function into several feature functions and then work
with the resulting smaller indices in parallel, see[Müller et al., 2005]. The elements of the inverted
lists are stored in ascending order, accounting for efficient union and intersection operations in the
subsequent query stage. To further reduce the size of the index, the elements of each listL(v) are
run-length encoded. Using this encoding, only one entry in an inverted listis generated for a time
section in a feature sequence in which the features do not change.

3.4 Query, Hit, and Match Concept

As mentioned in the introduction of this chapter, certain types of motions typically exhibit char-
acteristic relations that already discriminate these motions from most other typesof motions. For
example, a cartwheel motion can be distinguished from most other motions simply by checking
whether the body is upside down in the execution of the motion. The idea is to express the charac-
teristic relations of a keyframe pose by a suitable feature vectorv ∈ {0,1} f with respect to a fixed
feature functionF. Since using all components ofF is often too restrictive, we allow an entire set

V ⊆ {0,1} f (3.1)

of alternative feature vectors to describe the characteristic relations. These sets can be derived
from a quantized motion template as indicated in Figure 3.3. As an alternative, such keyframes
can be generated in an automated way from example motions by employing a genetic algorithm,
see Chapter 4. In the following, such a setV is simply referred to askeyframe.

A keyframe queryof length K is a tuple (V,d) consisting of a sequenceV = (V1, . . . ,VK) of
keyframesVk ⊆ {0,1} f , k ∈ [1 : K], and a sequenced = (d1, . . . ,dK−1) of keyframe distances
dk ∈ N0, k ∈ [1 : K − 1]. Here,dk specifies the distance (in frames) of the neighboring keyframes
Vk and Vk+1. To account for temporal deformations, we introduce astiffness parameterσ =
(σ1, . . . , σK−1), σk ∈ [0,1], which controls the degree of expansion and compression allowed in
the matching process.

A hit in the database documentD = (P1, . . . ,PN) with respect to the query (V,d) is a sequence
(n1, . . . ,nK) of increasing indices 1≤ n1 ≤ . . . ≤ nK ≤ N such that the following two conditions
are fulfilled:

∀k ∈ [1 : K] : F(Pnk) ∈ Vk (3.2)

∀k ∈ [1 : K − 1] : σk · dk ≤ nk+1 − nk ≤
1
σk
· dk (3.3)

Here, Condition (3.2) implies the occurrences of the characteristic keyframe poses and Condi-
tion (3.3) ensures that the distances of two consecutive keyframes are within the tolerated time
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Figure 3.4. To compute the inverted keyframe list of a keyframeV = {v1, v2}, corresponding inverted lists
are combined. The run-lengh-encoding step can reduce the total number of segments.

bounds specified byσ and keyframe distances in the query. Note that choosingσk = 1 implies
that the keyframe distance of keyframesVk andVk+1 within a hit have to coincide with the dis-
tances within the query (i. e., there is no deformation tolerance). On the other hand, forσk = 0
(we then set1

σk
= ∞) there are no deformation bounds—the keyframes within a hit simply have

to appear in the order as specified by the query.

The number of different hits may explode with decreasing stiffness. For example, a small devi-
ation in one of the keyframe positions already defines, in mathematical terms, a different hit. In
applications, one is typically not interested in all hits but only in a set of representative hits. We
therefore soften the frame-based notion of a hit and assume a segment-focused view. For each
query keyframeVk, k ∈ [1 : K], we define aninverted keyframe list

Λk := Λ(Vk) :=
⋃

v∈Vk

L(v). (3.4)

Note that all inverted lists are sorted in lexicographic order which allows us torun an efficient
merging algorithm inO(

∑
v∈Vk
|L(v)|). Further, note that each segment in an inverted list corre-

sponds to a run of feature vectors in a document. Thus, by construction of the inverted lists, all
considered segments are pairwise disjoint and we do not have to consideroverlapping segments
in the merging algorithm. We again look for maximal runs of consecutive indicesin the merged
list (similar to run-length encoding) and store the resulting inverted keyframelist, see Figure 3.4.
Each such run is defined by asegment[s: t] with integerss ≤ t, wheres denotes the start frame
andt denotes the end frame of the segment. Then, one can encode the inverted keyframe listΛk

by a sequence

Λk =
(
[sk,1 : tk,1], . . . , [sk,ℓk : tk,ℓk])

)
(3.5)

of segments, whereℓk denotes the number of segments. Note that because of the maximality of
the runs, one has

∀i ∈ [1 : ℓk − 1] : tk,i + 1 < sk,i+1 (3.6)

Now, a sequenceM = (p1, . . . , pK) with pk ∈ [1 : ℓk], k ∈ [1 : K], is called amatchin D with
respect to the query (V,d), if there exists a hitH = (n1, . . . ,nK) with

∀k ∈ [1 : K] : sk,pk ≤ nk ≤ tk,pk. (3.7)

In this case, we also say that the matchM containsthe hitH. In other words, a match specifies a
sequence of segments (rather than a sequence of frames) containing atleast one hit. In the follow-
ing, we think ofpk being a pointer to the segment [sk,pk : tk,pk], see Figure 3.5. The motivation of
this notion becomes clear in Section 3.5 when we describe the main algorithm.
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1 2 3 4 5 6 7 8

Λ1

Λ2

MatchM = (p1, p2): 1 3

Figure 3.5. Two inverted keyframe listsΛ1 andΛ2. Here,p1 points to the segmentΛ1(p1) = [2 :4] andp2

to the segmentΛ2(p2) = [7 :8].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R(M1) R(M4)

R(M2)

R(M3)

Figure 3.6. RangesR(Mi) (indicated by arrows) of four different matchesMi , i ∈ [1 : 4]. The ranges
R(M1) = [1 : 7], R(M2) = [2 : 11] andR(M3) = [4 : 10] overlap, whereasR(M4) = [13 : 15] is disjoint to the
other ranges.

Of course, a match may contain several hits. For a given matchM let R(M) = [s: t] be the segment
(given by start frames and end framet) of minimal length that comprises all hits contained in
M. We also refer toR(M) as hit relevant rangeof M. For example, assume that the match
M = (p1, p2) = (1,3) of Figure 3.5 contains exactly the three hitsH1 = (3,7), H2 = (4,7), and
H3 = (4,8), thenR(M) = [s: t] = [3 :8].

In the case that hit relevant ranges of several matches overlap, we consider, as a further reduction,
the union of these ranges instead of the individual ranges. This is motivated by our strategy
of running a multistage retrieval procedure. Here, in the first stage, foreach document in the
database it suffices to extract coarse candidates that contain the keyframe query at least once (as a
kind of preselection). As an example, consider the four ranges shown inFigure 3.6. The ranges
R(M1) = [1 : 7], R(M2) = [2 : 11], andR(M3) = [4 : 10] overlap, whereasR(M4) = [13 : 15]
is disjoint to the other ranges. The union of the first three ranges definesthe segment [1 : 11].
Note that the union does not change when considering only the first two ranges leaving out the
rangeR(M3). We then say thatM3 is anirrelevant match. Our keyframe-based search algorithm
to be presented next may actually leave out some matches, but for these onecan show that they
are irrelevant matches.

3.5 Main Algorithm

Before describing our main algorithm, we introduce some further notation. Generalizing the above
notion, asegmentis an element of the set

S := {[s: t] : s ∈ N0, t ∈ N0 ∪ {∞}, s≤ t} ∪ {∅}. (3.8)
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Algorithm 1 Keyframe-based Search

Input: (V,d): keyframe query comprisingK keyframes
σ: stiffness parameter
IDF inverted file index

Output: hitRanges: the union of all hit relevant ranges
Global: (p1, . . . , pK): pointers into the keyframe lists

hitRanges

1: procedureKeyframeBasedSearch(V, d, σ, IDF )
2: for k← 1 to K do
3: Λk ←

⋃
v∈Vk

L(v)
4: pk ← 1
5: end for
6: for p1← 1 to ℓ1 do
7: admissibleRange← µ1(Λ1(p1))
8: RecursiveSearch(2,admissibleRange)
9: end for

10: end procedure

11: procedureRecursiveSearch(k, [s: t])
12: while pk ≤ ℓk ∧ tk,pk < sdo
13: pk ← pk + 1
14: end while
15: pointerIncremented← FALSE
16: intersection← Λk(pk) ∩ [s: t]
17: while intersection, ∅ do
18: if k = K then
19: hitRanges← hitRanges∪R((p1, . . . , pK))
20: else
21: admissibleRange← µk(intersection)
22: RecursiveSearch(k+ 1,admissibleRange)
23: end if
24: pk ← pk + 1
25: pointerIncremented← TRUE
26: if pk > ℓk then
27: intersection← ∅
28: else
29: intersection← Λk(pk) ∩ [s: t]
30: end if
31: end while
32: if pointerIncremented= TRUE then
33: pk ← pk − 1
34: end if
35: end procedure
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Figure 3.7. Keyframe query of our running example.

The intersection of two segments is defined as∅ in case one of the segments is empty. Otherwise,
for segments [s1 : t1] ∈ S and [s2 : t2] ∈ S, we define

[s1 : t1] ∩ [s2 : t2] :=

{
∅, if t1 < s2 or t2 < s1

[max(s1, s2) :min(t1, t2)], else.
(3.9)

Our keyframe-based search algorithm (see Algorithm 1 on page 24) consists of a main proce-
dure called KeyframeBasedSearch, and a recursive procedure called RecursiveSearch. The in-
put consists of the inverted file indexIDF , a keyframe query (V,d) with V = (V1, . . . ,VK) and
d = (d1, . . .dK−1), as well as a stiffness parameterσ = (σ1 . . . , σK−1). Recall from Section 3.3
that the indexIDF does not depend on the query. The algorithm outputs unions of hit relevant ranges
which comprise all matches except for possibly some irrelevant ones. These hit ranges as well as
the pointers (p1, . . . , pK) are given by global variables and are consistent in both procedures. In
the following, we illustrate the functioning of our algorithm by means of an explicit example with
three keyframesV = (V1,V2,V3) and frame distancesd = (3,5). As for the stiffness parameter,
we useσ = (0.5,0.6), see also Figure 3.7.

The procedure KeyframeBasedSearch takes care of the initialization and the first step. In Line 3,
the inverted keyframe listsΛ1, . . . ,ΛK are computed, see Equation (3.4). Recall that each listΛk,
k ∈ [1 : K], consists of a sequence ofℓk segments, see Equation (3.5). In Line 4, the pointers
(p1, . . . , pK) are all initialized to the value one, thus pointing to the first segments of the respective
lists. For our running example, this state is also illustrated by Figure 3.8 (a). The three keyframe
lists are

Λ1 = ([3 :4], [6 :7]),

Λ2 = ([1 :2], [4 :6], [9 :10]), and (3.10)

Λ3 = ([1 :3], [5 :8], [11:12], [14:15]).

Now, the for -loop in Line 6 sweeps over all segmentsΛ1(p1), p1 ∈ [1 : ℓ1]. Note that these
segments exactly contain the database frames that match the first keyframeV1. In other words,
for each hitH = (n1, . . . ,nK) one hasn1 ∈ Λ1(p1) for somep1 ∈ [1 : ℓ1]. Line 7 specifies an
admissible search rangeµ1(Λ1(p1)) for the second keyframeV2. More generally, given a segment
of candidate frames for thekth keyframe,µk computes the admissible range, which is specified by
dk andσk, for the (k + 1)th keyframe. Here, the functionµk := µσk,dk : S → S, k ∈ [1 : K − 1], is
defined as

[s: t] 7→


[s+ ⌈σk · dk⌉ : t +

⌊
1
σk
· dk

⌋
], if σk > 0

[s:∞], if σk = 0.
(3.11)

∅ 7→ ∅
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To illustrate this definition, we consider our running example for the casep1 = 1. Then,Λ1(p1) =
[3 :4] and

µ1([3 :4]) = µσ1,d1([3 :4]) (3.12)

= µ0.5,3([3 :4]) (3.13)

= [3 + ⌈0.5 · 3⌉ :4+

⌊
1

0.5
· 3

⌋
] (3.14)

= [3 + 2:4+ 6] (3.15)

= [5 :10]. (3.16)

In other words, if the first keyframe lies within the segment [3 :4], then the second keyframe must
lie within the segment [5 :10] to fulfill Condition (3.3), see Figure 3.8 (a). Finally, Line 8 triggers
the recursion starting with the second keyframe and the admissable rangeµ1(Λ1(p1)).

The procedure RecursiveSearch starts with fast forwarding the current pointerpk (Line 13) until
the list end is reached or until the current segmentΛk(pk) = [sk,pk : tk,pk] does not lie entirely
to the left of the admissible range [s : t]. In our example, this is the case forp2 = 2, where
Λ2(p2) = [4 : 6]. Line 16 calculates the intersection of the current segment and the admissible
range. The intersection defines a segment of candidate frames that match keyframeVk and fulfill
the distance condition (3.3) for at least one frame of the previous segmentΛk−1(pk−1). In our
example, the intersection is [4 :6]∩ [5 :10] = [5 :6].

In thewhile-loop, starting at Line 17, all segments inΛk that lead to a non-empty intersection with
the admissible range [s: t] are considered. Here, the increment of the pointerpk and computation
of the intersections is handled between Line 24 and Line 30. In the casek = K, each such
intersection contributes to a hit (this directly follows from what was said above). Therefore, in
Line 19, the hit relevant range of a resulting match is computed and the union isformed with the
previously computed hit relevant ranges. An example for this step will be discussed later. In the
casek < K, a new admissible range is computed (Line 21), and a recursion is triggeredwith the
(k+ 1)th keyframe (Line 22).

We continue our example withp2 = 2 and the non-empty intersection [5 : 6]. In Line 21, the
admissible rangeµ2([5 :6]) = [8 :14] is computed, see Figure 3.8 (b) for the state of the algorithm
at this step. Line 22 triggers another call of RecursiveSearch for the third keyframe. At this
recursion level,p3 is incremented top3 = 2 (Line 13) and the intersection of the current segment
Λ3(p3) and the admissible range is [5 :8]∩ [8 :14] = [8 :8], see Figure 3.8 (c). Now, the condition
k = K is fulfilled. The pointers (p1, p2, p3) = (1,2,2) define a match and Line 19 extends the
union of the hit relevant ranges byR((1,2,2)) = [3 : 8]. At this point we note that the hit relevant
range [s: t] of a given match can be computed efficiently. Here, the end frame of the intersection,
calculated in Line 16, yieldst. To calculates, one has to backtrack from the intersection in theKth

keyframe list to the first keyframe list. Then, Line 24 setsp3 = 3 and the resulting intersection is
[11 : 12]∩ [8 : 14] = [11 : 12] (Line 30). The pointers (p1, p2, p3) = (1,2,3) define another match
with R((1,2,3)) = [3 :12], which is merged with the previously found hit relevant range by means
of the union operator in Line 19. After incrementing top3 = 4, Line 27 sets the intersection to
[14 : 14] andR((1,2,4)) = [3 : 14] is processed in Line 19. Now, incrementing the pointerp3 in
Line 24 exceeds the list boundary, so that the empty intersection as computedin Line 27 causes
thewhile-loop to stop. In Line 33, the pointerp3 is decremented to the previous value, where the
intersection was non-empty. In our example, we then havep3 = 4. Note that the decrementation
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(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Λ1

Λ2

Λ3

Pointers (p1, p2, p3): 1 1 1

µ1([3 :4]) = [5 :10]

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Λ1

Λ2

Λ3

Pointers (p1, p2, p3): 1 2 1

µ1([3 :4]) = [5 :10]

µ2([5 :6]) = [8 :14]

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Λ1

Λ2

Λ3

Pointers (p1, p2, p3): 1 2 2

µ1([3 :4]) = [5 :10]

µ2([5 :6]) = [8 :14]

(d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Λ1

Λ2

Λ3

Pointers (p1, p2, p3): 1 3 3

µ1([3 :4]) = [5 :10]

µ2([9 :10]) = [12:18]

(e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Λ1

Λ2

Λ3

Pointers (p1, p2, p3): 2 3 4

µ1([6 :7]) = [8 :13]

µ2([9 :10]) = [12:18]

Figure 3.8. Keyframe listsΛ1, Λ2, andΛ3 of our example keyframe query.(a): The pointers (p1, p2, p3)
are initialized to point to the first segments of the respective list. The admissible rangeµ1([3 :4]) is indicated
by the gray dotted area.(b)–(e)show intermediate states of the algorithm, see the text for explanations.
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M Hits R(M)

(1,2,2) (3,5,8) [3 :8]

(1,2,3) (3,5,11), (3,6,11), (3,6,12), (4,6,11), (4,6,12) [3 :12]

(1,2,4) (3,6,14), (4,6,14) [3 :14]

(1,3,4) (3,9,14), (3,9,15), (4,9,14), (4,9,15), (4,10,14), (4,10,15) [3 :15]

(6,9,14), (6,9,15), (6,10,14), (6,10,15)
(2,3,4) (7,9,14), (7,9,15), (7,10,14), (7,10,15) [6 :15]

Table 3.1. Matches found by the proposed algorithm for our running example, hits that are contained in
these matches, and their hit relevant rangesR(M).

is necessary to find all hit relevant ranges which could possibly also include frame 15. Although
the matches already comprise the last segment of the third inverted keyframe list, the hit relevant
ranges of the matches found so far do not include frame 15. Decrementingp3 and continuing
the algorithm ensure finding the correct hit relevant ranges. The recursion returns to the point
where RecursiveSearch(3, (8,14)) was called (Line 22). The pointerp2 is incremented top2 = 3
(Line 24) and the intersection= [9 :10]∩ [5 :10] = [9 :10] is calculated (Line 30). Thewhile-loop
is repeated and in Line 21 the admissible range is set toµ2([9 :10]) = [12 :18], see Figure 3.8 (d).
The subsequent recursive call (Line 22) leads to the match (1,3,4). Finally, the pointerp1 is
increased leading to another match (2,3,4), see Figure 3.8 (e).

Table 3.1 shows all matchesM found by our algorithm along with all hits contained in the respec-
tive match and the resulting hit relevant rangesR(M). Actually, there are two matches, (1,3,3)
and (2,3,3), which are not found by the algorithm. These matches, however, are irrelevant since
R((1,3,3)) = [3 :12] andR((2,3,3)) = [6 :12] are contained in unions of hit relevant ranges of the
other matches. Also recall that the actual output of the algorithm consists ofthe union of allR(M),
thus avoiding an explosion of the output size. In our example, this results in asingle segment
[3 :15].

The recurrence in our algorithm is a property that follows from the following consideration. When
searching inside an admissible range, one has to set some frames as candidates for a hit and search
in the next inverted keyframe list for suitable frames fitting to the next keyframe. After finishing
the search in the next keyframe list, one still has to know the admissible range that held before the
search was started. Therefore, a recursion is an appropriate way to express such a condition.

3.6 Experiments

Our keyframe-based search algorithm works for general time-dependent multimedia data and
is designed for efficiently handling temporal deformations between the query and the database
keyframes. We will demonstrate the practicability of our concept by means ofthe motion retrieval
scenario, where one typically encounters such deformations between semantically related motion
sequences. In Section 3.6.2, we describe some experiments showing that our algorithm is often
able to cut down the search space from several hours to a couple of minutes of motion capture
data within few milliseconds (ms). The so reduced dataset can then be ranked and analyzed by
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Figure 3.9. Histogram of stiffness values in the manually defined queries.

more refined alignment techniques. We will demonstrate such a two-stage retrieval strategy by us-
ing motion templates[Müller and R̈oder, 2006] for postprocessing the keyframe-based matches,
see Section 3.6.3. Here, we also report on some experiments to demonstrate the effect of the stiff-
ness parameter on the final retrieval result. Information on the experimental dataset and the used
keyframes can be found in the following Section 3.6.1.

3.6.1 Experimental Data Set and Keyframes

For our experiments, we used the freely available HDM05 database[Müller et al., 2007], which
consists of 210 minutes of motion data contained in 324 files. Making up an average length of 39
seconds, each file consists of a sequence of different actions. A detailed description of the motion
files can be found in[Müller et al., 2007]. From the HDM05 database we cut out 1327 short
motion clips which were organized into 57 motion classes, each containing 10 to 50 realizations
executed by various actors. These motion classes were used to generatekeyframes in a semi-
automatic process. Here, using one half of the motion clips of each class as training data, we
computed quantized motion templates based on the 39 relational features, see Section 2.2. These
features were divided up into three feature sets: One upper body, onelower body, and one mixed
set. We then selected 3 to 9 representative columns along with their distances of each class motion
template as keyframes. For details of a similar procedure we refer to[Müller and R̈oder, 2006]. To
avoid false negatives (at the expense of having more false positives),we manually post-processed
the keyframes by adding or removing suitable feature vectors from the keyframes. For each query,
we also manually define the vector of stiffness values, see Figure 3.9 for a histogram of these
values. Among our 57 queries, stiffness values between 0.2 and 1.0 were used. Only 31% of
the values occur in the more stiff range ofσ = 0.9 or σ = 1.0 which shows that overall, a fair
amount of temporal deformations is permitted in the keyframe queries. As further queries, we
concatenated the motion class keyframes to generate longer and more complexqueries describing
sequences of different actions, see Section 3.6.3.

At this point, we note that the focus of this chapter is not on the fully automated learning of
keyframes, but on the efficient and deformation-tolerant retrieval based on a given set of suit-
able keyframes. In order to fully automate the creation of keyframes, in Chapter 4 we employ a
genetic algorithm to learn keyframes from positive as well as negative training motions. Once suit-
able keyframes are generated for a specific motion class, they can be used as queries to arbitrary
databases.

To prove the applicability of our algorithm, we conducted several experiments. The presented
algorithm has been implemented in a mixture ofC++ and Matlab. All experiments were executed
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Figure 3.10.Run time of the keyframe-based search algorithm vs. the number of segments in the processed
inverted lists, plotted on a log-log scale.

on an AMD Athlon 64 X2 5000+ (using only 1 core) with 3.5GB of RAM.

3.6.2 Data Reduction

As shown in Table 3.2, we used the generated keyframes as an input for our algorithm to reduce the
search space for 57 query motion classes. For each query,K denotes the number of keyframes, and
Avg.σ is the average of the stiffness vector used for this query. We give the number of segments in
the inverted lists that have to be processed in the query with the value in the column corresponding
to

∑
lv. To demonstrate the efficiency of our algorithm,tK shows the keyframe search time in

milliseconds, and %(D) shows the size of the reduced search space in percent with regard to the
database size.

The time taken to reduce the search space using our algorithm amounts to only 12.5 ms on average.
Effectively, the search space is reduced to less than 5% of the entire database on average. As the
table shows, the search time depends on the size of the processed invertedlists. Small searching
times, like 0.3 ms for query ID1, are due to queries that contain keyframes describinginfrequent
poses in the database. For query ID1, characteristic poses for a cartwheel, which occur only in
few other motions in the database, were used as keyframes. In contrast tothis, using the 39 full
body motion features from[Müller and R̈oder, 2006], the class ID49 (turnRight) can not be dis-
tinguished from the standing pose. Here, using a total of 9 keyframes, more than 60000 segments
have to be processed. Because of the unspecific keyframes, all standing poses in the database
are contained in the reduced search space. It is important to notice that although the number of
keyframes in this case is rather high, the search time does not explode. Actually, the run time
grows linearly with the size of the processed keyframe lists as demonstrated by Figure 3.10. Here,
we plot the run timestK against the length of the processed lists

∑
lv for all queries of Table 3.2.

As for the percental size of the reduced search space, for most of theclasses, sizes of less than
3% can be achieved. For many classes, like ID6, even better reduction rates are reached, returning
less than 1% of the HDM05 database. Unlike these results, some queries do not reduce the search
space well. As already mentioned, the keyframes for query ID49 are rather unspecific. As a result,
for this query more than 20% of the database is returned. Similarly, for queries ID50 to ID57, some
of the reduction rates are not so good due to the large number of walking motions in HDM05 and
due to some confusion between various walking styles.

As a further application, the keyframes can be combined to describe a query for an entire sequence
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ID Query class K Avg. σ
∑

lv tK %(D) tR

1 cartwheelLHandStart1Reps 3 0.7 75 0.3 1.2 234
2 clap1Reps 5 0.9 39326 36.6 14.0 5094
3 clapAboveHead1Reps 5 0.8 11959 11.8 1.7 328
4 depositFloorR 5 0.5 18565 17.5 6.0 1063
5 depositHighR 7 0.6 20860 21.5 2.2 375
6 elbowToKnee1RepsLelbowStart 3 0.7 265 0.5 0.6 78
7 elbowToKnee1RepsRelbowStart 4 0.6 1631 2.0 0.6 63
8 grabFloorR 7 0.8 20664 19.3 2.5 344
9 grabHighR 6 0.7 18560 17.9 2.9 656

10 hopBothLegs1hops 5 0.7 23808 22.0 1.0 125
11 hopLLeg1hops 3 0.8 4358 4.5 0.5 31
12 hopRLeg1hops 4 0.8 16965 15.8 1.1 109
13 jogLeftCircle4StepsRstart 4 0.8 2115 2.8 1.4 203
14 jogOnPlaceStartFloor2StepsRStart 5 0.8 28583 27.6 30.4 8766
15 jogRightCircle4StepsRstart 3 0.6 1451 1.8 1.3 188
16 jumpDown 4 0.8 5726 5.6 1.2 188
17 jumpingJack1Reps 3 0.7 780 1.5 0.9 109
18 kickLFront1Reps 5 0.8 30918 26.9 2.0 250
19 kickLSide1Reps 4 0.9 1516 2.0 1.1 141
20 kickRFront1Reps 5 0.8 4302 5.3 1.1 188
21 kickRSide1Reps 4 0.9 11610 10.5 1.2 172
22 lieDownFloor 3 0.5 1784 2.2 2.7 813
23 punchLFront1Reps 5 0.7 11214 12.5 1.4 234
24 punchLSide1Reps 6 0.7 29549 29.8 2.6 375
25 punchRFront1Reps 6 0.7 16880 19.3 2.5 406
26 punchRSide1Reps 6 0.7 45343 42.8 1.7 266
27 rotateArmsBothBackward1Reps 3 0.6 837 1.0 1.5 172
28 rotateArmsBothForward1Reps 6 0.6 6009 6.5 0.7 78
29 rotateArmsLBackward1Reps 4 0.7 6021 6.0 0.6 78
30 rotateArmsLForward1Reps 3 0.7 508 0.8 0.7 94
31 rotateArmsRBackward1Reps 3 0.5 1618 2.1 0.6 63
32 rotateArmsRForward1Reps 3 0.6 298 0.6 0.7 78
33 runOnPlaceStartFloor2StepsRStart 5 0.9 24522 22.9 0.4 31
34 shuffle2StepsRStart 8 0.9 31395 31.6 2.0 359
35 sitDownChair 6 0.9 2793 3.8 2.4 422
36 sitDownFloor 5 0.7 3911 4.5 4.7 1109
37 sitDownKneelTieShoes 3 1.0 372 0.7 2.2 609
38 sitDownTable 6 0.8 18393 19.9 29.3 16766
39 skier1RepsLstart 5 0.6 4157 5.2 0.8 78
40 sneak2StepsLStart 4 0.7 4935 5.6 1.5 250
41 sneak2StepsRStart 6 0.8 18126 18.3 2.0 328
42 squat1Reps 4 0.6 848 1.2 1.0 141
43 staircaseDown3Rstart 5 0.8 9644 10.5 6.5 1469
44 staircaseUp3Rstart 5 0.5 2860 4.0 1.7 281
45 standUpLieFloor 3 0.6 463 0.7 1.7 375
46 standUpSitFloor 6 0.6 7969 7.9 3.6 672
47 throwBasketball 5 0.8 5624 6.9 3.0 563
48 turnLeft 7 0.9 34548 33.8 10.6 4063
49 turnRight 9 0.9 63819 61.8 20.1 9844
50 walk2StepsLstart 6 0.9 12956 14.8 10.5 4609
51 walk2StepsRstart 5 0.8 18547 18.4 13.2 5875
52 walkBackwards2StepsRstart 5 0.9 8641 9.8 1.1 141
53 walkLeft2Steps 3 0.9 312 0.5 0.9 141
54 walkLeftCircle4StepsRstart 6 0.7 11447 13.8 13.5 3953
55 walkOnPlace2StepsLStart 5 0.9 14792 16.0 35.9 17422
56 walkRightCircle4StepsRstart 7 0.6 10196 14.1 11.5 2719
57 walkRightCrossFront2Steps 3 0.8 6545 5.7 4.0 875

∅ 4.8 0.75 12314 12.5 4.8 1657

Table 3.2. Retrieval results on the HDM05 database (3.5 hours of mocap data).K: Number of keyframes
used in the query. Avg.σ: average of the stiffness vector.

∑
lv: Number of segments in the processed

inverted lists.tK : Keyframe search time in ms. %(D): Size of the reduced search space in percent (w.r.t. the
size of HDM05).tR: Time for motion template retrieval on the reduced search space in ms.
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Figure 3.11. (a): The two keyframe queries ‘elbowToKnee’ and ‘squat’ are combined to yield a new
keyframe query.(b): Corresponding combined MT.

ID query class K Avg. σ
∑

lv tK %(D) tR

58 ID 6+ ID 42 7 0.7 1114 1.8 1.2 281

59 ID 13+ ID 15 7 0.7 3566 5.1 1.3 438
60 ID 19+ ID 23, ID 26 16 0.7 63739 72.7 1.8 797
61 ID 22+ ID 22 6 0.7 3568 4.2 2.1 1656
62 ID 27+ ID 28 10 0.7 12030 14.4 1.0 219
63 ID 39+ ID 6 8 0.7 4423 5.8 0.8 234
64 ID 44+ ID 43 10 0.7 12505 16.7 1.0 281
65 ID 52+ ID 57 8 0.7 15186 17.5 1.7 594
66 ID 55+ ID 33 10 0.7 39314 42.5 1.0 391

∅ 9.1 0.7 17272 20.1 1.3 543

Table 3.3. Retrieval results on the HDM05 database (3.5 hours of mocap data) using combined queries.
The combined queries are used to search for a sequence of actions, see also Table 3.2.

of various actions. As an example, the concatenation of the queries elbow-to-knee and squat is
shown in Figure 3.11 (a). By setting the distanced3 and the corresponding stiffness parameterσ3

between the last keyframe of the first motion class and the first keyframe ofthe second motion
class, one can control the time that may elapse between the two actions. A similar approach
to scene description has been sketched in[Müller et al., 2005]. To demonstrate the applicability
of this scenario, we have created nine combined queries. The retrieval results are documented
in Table 3.3. Although more keyframes are used, the keyframe search time does not explode. For
example, in query 60 comprising 16 keyframes, a total of 63 739 segments have been processed
in 72.7 ms. In comparison to query ID49, which exhibits a similar number of processed segments,
but a smaller number of keyframes, only a small increase in the search time canbe observed.
Additionally, for all combined queries the size of the reduced search space is very small. Generally,
the more keyframes are used in a query, the less data fits to these keyframes.

3.6.3 Retrieval Quality

To show the effectiveness of our algorithm in a two-stage retrieval system, we apply motion tem-
plate retrieval[Müller and R̈oder, 2006] as a ranking of the reduced search space. For queries
ID1 to ID57, class motion templates have been used. For queries ID58 to ID66, the class motion
templates have been combined as indicated in Figure 3.11 (b). In this example, the elbow-to-knee
motion template and the squat motion template have been concatenated with a block of0.5-values,
assigning zero cost for this clipping during the ranking process. Then,the output of the MT-based
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Figure 3.12. Run time of the MT-based ranking on the reduced search space vs. the size of the reduced
search space on a log-log scale.

retrieval step is a set of ranked motion clips contained in the reduced search space.

In Tables 3.2 and 3.3, the columnstR depict the time in ms required for the ranking step. Using
a variant of DTW, the run time depends linearly on the product of the size ofthe reduced search
space and the size of the motion template. Since in practice the size of the motion templates is
similar among different queries, the run time can be assumed to grow linearly with the size of the
reduced search space. This is also documented in Figure 3.12, where weplot the run time of the
ranking step over the size of the reduced search space. Note that the ranking step takes less than
a second for most of the queries. The speed-up with regard to motion template retrieval on the
whole database is equal to the reduction rate of the keyframe based search.

To demonstrate the quality of the results, precision-recall diagrams for somequeries are shown
in Figure 3.13. For these queries, 15 to 75 relevant documents are contained in the HDM05
database. The recall is very high among all queries, which means that the reduced search space,
obtained by our algorithm with stiffness values around 0.6, still contains most of the relevant
documents. Unlike the other queries, on query ID36 (“sit down on floor”) false positives occur
early in the hit list. Most of the false positives are motions of the class “lie downon floor”, which
starts in most cases in the HDM05 database with a “sit down on floor”-phase.

To quantify the influence of the stiffness parameter, Figure 3.14 shows the results for the queries
of the first two rows of Figure 3.13, where the stiffness parameter has been set to 1.0, thus creating
rigid keyframe queries where any time deformation between the keyframes was prohibited. In
comparison to the corresponding diagrams in the first two rows of Figure 3.13, many relevant
documents were missed due to the denial of temporal deformations, since overall less parts of the
database can be explained by the rigid queries. However, often, the remaining hits still contain true
positives which might be motions that were executed at the same speed as the query. For example,
nearly all jumping jack motions (query ID17) are missed when setting the stiffness to 1.0, but the
remaining hits are all true positives. This suggests that most of these jumping jack motions have
been performed with varying speed in the HDM05 motion database. By contrast, from query ID12
(jump on the right foot), only one relevant hit has been masked out in comparison to the original
keyframe query. Here, the actors seem to have performed the motion in a rather constant speed.
As a third example, consider query ID28. Again, the majority of the hits is missedwhen denying
any temporal deformation.

A further experiment shows the effect of varying the stiffness parameter. Figure 3.15 (a) shows
precision-recall diagrams for query ID59 with modified stiffness values. Some false positives
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Figure 3.13.Precision-recall diagrams of hits obtained by queries withthe indicated IDs (see Table 3.2).
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Figure 3.14. Precision-recall diagrams of some queries of Figure 3.13 wereas we modified the stiffness
values toσ ≡ 1.0.

occur when settingσ ≡ 0, which are eliminated when using higher stiffness values. Forσ ≡ 0.6,
the precision-recall diagram is the same as the one with manually determined stiffness values.
A further raise of the stiffness results in a loss of some relevant documents. A similar behavior
is demonstrated for query ID60 in Figure 3.15 (b) and query ID61 in Figure 3.15 (c). Again, no
difference in theσ ≡ 0.6-diagram can be noticed in comparison to the manually optimized query
stiffness values. However, the sizes of the reduced search spaces and so the times for the ranking
steps are smaller for queries ID59, ID60 and ID61 than for theσ ≡ 0.6-modified queries.

3.7 Conclusions

In this chapter, we introduced a novel algorithm for keyframe-based multimedia retrieval which
can be used to drastically cut down the search space. In contrast to previous approaches, our
index-based algorithm can cope with significant temporal deformations without resorting to com-
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Figure 3.15.Precision-recall diagrams for(a) queries ID59,(b) ID60, and(c) ID61, whereas the manually
determined stiffness values have been modified to the specified values.

putationally expensive techniques such as dynamic time warping. To prove itspracticability, we
applied our algorithm within a two-stage motion retrieval scenario, where the mocap database is
pre-filtered in the first stage using the described search algorithm. As it turned out, the tempo-
ral flexibility introduced by our stiffness concept is necessary to avoid a large number of false
negatives in the pre-filtering step. In our experiments, we showed that therun time of our algo-
rithm scales well with the number of frames in the database. In particular, the keyframe-based
search takes only a couple of milliseconds for a database comprising 3.5 hours of mocap data.
In this chapter, the keyframes were generated in a semi-automatic process.In the next chapter,
we will develop an algorithm for automatically learning keyframes from a given set of example
motions, where the keyframe-based search will be executed repeatedly as a sub-component. The
high efficiency of our keyframe-based search is one major reason why the run timeof the learning
algorithm is kept within acceptable bounds.



36 CHAPTER 3. EFFICIENT KEYFRAME-BASED RETRIEVAL



Chapter 4

A Genetic Algorithm for Learning
Keyframes

As shown in the previous chapter, carefully selected and designed keyframe queries can lead to a
successful and efficient retrieval. When designing keyframes, the following considerations should
be taken into account. On the one hand, since the keyframes are used as hard constraints in a query,
they should generalize well to avoid a large number of false negatives in theretrieval step. On the
other hand, the keyframes must have a high discriminatory power to yield the desired pruning and
data reduction capability. As the main contribution of this chapter, we describehow characteristic
keyframe queries can be learned automatically from positive and negativeexample motions using
a randomized genetic algorithm. Generally, such algorithms are population-based optimization
techniques to find approximate solutions to optimization problems[Pohlheim, 1999]. This chapter
is based on the publication[Müller et al., 2009] and extends ideas from[Müller et al., 2008]. One
drawback of the approach described in Müller et al. [2008] is the modeling of temporal flexibility
in the query, which is dependent on the chosen feature function. In ourformulation based on
keyframes and admissible temporal deformations between them, a more general model that is
invariant to the chosen feature function is obtained. Further differences arise from the choice of
our more general model and include changes in the initialization, the recombination and mutation
steps of the genetic algorithm. Note that our work is fundamentally different to keyframe selection
methods like[Assaet al., 2005], where keyframes as used for visual summaries are computed. In
contrast to our approach, such methods do not consider in how far such keyframes might be useful
for discriminating motions in a retrieval scenario.

Based on the general paradigm of evolutionary algorithms[Pohlheim, 1999], we describe our
keyframe learning algorithm in the subsequent sections. We first show how we model a population
and its individuals (Section 4.1). Then, we describe how we model the qualityor fitness of an
individual (Section 4.2). After that, we show how we generate an initial population (Section 4.3)
and discuss the main algorithm with its genetic operations (Section 4.4). Finally, we describe
our experiments (Section 4.5). For further experiments in the retrieval context, we also refer
to Chapter 5 where keyframes learned with the algorithm described in this chapter are used to
assist an MT-based annotation procedure.

37
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4.1 Modeling Individuals

A populationconsists of a set ofindividualsthat represent candidate solutions for the optimization
problem. In our scenario, an individual is represented by a keyframe query

Ind = (V,d′) . (4.1)

In the following, we describe how we compute such candidate solutions froma set of example
motions. Recall the case of motion templates, where a set of positive example motionsT + was
used to compute a representation of a motion classC. In addition toT +, we assume a set of
negative example motionsT − that discriminate the classC to other motion classes. Then, the goal
is to generate a keyframe query (V,d) yielding characteristic constraints shared by all motions
belonging toC but not by motions from other classes. In other words, a keyframe search with
(V,d) conducted on the set

T := T + ∪ T − (4.2)

should return exactly the motions contained inT +.

For the sake of clarity in the following notation, we slightly modify the representation of keyframes
in comparison to the representation as introduced in Chapter 3. Instead of explicitly reverting
to keyframe distancesd and stiffness parametersσ, we implicitly represent these values by the
minimal and maximal admissible distances between keyframes

d′ = (dmin
1 ,d

max
1 ), . . . , (dmin

K−1,d
max
K−1)) . (4.3)

with

∀k ∈ [1 : K − 1] : (dmin
k ,d

max
k ) ∈ N × N, dmin

k ≤ dmax
k . (4.4)

Note that as carried out also in the functionµ, see Equation (3.11), one can easily map from the
representation (V,d) to (V,d′) by

dmin
k = ⌈σk · dk⌉ (4.5)

dmax
k =



⌊
1
σk
· dk

⌋
if σk > 0,

∞ if σk = 0,
(4.6)

for k ∈ [1 : K − 1]. The inverse map from (V,d′) to (V,d) directly follows by

σ̂k =



√
dmin

k /dmax
k if dmax

k , ∞,

0 if dmax
k = ∞,

(4.7)

d̂k =



√
dmin

k · dmax
k if dmax

k , ∞,

∞ if dmax
k = ∞,

(4.8)

for k ∈ [1 : K − 1]. Note that because of the rounding operations in Equations (4.5) and (4.6),
(d̂k, σ̂k) might not be equal to (dk, σk). However, they are compatible in the sense that the same val-
uesdmin

k anddmax
k are computed from (̂dk, σ̂k) and (dk, σk) by means of Equations (4.5) and (4.6),

respectively.

To simplify notation, we do not explicitly distinguish between both representations when it is clear
from the context which representation is used.
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4.2 Fitness Function

We measure the quality or thefitnessof an individual in terms of precision and recall by evalu-
ating the individual on the example motions. More precisely, letH(Ind) ⊆ T denote the mocap
documents retrieved by the keyframe query Ind. Then, we define precision P(Ind) through

P(Ind) :=
|H(Ind)∩ T +|
|H(Ind)|

(4.9)

and recallR(Ind) through

R(Ind) :=
|H(Ind)∩ T +|

|T +|
. (4.10)

Intuitively, the precision function measures the accuracy of a query, evaluating the fraction of
relevant among the retrieved documents. On the contrary, the recall function constitutes a measure
of completeness, indicating how many of the relevant documents are actually retrieved. Having
bothP(Ind) = 1 andR(Ind) = 1 describes the ideal query for which only the relevant documents
are retrieved. In general, however, such queries are hard to design.

We now define a fitness value Fitβ(Ind) to an individual Ind with respect to a weighting parameter
β. To this end, we make use of the weighted F-measure of Equation (4.9) and Equation (4.10) by

Fitβ(Ind) :=
(1+ β2) · (P(Ind) · R(Ind))
β2 · P(Ind)+ R(Ind)

. (4.11)

Typically, keyframes will be used to cut down the search space using,e. g., our keyframe-based
algorithm described in Chapter 3. The resulting search space will then be analyzed in a further
refinement step, see Chapter 5 for an example in the context of automated annotation of mocap
documents. In such a scenario, we want to avoid that hits are already excluded by the keyframe-
based preprocessing,i. e., we want to avoid false negative hits. We permit false negative hits even
if it possibly comes at the expense of having less precision, meaning that wewant to tolerate
more false positive results. The main reason is that we assume that the resulting reduced search
space will be processed further by a more refined analysis, where false positive results can still be
eliminated. Therefore, we stress the recall value in our fitness function bysettingβ = 2.

4.3 Initialization

For the start of the optimization, we generate an initial populationΠ1 consisting ofM individuals.
To this end, we first compute a quantized motion templateX ∈ {0,1, ∗} f×N from T + for a motion
classC, see Section 2.3. Intuitively speaking, we then pick a small number of columnsfrom X
as a keyframe query. Here, we refer to thenth column ofX by X(:,n), n ∈ [1 : N]. Following
our strategy of trying to avoid false negative results, we use a strict quantization thresholdδ = 0
to compute the quantized motion template. This reveals also the slightest inconsistencies among
the relational features of the training motions. As a consequence, each column corresponds to a
keyframe which is guaranteed to have at least one match in each of the training motions. In other
words, choosing one column from the motion template quantized withδ = 0 will guarantee perfect
recall on the training motionsT given suitable keyframe distancesd.
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Algorithm 2 Initialization of an Individual

Input: X ∈ {0,1, ∗} f×N: quantized motion template
N(a,b): normally distributed random number generator with
meana and standard deviationb.
U(a,b): uniformly distributed random number generator that
generates numbers in the interval [a,b]

Output: (V,d): Individual modeled by a keyframe query

1: K ← max(2,N(3,2))
2: P← K randomly selected frames from the range [1 :N]
3: sort(P)
4: for k← 1 to K do ⊲ Initialize keyframes
5: Vk ← X(:,P(k))
6: end for
7: for k← 1 to K − 1 do ⊲ Initialize admissible temporal variations
8: δ← P(k+ 1)− P(k)
9: dmin← max(0, δ/2− round(δ/2 · U(0,2)))

10: dmax← δ/2+ round(δ/2 · U(0,2))
11: end for

Remember that a motion templateX reveals the consistent aspects of the example motions and
expresses characteristic properties of the classC. However, using the columns ofX directly as
keyframes does not account for the negative training examples inT −. As a consequence, the
precision values of such keyframe queries might be comparatively low. Our idea is to use the
motion template only for the initialization followed by a successive refinement of the keyframes,
as summarized by Algorithm 2. To this end, for each of theM initial individuals we first choose
a natural numberK based on a normally distributed random number generator with a mean of
3 and a standard deviation of 2 (Line 1). The numberK corresponds to the initial number of
keyframes in the individual. We fixed the parameters of the random number generator by virtue
of our experience with manually designed keyframe queries as evaluated inChapter 3. Here, we
found that using 4.8 keyframes on average yielded good retrieval results, see also Table 3.2. Note
that our general strategy is to avoid false negative results. Thus, we set a slightly lower mean of
3 (instead of setting 4.8 as the mean), since using less keyframes leads to higher recall values in
general.

After choosingK, we define the keyframe query (V,d). First, we randomly pickK columns of
X to define the keyframesV1, . . . ,VK (Lines 2 to 6). Then, the distance parameters are initialized
based on the distances of the chosen keyframes admitting some randomly chosen tolerance, see
Lines 7 to 11.

4.4 Genetic Operations

After the initialization, the three genetic operations referred to asselection, recombination, and
mutation are used to iteratively breed a new population from a given population. Let Πg,
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(a) (b)

Figure 4.1. (a): Two parents are combined to generate an offspring. (b): The offspring is mutated by
either adding/removing a keyframe(top), generalizing/specializing a keyframe(middle), or by changing
the admissible keyframe distances(bottom).

g ∈ N, denote the current population. Then, using the concept of universal stochastic sam-
pling [Baker, 1987], we selectr individuals fromΠg, which are referred to asparents. In the
recombination step, the keyframes of any two of these parents are combinedto derive new indi-
viduals, referred to asoffsprings. To this end, we randomly choose a number of keyframes of
each of the two parents and merge these keyframes to form a single keyframe sequence, see Fig-
ure 4.1 (a). The new distance parametersd are determined similarly to the initialization step. To
avoid an early convergence of the optimization procedure towards a poorlocal optimum, additional
modifications to the offsprings are applied by suitable random operations referred to as mutations,
see Figure 4.1 (b). In our case, an offspring is mutated by randomly choosing and applying one of
the following operations:

• Add or remove a randomly chosen keyframe.

• Specialize (i. e., change∗ to 0 or 1) or generalize (i. e., change a value 0 or 1 to∗) a randomly
chosen keyframe.

• Randomly increase and decrease the values ind.

After the recombination and mutation steps, we obtainr(r−1)
2 offsprings. We arrange theM indi-

viduals ofΠg and ther(r−1)
2 offsprings in a sorted list with decreasing fitness. Finally, the new

populationΠg+1 is obtained by picking theM fittest individuals from this list. This entire pro-
cedure is iterated forg = 1, . . . ,G, whereG denotes a fixed number of generations. The fittest
individual ofΠG is the solution of the optimization procedure, see Algorithm 3 for an overview of
the keyframe learning algorithm.

In our implementation the population size is set toM = 50, the number of parents tor = 5,
and the number of generations toG = 100. The exact values of these parameters, which have
been determined experimentally, are not of crucial importance for the finalresult. However, as
typical for evolutionary algorithms, different runs of the overall procedure may result in significant
differences between the keyframes of the various solutions. Therefore, for each motion class,
we run the overall genetic algorithm several times (in our experiments 100-500 times) and then
generate an individual with keyframes that most frequently occur in the solutions. To this end, we
accumulate the resulting keyframes of each run of the genetic algorithm in a real-valued matrix,
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Algorithm 3 Genetic Algorithm for Learning a Keyframe Query

Input: T +: positive training motions
T −: negative training motions
M: number of individuals in a population.
G: number of generations
r: number of individuals to select as parents

Output: ΠG: population of generationG

1: for m← 1 to M do ⊲ Initialize populationΠ1

2: Π1(m) is generated with Algorithm 2 (page 40).
3: end for
4: for g← 1 to G do ⊲ loop over all generations of the population
5: for m← 1 to size(Πg) do ⊲ loop over all individuals of one generation
6: Ind← (V,d) = Πg(m)
7: Obtain hits by queryingT = T +

⋃
T − with Ind using Algorithm 1 (page 24)

8: Each document inT with at least one hit is regarded as a retrieved document.
9: Evaluate Fit2(Ind), see Equation (4.11).

10: end for
11: Πg← TheM fittest individuals ofΠg. ⊲ Keep the population at a constant size
12: Selectr individuals inΠg using stochastic universal sampling.
13: Creater(r−1)

2 offsprings by recombining any two parents.
14: For each offspring, mutate it using a randomly chosen mutation operation.
15: Πg+1← Πg ⋃

{all mutated offsprings}.
16: end for
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Figure 4.2. (a): After adding up the results of 300 runs of the genetic algorithm, frequently occurring
keyframes stand out.(b): The most frequently occurring keyframes are extracted.

whereas we represent the wildcard character with the value 0.5, see Figure 4.2 (a). Here, columns
with white and black regions correspond to frequently occurring keyframes. Using this matrix
representation, we then extract the most frequently occurring keyframes, see Figure 4.2 (b), and
optimized using a similar strategy as with the genetic algorithm.
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4.5 Experiments

We implemented the learning algorithm in Matlab while passing time critical parts to subroutines
implemented in C/C++. The computations were performed on an AMD Athlon X2 5000+ with
3.5 GB of RAM.

In our experiments, we used the described algorithm to generate keyframequeries for a set of
P = 69 motion classesCp, p ∈ [1 : P]. To this end, we took the motion classes as indicated
in Table 3.2, and added additional classes. With the additional classes, we included motions like
throwSittingHigh and throwSittingLow, as well as throwStandingHigh and throwStandingLow.
These motions are very similar to each other despite from the height of the hands, respectively,
and therefore pose a challenging test for generating keyframes. Moreover, we incorporate mo-
tions that are difficult to distinguish even for a human observer. For example, we included the
classes grabFloorR and grabHighR. Notably, the only difference to the already existing classes
depositFloorR and depositHighR (classes 4 and 5 in Table 3.2), is the end phase of the motion
where the actor grabs or deposits a small object, respectively. Additionally, we included motion
classes which describe grabbing and depositing motions of an object in a shelve at medium and
low height, respectively.

We assembled a training database of 24 minutes length in total (42586 frames),which consists of
nine example motions for each motion class, serving asT +p , respectively. These example motions
were manually cut out from documents of the HDM05 mocap database[Müller et al., 2007]. In a
first step, the relational features, which are needed for learning the motion templates as well as the
keyframe queries, are computed and stored for the entire training examples(taking 137 seconds
for the 24 minutes of data). From the features, we computed the quantized class motion templates
using an iterative warping and averaging algorithm (see Section 2.3), which took roughly 3 seconds
on average for each MT. To learn the keyframe queries, we also need negative example motions
for each class. Here, we simply defineT −p to be the union of all example motions that do not
belong to the classCp:

T −p =
⋃

q∈[1:P]\p

T +q . (4.12)

Applying the genetic operations in an iterative fashion leads to significant improvements in the
discriminatory power of the keyframes. As illustration we refer to Figure 4.3 (a) which shows the
discriminatory power of the learned keyframes over the iterations in terms of average precision,
recall, and fitness (using Fit2) on the training data. Here, averages are taken over the individuals
of a population and over all motion classes. In particular, note that the recall values on the training
set stay relatively stable at a high level around 1.0, whereas the precision values quickly rise to
values above 0.8.

Further, we show how the queries generalize by means of additional mocapdocuments serving
as a verification set. Similar to the training set, we select on average 14.6 additional motions per
class, comprising 37 minutes of mocap data, or 66 749 frames. The corresponding performance
of the learned keyframe keyframe queries is illustrated in Figure 4.3 (b). Note that although the
overall performance on the verification set is lower than the performanceon the training set, the
fitness also on the verification set always increases with the number of iterations and stable values
around 0.75 are reached.
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Figure 4.3. Average precision (black), recall (red), and fitness (green) of the learned keyframe queries
evaluated on(a) the training data and(b) on the verification data as a function of the number of iterations
used in the genetic algorithm.
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Figure 4.4. Histogram of stiffness values in the automatically learned queries.

Remember that for the initialization of the keyframe queries, we pick columns from a quantized
MT. Using a quantization thresholdδ = 0 (being very strict to variations in the training data),
this quantized MT typically contains many wildcard characters. On the one hand, the so-chosen
queries have a recall close to one on the training data, but on the other hand, the discriminative
power against other classes is low, yielding a small precision value. We chose this strategy to steer
the generated keyframe queries to a high recall with the goal to avoid false negative hits already in
the keyframe-based search. During the iterations, keyframe queries are refined and tuned towards
a higher fitness. As summarized in Figure 4.3, a strong increase in the precision leads to the
improvement in the fitness of the queries, at cost of a small decrease in recall.

In order to visualize in how far temporal variations are taken into account inthe learned queries,
we computed the histogram of the stiffness values occurring in all 57 queries, see Figure 4.4. More
than 87% of the stiffness values occur in the range of stiffness values up to 0.8, which shows that
temporal flexibility is needed in order to achieve a high recall. In comparison tothe manually
defined queries, see Figure 3.13, more stiffness values occur in the highly flexible range around
σ = 0.25. One main reason for this behavior is that a decrease in the stiffness often leads to
an increase in the recall on the training set which is preferred in the learning algorithm. Overall,
despite of the low stiffness values, the automatically learned keyframes are well suited to cut down
the search space as explained in Chapter 5. In the annotation scenario that will be described, we
report a 15-fold speedup of the procedure when keyframes are used to cut down the search space.

As for the run times of the learning procedure, using the genetic algorithm withthe parameters
as specified in Section 4.4, it took roughly 10 seconds on average to learna keyframe query for
a given motion class. Since we run the overall genetic algorithm several times(100-500 times)
to derive more characteristic keyframes, run time increases by a corresponding factor. The run
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times are mainly determined by the operation that computes the fitness of an individual. Here, one
needs to perform a keyframe-based retrieval on the 24-minute training database. On average, the
retrieval took roughly 3 milliseconds for one query. This retrieval operation has to be performed
several thousand times for each run of the genetic algorithm. Thus, the efficiency of the keyframe-
based search algorithm as described in Chapter 3 constitutes one of the major reasons why we are
able to reach acceptable run times for the presented genetic keyframe learning algorithm.
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Chapter 5

Automated Annotation

This chapter is based on the publication[Müller et al., 2009]. As a main contribution of this thesis,
we describe a novel MT-based annotation procedure that is used to segment and label an unstruc-
tured mocap document on the basis of a given set of motion classes. Here,an assigned label
corresponds to the motion class that best explains the respective motion segment. To solve this
challenging task, several components described in the preceding chapters interact with a novel
annotation procedure introduced in this chapter. In a preprocessing step, keyframes are learned
using the genetic algorithm described in Chapter 4 and motion templates are generated. Then, in
the annotation procedure, we first prune the unknown mocap document using the fast keyframe-
based search algorithm described in Chapter 3. Hereafter, the novel MT-based annotation strategy
is conducted only on a small subset of the document. Unlike previous work,our annotation pro-
cedure shows a high degree of robustness to large numerical differences that may exists between
semantically related motions (i. e., motions that belong to the same motion class). By employing a
keyframe-based search, we efficiently narrow down the set of candidate motions related to a spe-
cific motion class and also improve the annotation quality by eliminating false positivematches,
as shown in our experiments.

The remainder of this chapter is organized as follows. After giving a briefintroduction (Sec-
tion 5.1), we describe our novel MT-based annotation procedure (Section 5.2). Then, we show
how efficiency and precision can be significantly improved by employing a keyframe-based pre-
selection step (Section 5.3). In Section 5.4, we demonstrate the practicability ofour overall an-
notation procedure by describing various experiments conducted on large mocap databases. Our
conclusions are given in Section 5.5.

5.1 Introduction

In this chapter, we present a system for automatically and efficiently annotating large unstructured
collections of mocap data. Given an unknown mocap document, the annotationtask consists of
segmenting the document into logical units and then classifying each segment according to a given
set of motion classes. Note that the problem oflocally annotating unknown motion data on the
subsegment level is a much harder task thanglobally comparing and classifying motion data on
the document level. In our annotation scenario, we assume that each motion class is specified by a

47
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set of semantically related example motions which reflect the range of spatio-temporal variations
appearing in valid motion realizations. As motion class representation, we revert to the concept
of motion templates(MTs) as introduced by M̈uller et al. [2006], see also Section 2.3 for a short
introduction. Such templates capture common as well as varying aspects of theunderlying training
motions in an explicit and semantically interpretable matrix representation.

Most related to our work, Arikanet al. [2003] propose a semi-automatic annotation procedure,
where a user is required to annotate only a small portion of the database. The user’s annotations
are then generalized to the entire database in a framewise fashion using SVMclassifiers. Our an-
notation approach differs from their approach in various ways. Firstly, our annotation strategyis
segment-based instead of frame-based, thus resulting in semantically more meaningful units. Sec-
ondly, using concepts such as relational features and dynamic time warping, our approach is more
robust to spatial and temporal variations than the one by Arikanet al. [2003], where normalized
joint positions and fixed temporal windows are used. Finally, our strategy isto learn the necessary
class representations (motion templates, keyframes) only once prior to the actual annotation step.
Based on these representations, the annotation can then be performed very efficiently on large and
arbitrary sets of mocap documents.

5.2 Annotation Procedure

As basis for our annotation procedure, we introduce a distance functionthat reveals all motion
subsegments of an unknown mocap documentD associated with a given motion classC. Let
X ∈ {0,1, ∗} f×N be the quantized class MT ofC of lengthN andY ∈ {0,1} f×L the feature matrix of
D of lengthL. We first define a cost measurecQ for comparing thenth columnX(n) of X and the
ℓth columnY(ℓ) of Y, n ∈ [1 : N], ℓ ∈ [1 : L]. Let X(n)i denote theith entry of thenth column ofX.
Now, for all columnsn ∈ [1 : N], we define the indices of the rows that do not contain a wildcard
character as follows:

I (n) := {i ∈ [1 : f ] | X(n)i , ∗}, (5.1)

Then, if |I (n)| > 0, we set

cQ(n, ℓ) =
1
|I (n)|

∑

i∈I (n)

|X(n)i − Y(ℓ)i |, (5.2)

otherwise we setcQ(n, ℓ) = 0. In other words,cQ(n, ℓ) only accounts for the consistent entries
of X with X(n)i ∈ {0,1} and leaves the other entries unconsidered. Note that the wildcard entries
in a motion template represent admissible variations of a motion class which we ignore in the
distance measure by employingI (n). Based on this cost measure, we define a distance function
∆ : [1 : L] → R ∪ {∞} betweenX andY using dynamic time warping (DTW):

∆(ℓ) :=
1
N

min
a∈[1:ℓ]

(
DTW

(
X , Y(a : ℓ)

))
, (5.3)

whereY(a : ℓ) denotes the subsequence ofY starting at indexa and ending at indexℓ ∈ [1 : L].
Furthermore, DTW(X,Y(a : ℓ)) denotes the DTW distance betweenX andY(a : ℓ) with respect to
the cost measurecQ. To avoid degenerations in the DTW alignment, we use the modified step size
condition with step sizes (2,1), (1,2), and (1,1) (instead of the classical step sizes (1,0), (0,1), and
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Figure 5.1. (a)Distance functions∆ based on the quantized class MT ‘sitDownFloor’(b) Corresponding
modified distance function̄∆τ for τ = 0.13.

(1,1)). Note that the distance function∆ can be computed efficiently using dynamic programming.
For details on DTW and the distance function we refer to[Müller, 2007].

The interpretation of∆ is as follows: a small value∆(ℓ) for someℓ ∈ [1 : L] indicates that
the subsequence ofY starting at frameaℓ (with aℓ ∈ [1 : ℓ] denoting the minimizing index
in Equation (5.3)) and ending at frameℓ is similar to the class MTX. Here, the starting frame
indexaℓ can be recovered by a simple backtracking within the DTW procedure. In other words,
looking for all local minima in∆ below a suitable quality thresholdτ > 0 one can identify all
subsegments ofD closely correlating to the classC. As example, Figure 5.1 (a) shows a distance
function based on the quantized MT for the class ‘sitDownFloor’. Note thatthere are two local
minima having a value close to zero that reveal the two ‘sitDownFloor’ subsegments contained in
the mocap document.

Recall that a local minimum∆(ℓ) close to zero only indicates theend frameof a subsegment ofD
corresponding to the classC. We now modify the distance function in such a way thatall frames
n ∈ [aℓ : ℓ] of the subsegment are distinguished by assigning to them the same distance value
∆(ℓ). Furthermore, with the distance function we only want to consider those frames that closely
correlate toC. To this end, we use the quality thresholdτ > 0 and iteratively define a modified
distance function

∆̄τ : [1 : L] → R ∪ {∞}. (5.4)

First, we set∆̄τ(ℓ) = ∞ for all ℓ ∈ [1 : L]. Then, iterating over all local minimaℓ ∈ [1 : L] of ∆
belowτ, we define∆̄τ(n) for n ∈ [aℓ : ℓ] to be the minimum of the hitherto defined valuē∆τ(n)
and∆(n), see Figure 5.1 (b).

The basic idea of our annotation procedure is to locally compare a mocap document with the
various class motion templates and then to annotate all frames within a suitable motion segment
with the label of the motion class that best explains the segment. LetD be an unknown mocap
document of lengthL and letC1, . . .CP be the motion classes used for the annotation, where
p ∈ [1 : P] denotes the label of classCp. In our procedure, we compute a modified distance
function ∆̄τp for each classCp as described above. We then minimize the resulting functions over
all class labelsp ∈ [1 : P] to obtain a single function∆min : [1 : L] → R ∪ {∞}:

∆min(ℓ) := min
p∈[1:P]

∆̄τp(ℓ), (5.5)

ℓ ∈ [1 : L]. Furthermore, we store for each frame the minimizing indexp ∈ [1 : P] yielding a
function∆arg : [1 : L] → [0 : P] defined by:

∆arg(ℓ) := arg min
p∈[1:P]

∆̄τp(ℓ), (5.6)
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Figure 5.2. (a)Modified distance functions (color coded) for each class. White regions indicate distance
values larger thanτ = 0.13. Time is sampled at 30 Hz.(b) Red blocks: Resulting annotations induced
by ∆arg. Black blocks: Ground truth annotations.(c) Result after extending (b).(d) Modified distance
functions using keyframes as preprocessing step.(e)Annotation result using keyframes.
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Class ID class description

C1 neutral stand in a neutral position, hands lowered

C2 tpose stand in t-pose, hands horizontally extended

C3 move 2 steps (starting left or right, walk, jog, run,. . .)

C4 turn turn around left or right

C5 sitLieDown sit down on chair or floor, kneel, lie down on floor

C6 standUp stand up from chair or floor

C7 hopOneLeg jump with left or right leg

C8 jump jump with both feet, jumping jack

C9 kick kick to front or side with left or right leg

C10 punch punch to front or side with left or right hand

C11 rotateArms rotate both or single arms front or back

C12 throwR throw an item with right hand, sitting or standing

C13 grabDepR grab or deposit with right arm high, middle, low

C14 cartwheeel cartwheel with left or right hand starting

C15 exercise elbow to knee, skier, squat

Table 5.1. Description of the 15 motion classes used in our experiments. Each class comprises various
subclasses.

where∆arg(ℓ) is set to 0 in case∆min(ℓ) = ∞ (and to the smallest class label number to break a tie).
In principle, the function∆arg yields the annotation of the mocap documentD by means of the
class labelsp ∈ [1 : P]. Here, a value 0 means that the corresponding frame is left unannotated.

For a first illustrative example, we use theP = 15 classes indicated by Table 5.1, see Section 5.4
for a detailed discussion. Figure 5.2 (a) shows the resulting 15 modified distance functions∆̄τp
with τ = 0.13 in a color-coded form for a given mocap documentD of lengthL = 2800 frames
(≈ 93 seconds). The resulting annotations are shown in Figure 5.2 (b), where the color red corre-
sponds to the automatically generated annotations induced by∆arg and the color black corresponds
to manually generated ground-truth annotations. For a further discussionand evaluation of our an-
notation results, we refer to Section 5.4.

In the following, a maximal run of consecutive frames annotated by the same label is referred to as
segment. Note that our procedure cuts the documentD into disjoint segments, where some of these
may be very short. For example, the ‘standUp’ annotation segment aroundframe 1500 comprises
only 13 frames (≈ 1/3 of a second). This is due to the fact that the beginning of the actual ‘standUp’-
motion (actor is sitting) is annotated as ‘sitLieDown’. This makes sense since thebeginning of the
‘standUp’ motion semantically overlaps with the end of the previous ‘sitLieDown’-motion, where
the actor sits down. To enable overlapping annotations and semantically meaningful segments
(i. e., segments that represent a complete motion of the corresponding class), we further extend the
annotated segments as follows. Suppose that the frames with indices [s : t], s, t ∈ [1 : L], s ≤ t,
have been annotated with the class labelp ∈ [1 : P]:

∀ℓ ∈ [s : t] : ∆arg(ℓ) = p. (5.7)

Then, letr ≤ sbe the minimal index such that̄∆p is monotonously increasing (or constant) on the
interval [r : s]. Similarly, letu ≥ t be the maximal index such that̄∆p is monotonously decreasing
(or constant) on the interval [t : u]. Then all frames with indices in the interval [r : u] will also be
annotated withp, see Figure 5.2 (c).
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5.3 Keyframe-based Preselection

As indicated by Figure 5.2 (c), our annotation procedure as explained sofar may yield a number
of false positive annotations. For example, the motion class ‘grabDepR’, which consists of right
hand grabbing and depositing motions, causes a number of confusions withother classes. The
reason is that grabbing and depositing motions are short motions and possess only few character-
istic aspects—basically, the right hand is moving and nothing else happens in aconsistent way.
This leads to a rather unspecific class MT, which yields small distance valuesto many motion
fragments that are actually part of other motion classes (note the overall lowdistance values in
the ‘grabDepR’ row of Figure 5.2 (a) despite of the absence of such motions). To cope with this
problem, we propose to integrate an additional keyframe-based preprocessing step. For example,
for the class ‘grabDepR’ one may use a few keyframes enforcing that both feet do not move while
the right hand moves to the front (before grabbing) and is then pulled back (after grabbing). By
employing such additional keyframe constraints, we can eliminate a large number of false positive
annotations and, additionally, significantly speed up the annotation procedure.

Recall that in our annotation procedure we want to assign class labels to anunknown mocap doc-
umentD. In a preprocessing step, we learn the characteristic keyframe queries(Vp,dp) for each
motion classp from positive and negative example motions as described in Chapter 4. Then, using
the keyframe-based search algorithm as described in Chapter 3, we extract all motion segments
from D that are relevant with respect to (Vp,dp). Finally, the distance function∆p is computed
on the relevant segments only (setting the value to∞ for the irrelevant frames). The resulting re-
duction is illustrated by comparing Figure 5.2 (d) with Figure 5.2 (a): the additional white regions
in (d) correspond to irrelevant information masked out by the keyframe search. The annotations
obtained from (d) are shown in Figure 5.2 (e). Note that the keyframe-based preselection has
several benefits. Firstly, using additional constraints allows us to eliminate many false positive
annotations. Furthermore, the index-based retrieval step is ideally suited tocut down the search
space to relevant subsegments, thus significantly speeding up and drastically reducing memory
requirements in the subsequent steps. For details on the keyframe-basedsearch algorithm we refer
to Chapter 3. The effect of the keyframe-based preprocessing step on the annotation quality and
performance is discussed in Section 5.4.

5.4 Experiments

We implemented the annotation algorithm in Matlab while passing time critical parts to subrou-
tines implemented in C/C++. The computations were performed on an AMD Athlon X2 5000+
with 3.5 GB of RAM. For our experiments, we assembled an evaluation dataset consisting of
109 mocap documents having an average length of 40 seconds each. Thetotal length amounts to
roughly 74 minutes (133019 frames at 30 Hz). To illustrate the scalability of our annotation proce-
dure, we used mocap data from two different sources: 60 minutes where drawn from the HDM05
database[Müller et al., 2007] and 14 minutes from the CMU database[CMU, 2003]. We manu-
ally annotated all 109 documents on the subsegment level according to the 15classes described
in Table 5.1. These classes were assembled with respect to the actions performed in the HDM05
motion database. To illustrate the practicability of our annotation procedure, we used various kinds
of classes including rather general motion classes such as ‘move’, more specialized classes such
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as ‘cartwheel’, and rather uncharacteristic classes such as ‘grabDepR’. Here, the more general
classes are assembled from various subclasses. For instance, four different subclasses (sit down on
a chair, sit down on the floor, kneel, lie down on the floor) contribute to the class ‘sitLieDown’. To
obtain the annotations on the class level, one can simply combine the annotations on the subclass
level. At this point, we emphasize that the particular choice of the motion classesis not of crucial
importance. The choice was driven by the availability of the mocap data and byour motivation
to give a comprehensive demonstration of the algorithms’ performance (even in the presence of
more critical classes such as ‘grabDepR’). The concepts presented inthis chapter are generic in
the sense that the underlying set of motion classes may easily be extended ormodified to satisfy a
user’s specific needs.

Prior to the actual annotation step, we learned the motion templates and keyframequeries for each
of the classesCp, p ∈ [1 : P], see Chapter 2 and Chapter 4 for an introduction to motion templates
and a description of the keyframe learning algorithm. Having completed the preprocessing step,
our annotation procedure facilitates efficient annotatation of arbitrary and large sets of unknown
mocap documents according to the given set of motion classes (or subsets thereof). To automat-
ically annotate our evaluation database (109 documents, total length of 74 minutes), we proceed
as follows. First, we extract the relational features and index the mocap documents using a stan-
dard inverted file index[Müller et al., 2005]. In our implementation, the feature extraction takes
roughly 250 seconds, whereas the indexing takes 4 seconds. Using thepurely MT-based anno-
tation procedure as described in Section 5.2, it took 305 seconds to annotate the 109 documents
(here, the index structure is not needed). Applying the keyframe-based preselection (Section 5.3),
the run time of the overall annotation procedure decreased to 20 seconds, amounting to a 15-fold
speed-up. Here, processing a single keyframe query on the 74-minute evaluation database takes
on average only 4 milliseconds (using the index structure), which is negligiblecompared to the
MT-based annotation step.

The keyframe-based preselection step not only yields a significant speedup of the overall annota-
tion procedure, but also has a considerable impact on the final annotationquality. First of all, false
positive annotations can be eliminated. As an example, consider the false positive annotations
in Figure 5.2 (c) for the class ‘grabDepR’. After integrating the keyframe-based preselection, most
of these false positives could be eliminated, see Figure 5.2 (e). As an additional benefit, false neg-
ative annotations have been corrected by the keyframe-based preselection as well. Consider the
missing missing ‘standUp’ annotation (frames 2250 to 2300 in Figure 5.2 (c)).This annotation
appears in the final annotation because the corresponding frames in the ‘sitDown’ class have been
masked out by the keyframe search. A similar consideration leads to the presence of the previously
missing ‘neutral’ annotation, frame 2500, where the false positive ‘turn’ annotation prevented the
‘neutral’ annotation from being found.

The observed effects are affirmed by our quantitative experiments. Here, we evaluated various
variants of our annotation procedure. To this end, we compared the automatically generated anno-
tations with manually generated ground truth annotations by means of two different performance
measures. As first measure, we consider precision and recall values on the frame level. More
precisely, for a given mocap documentD of lengthL we define the sets

M(D) := {(ℓ, p)| frameℓ manually annotated with classp} and (5.8)

A(D) := {(ℓ, p)| frameℓ automatically annotated with classp}, (5.9)

where (ℓ, p) ∈ [1 : L] × [1 : P]. In other words, the setM(D) describes the manually generated
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Figure 5.3.Example annotation result to illustrate our evaluation functions, see the text for an explanation.

or relevantannotations, whereas the setA(D) describes the automatically generated orretrieved
annotations produced by our procedure. Then, precision and recallof our annotation procedure
are expressed by

P1(D) :=
|M(D) ∩ A(D)|
|A(D)|

and (5.10)

R1(D) :=
|M(D) ∩ A(D)|
|M(D)|

. (5.11)

Furthermore, let

F1(D) :=
2P1(D)R1(D)
P1(D) + R1(D)

(5.12)

be the resulting F-measure. Note thatP1(D) = 1 in case of all retrieved annotations being among
the relevant annotations (no “false positives”), whereasR1(D) = 1 in case of all relevant annota-
tions being retrieved. The frame-based performance measureF1 may be problematic, since the
beginning and ending of a motion of a specific class is often ambiguous. For example, consider a
mocap document showing a person who sits down on a chair and remains seated for a long time.
Then, it is not clear where exactly to set the end frame when manually annotating the document
with respect to the class ‘sitDownChair’. Also certain motion transitions from one class to another
(e. g., from ‘move’ to ‘turn’) can often not be exactly specified. To accountfor such ambigui-
ties, we use a second performance measure by considering precision and recall on thesegment
level. Here, we only check for overlaps of a manually annotated motion segment and an automat-
ically generated segment both bearing the same class labelp. We then define the segment-based
precisionP2(D), recallR2(D), and F-measureF2(D) analogously to the frame-based case.

For an illustrative example, we refer to Figure 5.3. Here, the manual ground truth annotation
for the class corresponding to the label ‘class1’ consists of the segments{[2 : 4], [8 : 10]}. The
corresponding automatic annotation is{[1 : 3], [6 : 7]}. The overall number of annotated frames
amounts to|M(D)| = 10 for the manual annotations and|A(D) = 13| for the automatic ones. In
this example, the evaluation functions result to

P1 =
6 frames
13 frames≈ 0.46, (5.13)

R1 =
6 frames
10 frames= 0.60, (5.14)

P2 =
2 segments
4 segments= 0.50, and (5.15)

R2 =
2 segments
3 segments≈ 0.67. (5.16)

As also shown by this example, the segment-based measures are more tolerant to smaller de-
viations in the annotations than the relatively strict frame-base measures, whereas the segment-
based measure might sometimes tolerate also strong misalignments between the automatic and the
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P1 R1 F1 P2 R2 F2

total
without keyframes 0.48 0.78 0.60 0.57 0.91 0.70

with keyframes 0.69 0.79 0.74 0.78 0.88 0.82

HDM
without keyframes 0.49 0.80 0.61 0.61 0.91 0.73

with keyframes 0.70 0.80 0.75 0.80 0.88 0.83

CMU
without keyframes 0.41 0.75 0.53 0.39 0.90 0.54

with keyframes 0.66 0.74 0.70 0.65 0.91 0.76

Table 5.2. Various performance measures for our MT-based annotation procedure without and with
keyframe-based preselection.

ground truth annotations. Therefore, the actual annotation quality is described well by the range
defined by the valuesF1(D) andF2(D).

To compute the performance measures on the entire evaluation database, wesimply concatenated
the 109 documents to form a single document and applied the above calculationsteps, where we
performed our annotation procedure without as well as with the keyframe-based preselection step.
The results are shown in Table 5.2. For example, the precisionP1 without using keyframes is
0.48 and increases significantly to 0.69 when using our automatically computed keyframe queries.
At the same time, the recallR1 slightly increases from 0.78 to 0.79. While the increase in preci-
sion is expected when using keyframes, the increase in recall is somewhatsurprising at first sight.
Here, one reason is that by eliminating false positives, some of the relevantannotations that have
previously been “overlayed” by false positive annotations emerge whenusing our minimization
strategy, see Equation (5.5). This again demonstrates that the keyframe-based preselection step
eliminates a large number of false positive annotations while not loosing (or even yielding) rele-
vant annotations. Figure 5.4 shows some representative examples. For example, note that many
of the false positive annotations from the rather unspecific class ‘grabDepR’ could be eliminated
across all shown documents using the keyframes. Next, consider the segment between frames 50
and 150 in Figure 5.4 (a). Here, the actor shouts out having both hands raised in front of the mouth.
As this motion is not related to any of the employed 15 classes, no manual annotation has been
generated for these frames. Without using keyframes, our automatic procedure considers them
most similar to either a ‘throwR’ or a ‘grabDepR’ motion. Using keyframes as hard constraints,
these false positives are eliminated. As a consequence, the precision values as reported below each
subfigure receive a significant boost. Next, consider the segment between frames 800 and 1000
in Figure 5.4 (b). Here, starting with both hands in front of the belly, the actor swings his arms
sideways into a horizontal position and then lets them drop back to the belly again. This motion
is repeated four times in a row. As this motion is not related to any of the employed 15 classes,
no manual annotation has been generated for these frames. For this example, the keyframe-based
preselection could mask out some false positive ‘throwR’ and ‘grabDepR‘annotations, however,
a false ‘punch’ annotation still remains. In the same document, the describedmotion is followed
by a combined walking and arm rotating motion, indicated by the simultaneous ‘move’ and ‘ro-
tateArms’ ground truth annotation between frames 1100 and 1400. Note thatthe motion templates
as well as the keyframes have been trained using full body motions that do not include the indicated
combined motion. Despite of this, parts of the motion are annotated correctly andthe integration
of keyframes still improves the overall annotation quality. As another examplefor a combined
motion, consider Figure 5.4 (c). Here, the actor conducts a ‘skiing exercise’ motion with the upper
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Figure 5.4. Influence of the use of keyframes on the overall annotation result. Left column: annotation
result without keyframes. Right column: corresponding annotation result with keyframes.

body and a ‘jumping jack’ motion with the lower body, which is semantically most similar tothe
‘exercise’ motion class. However, the manual annotator considered this motion to be too differ-
ent to the indicated motion classes and did not give a ground truth annotation.Although even
with included keyframes some false positive annotations remain, the overall annotation quality
improves. As a final example, consider Figure 5.4 (d). Here, the integration of keyframes boosts
the segment-based precision and recall to a nearly perfect result, as also confirmed by a manual
qualitative inspection.

As expected, the segment-based precision and recall values are higherthan the frame-based val-
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Figure 5.5. Representative annotation results for two HDM05 ((a),(b)) and two CMU ((c),(d)) documents.

ues, see Table 5.2. For example, using keyframes, one hasP2 = 0.78 (opposed toP1 = 0.69). In
other words, only 22% of the retrieved annotated segments are false positives. For the segment-
based recall, one obtainsR2 = 0.88 (opposed toR1 = 0.79). Here, only 12% of the relevant
annotations are missing. Note that the frame-based performance measuresare generally too strict
whereas the segment-based ones are generally too tolerant. So, in summary, the actual perfor-
mance of our overall annotation procedure can be described by the two F-measuresF1 = 0.74
(being pessimistic) andF2 = 0.82 (being optimistic).

As was mentioned above, the HDM05 mocap data used for training is not contained in the evalua-
tion data. However, the various motions corresponding to a specific class,even though performed
by various actors executed with significant variations, are still somewhat controlled by general
performance specifications. We therefore also evaluated our procedure on CMU documents con-
taining at least some subsegments corresponding to our 15 classes. Table5.2 shows the various
performance measures separately for the HDM05 and CMU documents. Due to significant motion
variations in the CMU data, some of which are not well reflected by the HDM05training material,
one has a decline in performance. For example, the F-measures of our overall procedure for the
CMU data (F1 = 0.70,F2 = 0.76) are a bit lower than for the HDM05 data (F1 = 0.75,F2 = 0.83.

Figure 5.5 depicts representative annotation results for both HDM05 and CMU documents. Here,
Figure 5.5 (a) shows a document containing energetic kicking and punching motions. In contrast
to the high recall values as reported below the subfigures (R1 = 0.9,R2 = 1.0), the precision values
seem to fall short (P1 = 0.54, P2 = 0.62) mainly due to false positive annotations in the ‘move’
class. A manual inspection of this document showed that in fact the actor moved two steps before
each kick in order to gain momentum which gives another twist on the false positive annotations.
Also, the ‘move’ annotations during the punches correspond to forwardand backward motions
with the feet. Finally, we inspected the false positive ‘throwR’ motion around frames 900 - 1100
which actually contains two punching motions. Note that throwing and punchingmotions share
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Figure 5.6. Impact of the quality thresholdτ on the frame-based (left) and segment-based (right) per-
formance measures (using the annotation procedure with keyframe-based preselection). Black: precision.
Red: recall. Green: F-measure.

common similarities. We found that from the mocap data of the false positive annotation alone
without being able to see whether an actual object has been thrown it was hard to judge to which
class the motion actually belongs. Thus, in some cases the subjective quality ofthe annotations
can be much higher than indicated by the precision and recall values.

An example which contains motions of the class ‘grabDepR’ is shown in Figure5.5 (b). Although
this class is rather unspecific, it has been singled out by the annotation procedure, yielding very
good precision and recall values on the segment level.

We show a document from the CMU mocap database in Figure 5.5 (c). This document contains
energetic jumping, kicking, and punching as well as moving and turning motions. Despite of the
different style of execution in comparison to the HDM05 training data, these motions have been
annotated correctly.

The annotation of a more problematic CMU document is shown in Figure 5.5 (d).Here, the
motion segment around frame 1000 erroneously received the annotation ‘rotateArms’. A manual
inspection showed that this segment actually consists of several arm swings—a motion type that
is not reflected in the 15 motion classes used for the annotation. Furthermore, an exercise motion
(around frame 400) was not annotated. Here, it turned out that the motiondid not satisfy the
keyframe constraints learned from HDM05 data. The performed actions can be reviewed on our
project homepagehttp://www.mpi-inf.mpg.de/resources/MocapAnnotation where we show
videos along with the manual and automatic annotations of all 109 evaluation documents.

In all of the above experiments, we used the quality thresholdτ = 0.13. Actually, the choice
of τ influences the quality of the overall annotation result. Note that a small value of τ poses a
stronger condition on what to consider similar, thus leading to higher precision and lower recall,
while a large value ofτ has the opposite effect. To find a good trade-off of having high precision as
well as high recall, we computed the various performance measures for different values ofτ, see
Figure 5.6. Our final choice ofτ = 0.13 is motivated by the request of having high recall values
possibly at the expense of some additional false positive annotations.

5.5 Conclusions

In this chapter, we presented a robust and efficient procedure for annotating large collections of
motion capture documents. Using motion templates, we were able to identify logically related mo-

http://www.mpi-inf.mpg.de/resources/MocapAnnotation
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tions on the subsequence level even in the presence of significant numerical differences in the orig-
inal raw mocap data. Using keyframe queries, we were able to efficiently prune the search space
and to eliminate false positives. We developed a purely content-based framework where keyframes
and motion templates were all generated automatically by means of user-suppliedtraining mo-
tions. We reported on various experiments that demonstrated the practicabilityof our annotation
procedure.

Our concept is generic in the sense that it allows a user to easily adapt andmodify the annotation
types simply by exchanging the underlying motion classes. Because of their explicit semantic
interpretation, even a manual design or tuning of motion templates and keyframes is feasible
in case no suitable example motions are available. As for future work, we planto apply our
concept for automatically annotating various types of gesture. From suchannotations, statistical
models of a person’s particular gesture style could be learned in order to synthesize personalized
gestures[Neff et al., 2008]. As shown in the subsequent chapter, a procedure for mocap annotation
can also be used to generate suitable prior knowledge which can then be used to stabilize and
support human motion tracking.
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Part II

Stabilizing and Analyzing
Video-based Motion Tracking





Chapter 6

Stabilizing Tracking using Retrieved
Motion Priors

As one main contribution of this thesis, we introduce in this chapter an iterative framework that
makes use of a retrieval and annotation component similar to the one described in Chapter 5 in
order to stabilize an algorithm for marker-less motion tracking. This work hasbeen published
in [Baaket al., 2009]. A flowchart of our framework is given in Figure 6.1. As one component,
we use an algorithm for makerless motion tracking that estimates the 3D motion of a human actor
based on image data. The tracking system takes as input a multiview image sequence (‘Video’),
see Figure 6.2, and returns as output mocap data given as a sequence of joint angles over time
(‘3D Mocap’). Due to noise, occlusions, and other ambiguities in the image data, tracking may
fail for parts of the sequence resulting in corrupted poses, see Figure6.3. However, in spite of
these errors, the overall rough course or at least parts of the motion maystill be recognized to a
reasonable degree. For example, a local tracking error in the arm during a walking motion may
still permit an algorithm to recognize the motion class correctly. We use an annotation algorithm
similar to the one presented in Chapter 5 to locally assign class labels to the tracked 3D mocap data
based on available motion classes (‘Database knowledge’). These assigned class labels represent
an increased semantic knowledge about the tracked sequence that we exploit by allocating priors
based on the obtained annotation results. For example, after recognizing awalking cycle in the
tracked sequence, this increase of knowledge can be used to allocate a simple prior such as ‘left
foot moves to the front’. The allocated priors are integrated into the trackingprocedure as regular-

Video 3D Mocap

Priors Database
knowledge

Tracking

Annotation

Allocation

Regularization

Figure 6.1. Iterative motion tracking framework. Based on an automatedannotation of the tracking result,
priors are allocated that regularize the tracking in the next iteration step.
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Figure 6.2.One frame in the HumanEVA multiview video footage as seen from the four different cameras.

Figure 6.3. Tracking without priors may lead to invalid poses.

ization terms, and the tracking step is repeated to yield an enhanced tracking result. Iterating such
a procedure, as shown by our experiments with the HumanEVA-II benchmark, improves the result
significantly after few iterations.

The remainder of the chapter is organized as follows. We first give an overview about related work
(Section 6.1) and summarize the tracking procedure (Section 6.2). After that, we briefly describe
the retrieval component (Section 6.3). Then we explain how to fuse the retrieval results with our
tracking procedure in Section 6.4. At the time of publication, such an iterativetracking procedure
using retrieved motion priors had not been considered before to the bestof our knowledge. Besides
stabilization of 3D tracking we also gain an annotation, which bridges the gap between the low-
level tracked 3D mocap data and the high-level symbolic representation of the underlying actions.
Our experiments are presented in Section 6.5, before we conclude in Section 6.6.

6.1 Related work

Marker-less motion tracking is an active field of research in computer vision and graphics,
see[Moeslundet al., 2006; Poppe, 2010; Sigalet al., 2010; Moeslundet al., 2011] for in-depth
reviews of the vast literature. The goal of marker-less mocap is to determinethe moving and
deforming 3D surface geometry of an actor from image data. Applications are mostly found
in the game and and movie industry, in biomechanics, medicine, and sports sciences. In a
tracking scenario, it is common to assume that the input consists of a sequence of multiview
images of the performed motion as well as a static surface mesh of the actor’s body as,e. g.,
obtained via a body laser scanner. Commonly, a skeleton is used to drive thedeformation
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of the surface geometry, see Figure 6.4. Since the pose and joint parameters are usually un-
known and have to be estimated from the image data, one typically has to cope withhigh-
dimensional search spaces (often more than 30 dimensions for a full bodymodel). In order to
reliably estimate pose parameters, recent approaches such as[Gall et al., 2010a; Liuet al., 2011;
Stoll et al., 2011] either rely on global optimization methods (which are often computationally
expensive and thus prohibitive for real-time applications) or need many cameras. To enhance the
stability and reliability of the tracking procedure and to enable tracking also witha low num-
ber of cameras, further sources of information can be integrated into the motion tracking pro-
cess,e. g., by capturing light sources[Bălanet al., 2007b] or by using physically-based mod-
els and forces arising from a ground plane[Brubakeret al., 2007; Vondraket al., 2008]. An-
other strategy is to reduce the manifold of all virtually possible configurationsto a lower-
dimensional subspace. One possibility is to explicitly prevent self-occlusions and to impose
fixed joint angle limits as suggested in[Herdaet al., 2004; Sminchisescu and Triggs, 2003]. Other
options include to directly learn a mapping from the image or silhouette space to thespace
of pose configurations[Agarwal and Triggs, 2006; Shakhnarovichet al., 2003], to learn a re-
stricted motion model from training data[Li et al., 2010], or to combine generative an dis-
criminative models[Salzmann and Urtasun, 2010]. A very popular strategy for restricting the
search space is dimensionality reduction, either by linear or by nonlinear projection meth-
ods. In[Sidenbladhet al., 2002], the low-dimensional space is obtained via PCA and the mo-
tion patterns in this space are structured in a binary tree. In[Sminchisescu and Jepson, 2004]
it has been suggested to learn a Gaussian mixture from pose configurations. Similarly,
in [Urtasunet al., 2006], a nonlinear projection is employed, in this case via a Gaussian process
model.

A common problem with learning-based approaches is the need of suitable training data that re-
flects the statistics of the expected motions. For instance, if the user knows that the subject per-
forms a walking pattern, suited training data is selected and integrated in the tracking system.
Then, the tracking system might fail if the user does not restrict his motion to walking. As a
further problem, current probabilistic learning approaches are limited in their ability to handle
large training sets. Only recently, local regression methods have been proposed that allow for
coping with a large number of motion patterns in a tracking scenario[Urtasun and Darrell, 2008].
In activity recognition, many approaches rely on 2D descriptors or image silhouettes, such as
presented in[Liu and Shah, 2008; Tran and Sorokin, 2008]. An approach that performs simulta-
neous motion tracking and action recognition has been presented in[Chenet al., 2009]. Recently,
Gall et al. [2010b] presented a tracking approach conceptually related to the one presentedin
this chapter. Similar to our approach, action-specific priors are applied to the sequence to be
tracked by means of an annotation scheme. However, instead of running an annotation on the
3D tracked mocap data, they use an approach for activity recognition on the 2D image data. As
a further difference, in the annotation phase, our approach makes hard decisions whether an ac-
tion has been detected or not, whereas Gallet al. [2010b] compute and use action probabilities
in a particle-based approach. According to the probabilities, the particles,representing candidate
poses, are spread within corresponding learned pose manifolds of the activities in order to stabilize
the tracking procedure. Using the action probabilities with action-specific pose manifolds seems
to be advantageous at first sight with respect to hard decisions, since false annotations might not
have a strong effect on the tracking result. However, in the approach of Gallet al. [2010b], pose
manifolds have to be created for all actions that occur in the sequence to betracked, and actions
that have not been learned may lead to tracking errors. As we will show in our experiments, we
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(a) (b) (c)

Figure 6.4. Model of the actor.(a): Skeletal kinematic chain.(b): Rigged mesh.(c): Mesh in a new pose.

do not need prior knowledge for all actions present in the tracking sequence, since our annotation
procedure does not assign priors to unknown actions. Moreover, wesupply priors on a logical
level like ‘foot moves to the front’. Such logical priors generalize well to variations in actor size
and motion styles. For example, both a small person with a staggering or shuffling gait as well
as a large person with a normal gait will follow the same logical pattern of firstmoving one foot
and then the other foot to the front. Such logical priors stand in contrast tonumerical priors on the
distribution of joint angles as supplied in Gallet al. [2010b].

6.2 Tracking Procedure

The input of our tracking procedure is a data stream of multi-view images (obtained from a set
of calibrated and temporally synchronized cameras) as well as a surfacemesh of the subject to
be tracked (obtained by a body laser scanner). We further assume thatthe mesh is rigged so that
all mesh points are associated in a fixed way to the joints of an underlying kinematic chain, see
Figure 6.4. Then, the tracking problem consists of computing the configuration parameters (joint
angles as well as root orientation and translation) of the kinematic chain fromthe given image
data. Here, the surface mesh should be transformed with the configurationparameters in such a
way that the projection of the mesh covers the observed subject in the imagesas accurately as
possible.

In the remainder of this section, we briefly summarize the tracking procedureused in our frame-
work. After describing the kinematic chain model for the human skeleton (Section 6.2.1), we
summarize how we estimate its pose parameters based on image constraints (Section 6.2.2). Then,
in Section 6.2.3, we show how such image constraints are obtained.

6.2.1 Kinematic Chains

The subject to be tracked is modeled by a so-calledkinematic chain, which is generally used
to model a flexibly linked rigid body such as a human skeleton[Bregleret al., 2004], see Fig-
ure 6.4 (a) for an example. In the following, we use homogeneous coordinates to represent 3D
points and exponential functions of twists to represent rigid body motions. The configuration of
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a kinematic chain can then be described by a consecutive evaluation of exponential functions of
twists, see[Bregleret al., 2004]. More precisely, letx ∈ R3 be a 3D coordinate of a joint in the
neutral configuration (standard pose) of the kinematic chain. LetX =

(
x
1

)
be the respective homo-

geneous coordinate and defineπ as the associated projection withπ(X) = x. Furthermore, letξ be
a rigid body motion, which can be represented asξ = exp(θξ̂) with a twistξ̂ andθ ∈ R. The overall
configuration of the kinematic chain is specified by a rigid body motionξ = exp(θξ̂) encoding the
root orientation and translation as well as a sequenceξ1 = exp(θ1ξ̂1), . . . , ξn = exp(θnξ̂n) of rigid
body motions encoding then joint angles. Note that the twistŝξ1, . . . , ξ̂n are fixed for a specific
kinematic chain. Thus, the configuration of a fixed kinematic chain is specifiedby the following
(6+ n) free parameters:

χ := (ξ,Θ) with Θ := (θ1, . . . , θn). (6.1)

In other words, the configuration parameter vectorχ consists of the 6 degrees of freedom for the
rigid body motionξ and the joint angle vectorΘ, see also[Rosenhahnet al., 2008a]. Now, for
a given pointx on the kinematic chain, we defineJ(x) ⊆ {1, . . . ,n} to be the ordered set that
encodes the joint transformations affecting x. Then, for a given configuration parameter vector
χ := (ξ,Θ), the pointx is transformed according to

Y = exp(θξ̂)
∏

j∈J(x)

exp(θ j ξ̂ j)X. (6.2)

6.2.2 Pose Estimation

In our setup, the vectorχ is unknown and has to be determined from the image data. In the
following, instead of regarding points on the kinematic chain, we use points onthe surface mesh.
As the mesh is rigged, the mesh points are directly associated to a joint. Given a set of 3D surface
mesh pointsxi , i ∈ I , we assume for the moment that one knows corresponding 2D coordinates
of these points within a given image, and we refer to Section 6.2.3 for a description of how such
correspondences can be obtained. Furthermore, we represent each 2D point as a reconstructed
projection ray given in 3D Plücker formLi = (ni ,mi), see also[Murrayet al., 1994]. For pose
estimation, the basic idea is to apply the (unknown) rigid body motions on 3D pointsxi according
toχ and to claim incidence with the reconstructed projection rays. Due to the properties of Pl̈ucker
lines, this incidence can be expressed as

(
π
(
exp(θξ̂)

∏

j∈J(xi )

exp(θ j ξ̂ j)Xi

)
× ni

)
−mi = 0. (6.3)

To simultaneously account for the incidences of all pointsxi , i ∈ I , one minimizes the following
term in a least-squares sense:

arg min
χ

∑

i

∥∥∥∥
(
π
(
exp(θξ̂)

∏

j∈J(xi )

exp(θ j ξ̂ j)Xi

)
× ni

)
−mi

∥∥∥∥
2

2
(6.4)

To solve for the unknown parameters in the exponential functions, we linearize each function
by using the first two elements of the respective Taylor series: exp(θξ̂) ≈ 1l + θξ̂. This leads
to three linear equations with 6+ n unknowns for each exponential function. In case of many
correspondences (i. e., in case there are many mesh pointsxi with correspondences), one obtains
an over-determined linear system of equations, which can be solved in the least squares sense.
The approximation errors introduced by the linearization step are handled by applying an iterative
computation scheme, see[Rosenhahnet al., 2008a] for details.
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Figure 6.5. Example forces (enlarged force vectors, green) acting on the contour line of the projected
surface mesh.

6.2.3 Region-based Pose Tracking

The pose estimation procedure described in Section 6.2.2 requires known correspondences be-
tween 2D image points and 3D surface mesh points. In the following, we brieflydescribe how
one can generate such correspondences from suitable foregroundand background statistics de-
rived from the image data. Having correspondences, the sought poseparameters can be com-
puted by solving Equation (6.4). In our framework we use the region-based tracking approach
as presented in[Schmaltzet al., 2007], to which we refer for details. However, alternatively,
one could also use other techniques as presented in[Brayet al., 2006; Dambrevilleet al., 2008;
Rosenhahnet al., 2007b; Stollet al., 2011].

The concept is to estimate pose parametersχ such that the projection of the resulting surface mesh
optimally splits the image into a foreground (subject) and a background region. Here, the splitting
is regarded as optimal if suitable image features (color, texture) are maximally dissimilar in the two
regions with regard to estimated density functions, see[Schmaltzet al., 2007]. Starting with a first
estimateχ, the transformed mesh pointsyi (see Equation (6.2)) are projected onto image pointspi

yielding correspondences in a natural way. One then considers only thevisible image pointspi

that lie on the contour line separating foreground and background. Next, these points are shifted
inwards or outwards (orthogonal to the contour line) according to forcevectors so that the resulting
points, sayqi , better explain the color distributions of the foreground and backgroundregions, see
Figure 6.5. Finally, using the pointsqi with the corresponding mesh pointsxi (obtained from the
transformed mesh pointsyi) we apply the minimization (6.4) to obtain an improved estimation of
the pose parameters. The entire process is iterated until convergence, see[Schmaltzet al., 2007]
for details.

6.3 Retrieval Component

In this section, we describe the retrieval component that is used to automatically assign priors to
a tracked sequence. We use an annotation procedure similar to the one described in Chapter 5.
However, we do not integrate a keyframe-based search for two reasons. Firstly, motions to be
tracked with marker-less mocap methods are comparatively short sequences of up to a minute in
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Figure 6.6. (a): Marked motion template for motion class ‘walk2StepsLstart’. The feature numbers
correspond to the features used in[Müller and R̈oder, 2006], see also Table 2.1 on page 13. The annotation
for the relational or logical constraint ‘leftFootOnGround’ is indicated by the green rectangle.(b): Feature
matrix for the subsegment ofDEVA consisting of the first three walking cycles. The second walking cycle
(frames 160 to 240) has not been tracked correctly.(c): Feature matrix (b) with allocated priors (green
rectangles).(d): Feature matrix after regularized tracking using the priors of (c).

length. For such sequences, DTW-based retrieval can be performedwithin less than a second and
therefore no additional techniques to speed up the annotation procedureare needed. Secondly,
we want the annotation procedure to be robust to tracking errors, where, e. g., a foot or a hand
might constantly assume incorrect poses. With hard-constraints coming from keyframes, such
sequences containing tracking errors might be excluded from the set ofhit candidates if keyframe-
based preprocessing is used.

In the following, we briefly describe the annotation procedure as used in this chapter. In our
scenario, each motion category is given by a classC consisting of a set of logically related exam-
ple motions. For each class, we first compute a quantized MTXC as summarized in Chapter 2,
see Figure 6.6 (a) for a resulting template.

Let C1, . . .CP be the available motion classes, wherep ∈ [1 : P] denotes the class label of class
Cp. Then, given a mocap sequenceD of lengthL, the annotation task is to identify all motion
subsegments withinD that belong to one of theP classes. To this end, we compute a distance
function∆p := ∆Cp for each classCp, see Equation (5.3) in Chapter 5 on page 48, and minimize
the resulting functions overp ∈ [1 : P] to obtain a single function∆min : [1 : L] → R ∪ {∞} for a
sequence comprisingL frames:

∆min(ℓ) := min
p∈[1:P]

∆p(ℓ) (6.5)

for ℓ ∈ [1 : L], see Figure 6.7 for an example based onP = 2 motion classes. Furthermore, we
store for each frame the minimizing indexp ∈ [1 : P] yielding a function∆arg : [1 : L] → [1 : P]
defined by:

∆arg(ℓ) := arg min
p∈[1:P]

∆p(ℓ). (6.6)
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Figure 6.7. Distance function∆C for DEVA with respect to the class(a) ‘walk2StepsLstart’ and
(b) ‘jog2StepsLstart’.(c): Combined distance function∆min obtained by minimizing (a) and (b).

The function∆arg yields an annotation of the mocap sequenceD for every frame by means of the
class labelsp ∈ [1 : P].

6.4 Allocation and Integration of Priors

In this section, we first explain how to generate suitable motion priors based on an annotation
of the tracked sequence (Section 6.4.1). Then, we show how two types ofallocated priors are
integrated into the subsequent tracking iteration as soft constraints (Sections 6.4.2 and 6.4.3).

6.4.1 Allocation of Priors

We now explain how to generate suitable motion priors, which can then be usedto regularize the
tracking process. Recall that a class motion templateXC explicitly encodes characteristic motion
aspects (corresponding to black/white regions) that are typically shared by motions of classC. We
select some of these aspects by marking suitable entries within the templateXC. These entries are
also referred to asMT priors. As an example, consider Figure 6.6 (a), where the entries of row
26 between columns 22 and 58 are marked by the green rectangle. Feature26 expresses whether
the right foot rests (black, value 0) or assumes a high velocity (white, value 1). Since all entries
have the value 0 within the green rectangle, this MT prior basically expresses that the right foot
rests (stays on the ground) during this phase of the motion. Note that the MT priors are part of the
database knowledge and do not depend on the sequence to be tracked.

Now, let D be a mocap sequence of lengthL obtained from some tracking procedure and let
Y ∈ {0,1} f×L be the corresponding feature matrix of relational features, see Figure 6.6 (b). The
goal is to automatically transfer suitable MT priors to the tracked sequence to obtain what we
refer to astracking priors. Let C1, . . .CP be the available motion classes with corresponding
motion templatesXp = XCp, p ∈ [1 : P], each equipped with suitable MT priors. We compute
the functions∆min and∆arg as described in Section 6.3. Recall that a local minimumℓ ∈ [1 : L]
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Figure 6.8. Pose priors are allocated by looking for all subsequences inY that align to the same MTXp.

of ∆min close to zero indicates the presence of a motion subsegment ofD (starting at a suitable
frame indexaℓ < ℓ and ending at frame indexℓ) that corresponds to motion class∆arg(ℓ) ∈ [1 : P].
Now, we fix a quality thresholdτ > 0 and look for all essential local minimaℓ ∈ [1 : L] with
∆min(ℓ) < τ. Here,essentialmeans that we only consider one local minimum within a suitable
temporal window to avoid local minima being too close to each other. Using the sameDTW
procedure that yields the distance function∆p in Section 6.3, we then derive an alignment between
the motion templateXp with p := ∆arg(ℓ) and the feature subsequence ofY ranging fromaℓ to ℓ.
Figure 6.6 shows an example, where the alignment is indicated by the red arrows. Note that such
an alignment establishes temporal correspondences between semantically related frames and thus
allows us to automatically transfer the MT priors withinXp to corresponding regions withinY,
see Figure 6.6 (c). These regions, in the following referred to astracking priors, are then used for
regularization in the tracking procedure as explained in the following sections.

As an additional stabilizing factor, we take further advantage of cases where several subsequences
of Y align to the same MTXp. The idea is to useXp as a kind of mediator to generate additional
priors from the multiply aligned subsequences. We explain this idea by means of a simple example
consisting of two subsegments as indicated by Figure 6.8. Here, each circledenotes a correspon-
dence (xℓ, ℓ) between framexℓ in Xp and frameℓ ∈ [1 : L] of Y. In this example, essential local
minima were found for frames 7 and 12 (matching to the subsequences ranging from frames 3 to 7
and from 9 to 12). Now, suppose that the green alignment has a cost close to zero (∆min(12)≈ 0).
In practice, such an alignment corresponds to a subsequence ofY that does not contain tracking
errors. By contrast, suppose that the subsequence correspondingto the red alignment contains
some tracking errors resulting in higher alignment cost. Then, the idea is to use the poses of the
“green subsequence”, referred to aspose priors, to stabilize the tracking of the “red subsequence”.
The correspondence of poses between the subsequences is established via the alignments toXp,
see Figure 6.8. For example, frame 9 ofY yields a pose prior for frame 3 ofY since both frames
are aligned to the first frame ofXp (indicated by the dashed arrow line). To put it in simple words,
we first detect the presence of repetitions withinY by means of the MT-based local classification
and then generate pose priors from the established correspondences.

6.4.2 Integration of Tracking Priors

Tracking priors provide information about certain logical movement behaviors of body parts
within a certain motion context. As an example, we consider the tracking prior “left foot should
be on the floor at a certain point in time”. We use soft constraints to integrate this information in
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Figure 6.9. Integration of the constraintfoot on floor. Points on the sole are pushed onto the floor.

the tracking framework, where the amount of influence of a prior can be controlled by a weighting
parameter. In particular, soft constraints are formulated as additional equations that are included
in the minimization step depicted in Equation (6.4). To implement the example tracking prior, all
pointsys, s ∈ S ⊂ I , on the sole of the foot (the plantar) are projected onto the ground plane,
yielding the pointszs. Then, we claim incidence

ys− zs = 0, s ∈ S (6.7)

to push the sole onto the ground plane, see Figure 6.9. Related to this floor constraint is the
implementation as carried out in[Rosenhahnet al., 2008b]. In their work, the constraint can only
be applied when penetrations of the foot with the ground plane are detected. As an extension, in
our work, the constraint also has an effect if the foot is above the ground plane, thus reducing the
effect of “flying above the ground plane”.

Using Equation (6.2) to expressys by the underlying kinematic chain, we integrate the set of
equations

π
(
exp(θξ̂)

∏

j∈J(ys)

exp(θ j ξ̂ j)Xs

)
− zs = 0, s ∈ S (6.8)

into the minimization step (6.4). Note that the unknowns are the same as for Equation (6.4) aszs

are considered as constants for one frame. In a similar manner it is straightforward to integrate
motion dynamics like arms swinging forward or backwards.

6.4.3 Integration of Pose Priors

Unlike tracking priors,pose priorsdenote that a certain joint angle configurationΘ at frameℓ1 ∈
[1 : L] should also be assumed in frameℓ2 ∈ [1 : L] \ {ℓ1}. For example, consider Figure 6.10
where the generated pose prior suggests to takeΘ of frameℓ1 = 157 for frameℓ2 = 310. To
this end, equations similar to Equation (6.8) can be integrated into the minimization step(6.4) to
regularize the joint angle configuration at frameℓ2 towardsΘ in the subsequent tracking iteration.

6.5 Experiments

In our experiments, we used the Human EVA-II benchmark dataset[Sigalet al., 2010]. Here, a
surface model, calibrated multiview image sequences of four cameras, andbackground images
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initial result
frame 310

prior: initial result
frame 157

iteration 1
frame 310

Figure 6.10. A well tracked frame (middle) is used as a prior for a frame with tracking errors (left). After
the subsequent tracking iteration, the error has been resolved.

are provided. Note that our region-based pose tracking does not relyon background subtraction
and therefore the background information is not used in our method. Instead, we rely on the
image data, projection matrices and a mesh model. Due to color similarities of foreground and
background as well as the sparse number of cameras, tracking is challenging and the results are
likely to be corrupted if no priors are involved. Tracking results (as 3D marker positions) can
be uploaded to a server at Brown University for evaluation. As the sequence has been captured
in parallel with a marker-based tracking system[Vicon, 2012], an automated script can evaluate
the accuracy of a tracking result in terms of relative errors in millimeters. In the Human EVA-II
sequenceS4, three different actions are performed consecutively, lasting for 6.7 s (400 frames at
60 Hz) each. A non-professional actor walks in a circle, jogs in a circle,and then balances on
each foot. We chose this sequence for several reasons: Firstly, it is apublicly available benchmark
dataset, which allows us to quantitatively compare to other existing approaches. Secondly, the
sequence contains three different patterns and we want to test whether our system is able to classify
and single out the involved motions correctly (walking and jogging). Thirdly,walking and jogging
are similar patterns, which allows us to get a good feeling about the sensitivityof our approach
in classifying similar patterns. Fourthly, for the balancing part of the sequence, we do not have
appropriate database knowledge. This means that the algorithm should notassign a class label in
the annotation stage, so that the tracking is only driven from the image data without any priors.
All these aspects can be covered by this sequence.

The database knowledge that is used by the retrieval system is generatedin a preprocessing step.
To this end, we assembled a total of 232 short 3D mocap clips, which we manually cut out from
the freely available HDM05 mocap database[Müller et al., 2007] (obtained from a Vicon system).
The mocap clips of an average length of 1.1 s were categorized intoP = 6 different motion cate-
gories, which are ‘walk two steps’, ‘jog two steps’, and ‘change from walk to jog’, each for starting
with the left and right foot, respectively.
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Figure 6.11. (a): ∆min for the initial tracking result. Essential local minima aremarked by a cyan dot.
(b): Corresponding distance functions∆C for six MTs shown in a color coded fashion. Values greater than
τ = 0.7 are drawn in white.(c): Allocated tracking priors.(d)-(f): Corresponding plots after the first
iteration.(g)-(i): Corresponding plots after the fifth iteration.
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no additional noise +40 px image noise

∅ σ max ∅ σ max

Initial step 79.1 26.2 165.9 75.2 28.2 184.0

Iteration 1 51.8 18.5 134.1 65.0 24.2 144.4

Iteration 3 47.9 12.8 105.8 51.0 15.5 139.0

Table 6.1.Improvements of the tracking quality over various iterations. Average errors, standard deviations,
and maximal errors (in millimeters) over all 1257 frames of the sequence are shown.

After extracting the relational features for each example motion at a sampling rate of 60 Hz, we
computed a quantized motion template for each of theP motion classes and marked suitable
regions in the quantized MTs as MT priors, see Figure 6.6 (a). In our scenario, we marked MT
priors corresponding to ‘left/right foot is on ground’, ‘left/right foot moves to front’, ‘left/right
hand moves to front’, and ‘left/right elbow is bent’. Note that the set of motion templates along
with the MT priors, which constitutes our database knowledge, is independent of the sequence to
be tracked and has to be generated only once.

In the initialization step, tracking is performed without using any regularizing priors. The resulting
tracked sequence is then locally classified according to the precomputed MTs. In our experiments,
a quality threshold ofτ = 0.07 used in the allocation step (Section 6.4.1) turned out to be a robust
choice. In Figure 6.11 (a), we show the resulting distance function∆min. Essential local minima
below τ are marked by a cyan dot. Note that for the walking part of the benchmark sequence
(frames 1 to 400),∆min assumes lower values than for the jogging part (frames 400 to 800), which
indicates that the walking part contains less tracking errors than the joggingpart. Note also that for
the balancing part (frames 830 to 1200),∆min is far aboveτ revealing a strong difference to walk-
ing or jogging patterns. The function∆arg assigns the essential local minima to appropriate motion
categories, see Figure 6.11 (b). Furthermore, each motion subsequence induced by a local mini-
mum is aligned to the corresponding MT. Based on these local alignments, suitable tracking priors
are allocated for the next iteration, see Figure 6.11 (c). Figure 6.11(d)–(f) show the corresponding
distance functions and allocated tracking priors after the first iteration. The minima in∆min have
already received a significant qualitative boost. Note that the walking cycles have been stabilized
as visible in the lower distance values in Figure 6.11 (d) during the first 400 frames. Moreover,
many more instances of the jogging motion are detected, see Figure 6.11 (e). As a result, more
priors could be allocated for the subsequent iteration, Figure 6.11 (f). The distance functions and
priors after the fifth iteration are shown in Figure 6.11(g)–(i). The detections have received an
additional qualitative boost, and all occurring motions, including the transitionbetween walking
and jogging, have been annotated correctly. Furthermore, the occurrence of the different motion
categories are revealed in a much more distinctive way in the fifth iteration, compare (h) and (e)
of Figure 6.11. This all indicates a stabilization of the tracking procedure over the iterations.

We now discuss the actual improvements in the tracking results achieved by our novel iterative
approach. Figure 6.12 shows representative poses overlaid with the tracking result (indicated by
the yellow meshes) after the initial step, the first iteration, the third, and the fifthiteration. As
seen, the initial tracking result contains various serious tracking errorssuch as a swap of legs
or an incorrect angle in the elbow joint. These errors are corrected withinfew iterations. As
also visible, only minor changes can be detected between the third and the fifthiteration. We
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Figure 6.12. Improvements obtained by our iterative tracking procedure. The frames from left to right
show examples of the walking, jogging, and balancing part (frames 210, 750 and 1170), iterations from
top to bottom show results after the initialization, after the first, the third, and the fifth iteration. Several
tracking errors (see arms and legs) are corrected.

show further comparisons between tracking results of the initialization and thefifth iteration in
Figure 6.13. Here, the poses undergo a substantial qualitative improvement. Note that also the
arm tracking error in the balancing part of the sequence (rightmost images) has been corrected
although we did not assign any priors to this motion class. This can be explained as follows. In
the initialization, the arm tracking error already appeared in the jogging motion that precedes the
balancing. The tracking procedure could not recover from that error and continued to track the
balancing with a wrong angle in the elbow joint. After a couple of iterations of our framework, the
jogging motion has been corrected and the tracking starts the balancing motion with the correct
arm configuration. With the correct initialization in the beginning of the balancing, the tracking
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Figure 6.13.Example poses with tracking errors after the initialization (top row) and corrected poses after
fifth iteration (bottom row).
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Figure 6.14.Framewise tracking error (in millimeters) after the initialization (red), the first (blue), and the
third iteration (black).(a): Without image noise.(b): With Gaussian noise (40 pixels standard deviation)
added to each frame.

procedure could correctly follow the motion of the actor throughout the lastpart of the sequence.

As quantitative evaluation, the absolute difference of the 3D joint positions of the tracking result
and the ground truth positions are indicated by Table 6.1 and by Figure 6.14.These numbers were
obtained by the automated evaluation system supplied by Brown University[Sigalet al., 2010].
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(a) (b)

Figure 6.15. Gaussian noise has been added to each image. Pose overlay of frame 500 after the initial
tracking(a) and after the third iteration(b). During the iterations, several tracking errors (see rightarm and
both legs) are corrected.

During the iterations, the average error is reduced from 79 mm to 48 mm afterfew iterations,
see Table 6.1. The significant improvements are also indicated by Figure 6.14(a), which shows
the framewise tracking errors of the initial tracking (red), the first iteration(blue), and the third
iteration (black).

In another experiment, we added Gaussian noise to each frame such that each color channel of
each pixel is the sum of the true pixel value and a random, Gaussian distributed noise value with
standard deviation amounting to 15% of the full range of color values. Two example frames af-
ter the initialization and after the third iteration are shown in Figure 6.15. During the iterations,
the average error dropped from 75 mm to 51 mm, see Table 6.1 and Figure 6.14 (b). Also, Fig-
ure 6.14 (b) shows the framewise tracking errors during the iterations. Note that due to the image
noise the convergence is slower than in the first experiment. These resultsdemonstrate the stabi-
lizing effects achieved by our iterative tracking approach. Note that our framework requires that a
sequence is tracked several times. Currently, our tracking implementation requires 7 s per frame
resulting in 2.5 h run time for the entire 1257 frames. After tracking all frames, the annotation and
allocation steps require only 15 s in total.

6.6 Conclusions

In this chapter, we introduced an iterative tracking approach that dynamically integrates motion
priors retrieved from a database to stabilize tracking. Intuitively, our ideais to pursue a combined
bottom-up and top-down strategy in the sense that we start with a rough initial tracking which is
then improved by incorporating high-level motion cues. These motion cues are allocated based
on an automated local annotation of the initial tracking result. In addition to stabilization, the
local annotation also equips the tracked sequence with semantic motion class labels. By means
of the HumanEVA-II benchmark, we showed that even simple motion priors lead to significant
improvements in the tracking.

There are still limitations in our approach. In particular, the presence of strong tracking errors
may lead to a confusion in the local annotation. Misallocated priors may then worsen the tracking
error. As for future work, we plan to develop techniques that can copewith such situations,e. g., by
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integrating statistical confidence measures for the annotation and by simultaneously considering
alternative motion priors.
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Chapter 7

Evaluating Markerless Motion Tracking

In this chapter, we present a novel framework for automatically evaluatingthe quality of 3D track-
ing results obtained from marker-less motion tracking. In previous approaches, suitable reference
information for evaluation was generated by means of an additional marker-based motion capture
system. However, such systems are expensive and restricted to indoor-use. Moreover, the fact that
markers are often visible in the video footage may interfere with the requirements of marker-less
motion tracking. In contrast to previous approaches for evaluation, we use additional inertial sen-
sors to generate suitable reference information. Inertial sensors are inexpensive, easy to operate,
they can be hidden under clothing, and they impose comparatively weak additional constraints
on the overall recording setup with regard to location, recording volume, and illumination. On
the downside, acceleration and rate of turn data as directly obtained from such inertial systems are
very local with respect to the temporal dimension and are therefore not directly suited for detecting
the temporal extend of tracking errors. As our main contribution, we show how tracking results
can be analyzed and evaluated on the basis of suitable limb orientations, whichcan be derived
from 3D tracking results as well as from inertial sensors fixed on these limbs.

This chapter, which is based on our publication[Baaket al., 2010], is organized as follows. We
first give a motivation (Section 7.1) and discuss related work (Section 7.2). After summarizing
basics on rotations and orientations (Section 7.3), we then describe how to obtain orientation data
from the tracking result and from the inertial sensors (Section 7.4). We show that the tracking
orientations and inertial orientations cannot be compared immediately. Being a special case of the
hand-eye calibration problem as known in robotics, we introduce a robust optimization method
for making this data comparable with only small calibration requirements (Section 7.5). Next, we
present our evaluation framework and report on experiments conducted on the basis of 24 motion
sequences using a marker-less tracking system in Section 7.6. Finally, we discuss the necessity of
a calibration procedure in Section 7.7 and conclude in Section 7.8.

7.1 Motivation

Marker-less mocap with the objective to estimate 3D pose information of a human actor
from image data is a traditional field of research in computer vision[Sidenbladhet al., 2002;
Bregleret al., 2004; Broxet al., 2006; Schmaltzet al., 2007; Vlasicet al., 2008]. Even though
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Figure 7.1. Raw data is recorded from video cameras and inertial sensors. In the tracking world, orienta-
tions are obtained by tracking. In the inertial world, orientations are derived from the sensor data.

motion capturing has been an active research field for more than two decades [Lowe, 1980;
Moeslund and Granum, 2001; Moeslundet al., 2006; Poppe, 2010; Moeslundet al., 2011], recent
tracking procedures still tend to produce many tracking errors. In particular, when dealing with
involved settings like only few cameras, difficult lighting conditions, or challenging motion se-
quences, tracking errors are likely to occur.

In the process of developing and improving tracking algorithms, the analysisand evaluation of
tracking results play a crucial role. In practice, the tracking results are often evaluated by manu-
ally inspecting the reconstructed 3D motion sequences or by looking at the differences between
the 2D projections of these sequences and the original image data[Deutscher and Reid, 2005].
Obviously, such manual evaluations are tedious and prohibitive for largedatasets. Furthermore,
depending on the visual cues used for the analysis, such evaluations tend to be unreliable, sub-
jective, and problematic in particular when one wants to compare the results ofdifferent track-
ing approaches. To automate the evaluation process and to make it objective, independent 3D
ground truth information is needed in addition to the image sequences. So far,only few bench-
mark datasets with non-synthetic data such as[Sigalet al., 2010; Tenorthet al., 2009] are publicly
available making a fully automated evaluation possible. Such benchmark datasets are generated by
running a marker-based optical motion capturing system as a reference,which enables an accurate
estimation of ground truth 3D positions of markers placed on the actor’s body. However, the high
cost of marker-based mocap systems, inconvenient setup as well as time consuming postprocess-
ing of the obtained marker data may be among the reasons why publicly availablebenchmarks are
rare. Also, many of the available marker-based mocap systems are vulnerable to bright lighting
conditions and have to be run under low illumination. This is in discrepancy to therequirements
of marker-less motion tracking, where one typically requires balanced andbright illumination.
Furthermore, marker-based mocap systems typically pose additional constraints on the recording
volume and environment (e. g., indoor studios). As an alternative to recording human motions
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4.1 s 4.6 s 5.2 s

Figure 7.2. Snapshots of a tracking result at the given timestamps of thetracked sequence. Basis axes of
the limb coordinate systems of the left lower leg are drawn, once extracted from the tracking result (thin
axes, dark colors), and once from an enhanced inertial sensor (bold axes, light colors).

with real cameras, rendering software can be used to generate syntheticsemi-realistic images,
yielding a ground truth representation in a natural way[Agarwal and Triggs, 2004]. However,
such image data as generated from standard rendering packages suchas Poser[Software, 2012]
still looks unrealistic. Moreover, in such video footage, low-level computer vision methods like
feature detection might benefit from the synthetic data.

As the main contribution of this chapter, we present a novel approach forautomatically analyzing
and evaluating 3D tracking results using an inertial sensor-based systemto generate suitable ref-
erence information. In the following, to clearly distinguish between these two types of data, we
speak of thetracking worldto refer to data derived from marker-less motion tracking, and we speak
of theinertial world to refer to data derived from an inertial system, see also Figure 7.1. In contrast
to marker-based reference systems, inertial sensors impose comparatively weak constraints on the
overall recording setup with regard to location, recording volume, and illumination. Furthermore,
inertial systems are relatively inexpensive as well as easy to operate andmaintain. On the down-
side, the acceleration and rate of turn data obtained from such inertial systems cannot be directly
compared with the tracking result which is given in form of 3D positional dataor joint angles.
There seem to be two obvious ways to make the inertial data (acceleration data, rate of turn data)
comparable with the tracking results (3D positional data, joint angle data). Firstly, one could inte-
grate the inertial data to obtain 3D positional data. This, however, is not practical since inertial data
is prone to noise leading to very poor positional data when being integrated[Thonget al., 2004].
Secondly, one could differentiate the 3D positional data of the tracking result to obtain velocities
and accelerations. Such data, however, is very local in nature with respect to the temporal di-
mension. For example, local deviations in only few frames on the accelerationlevel may lead to
long-lasting significant deviations on the positional level. This makes the evaluation process, as
also shown by our experiments, very susceptible to short-time artifacts and unwanted outliers.

In this chapter, we introduce a novel inertial sensor-based evaluation framework, where we use
orientation data as a common mid-level representation. The idea is as follows. In the tracking
world, one obtains for each frame the estimated pose parameters of the underlying 3D model of
the human actor. From this information, one can easily derive the 3D orientation of certain limbs
(e. g., the lower legs), which we refer to astracking orientations. On the other hand, we use
inertial sensors rigidly attached to some of the actor’s limbs, from which we can also derive 3D
orientations of the respective sensors referred to asinertial orientations. Now, in case of marker-
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less motion tracking as well as the inertial measurement having worked correctly, the derived
tracking orientations and inertial orientations should agree. However, assoon as tracking errors
occur, the two types of orientations should exhibit significant differences, which can be easily
captured. This fact is illustrated by Figure 7.2. As a central result presented in this chapter, we
show that measuring the distance between the two types of limb orientations yieldsa simple and
robust method for detecting the occurrence as well as the duration of tracking errors. In contrast to
using velocities and accelerations, our orientation-based approach particularly suits this purpose
since typical tracking errors stem from misconfigurations of certain limbs that effect the tracking
result over an entire period of time rather than occurring at certain instances of time. Standard
error metrics are based on Euclidean distances between positions of joints or markers which reflect
positional errors fairly well. However, orientation errors, in particular misestimated rotations of
cylindrical limbs, can lead to small deviations in the Euclidean distance metric. Moreover, these
tracking errors are difficult to spot from visual cues. By contrast, our evaluation approach reveals
twists of rotationally symmetric body parts by an orientation-based distance metric. As a further
contribution, we introduce a robust calibration scheme that enables the direct comparison of the
inertial and the tracking world.

7.2 Related Work

In this chapter, we show how data obtained from inertial sensors can be used to detect tracking
errors. A natural complementary approach is to investigate how such data can be used to stabi-
lize tracking. Such approaches have been investigated in Pons-Mollet al. [2010], where we use
orientation data obtained from a small set of inertial sensors attached to the outer extremities in
order to stabilize a local optimization-based marker-less motion tracking approach. In a followup
work, Pons-Mollet al. [2011] use a similar setup of inertial sensors in a much more challenging
outdoor tracking scenario, where we integrate inertial sensor data in a particle filter-based track-
ing framework. Within this framework, pose candidates are sampled directly from the space of
inertial sensor-compatible poses. This space is efficiently generated by means of analytic inverse
kinematics using the inertial sensor data. To account for uncertainties in thesensor data, a noise
model that is based on the von Mises-Fisher distribution is employed.

To the best of our knowledge, this is the first approach for evaluating marker-less tracking using in-
ertial sensors. However, there are several papers that deal with theestimation of the 3D position of
a camera. In this context, inertial sensors attached attached to the camera are used to stabilize the
estimates of the position. Works in this field have in common that the relative offset between both
systems has to be obtained as a sub-task. Starting with works in robotics[Shiu and Ahmad, 1989;
Park and Martin, 1994; Daniilidis, 1999; Strobl and Hirzinger, 2006], this task has also been ap-
proached in the vision community,e. g., [Seoet al., 2009]. Also, Hol et al. [2008] identifies the
task with the gray-box problem in the area of system identification. Applicationscenarios in-
clude the estimation of an offset between a robot’s end effector and a visual sensor attached to
it [Shiu and Ahmad, 1989; Strobl and Hirzinger, 2006], or between an inertial sensor and a cam-
era[Hol et al., 2008; Seoet al., 2009]. Analytically, both scenarios can be described by thehand-
eye calibrationequationAX = XB, to which we relate our work in Section 7.5.

For activity recognition, Kunze and Lukowicz[2008] evaluate how sensor displacement on a cer-
tain body limb influences recognition performance. They propose a heuristic for improving detec-
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Figure 7.3.A global right-handed orthonormal coordinate system FG and a local right-handed orthonormal
coordinate system FL related by a rotationq.

tion results when the exact sensor position on the limb is not known. Recently,de la Torreet al.
from Carnegie Mellon University made a multi-modal activity database publicly available that also
contains inertial data[de la Torreet al., 2008]. In biomedics, Dejnabadiet al. [2006] use inertial
sensors fixed on a lower leg to reconstruct the one-dimensional knee angle in the sagittal plane.
They compare the reconstructed angles with ground truth angles computed by using a reference
ultrasonic motion measurement system. To study biomechanical properties of outdoor activities,
GPS information can be combined with inertial sensors[Brodieet al., 2008]. Using a combina-
tion of inertial, magnetometer and GPS information, Foxlin[2005] shows that accurate position
estimates for pedestrians can be obtained. By fusing the data modalities, positions are estimated
even if GPS information is not available. However, as the authors report, the proposed techniques
using so-called zero velocity updates are not applicable to sensors mounted on other limbs than
the feet. Taoet al. [2007] reconstruct the motion of an arm model using inertial sensors. Slyper
and Hodgins[2008] retrieve motions from a database using few inertial sensor signals to obtain a
full body motion. Using only inertial and magnetic sensors, Roetenberget al. [2006] show that a
full body motion can be reconstructed. Having many sensors in a custom motion capture suit, a
plausible motion model in everyday surroundings can be reconstructed[Vlasicet al., 2007]. For
home entertainment, inertial sensors have been used actively in the recentyears, for example, in
the Nintendo Wii game console[Nintendo, 2012]. User interfaces based on such sensors have
been studied,e. g., in [Shiratori and Hodgins, 2008].

7.3 Basics

Suppose a fixed global coordinate system FG that is represented by a right-handed orthonormal
basis (like all coordinate systems in this thesis). Furthermore, suppose a local coordinate system
FL that moves for a static observer in FG. The relative orientation of FL with respect to FG can be
modeled as a rotation, see Figure 7.3. Given the basis vectors XL , YL , and ZL ∈ R3×1 of FL in
coordinates of FG, the rotation is defined by a rotation matrixR by

R=
(
XL ,YL ,ZL

)
. (7.1)

In the following, we represent a rotation (or orientation) by a unit length quaternion q ∈

R
4, ‖q‖2 = 1, which is a more compact representation than rotation matrices, see[Grassia, 1998;

Shoemake, 1985]. The composition of two rotations represented byq1 andq2 is then given as the
compositionq2 ◦ q1. Furthermore, the inverse rotation ofq is given by the quaternion conjugate
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q. Let dquat : R4 × R4→ R denote the following distance function:

dquat(q1, q2) =
360
π
· arccos

∥∥∥∥
〈
q1, q2

〉∥∥∥∥
2
, (7.2)

which expresses the angle in degrees between the rotations defined byq1 and q2,
see[Huynh, 2009] for a proof. We use the notation

FA FBq
(7.3)

to describe a transformation of coordinate systemsFA to FB using the rotation defined byq. For
time dependent quantities we append a discrete frame index (t) and assume that co-occurring
quantities are subject to the same sampling rate.

7.4 Obtaining Two Types of Orientation Data

We now describe how to obtain orientation data in the inertial as well as in the tracking world.
In the inertial world, as described in[Haradaet al., 2007], an orientation estimation device can
be used to measure its orientation in a static global coordinate systemFGI = (XGI,YGI,ZGI). In
this coordinate system, the ZGI axis points to the negative gravity direction, the XGI direction is
the orthogonalized direction of the magnetic North, and YGI is chosen to form an orthonormal
right-handed basis. Measurements of accelerometers, gyroscopes, and a magnetic field sensor, as
described in Appendix A, are fused in a Kalman filter method, which providesdrift free estimates
of the sensor’s orientationqI(t). This orientation maps from the sensor’s local coordinate system
FLI to FGI, see Figure 7.4. We refer toqI(t) with the terminertial orientation. In our experiments,
we use an orientation estimation device MTx provided by Xsens[Xsens, 2012].

In the tracking world, a global coordinate systemFGT is defined by camera calibration. Tracking
results are typically given by a mesh-based surface representation forevery frame in coordinates
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of FGT. To obtain the orientation of a certain limb in the surface mesh, one needs to define a
local coordinate systemFLT that is rigidly attached to the limb. By selecting three non-collinear
vertices of the limb, an orthonormal basis ofFLT can be build. To ensure that the coordinate
system is well defined, one has to claim one-to-one vertex correspondence throughout the entire
motion sequence. In many cases, tracking results are given as joint angles of a skeletal kinematic
chain which drives the animation of the mesh surface. In this case, without having to resort
to the vertices of the mesh surface, a local coordinate system for every limbcan be defined by
forward kinematics[Murrayet al., 1994]. This way, atracking orientationqT(t) can be obtained,
see Figure 7.4.

In order to makeqI(t) and qT(t) comparable, one needs a correspondence between the global
coordinate systemsFGI and FGT as well as between the two local coordinate systemsFLI and
FLT . These correspondences, however, are generally not known. The global inertial coordinate
systemFGI is defined by physical quantities, whereasFGT is defined by an arbitrary placement
of a calibration cube in the recording volume. LetqG denote the resulting offset, see Figure 7.4.
Furthermore, the local coordinate systemFLI is defined by the placement of the sensor on a limb
of the human actor, whereasFLT is defined either by mesh vertices or by means of a kinematic
chain. LetqL denote the resulting offset. The estimation ofqG andqL is referred to as calibration,
which is a tedious and error-prone task when done manually. Therefore, automated calibration is
an important concern that we deal with in Section 7.5.

7.5 Calibration and Error Measure

In this section, we present a robust and efficient solution for the calibration problem, namely how
qL andqG can be obtained. We show that the described problem is closely related to theprominent
hand-eye calibrationtask in robotics[Tsai and Lenz, 1988]. The orientationqI(t) can be described
by two distinct compositions of rotations in the diagram of Figure 7.4, once with tracking and once
with inertial orientations:

FLI FLT FGT FGI
qL qT(t) qG

qI (t)
(7.4)

With quaternion algebra, this equality can be expressed as

qI(t) = qG ◦ qT(t) ◦ qL . (7.5)

Now, we can express the rotation that is needed to transformFLI at frames to FLI at framet. In
Figure 7.4, there are two distinct compositions of rotations, starting att in FLI and ending ats in
FLI :

FLI FLT FGT FGI FGT FLT FLI

FGI

qL qT(t) qG qG qT(s) qL

qI (t) qI (s)

(7.6)

Here, tracking orientations in the upper path and inertial orientations in the lower path are used.
The equality of the paths can be expressed with quaternion algebra, where the offsetqG cancels
out:

qI(s) ◦ qI(t) = qL ◦ qT(s) ◦ qT(t) ◦ qL . (7.7)
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SubstitutingqA := qI(s) ◦ qI(t), qB := qT(s) ◦ qT(t), andqX := qL , we get

qA ◦ qX = qX ◦ qB . (7.8)

In robotics, a more general equation of the same form, in which homogeneous transformations are
used instead of sole rotations, describes the hand-eye calibration problem. Manifold solutions to
this problem have been published, see,e. g., Strobl and Hirzinger[2006] and references therein.
Unique solutions can be found as soon as two measurements ofqA andqB are available. How-
ever, in the presence of noise, an approximate solution using many measurements is preferable to
diminish the influence of measurement errors. Therefore, we suggest touseN ≫ 2 measurements
based on a calibration tracking result. The solution of

arg min
qX

∑

n∈[1:N]

‖qA
n ◦ qX − qX ◦ qB

n ‖ (7.9)

yields a best approximate solution under the Euclidean norm. Park and Martin[1994] present
an efficient and easy to implement solution for this subproblem of the hand-eye calibration using
exponential coordinates, which we adapt for our needs. Denoting the real part of a quaternionq
with qw and the imaginary part withqxyz, the quaternion logarithm is defined as

log(q) := 2 arccos(qw)
qxyz

‖qxyz‖
∈ R3×1 . (7.10)

Intuitively, log(q) extracts a representation for rotations in which the direction of log(q) denotes
the axis and the length denotes the angle of the rotation. Then, we define the matrix M ∈ R3×3 as

αn := log(qA
n ) (7.11)

βn := log(qB
n ) (7.12)

M :=
∑

n∈[1:N]

βn · trans(αn), (7.13)

where trans(α) is the transpose ofα. The solution to Equation (7.9) as a rotation matrix is given
by

MX := (trans(M)·M)−1/2 · trans(M). (7.14)

To convert MX to the quaternionqX , we refer to[Shoemake, 1985]. Using this formulation, the
offsetqL can be found efficiently from Equation (7.7). Analogously, one can also regard the dual
equation

qI(s) ◦ qI(t) = qG ◦ qT(s) ◦ qT(t) ◦ qG (7.15)

to find a solution for the global offsetqG. After alignment, we use a thresholding strategy based
on Equation (7.5) to detect whether a tracking error in framet occurs by evaluating

dquat

(
qI(t), qG ◦ qT(t) ◦ qL

)
> τ , (7.16)

where the threshold parameterτ can be set to trade-off between the number of correctly detected
tracking errors and false detections, see Section 7.6.4.



7.6. EXPERIMENTS 89

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

1.5

2

2.5

time shift in seconds
cr

os
s-

co
rr

el
at

io
n

er
ro

r

Figure 7.5. Cross-correlation error on absolute acceleration data of the inertial and the tracking world
for the sequence used in Figure 7.2. The sharply peaked minimum reveals the temporal offset used to
synchronize the inertial and the tracking data.

7.6 Experiments

In this section, we give an overview of the proposed pipeline for the detection of tracking errors.
After describing the acquisition of data (Section 7.6.1), we sketch the tracking procedure used
for obtaining the tracking orientations (Section 7.6.2), and describe our calibration method (Sec-
tion 7.6.3). Finally, we evaluate the proposed framework in detail on a large dataset of tracked
motions (Section 7.6.4).

7.6.1 Data Acquisition

For our experiments, we recorded image sequences using eight calibrated and temporally synchro-
nized cameras as well as inertial data for five different body parts using MTx devices manufactured
by the company Xsens[2012]. By systematically recording two human actors performing various
actions including motion classes such as walk, sit down, stand up, hop, jump,cartwheel, rotate
arms, and throw, we obtained 24 takes with a total length of 14 131 frames or 353 seconds of data.

We selected different body points where we fixed the sensors. Firstly, to represent body limbs that
are influenced by a small number of degrees of freedom, we selected the lower legs as mounting
position. Secondly, to represent body limbs that are influenced by a larger number of degrees of
freedom, we selected the hands as mounting positions. Thirdly, the fifth sensor was fixed on the
upper torso. This way, we fixed the sensors at points corresponding todifferent kinematic levels
of the skeleton. Finally, we needed to temporally align the inertial data and the video data. To
this end, we first obtained absolute acceleration data from both worlds. Then, we used a cross-
correlation method in order to obtain a robust estimate of the temporal offset between both data
streams. Note that absolute acceleration data is invariant to the spatial calibration of both systems
and therefore suited to derive a temporal offset. However, the acceleration data obtained from the
tracking might be impaired by tracking errors. In our sequences, such tracking errors occurred only
temporally local and thus did not influence the accuracy of a constant temporal offset estimated
over a whole tracked sequence. As an example, Figure 7.5 shows the cross-correlation error for
the sequence which is also used in Figure 7.2. Despite of the strong trackingerror in the leg,
the cross correlation measure reveals the temporal offset with a sharp peak. All data streams
were sampled at 40 Hz. For research purposes, we made the whole dataset publicly available
in [Pons-Mollet al., 2008].
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Multiview video Silhouettes Mesh with skeleton Projected mesh

Figure 7.6. Overview of the silhouette-based tracking procedure[Rosenhahnet al., 2007a]. Starting from
multiview video, silhouettes are extracted by chroma keying. A skeleton-enhanced 3D model of the actor
is then fit to the silhouettes based on optimization of joint angle parameters as well as the root orientation
and translation.

7.6.2 Tracking

Our framework is thought for evaluating tracking results independent ofthe specific track-
ing method. In our experiments, we exemplarily used a tracking algorithm similar
to [Rosenhahnet al., 2007a], see Figure 7.6. First, we extract silhouettes from captured images
by chroma keying. We generate a surface mesh of the actor using a 3D body scanner and fit
a skeletal kinematic chain to it. Then, the surface deformation of the mesh is defined by joint
angle parameters as well as root orientation and translation of the kinematic chain. Using a lo-
cal optimization-based approach, pose configuration parameters are determined to minimize the
distance between the transformed 3D mesh projected back onto the 2D images and the silhou-
ettes. This way, we generated tracking results for all 24 takes, which arethen evaluated in our
experiments.

7.6.3 Calibration

To compare orientation data from different worlds, the global coordinate system offsetqG and local
offsetsqL

s have to be estimated for each of the sensorss ∈ [1 : 5] as explained in Section 7.5. For
this purpose, we propose a solution using a calibration take. There are only two requirements for
the calibration take that are easy to meet in practice. Firstly, the orientations ofthe limbs should
be represented reasonably well by the tracking result. Secondly, to obtain unambiguous offsets,
the take should contain poses in different orientations. To this end, we selected a take containing
relatively slow motions which are rather easy to track. Since the offset for the local and global
orientations are constant for each actor, local tracking errors do nothave a significant impact on
the final estimations.

7.6.4 Automatic Evaluation

In our experiments, we resort to a studio setup for the multiview recordings. For tracking outdoor
recordings, a more advanced tracking method than the one we used would be required. However,



7.6. EXPERIMENTS 91

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

(a)

(b) time [s]

time [s]

d q
ua

t[d
eg

]
d q

ua
t[d

eg
]

τ

τ

(c)

0 1 2 3 4 5 6 7 8 9 10

lleg

rleg

lhand

rhand

time [s]

Figure 7.7. Distance measuredquat and thresholdτ used to reveal tracking errors in an example tracking
sequence for(a) the left leg and(b) the left hand. Using these curves, automatically detected tracking errors
are marked by red boxes, see(c). Manual annotations conducted by two subjects are marked with gray and
black boxes, respectively.

our evaluation concepts transfer without modification to more advanced tracking scenarios. In
particular, inertial sensors do not depend on a studio setup and are applicable for outdoor settings.

To automatically detect tracking errors, we evaluate the distance measure ofEquation (7.16) for
every limb and frame. In this equation, the calibrated offsetsqL andqG are used to make the inertial
orientations as measured by an inertial sensor and the tracking orientationsas estimated from the
tracking result comparable. In Figure 7.7, the quaternion distance functions for (a) the left leg and
(b) the left hand are drawn. In Figure 7.7 (c), the detected tracking errors for the body segments are
marked with red boxes, which we refer to asautomatic annotations. In our experiments, we chose
the quality thresholdτ = 45◦ (dashed line), which turned out to be a suitable trade-off between
error detection capability and robustness. The threshold selection will be discussed later, see also
Figure 7.12.

Since we aim to assess the quality of our procedure for tracking error detection, we asked two
people (hereafter referred to as A1 and A2) of our working group to manually annotate each frame
of the tracking results according to tracking errors in the limbs, see Figure 7.7 (c). We refer to these
annotations asmanual annotations, the gray and black rectangles show the manual annotations of
A1 and A2, respectively. For this task, the annotators were provided withthe original multiview
videos as well as with a tool to view the reconstructed 3D mesh from arbitraryviewpoints. As it
turned out, both annotators did not notice any tracking errors in the torso.This is also reflected
by our distance measure, which stays well within a small range of 14.4◦ mean and 7.7◦ standard
deviation. Therefore, we only regard the other four sensors in our evaluation below.

In Figure 7.7 (a), high distance values correspond to a tracking error inthe left leg. The correspond-
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Figure 7.8. Left: Calibrated inertial orientation for point in time 4.2 s of the example tracking sequence.
Right: Tracking orientation. A tracking error can be detected means of orientation distances.

(a) (b) (c)

Figure 7.9. Tracking error in the left hand for a running motion.

ing motion sequence is also indicated by Figure 7.2. Here, both annotators aswell as the automatic
annotations agree. However, we found that the automatic annotation procedure generally marked
more frames as erroneous than the annotators did. For an annotator A, one needs to distinguish
between false positives (automatic annotations, where A has not seen an error), and false negatives
(A has seen a tracking error, but the automatic annotation procedure did not detected it). In fact, by
examining the false positives in more detail, we found that they often correspond to subtle tracking
errors that are hardly visible when looking at the reconstructed mesh. For instance, in the example
sequence at 4.2 s, the procedure has marked a tracking error in the left hand. Figure 7.8 shows that
the palm faces the actor’s hip, represented by the blue axis of the calibrated inertial orientation. In
the 3D reconstruction (right), however, the palm faces backwards. A similar tracking error can be
observed in Figure 7.9. Here, the actress performed a run-on-place-motion. In the tracking, the
orientation of the hand slowly drifted towards a false orientation which becomes apparent when
looking at the differences of the inertial and the tracked orientations in Figure 7.9 (b) and (c).

At this point we emphasize that such a tracking error might appear subtle and unimportant, because
it is hardly noticeable in the visual appearance of an untextured 3D mesh. However, when using a
textured mesh in a rendered scene, this kind of orientation error will lead to unwanted and visually
annoying artifacts. Such an error is not well reflected by previous evaluation metrics like the
ones presented in[Sigalet al., 2010; B̆alanet al., 2005]. In these metrics, ground truth marker
trajectories are compared to trajectories extracted from the 3D mesh, wheresuch an error results
in only negligible differences on the positional level. Yielding similar results, other works evaluate
joint location errors in the 2D image domain[Lee and Nevatia, 2009]. With the proposed method
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Figure 7.10.Comparison of automatic (red) and manual annotations (gray, black) of(a) cartwheels and(b)
locomotion.

Figure 7.11. In a cartwheel sequence, both hands show tracking errors.

A1 A2
P R P R

Legs 0.65 0.91 0.64 0.96
Hands 0.36 0.78 0.45 0.69

Table 7.1.Precision and recall values forτ = 45◦.

based on orientation data, however, this error can be revealed.

Figure 7.10 (a) shows the annotations of a take containing cartwheels. As an example for a false
positive, consider the point in time 2.5 s. Both annotators agreed on a tracking error in the actor’s
left hand. In Figure 7.11, this error is visible even without the additionally drawn inertial orienta-
tions (left) and tracking orientations (right), since the left hand points into thewrong direction. By
contrast, the tracking error in the right hand is much less visually apparent.In fact, the orientation
of the whole arm is estimated incorrectly, coming from a misconfiguration in the shoulder joint.
This error is revealed by the orientation error of the end-effector in the kinematic chain. Again,
this error could not be captured well with traditional metrics.

To evaluate the accuracy on all takes, we calculated precision and recallvalues, taking each of
the manual annotations as baseline. We separately report on the values for the hands and the legs
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Figure 7.12. Precision (black), recall (red) and F-measure (green) overvariations ofτ for (a) legs and(b)
hands. Solid and dashed lines represent values belonging toA1 and A2, respectively.

representing two kinematic levels, see Table 7.1. For both the legs and hands, the automatic anno-
tations show relatively small precision values of around 0.65 and 0.36, respectively. As discussed
above, the low precision is coming from a large amount of automatically detectedtracking errors
that the annotators did not see. This shows that the manual evaluation of tracking results is not
sufficient to find all tracking errors. By contrast, the recall values for the legs are quite high, show-
ing that the automatic annotation procedure detected nearly all manually annotated errors. The
hands, however, have a lower recall in comparison to the legs. Note that this is mainly due to
the per-frame annotations we pursued. In case of short tracking errors that mainly occur in the
tracking results of the hands, small misalignments in the results lead to low recall values, see Fig-
ure 7.10 (b). Although most of the boxes coming from manual annotations have a certain overlap
with an automatic annotation, the automatic annotations achieve a low recall. Here,segment-based
rather than frame-based values may be better suited.

As for quantitative evaluations, a combined recording setup with a marker-based optical motion
capture system would have been beneficial. In our setup we did not havea marker-based reference
system at hand. Different sources of errors like sensor noise and bias, calibration errors, sensors
getting out of place, or errors due to the approximation of the human body witha rigged surface
mesh are thus difficult to quantify. However, our experiments show that the influence of all sources
of noise are small. For example, the distance measure of the upper torso sensor over all 14 131
frames of our evaluation data stays within a small error range with a mean of 14.4◦ and a standard
deviation of 7.7◦, and the manual inspection shows that there are no noticeable tracking errors in
the torso region. This observation suggests that the overall noise lies withinthis small order of
magnitude. In particular, it follows that the accuracy of the obtained inertialorientations is high
enough for a quantitative evaluation of tracking results. Moreover, ourexperiments show that the
proposed distance metric is able to cover most of the manually observed tracking errors, which
is supported by high recall values. Finally, a manual inspection showed that the false positive
detections correspond to tracking errors that were difficult to perceive for the manual annotators.
This supports the statement that our orientation-based distance measure is well suited for detecting
tracking errors.

To evaluate the influence of the threshold parameterτ, we computed precision, recall, and F-
measure for variations ofτ, see Figure 7.12. Selecting a lowτ leads to a high recall, since many
parts of the evaluated takes are annotated. However, also many parts unrelated to tracking errors
are annotated, yielding a low precision. Our final choice ofτ = 45◦ is motivated by the request of
having high recall values without having too many false detections.

As described in Section 7.4, orientation data from the inertial world is obtainedby combining
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Figure 7.13.Calibrated inertial data (red) and tracking data (black) for the left leg of the example sequence
used in Figure 7.7 (a).(a): Local rate of turn data.(b): Local acceleration data. The presence and duration
of tracking errors is difficult to determine from this data.

different sensors. These sensors naturally provide 3D acceleration andrate of turn data, as further
explained in Appendix A. Thus, a method comparing these types of data with corresponding data
generated from the tracking world could also reveal tracking errors. In practice, however, this
does not work well. In Figure 7.13, we show a comparison of the rate of turn data (a) and the
acceleration data (b) corresponding to the left leg for the example trackingsequence also used in
Figure 7.7 (a). The severe tracking error in the left leg occurred from4.6 s to 6.6 s. During this
period of time, theX- andY-components of the angular velocity show some deviations, and also
in the acceleration some differences between the inertial and the tracking data can be revealed.
However, on the basis of this data, it is difficult to isolate the tracking error from spurious detec-
tions coming from noise in the signals. Three more properties make this kind of data not suited for
our task of tracking error detection. Firstly, these quantities are very local in nature with respect to
the temporal dimension. This makes it hard to detect the duration as well as the temporal starting
and ending point of an error. Secondly, filtering techniques necessary to determine meaningful
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acceleration and rate of turn data may not only suppress the sensor noisebut may also smooth out
peaks coming from actual tracking errors. Thirdly, slowly moving limbs generate low amplitudes
in these quantities, which makes it hard, if not infeasible, to detect errors for such motions. With
orientation data, as shown in this chapter, these considerations do not hold, thus yielding a robust
procedure for tracking error detection.

7.7 Discussion

As one contribution of this chapter, we described a calibration framework that was used to make
orientation data from both worlds comparable. In this section, we motivate whythe calibration
step is important and needs to be performed prior to evaluating distance measures such asdquat on
orientation data from the inertial and the tracking world. To this end, we firstdefine a distance
curve∆qa,qb

: [1 : T] 7→ [0◦,360◦] based on Equation (7.16), which is parametrized by two
calibration offsetsqa andqb:

∆qa,qb
(t) := dquat

(
qI(t), qb ◦ qT(t) ◦ qa

)
. (7.17)

For a given sequence of inertial orientationsqI(t) and a sequence of corresponding tracking ori-
entationsqT(t), we can use Equation (7.17) to evaluate the effect of wrong calibration offsets by
shifting qa andqb away from the true offsets. It is tempting to think that a modification of the
offsetsqa andqb just leads to a shift in the distance function by a fixedδ ∈ R. If that was true
in general, then we could avoid the calibration by relying on the assumption thatmost frames of
the sequence were tracked correctly. In that case, the most frequentlyoccurring distance valueδ∗

would represent the correctly tracked frames. Then, the distance curve could be shifted byδ∗ in
order to obtain the correctly calibrated distance curve. However, modifying the offsets in Equa-
tion (7.17) leads to a non-linear distortion of the distance curve due to the non-linearity of the
quaternion multiplication and the arccos function within∆, see Equation (7.2).

In the following, we will show the effect of missing or wrong calibration offsets by means of an
explicit example. To this end, we first generate a synthetic sequence ofT = 640 unit quaternions
qI(t). Then, to simulate the tracked sequenceqT(t), we copyqI(t) and introduce two tracking er-
rors from frames 50 to 200 and from frames 400 to 600 by modifyingqT(t). Now,qI(t) represents
the measured inertial orientations andqT(t) represents the tracked orientations. For these streams
of orientations, the correct offsets are both the quaternion identityqId. The corresponding ground
truth distance curve is obtained by evaluating∆qId,qId , see Figure 7.14 (a). In this curve, the tempo-
ral extend and the magnitude of the errors are correctly represented. Now, suppose that only one
offset is known and the other offset is unknown or wrong. This setting is simulated by evaluating
∆qId,qb

for a fixed quaternionqb, see Figure 7.14 (b). As for the correctly tracked regions, one
can see by comparing with Figure 7.14 (a) that the error curves are shifted by a certain amount
of degrees. However, in the frames containing tracking errors, two majordistortions are visible.
Firstly, the magnitude of the tracking errors are no longer represented correctly. For example, the
ground truth error in frame 200 is 70◦. In the same frame in Figure 7.14 (b), the difference to the
level of correctly tracked frames amounts to only 40◦. Secondly, some frames with tracking errors
cannot be distinguished from correctly tracked frames. For example, consider the region around
frames 485. Here, the same error 100◦ as for the correctly tracked frames is computed, rendering
the detection of a tracking error in these frames impossible. The situation becomes even more in-
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Figure 7.14. A synthetic example for quaternion distance curves with different calibration offsets. The
ground truth distance curve is shown in(a) (both calibration offsets are correct).(b) and (c) show the
curves when one offset and both offsets are wrong, respectively.

tricate if both offsets are wrong. We simulate this setting by evaluating∆qa,qb
, see Figure 7.14 (c).

Detecting the tracking errors from this representation seems to be impossible.

However, there is a solution which could circumvent the need for calibration. Recall that in practi-
cal scenarios, the two calibration offsets to be estimated correspond to the global coordinate system
offsetqG between the two global coordinate systems and the local offsetqL between the local co-
ordinate systems of the sensor and the bone. In such a scenario, the calibration for the global
offsetqG can be avoided already in the preprocessing step where the cameras arecalibrated. In
this step, the object used for calibrating the cameras can be placed manually such that the tracking
coordinate systemFGT coincides withFGI. Once the global offset is known (in the described case,
it is the identity), the local offsetsqL can be computed from a tracked frame of a sequence where
the pose of the actor is already estimated. For example, if the first frame of thetracking is manu-
ally initialized, this frame could be used to obtain the offsetqL . While this scenario represents a
practicable way of avoiding the calibration steps, the errors made by manuallyaligning the camera
calibration object and by manually initializing the tracking in one frame might lead to distortions
of the error function. By contrast, our calibration procedure is fully automatic and yields a robust
solution by taking a whole sequence of frames into account for the calibration.

7.8 Conclusions

As a main result of this chapter, we showed that limb orientations constitute a suitable mid-level
representation for detecting tracking errors in marker-less motion tracking. In contrast to con-
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ventional evaluation techniques with marker-based optical systems, the usage of inertial sensors
provides an unobtrusive and affordable way to generate ground truth data. Furthermore, inertial
sensors impose comparatively weak additional constraints on the overall recording setup with re-
gard to location, recording volume, and illumination. We showed that our procedure can reveal
even subtle orientation mistakes which are hard to detect from a visual analysis of the tracking
result or from previously used evaluation metrics based on positional information.

Further applications of inertial sensors can be found in sports scienceswhere marker-based mocap
technology is sometimes difficult to apply. For example, obtaining marker-based mocap data
from an athlete performing trampoline jumps is problematic due to the large recording volume
and self-occlusions during the motions. Moreover, the rapid motions and trampoline contacts
can cause optical markers to fall off. To make automated motion analysis in such a scenario
possible, Heltenet al. [2011] investigate an approach for automated segmentation and annotation
of trampoline jumps using data obtained from inertial sensors.



Part III

Real-time Motion Reconstruction
from Depth Images





Chapter 8

A Hybrid Approach for Reconstructing
Human Motion

The 3D reconstruction of complex human motions from 2D color images constitutes a challenging
and sometimes intractable problem. The pose estimation problem becomes more feasible when
using streams of 2.5D monocular depth images as provided by a depth camera.However, due to
low resolution of and challenging noise characteristics in depth camera imagesas well as self-
occlusions in the movements, the pose estimation task is still far from being simple. Furthermore,
the reconstruction task becomes even more challenging in real-time scenarios, where the usage of
computationally expensive global optimization strategies is generally not possible.

In this chapter, we introduce a data-driven hybrid strategy that combineslocal pose optimization
with global retrieval techniques to facilitate reconstruction of full-body human motions from a
single depth image stream. In contrast to the offline method for stabilizing marker-less motion
tracking presented in Chapter 6, we focus in this chapter on online real-time tracking. In all steps
including the feature extraction, the retrieval, and the tracking steps, we develop and implement
efficient algorithms in order to achieve real-time frame rates. In order to also obtain a robust
reconstruction of the performed motions, we combine tracking with retrieval techniques. The final
pose estimate for each frame is then determined from tracked and retrieved pose hypotheses which
are fused using a fast voting scheme. Our algorithm reconstructs complexfull-body motions in
real-time and effectively prevents temporal drifting, thus making it suitable for various real-time
interaction scenarios.

This chapter is based on the publications[Baaket al., 2011b] and[Baaket al., 2013]1. After giv-
ing a motivating introduction (Section 8.1), we discuss related work (Section 8.2). We then briefly
introduce depth cameras and the basic processing steps of the captured data (Section 8.3). As main
contribution of this chapter, in Section 8.4 we describe in detail the different steps of our frame-
work for motion reconstruction. Our quantitative and qualitative experimentsas well as limitations
are discussed in Section 8.5, before we conclude in Section 8.6.

1Reproduced with kind permission of Springer Science and Business Media.
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8.1 Introduction

In recent years, several approaches for marker-less human poseestimation from multiple video
streams have been presented[Bregleret al., 2004; B̆alanet al., 2007a; Deutscher and Reid, 2005;
Gall et al., 2009; Stollet al., 2011]. While multi-view tracking already requires solving challeng-
ing non-linear optimization problems, monocular pose estimation puts current technology to its
limits since, with intensity images alone, the problem is underconstrained[Moeslundet al., 2006;
Poppe, 2010; Bo and Sminchisescu, 2010]. In order to have a chance to reconstruct human move-
ments, non-trivial inference or optimization steps are needed in combination with strong priors.
In general, real-time reconstruction of complex human motions from monocularintensity image
sequences can still be considered an open problem.

New depth sensors, such as time-of-flight (ToF) cameras or the Microsoft Kinect sensor, pro-
vide depth images at video frame rates. In such images, each pixel stores adepth value in-
stead of a color value. Since this representation of a scene stands somewhere in the mid-
dle between a pure 2D color-based representation and full 3D scene geometry, depth im-
ages are also referred to as 2.5D data[Kolb et al., 2010]. It turns out that with depth
cameras, the 3D reconstruction of human motion from a single viewpoint becomes more
feasible[Bleiweisset al., 2009; Friborget al., 2010; Ganapathiet al., 2010; Knoopet al., 2009;
Pekelny and Gotsman, 2008; Shottonet al., 2011; Zhuet al., 2008], see also our discussion of
related work in Section 8.2. In this chapter, we present a tracking framework that yields ro-
bust motion reconstruction from monocular depth image sequences. Moreover, our framework
enables significant speed-ups of an order of magnitude compared to mostof the previous ap-
proaches. In fact, we reach similar run time behavior as the algorithm implemented in the Mi-
crosoft Kinect[Shottonet al., 2011], whereas we do not need GPU implementations.

Our procedure follows a hybrid strategy combining generative and discriminative methods, which
is an established paradigm for pose reconstruction and tracking problems. While local optimiza-
tion strategies[Knoopet al., 2009] have proven to yield high frame rates, such techniques tend
to fail for fast motions. Algorithms using global optimization techniques providemore reliable
pose estimates, but are typically slow and prohibitive for real-time scenarios. Various data-driven
approaches have also been suggested to overcome some of these issues, enabling fast yet robust
tracking from intensity image streams, see[Okada and Stenger, 2008; Rosales and Sclaroff, 2000;
Shakhnarovichet al., 2003; Wang and Popovic, 2009]. These approaches rely on databases that
densely cover the range of poses to be tracked, and fail on poses thatare not contained in the
database. Moreover, due to the high variability of general human motion, constructing such a
database might become intractable. Hybrid strategies that combine generative and discriminative
methods have proven to be a suitable methodology for pose estimation and tracking procedures,
see Chapter 6 or[Demirdjianet al., 2005; Ganapathiet al., 2010; Rosales and Sclaroff, 2006;
Salzmann and Urtasun, 2010; Sigalet al., 2008; Yeet al., 2011]. In these works, the main idea is
to stabilize generative optimization algorithms by a discriminative component based on a database
lookup or a classification scheme. Using this strategy, the risk of getting stuckin local minima is
significantly reduced, while time-consuming global optimization methods are avoided.

In our approach, we employ a data-driven hybrid strategy conceptuallysimilar to the work of
Demirdjianet al. [2005], where local optimization is combined with global retrieval techniques,
see Figure 8.1 for an overview. In our scenario, an actor may performeven complex and fast
motions in a natural environment facing a single depth camera at a reasonable distance. Similar to
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Figure 8.1. Overview of our proposed framework for reconstructing motions from depth data. Using
features extracted from the raw depth data, we retrieve a pose hypothesis using a database lookup scheme.
An additional hypothesis is obtained by running a local optimization algorithm that is initialized with the
final pose of the previous frame. Then, a hypothesis voting decides for the either of the candidates.

Demirdjianet al. [2005], we retrieve a pose hypothesis from a large database of 3D poses using
sparse features extracted from the depth input data. Additionally, a further hypothesis is generated
based on the previously tracked frame. After a local optimization of both hypotheses, a late-fusion
voting approach combines the hypotheses to yield the final pose. While the overall procedure is
inspired by previous work[Demirdjianet al., 2005; Ganapathiet al., 2010], we introduce a num-
ber of novel techniques which add robustness and significantly speed up computations at various
stages including efficient feature computation, efficient database lookup, and efficient hypothesis
voting. In our experiments, we also compare our reconstructed motions to previous work using the
publicly available benchmark dataset[Ganapathiet al., 2010]. We gain significant improvements
in accuracy and robustness (even for noisy ToF data and fast motions)while achieving frame rates
of up to 100 fps (opposed to 4 fps reported in[Ganapathiet al., 2010]).

Contributions. In this chapter, we present a system for full-body motion reconstruction from
monocular depth images that requires only 10 to 16 milliseconds per frame on a standard single-
core desktop PC, while being able to track even fast and complex full-bodymotions. Following
a data-driven hybrid strategy that combines local pose estimation with globalretrieval techniques,
we introduce several technical improvements. Firstly, in the feature extraction step, we introduce
a variant of Dijkstra’s algorithm that allows us to efficiently compute a large number of geodesic
extrema. Secondly, in the retrieval step, we employ an efficient database lookup scheme where
semantic labels of the extrema are not required. Thirdly, we describe a novel late-fusion scheme
based on an efficiently computable sparse and symmetric distance measure. It is the combina-
tion of all these techniques that avoids computational bottlenecks while providing robust tracking
results.
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8.2 Related Work

Intensity-image-based tracking. Monocular 3D human pose reconstruction from intensity im-
ages has become an important research topic. In order to deal with challenges coming from
occlusions and missing 3D information, different approaches have been pursued making use of
statistical body models[Guanet al., 2009], physical constraints[Wei and Chai, 2010], object in-
teraction[Romeroet al., 2010], or motion capture data[Rosales and Sclaroff, 2006]. For exam-
ple, Guanet al. [2009] fit a statistical model of human body pose and shape to a single image
using cues such as silhouettes, edges, and smooth shading. In a similar vein, Hasleret al. [2010]
present a method for estimating human body pose and shape from single images using a bi-
linear statistical model. Physics-based constraints are used in Brubakeret al. [2010], where a
physically-based modeling of the lower body helps to track walking motions from monocular im-
ages. In[Wei and Chai, 2010], the authors propose to annotate parts of image sequences with 2D
joint positions, bone directions, and environmental contacts. From such annotations and the image
data, they compute physically realistic human motions. As a different type of constraint, the inter-
action with objects can be exploited as demonstrated in the the work of Romeroet al. [2010]. Fur-
thermore, some approaches derive a direct mapping from image featuresto a dataset of admissible
poses recorded with a marker-based system[Okada and Soatto, 2008; Okada and Stenger, 2008;
Rosales and Sclaroff, 2000; Shakhnarovichet al., 2003; Wang and Popovic, 2009]. With such dis-
criminative approaches, poses that are not contained in the database are difficult to recover. The
combination of generative and discriminative approaches can yield robust and smooth monocular
motion estimates[Fossatiet al., 2010; Rosales and Sclaroff, 2006; Salzmann and Urtasun, 2010;
Sigalet al., 2008].

Depth-image-based tracking. 3D human motion reconstruction based on a single depth image
stream has received increasing attention in the last years. While at first sight it appears simpler than
its corresponding problem with monocular color images, one still has to deal with noise in the input
data, low resolution sensors, lack of color information, and occlusion problems. Nowadays, com-
mercial packages[Bleiweisset al., 2009] or software libraries exist that can compute joint posi-
tions from depth images for multiple people in real time (Microsoft Kinect SDK[Microsoft, 2012],
Primesense NITE middleware[Primesense, 2012]). While the algorithm behind the NITE middle-
ware is not revealed to the public, Microsoft published the approach thatis implemented in the
Kinect SDK in [Shottonet al., 2011]. The authors use randomized decision forests trained on a
huge set of various body poses and shapes in order to hypothesize joint locations from features
on the raw depth input data. The approach was recently combined with a regression scheme to
predict joint locations more accurately[Girshicket al., 2011]. Also, positions of occluded joints
can be estimated.

Some approaches useglobal optimizationmethods to solve the motion reconstruction task. For
example, Friborget al. [2010] use a GPU-accelerated particle filter to fit a surface mesh consisting
of rigidly connected generalized cylinders to stereo depth data. However, even with GPU imple-
mentations, such approaches are often not real-time capable. Purelocal optimizationstrategies
have also been explored, which are implemented as variants of the iterative closest points (ICP)
method[Besl and McKay, 1992]. For example, Pekelny and Gotsman[2008] simultaneously track
and reconstruct the shape of limbs through depth images. Knoopet al. [2009] show that a com-
bination of ToF and stereo data enables full-body motion reconstruction at real-time frame rates.
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Also using ICP, Grestet al. [2007] combine depth and silhouette data to track articulated motion
with ten degrees of freedom in real time. Although yielding high frame rates, such methods often
fail due to noise and motion blur present in the depth data. In particular with fast motions, local
optimization easily gets stuck in erroneous poses which are hard to recoverfrom.

In order to yield a more robust tracking, many approaches stabilize the optimization algorithms
using additionalprior knowledge. For example, Schwarzet al. [2010] include a database of
motions as prior knowledge for a particle filter-based optimization method. However, motions
not present in the database cannot be tracked. As a complementary technique for stabilization,
many approachesdetect features in a bottom-up fashiondirectly from the depth input data. Here,
geodesic distances are used in some works in order to detect anatomic landmarks. Following such
a scheme, Ganapathiet al. [2010] classify geodesic extrema features extracted from depth images
according to the class labels ‘hand’, ‘foot’, and ‘head’. With these detections, the search space
of a particle filter is constrained. Integrating constraints into similar optimization techniques,
anatomical landmarks are identified using feature tracking or heuristics in[Azadet al., 2008;
López-Ḿendezet al., 2011; Siddiqui and Medioni, 2010]. Using object detectors to estimate the
position of the head and the hands, Gallet al.[2011] stabilize a local optimization-based algorithm
for tracking the upper body from depth data. Also, constrained inversekinematics has been used on
anatomical landmarks in[Schwarzet al., 2011; Zhuet al., 2010]. In our approach, we also make
use of bottom-up detected features in order to stabilize a local optimization approach. As for the
feature extraction, we build on the idea of accumulative geodesic extrema[Plagemannet al., 2010]
and contribute with an efficient feature computation strategy.

Depth cameras seem to be an ideal type of sensor to facilitate intuitive human computer inter-
action based on full-body motion input. Therefore, many approaches focus on achievingreal-
time performance and try to find efficient algorithms for the motion reconstruction task. Al-
though efficiency is clearly one of the key aspects to make motion reconstruction applicable for
home use, most approaches with a focus on robustness reach only interactive run times around
10 FPS[Ganapathiet al., 2010; Grestet al., 2007; Zhuet al., 2010]. Only recently, methods have
been published that perform robust motion reconstruction within just a couple of milliseconds per
frame[Girshicket al., 2011; Shottonet al., 2011]. Such approaches for motion reconstruction are
interesting from a practical point of view since they leave enough CPU cycles free for applica-
tions or games that use the reconstructed motion as input. Exceeding the performance of most
published methods, we can report nearly 100 FPS for full body motion reconstruction. Apart from
the methodology of combining discriminative and generative models, the key to our efficient and
stable motion reconstruction procedure is a compound of efficient feature computation, efficient
database lookup, and an efficient voting strategy.

8.3 Acquisition and Data Preparation

In this section, we first summarize the concept of depth cameras while fixing basic notation (Sec-
tion 8.3.1). After that, we describe the model of the person to be tracked (Section 8.3.2). Our pose
database is introduced in Section 8.3.3. Finally, we describe how we normalizethe depth data
(Section 8.3.3). Such a normalization is important in order to facilitate efficient computations in
the forthcoming steps.
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(a) (b)

Figure 8.2. Point cloud obtained by a ToF camera(a) without and(b) including a method for removing
lens distortion effects. Note the straightening effect on the left edge of the door.

8.3.1 Depth data

Before ToF cameras and the Kinect sensor became popular, stereo cameras were predominantly
used to obtain depth data in real-time. In order to compute depth values, such passive stereo
systems need to identify corresponding features in the two images captured at every time step.
However, computing and matching such features is computationally expensive and often fails for
objects without texture or for objects with repeating texture.

Current depth cameras based on active illumination with infrared light overcome these limitations.
Moreover, current ToF cameras are robust to background illumination and yield stable distance val-
ues independent of the observed textures. In principle, ToF cameras capture depth/distance data
at video frame rates by measuring the round trip time of infrared light emitted into and reflected
from the scene. Several successive measurements have to be made in order to estimate the phase
shift of the infrared light from which the round trip time is derived[Kolb et al., 2010]. Moreover,
further measurements are taken over a longer period of time in order to reduce noise in the mea-
surements. For static scenes, this process leads to measurements with high accuracies in the range
of millimeters. For dynamic scenes with moving objects, however, this process can lead to errors
in the estimation of depth values. Problematic are edges that separate an object from another,
more distant object, resulting in strongly corrupted depth measurements, alsocalledmixed pixels.
Furthermore, low resolution, strong random noise and a systematic bias[Kolb et al., 2010] lead to
data that is difficult to handle.

A depth camera returns a distance imageI := Z2 → R with Z2 being the pixel domain. Since
the camera also produces an amplitude image in the infrared domain, we use a standard pattern-
based camera calibration[Matlab, 2012] to recover the camera matrix and parameters for the lens
distortion. To remove lens distortion effects, we apply the method of Heikkila and Silven[1997]
which yields stable and accurate metric distance values, see Figure 8.2 as anexample. We do
not calibrate for systematic bias of the camera, since for full-body motion reconstruction slight
constant deviations in the measurements do not play an important role. For a recent method that
calibrates for systematic bias using an intensity-based approach we referto [Lindneret al., 2010].
Using the calibration information, we transform the per-pixel distances into ametric 3D point
cloudMI ⊆ R

3 for every input frame of our online motion reconstruction framework, seeFig-
ure 8.3 (a). We then perform background subtraction using a static prerecorded background model
and delete contour pixels to mitigate the influence of mixed pixels. Finally, a 3× 3 median filter is
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(a) (b)

Figure 8.3. (a): Original depth point cloud.(b): Point cloud after background subtraction and filtering.
Some mixed pixel artifacts remain, see,e. g., the left leg.

used to reduce noise in the measurements, see Figure 8.3 (b).

In contrast to a ToF camera, the Microsoft Kinect depth sensor uses anactive stereo approach.
More specifically, a camera records an image of a projected structured light pattern in the infrared
domain. Then, from the recorded pattern, a depth map is derived. In contrast to a ToF camera, only
one image is analyzed in every time step. Thus, the Kinect camera is less susceptible to mixed
pixels in dynamic scenes. However, the data also exhibits significant noise.In particular, artifacts
like holes in the data appear when the projected pattern cannot be recognized. Moreover, the
coarse depth quantization limits the accuracy in the far field from the camera, where, for example,
a 2.5 cm quantization gap occurs at 3 meters distance to the camera. The presented algorithms in
this article have been applied to depth data coming from ToF cameras as well asdata coming from
the Microsoft Kinect. Without changing or tuning the proposed algorithms, the final pose estimates
with each of the cameras are qualitatively very similar as shown in the video[Baaket al., 2011a]
accompanying the corresponding paper.

8.3.2 Model of the actor

The body of the actor is modeled as a kinematic chain[Murrayet al., 1994]. We useJ = 20
joints that are connected by rigid bones, where one distinguished joint is defined as the root of the
kinematic chain, see Figure 8.4 (a). A pose is fully determined by the configuration of a kinematic
chain specified by a pose parameter vectorχ containing the position and orientation of the root
joint as well as a set of joint angles. Through forward kinematics[Murrayet al., 1994] using
χ, 3D joint positions represented by a stacked vectorPχ ∈ R3·J×1 can be computed. Using linear
blend skinning[Lewiset al., 2000], we attach a surface mesh with a set of 1170 verticesMχ to the
kinematic chain to model the deforming body geometry, see Figure 8.4 (b). Initializing the body
model to the shape of a specific actor is beyond the scope of this article. Methods exist to solve
this task using image data and a large database of scanned humans, see,e. g., [Guanet al., 2009;
Hasleret al., 2010]. Recently, Weisset al. [2011] have shown that the body shape of a person
can be determined using depth images from four different views. As shown in our experiments
(Section 8.5), even with a fixed body model we can track people for a range of different body sizes.
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root

(a) (b) (c)

Figure 8.4. (a)Skeletal kinematic chain with a root joint.(b) Rigged mesh.(c) Highlighted end effectors
(hands, feet, and head).

8.3.3 Pose database

Motion tracking approaches based on local optimization update the model parameters (in our case
the joint angles) by optimizing a specified cost function, where convergence only to a near local
minimum can be guaranteed. Although such methods typically run very fast, they fail when the
initialization is too far away from the actual pose. For such a failure case wesay that the algorithm
loses track. This is often the case for fast motions where body parts can move far from frame to
frame. One strategy to overcome such limitations is to reinitialize the local optimization when
the track is lost. In the proposed algorithm, we use global pose estimates derived from database
knowledge for such reinitializations. To this end, we create a database of human full body poses
obtained with a marker-based motion capture system. The actor performs a variety of motions
including hand gestures and foot motions to span a large range of different poses. To enable
invariance under global transformations, the obtained posesχi are then normalized according to
the positions of the root joint and the viewing direction. Furthermore, to maximizethe variety and
minimize the number of poses in the database, we select a subset of the recorded poses using a
greedy sampling algorithm[Wang and Popovic, 2009]. In this algorithm, the distance of two poses
specified byχ1 andχ2 is measured based on the distance of the corresponding joint positions

dP(χ1, χ2) := 1/J · ||Pχ1 − Pχ2 ||2. (8.1)

In contrast to Wang and Popovic[2009], we truncate the sampling as soon as the minimal distance
between all pairs of selected poses reaches a certain threshold. Using the truncated sampling, we
obtain roughly 25 000 poses in which any two selected poses have a pose distancedP larger than
1.8 cm. For each selected pose, we then consider end effector positions of the left/right hand, the
left/right foot, and the head, modeled asE5

χ := (e1
χ, . . . ,e

5
χ) ∈ (Mχ)5, see Figure 8.4 (c).

The following three reasons motivate the use of end effector positions as features. Firstly, end ef-
fector positions can be efficiently estimated for a large set of different poses even from depth data
alone, see Sect 8.4.2. Secondly, for many poses these positions are characteristic, thus yielding a
suitable representation for cutting down the search space. Thirdly, they lead to low-dimensional
feature vectors which facilitate the usage of efficient indexing methods. Thus, end effector posi-
tions constitute a suitable mid-level representation for full-body poses that on the one hand abstract
away most of the details of the noisy input data, yet on the other hand retain the discriminative
power needed to cut down the search space in the pose estimation procedure.
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Figure 8.5. Normalization of the geodesic extrema with respect to a computed viewing direction.

For indexing, we use akd-tree[Cormenet al., 2001] on the 15-dimensional stacked vectorsE5
χ

since they provide logarithmic search time in the size of the database and have turned out to be an
efficient search structure for low-dimensional feature vectors. Since the size of the skeleton (e. g.,
body height or arm span) varies with different actors, the pose database has to be adapted to the
actor. While not implemented in the system presented, this task can be solved using a retargeting
framework. Even without retargeting, by manipulating the depth input point cloudMI we are
able to track motions of people if body proportions are not too far off the database skeleton, see
Section 8.5.

8.3.4 Normalization

In the proposed tracking framework, we allow the actor to move freely within the field of view
of the camera, while we restrict variations of the viewing direction to the rangeof about±45◦

rotation around the vertical axis with respect to the frontal viewing direction. Recall that in our
database all poses have been normalized with regard to the position of the root joint and the view-
ing direction. Thus, in order to query the database in a semantically meaningful way, we need
to cope with variations in global position and orientation of the actor. We normalizeMI with
respect to global position by means of a 3D ellipsoid fit aroundMI using a mean-shift algo-
rithm similar to[Wang and Popovic, 2009]. To cope with global rotations, one could augment the
database to contain pose representations from several viewing directions [Demirdjianet al., 2005;
Shakhnarovichet al., 2003; Wang and Popovic, 2009]. In this case, the retrieval time as well as
the risk of obtaining unwanted poses would increase. Instead, in our framework, we normalize
the depth input point cloud according to an estimated viewing direction. To this end, we compute
a least-squares plane fit to points corresponding to the torso, which we assume to be the points
that are closer than 0.15 m to the center ofMI , see Figure 8.5. The normal of the plane, as indi-
cated by the cyan arrow in Figure 8.5, corresponds to the Eigenvector withthe smallest Eigenvalue
of the covariance matrix of the points. The viewing direction is its projection ontoan imagined
horizontal ground plane. We then rotate the positions of the geodesic extrema about the vertical
axis through the center such that the normal of the rotated plane points to front. To cope with
frames in which the viewing direction cannot be estimated because,e. g., the torso is occluded, we
adaptively smooth the estimated directions over time. We detect whether the torsois occluded by
inspecting the Eigenvalues of the above mentioned covariance matrix. Here,occluding body parts
often lead to a stronger curvature in the regarded points (smallest Eigenvalue is relatively large)
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(a) (b)

Figure 8.6. (a): Subset of verticesCχ ⊆ Mχ. (b): From poseχ (left), correspondences for mesh vertices in
Cχ are estimated (middle). Local optimization using the correspondences yields an updated poseχ′ (right).

or a less circular fit (largest Eigenvalues are not similar). Then, we minimizethe influence of the
estimated normal. As a consequence, the detected viewing direction remains stable even if the
arms occlude the torso or the center ofMI does not correspond to the torso.

8.4 Motion Reconstruction Framework

As explained in the previous section, in the offline preprocessing phase, the camera matrix is
obtained and the background model is created. We now describe our proposed online framework,
see also Figure 8.1. At a given framet, the first steps are to compute the point cloudMI from the
distance imageI , to perform background subtraction, to filter out noise and to normalize according
to the viewing direction. Letχ∗t−1 be the final pose estimate of the previous framet−1. Fromχ∗t−1,
we obtain a pose hypothesisχLocOpt

t by refiningχ∗t−1 with a local optimization procedure that
takes the input depth data into account (Section 8.4.1). A second pose hypothesis is obtained as
follows. We extract a 15-dimensional feature vector fromMI , representing the 3D coordinates
of the first five geodesic extrema (Section 8.4.2). Being a low-dimensional yet characteristic pose
representation, the features permit rapid retrieval of similar full-body poses from a large pose
database (Section 8.4.3). From the set of retrieved poses we choose a single pose hypothesisχDB

t
using a distance function which takes the influence of the estimated pose of theprevious frameχ∗t−1
into account. Based on a late-fusion voting scheme that combines two sparsedistances measures,
our algorithm decides betweenχDB

t andχLocOpt
t to find the final poseχ∗t , see Section 8.4.4.

8.4.1 Local Optimization

In our local pose optimization, we follow a standard procedure as described in, e. g.,
[Rosenhahnet al., 2008a]. Here, the goal is to modify an initial poseχ such that the modified
poseχ′ fits to the point cloudMI more accurately. To this end, we seek correspondences between
vertices inMχ and points inMI .

Finding correspondences for all verticesv ∈ Mχ is not meaningful for three reasons. Firstly, many
vertices do not have semantically meaningful correspondences inMI , e. g., the vertices in the back
of the person. Secondly, the number of correspondences for the torso would be much higher than
the number of correspondences in the limbs, which would disregard the importance of the limbs
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for pose estimation. Thirdly, the computation time of local optimization increases withthe number
of correspondences.

Therefore, we use a predefined setCχ ⊆ Mχ of mesh vertices as defined in Figure 8.6 (a). Here,
we make sure that we select a couple of vertices for each body part. Using a localkd-tree built
up in every frame, we efficiently obtain theℓ nearest neighbors inMI of each vertexv ∈ Cχ and
claim correspondence ofv to the median of itsℓ nearest neighbors to reduce the influence of noise.
Using these correspondences, we obtain updated pose parametersχ′ by applying an optimization
framework similar to the one in[Rosenhahnet al., 2008a].

8.4.2 Feature Computation

To obtain a sparse yet expressive feature representation for the input point cloudMI , we revert
to the concept of geodesic extrema as introduced in[Plagemannet al., 2010]. Such extrema often
correspond to end effector positions, yielding characteristic features for many poses as indicated
by Figure 8.10. Following[Plagemannet al., 2010], we now summarize how one obtains such
features. Furthermore, we introduce a novel variant of Dijkstra’s algorithm that allows us to effi-
ciently compute a large number of geodesic extrema. We model the tuple of the first n geodesic
extremal points as

En
I := (e1

I , . . . ,e
n
I ) ∈ (MI )

n. (8.2)

To computeEn
I , the point cloud data is modeled as a weighted graph where each point in

{p1, . . . , pL} :=MI represents a node in the graph. We refer to a node by its indexℓ ∈ [1 : L]. To
efficiently build up the edge structure of the graph, we exploit the neighborhood structure in the
pixel domainZ2 of the underlying depth image. Here, we consider the 8-neighborhood ofeach
pℓ ∈ MI in the domain of the underlying image. For each such neighboring pointpm ∈ MI , we
add an edge betweenm andℓ of weightw = ||pm − pℓ||2 if w is less than a distance thresholdτ.
This way, we obtain a weighted edge structure in form of an adjacency list

E(ℓ) := {(m,w) ∈ [1 : L] × R+ | pm andpℓ share an edge of weightw} (8.3)

for ℓ ∈ [1 : L]. Here, note that when building up the edge structure, the distance between any two
points inMI has to be evaluated only once.

In our approach, in contrast to the method in[Plagemannet al., 2010], we need to obtain a fully
connected graph with only one connected component in order to obtain meaningful geodesic ex-
trema. In practice, however, the graph computed as described above is not fully connected if, for
example, the depth sensor misses parts of the thin limbs, or due to occlusions, see Figure 8.7. To
cope with such situations, we use an efficient union-find algorithm[Shapiro and Stockman, 2002]
in order to compute the connected components. To reduce small artifacts andnoise pixels, we
discard all components that occupy a low number of nodes. Furthermore,we assume that the torso
is the component with the largest number of nodes. All remaining components are then connected
to the torso by adding an edge between the respective closest pair of pixels if the edge weight is
less than 0.5 m, see the red dotted lines in Figure 8.7. This allows us to find meaningful geodesic
extrema even if the initial graph splits into separate connected components, see Figure 8.10 (b)
and (h) for the resulting geodesic extrema of the graphs shown in Figure 8.7.
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(a) (b)

Figure 8.7.Graph obtained from the depth image (black lines) and a zoom-in from a more lateral viewpoint
for two poses with self-occlusions. The initially disconnected graph is automatically connected using edges
indicated by the red dashed lines, respectively.

(a) (b) (c) (d)

0 m

1 m

Figure 8.8. Computation of geodesic extrema using a variant of Dijstra’s algorithm.(a): Graph structure
and source node (cyan circle).(b): Geodesic distances and first geodesic extremum.(c): Updated geodesic
distances and second geodesic extremum.(d): The first ten geodesic extrema.

We now show how a large number of extrema can be computed efficiently. Basically, we follow an
iterative computation strategy. In each iteration, we use Dijkstra’s algorithm[Cormenet al., 2001]
to compute the geodesic distances from a centroid nodeℓ0 (referred to assource node) to all other
nodes in the graph. We then pick the node with the maximal distance as the corresponding extremal
point. The efficiency of our algorithm is based on the observation that only in the first iteration of
our algorithm, a full pass of Dijkstra has to be computed. In all remaining iterations one needs to
consider only a small fraction of the nodes. As another observation, we only need to obtain the
geodesic distances of each node and do not need to store the actual shortest path information which
is usually saved in a predecessor array in Dijkstra’s algorithm[Cormenet al., 2001]. Therefore,
we save additional time in each iteration by omitting the predecessor array.

As input to Algorithm 4, we use the graph structure with nodes, edges, andthe designated source
nodeℓ0, see Figure 8.8 (a). Additionally, we use a priority queueQ that stores tuples (m,w) ∈ [1 :
L] ×R+ of nodes and weights sorted by increasing weight. The priority queue allows us to extract
the tuple with the minimal weight by theQ.getMin() operation. To keep track of the distance
values of each node, we use an auxiliary array∆ havingL entries.

We start the algorithm by initializing∆, see Lines 1-3. Then, we insert the source node into
the previously empty priority queueQ in Line 5. We then iterate over all geodesic extrema to
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Algorithm 4 Computation of Geodesic Extrema

Input: {p1 . . . pL} :=MI : 3D point cloud with pointspℓ ∈ R3 and nodesℓ ∈ [1 : L]
E(ℓ) := {(m,w) ∈ [1 : L] × R|pm andpℓ share an edge of weightw}:

edge adjacency list defined onMI

ℓ0 ∈ [1 : L]: index of the designated source node
Q: priority queue for elements (m,w) ∈ [1 : L] × R
n: number of geodesic extrema to be computed

Output: (e1
I , . . . ,e

n
I ) ∈ (MI )n: then first geodesic extrema ofG

1: for ℓ← 1 to L do
2: ∆[ℓ] ← ∞ ⊲ Initialize distance array
3: end for
4: ∆[ℓ0] ← 0 ⊲ Distance to source
5: Q.insert( (ℓ0,0) )
6: for i ← 1 to n do ⊲ Compute the firstn extrema
7: while Q , ∅ do
8: ℓ ← Q.getMin() ⊲ Get entry with minimal weight
9: Q.removeMin() ⊲ Remove the entry fromQ

10: for each (m,w) ∈ E(ℓ) do ⊲ For all nodes connected by an edge topℓ
11: if ∆[ℓ] + w < ∆[m] then
12: ∆[m] = ∆[ℓ] + w ⊲ A shorter path has been found
13: Q.insert( (m,∆[m]) )
14: end if
15: end for
16: end while ⊲ ∆ now contains the geodesic distances
17: ℓ∗ ← arg maxℓ∈[1:L] ∆[ℓ] ⊲ Note: the arg max must ignore nodes that were not reached
18: ei

I ← pℓ∗ ⊲ Storeith extremum
19: ∆[ℓ∗] ← 0 ⊲ Simulate edge insertion betweenpℓ0 andpℓ∗
20: Q.insert( (ℓ∗,0) ) ⊲ Let ℓ∗ act as new source
21: end for

be computed. The first pass of Dijkstra (Lines 7 to 16) stores the shortestgeodesic distances
from the source node to any other node in the graph in the array∆, see Figure 8.8 (b). Then,
the point corresponding to the nodeℓ∗ with the largest distance in∆ is taken as the first geodesic
extremume1

I (Lines 17 to 18). Note that if there are still nodes which are not reachablefrom
the source nodeℓ0, they bear the same distance values∞ as set in the initialization. Of course,
such unreachable nodes should not be considered as geodesic extrema. Therefore, the arg max
operator in Line 17 must ignore these nodes in order to recover the true geodesic extremum. In
Figure 8.8 (b), the detected extremume1

I is indicated by the gray sphere on the left foot. According
to [Plagemannet al., 2010], the next step is to add a zero-cost edge betweenℓ0 andℓ∗ and then to
restart Dijkstra’s algorithm to finde2

I , and so on. This leads to a run time ofO(n ·D) for n extrema
with D being the run time of Dijkstra’s algorithm for the full graph. Note that the second run of
Dijkstra’s algorithm shows a high amount of redundancy: the entries in the array∆ corresponding
to all nodes in the graph that are geodesically closer toℓ0 than to the node ofe1

I will not change
in the second run. For example, in Figure 8.8 (c), only the distance values of the nodes within the
highlighted area have changed.
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Figure 8.9. (a)Number of nodes visited and(b) run time in milliseconds to find thenth geodesic extremal
point for the baseline (black) and our optimized algorithm (green). Average values and standard deviation
bars for a sequence of 400 frames from the dataset of[Ganapathiet al., 2010] are reported.

Therefore, to compute the 2nd pass, we keep the distance values of the 1st pass and let the nodeℓ∗

corresponding toe1
I act as the new source, see Lines 19 and 20. This way, the second iteration will

be by an order of magnitude faster than the first iteration, as also confirmedby our experiments
described in the subsequent paragraphs. Usingℓ∗ as the new source, we update∆ with a pass
of Dijkstra’s algorithm and picke2

I as the point with the maximal distance in the updated∆, see
Figure 8.8 (c). For the 3rd pass we let the node corresponding toe2

I act as the new source by setting
the corresponding value in∆ to 0, and run Dijkstra again. This way, in the 3rd pass, only nodes
in the graph that are closer to the node ofe2

I than to all other previously used source nodes are
touched. We proceed iteratively to compute the subsequent extremal points, see Figure 8.8 (d) for
the resulting distance values and extrema after 10 iterations.

Our computational strategy leads to drastic improvements in the run time for each pass. To exper-
imentally verify this, we evaluated the algorithm on a depth input sequence of 400 frames taken
from the dataset of[Ganapathiet al., 2010]. We computed the first 20 geodesic extrema for each
of the 400 frames using both a baseline algorithm that runs a full Dijstra passin each iteration and
our optimized algorithm. We traced the number of nodes visited in each iteration aswell as the ac-
tual run time for each iteration. Figure 8.9 shows that in the first iteration all reachable nodes inMI

(on average there were more than 6000 nodes in the graph) were visited.In the second iteration,
only 413± 61 nodes (average± standard deviation over all frames) were visited. This substantial
reduction is also reflected by the run time of the algorithm, which drops from 1 millisecond in the
first iteration to about 0.058± 0.0085 milliseconds in the second iteration, see Figure 8.9 (b). As a
result, the overall run time for computing the first 20 geodesic extrema is only slightly higher than
the run time of the original Dijkstra algorithm for computing the first geodesic extremum. Thus,
the algorithm allows us to efficiently compute a large number of geodesic extrema.

The overall approach enables the detection of semantically meaningful endeffector positions even
in difficult scenarios. Figure 8.10 shows a number of challenging examples, where legs occlude
each other (b)-(c), multiple body parts occlude each other (d)-(f), a fast punching motion with
occlusions is performed (g)-(k), a leg is bent to the back (l), and the hands are outstretched to the
camera (m). However, in poses where the end effectors are very close to other parts of the body,
the topology of the graph may change and the detected extrema may differ from the actual set of
end effectors, see Figure 8.11(a)–(c). In these poses, the left elbow, the left shoulder, and the left
hip are selected ase5

I , respectively. Also, flying mixed pixels can cause the topology of the graph
to change, as depicted in Figure 8.11 (d), where we show a pose once from a frontal view and
once from a side view. Note that although the left hand keeps a reasonable distance from the head,
mixed pixels build a bridge in the graph from the hand to the head. Thus, the fifth extremum is
located at the elbow. Figure 8.11(e) shows a similar situation in which the head isnot detected due
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l) (m)

Figure 8.10.Example poses with the first five geodesic extrema drawn as bigspheres, and extrema 6 to 20
drawn as smaller blobs. For many poses, the first five extrema correspond to the end effectors, even when
self-occlusions are present.

(a) (b) (c) (d) (e)

Figure 8.11. (a)-(c): Problematic example poses. In particular when the hands come close to the body,
end effector detection becomes difficult. (d)-(e): Flying mixed pixels lead to deviations in the end effector
detection.

to mixed pixels. Instead, the fifth extremum is located at the hip.

In the subsequent section, we will explain the discriminative component of our framework, where
pose candidates are obtained from the database by using the positions of the first five geodesic
extrema as a query. If the end effectors are not revealed by these extrema, however, the obtained
pose candidates are often meaningless. As will be explained later, the influence of such mean-
ingless poses on the final pose estimates can be minimized with our combined generative and
discriminative framework.

8.4.3 Database Lookup

As for the database lookup component, the goal is to identify a suitable full-body poseχDB
t from

our pose database using the extracted geodesic extremaE5
I as the query input. However, as op-

posed to the database motions where the semantics of the end effector positions are known, the
semantic labels of the extrema on the query side are not known. To partially solve for miss-
ing semantics, the method[Ganapathiet al., 2010] uses a classifier trained on ‘hand’, ‘head’, and
‘foot’ patches of distance images. This process, however, is relativelyexpensive (taking 60 ms
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per frame according to[Plagemannet al., 2010]) and is thus not directly suitable in real-time sce-
narios. Also, when using depth data alone, misclassification of patches mightoccur because of
missing color information, strong noise, and the low resolution of the measurements. In order to
circumvent the classification problem, we propose a query strategy that does not rely on having
a-priori semantic labels for the extracted geodesic extrema. Intuitively speaking, we use different
queries that reflect different label assignments. As explained in the following, from the retrieved
poses, we then choose a candidate pose that most likely corresponds to the correct labeling.

Let S5 be the symmetric group of all five-permutations. For a permutationσ and a five-tupleE,
we denote the permuted tuple byσE. Now, letS ⊆ S5 be a subset containing permutationsσ
such that the positions inσE5

I are close to the end effectors of the previous frameχ∗t−1. More
specifically, we define

S := {σ ∈ S5|∀n ∈ [1 :5] : ||eσ(n)
I − en

χ∗t−1
|| < µ}. (8.4)

In our experiments, we use a distance threshold ofµ = 0.5 meters to effectively and conservatively
prune the search space while still allowing for large jumps in the end effector positions which
may be present in fast motions. In frames with clear geodesic extrema, the number of considered
permutations|S | typically drops to one. To further increase robustness to false estimations in
the previous frame, we add additional permutations toS if we detect jumps in the positions of
the geodesic extrema. To compute the additional permutations, we assume that the two lowest
extremaw.r.t. the vertical axis, saye1

I ande2
I , correspond to the feet. This leads to two possible

label assignments where the label ‘left foot’ is assigned to eithere1
I or e2

I . For each of the two
assignments, the remaining three extrema can receive 3!= 6 different labelings. This leads to
2 · 6 = 12 additional permutations added toS.

By querying thekd-tree of the pose database forK nearest neighbors for each permutation inS,
we obtainK · |S| pose candidatesχk,σ with k ∈ [1 : K] andσ ∈ S. For each (k, σ), we define a
distance value between the pose candidateχk,σ and the permutedE5

I by

δ(χk,σ,E
5
I ) := 1/5 · ||Eχk,σ − σE5

I ||2. (8.5)

Note that to compute the distanceδ(χk,σ,E5
I ), we stack the tuplesEχk,σ andσE5

I into 15-dimensional
vectors, respectively. The result of the database lookupχk∗,σ∗ for framet is then chosen by also
considering temporal consistency using

(k∗, σ∗) = arg min
(k,σ)

λ · δ(χk,σ,E
5
I ) + (1− λ) · dP(χk,σ, χ

∗
t−1) (8.6)

with a weighting factorλ that balances out the influence ofdP (defined in Equation (8.1)) andδ.
In our experiments, we useλ = 0.5. Finally, we refineχk∗,σ∗ to the hypothesisχDB

t using local
optimization as described in Section 8.4.1.

8.4.4 Hypothesis Voting

At this stage, two alternative pose hypotheses have been derived, namely χLocOpt
t from the gen-

erative andχDB
t from the discriminative component. In the next step, we need to create a single,

final poseχ∗t taking both hypotheses into account. Recall that the pose hypothesisχDB
t might be

inaccurate when the end effectors are not revealed. Therefore, it is not meaningful to take the
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average pose ofχLocOpt
t andχDB

t as final pose. Instead, for this late-fusion step, we propose a
novel voting scheme that decides for eitherχLocOpt

t or χDB
t as the final poseχ∗t based on an ef-

ficiently computable sparse and symmetric distance measure. With the proposedvoting strategy,
the local optimization and database lookup schemes benefit from each other. On the one hand, if
the database lookup component fails, then the local optimization component can continue to track
the motion. On the other hand, the local optimization might fail to track fast and abrupt motions.
In such situations, the database lookup can reinitialize the tracking.

In the proposed voting scheme, we want to avoid a dominant influence of potential errors coming
from the feature extraction or from the database lookup. Therefore, we use distance measures
that revert to the original input point cloudMI rather than to derived data. One possible distance
measure could be defined by projectingMχ into a distance image and comparing it toI . In
practice, however, because of the relatively low number of pixels in the thinlimbs, such a distance
measure is dominated by the torso. For this reason, we propose a novel distance metric that can
be computed efficiently and that accounts for the importance of the limbs for pose estimation.

To this end, we combine two sparse distances measures. The first distanceexpresses how well the
mesh is explained by the input data:

dMχ→MI
:=

1
|Cχ|

∑

v∈Cχ

min
p∈MI

||p− v||2. (8.7)

Here, we revert to only the subsetCχ ⊆ Mχ of vertices as defined in Section 8.4.1, see also
Figure 8.6 (a). Likewise, the second distance measure expresses how well MI is explained by
Mχ:

dMI→Mχ :=
1
20

∑

n∈[1:20]

min
v∈Mχ

||en
I − v||2. (8.8)

To emphasize the importance of the limbs, we take only the first 20 geodesic extrema of the input
depth data, which largely correspond to points on the limbs rather than the torso, see Figure 8.10.
Since also for the mesh we take only a subset of vertices, see Figure 8.6 (a), the distance measures
are sparse. Both distance measures can be computed efficiently because firstly, geodesic extrema
can be extracted very efficiently (Section 8.4.2), and secondly, only a small number of points are
taken into account. The final poseχ∗t is then given through

χ∗t := arg min
χ∈

{
χDB

t , χLocOpt
t

}(dMχ→MI + dMI→Mχ). (8.9)

8.5 Experiments

We implemented the proposed hybrid tracking strategy in C++ and ran our experiments on a
standard off-the-shelf desktop PC with a 2.6 GHz CPU. To numerically evaluate and to com-
pare our hybrid strategy with previous work, we used the publicly availablebenchmark dataset
of [Ganapathiet al., 2010]. In this dataset, 28 sequences of ToF data (obtained from a Mesa Imag-
ing SwissRanger SR 4000 ToF camera) aligned with ground truth marker positions (obtained from
a marker-based motion capture system) are provided. This dataset comprises 7900 frames in to-
tal. In addition to numerically evaluating on this dataset, we demonstrate the effectiveness of the
proposed algorithm in a real-time scenario with fast and complex motions captured from a PMD
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Figure 8.12. Average pose error and standard deviation of sequences 27 to0 of the dataset
of [Ganapathiet al., 2010]. Bars left to right: Using only local optimization, using only the database lookup,
results using the proposed fusion scheme, and values reported by[Ganapathiet al., 2010] (without standard
deviations).

Camcube 2 in a natural and unconstrained environment, see Figure 8.13 and Figure 8.14. In the
accompanying video[Baaket al., 2011a], we show that the same framework also works with the
Microsoft Kinect depth sensor without any further adjustments.

8.5.1 Feature extraction

First, we evaluate the effectiveness of the proposed feature extractor on the benchmark dataset.
Not all ground truth markers in all frames are visible, thus, for this evaluation, we use only the
3992 frames in which all five end effector markers are visible. A good recognition performance
of the feature extractor is needed for a successful subsequent database lookup. In 86.1% of the
3992 frames, each of the found five geodesic extremaE5

I is less than 0.2 meters away from its
corresponding ground truth marker position. This shows that we can effectively detect the end
effector positions for most motions contained in the test dataset.

8.5.2 Quantitative evaluation

We run our motion reconstruction algorithm on the benchmark dataset. Since the surface mesh
of the actor is not part of that dataset, we scale the input point cloud data so that it roughly fits
the proportions of our actor. We manually fix correspondences betweeneach motion capture
marker and a mesh vertex. For a test sequence withT frames, letMt be the number of visible
motion capture markers in framet, let mt,i be the 3D position of theith visible marker in frame
t andm̃t,i the position of the corresponding mesh vertex of the reconstructed pose.As also used
in [Ganapathiet al., 2010], the average pose error for a sequence is computed as

ǭavg :=
1

∑T
t=1 Mt

T∑

t=1

Mt∑

i=1

||mt,i − m̃t,i ||2. (8.10)
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Total Preparation Local Optim. E20
I Lookup Voting

Full resolution
16.6 ms 1.2 ms 5.7 ms 6.2 ms 1.2 ms 0.9 ms

100% 7% 34% 37% 7% 5%

Half resolution
10.0 ms 1.1 ms 4.6 ms 1.5 ms 1.2 ms 0.9 ms

100% 11% 46% 15% 12% 9%

Table 8.1.Average run times in milliseconds over all frames of the benchmark dataset.

Whereas the overall accuracy of the tracking algorithm is expressed bymeans of Equation (8.10),
potential local tracking errors can be averaged out. Therefore, we use this evaluation measure to
show tendencies in the accuracy by comparing different pose estimation strategies for all bench-
mark sequences, see Figure 8.12. To this end, we report how the local optimization component
(Section 8.4.1) and the database lookup component (Section 8.4.3) perform individually, without
being combined with the late-fusion hypothesis voting. When using only local optimization (1st

bar) the method often gets stuck in local minima and loses track. When using onlya database
lookup (2nd bar), poses where the end effectors are not revealed by the first five geodesic ex-
trema may cause a false lookup result. Thus, in terms of the average pose error, both meth-
ods, when run separately, do not perform well on all sequences. The 3rd bar shows the result
of the proposed hybrid strategy which leads to substantial improvements. Also in comparison
to [Ganapathiet al., 2010] (last bar, std. dev. values were not available), we achieve comparable
results for basic motions and perform significantly better in the more complex sequences 20 to 27.
Only for sequence 24, the method[Ganapathiet al., 2010] performs better than our approach. The
reason for this is that this sequence contains a 360◦ rotation around the vertical axis, which cannot
be handled by our framework. However, our system can cope with rotations in the range of±45◦

since we normalize the input data based on the estimated viewing direction. For the benchmark
dataset, the hypothesis voting component decided in 22.5 % of the frames for the retrieval com-
ponent, and in 77.5 % for the local optimization from the previous frame. With our hypothesis
voting, we significantly reduced the average pose error of the final pose estimate in comparison to
either method ran individually.

8.5.3 Run time

In Table 8.1, we report the average run times of our motion reconstruction framework in mil-
liseconds per frame. In[Ganapathiet al., 2010], the authors report a performance of 4 FPS on
downsampled input data. By contrast, with our proposed algorithm, we achieve 60.4 FPS (16.6 ms
per frame) on average on the full resolution input data, and 100 FPS (10.0 ms per frame) with half
of the resolution which we track with nearly the same accuracy. The run times are comparable to
or even better than other state-of-the art approaches like[Shottonet al., 2011] where the authors
report “at least 10×” speedup with respect to[Ganapathiet al., 2010]. As for a more detailed
analysis, we also give the run time of each algorithmic component, namely the datapreparation
phase (Section 8.3), the local optimization component (Section 8.4.1), the feature extraction (Sec-
tion 8.4.2), the database lookup (Section 8.4.3), and the voting (Section 8.4.4). Note that our
efficient algorithms lead to run times that are well distributed among the different components,
such that no clear bottleneck is present. For the full resolution, the run time of local optimization
and the feature extraction are approximately the same. The latter benefits mostfrom downsam-
pling the data.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8.13. Snapshots of our results on fast and complex motions on data captured with a PMD camera.
For every motion we show a video frame of the actor (not used for tracking), ToF data overlaid with the
reconstructed skeleton, and a rendering of the corresponding mesh.

8.5.4 Qualitative evaluation

In Figure 8.13, we show example results of fast and complex motions captured in an unconstrained
environment. The considered motions are much faster and contain more challenging poses than the
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ones used in[Ganapathiet al., 2010]. The leftmost image in each subfigure shows a video frame
of the motion captured from a separate video camera not used for the motion reconstruction. In the
room where we recorded the data, the video camera was standing to the leftof the depth camera.
The middle image shows the depth data overlaid with the estimated skeleton of the poseχ∗t . The
rightmost image depicts a rendering of the surface mesh in the corresponding pose.

The first row (Figure 8.13 (a)) shows some frames of a successfully tracked motion sequence.
Even though the left foot is bent to the back and is nearly hidden from the depth camera, the 3D
geometry of the legs has been recovered correctly. Figure 8.13(b) depicts difficult bending mo-
tions. Despite of the fact that such poses were not part of our pose database, the motions were
tracked successfully. For such motions, the resultχDB

t of the lookup step does not reflect the true
pose of the actor. Thus, our voting scheme decided in each frame correctly for the local optimiza-
tion component which successfully tracked the motions. Figure 8.13(c) contains typical failure
cases. The first two images show poses with severe self-occlusion whichare still a challenge for
motion reconstruction. Nonetheless, the overall pose is reliably captured and arm tracking quickly
recovered once the occlusion was resolved. The rightmost image shows acase where the right
arm was not visible in the depth input data. Since the proposed method assumesthat at least parts
of all limbs are still visible in the depth data, the pose of the right arm is not correctly recovered.
Figure 8.13(d) shows examples of fast jumping, punching, and kicking motions where the first
two motions are additionally rotated to more than±45◦ around the vertical axis with respect to
the frontal viewing direction. The poses in this row are roughly recovered. However, small mis-
alignments of some limbs might occur as visible in the right leg and the right arm, respectively.
Also note the inaccuracy in the left leg (third pose). Such minor inaccuracies can locally occur
and are typically resolved after a few frames. Figure 8.13(e) shows someposes of a successful re-
construction of a sequence with fast and complex kicking motions. Note that inthe second pose of
Figure 8.13 (e) it is difficult to distinguish the left leg from the right leg when having only the depth
data of a single frame. However, since the local optimization and the databaselookup components
use temporal continuity priors, the legs can be tracked successfully. Finally, Figure 8.13 (f) con-
tains a very fast arm rotation motion in a pose where the arms are close to beingoutstretched to
the camera (first image), and a jumping motion in a similar pose (second image). Although only
a small part of the arm is visible to the depth camera due to self-occlusions, the3D geometry of
the arm is successfully recovered. The last image shows a pose where the hands touch different
parts of the body. Despite of the fact that in such poses not all geodesicextrema inE5

I correspond
to the end effectors, the motion has been tracked successfully since the voting scheme decided for
the local optimization component. In the accompanying video[Baaket al., 2011a] we show the
performance of our prototype implementation also with the Microsoft Kinect depth camera.

First experiments showed that actors with different body proportions can be tracked if they are
not too different from our body model. Therefore, we scaled the input data to roughly match the
proportions of the model, see Figure 8.14 and the accompanying video for examples.

8.5.5 Limitations

In the proposed framework, we rely on certain model assumptions in several stages of the frame-
work. For example, we use a rigged surface mesh that is assumed to fit the respective actor to be
tracked. Therefore, we cannot directly track persons with substantiallydifferent body proportions
than the ones reflected by the surface mesh. However, as shown in[Weisset al., 2011], the depth



122 CHAPTER 8. A HYBRID APPROACH FOR RECONSTRUCTING HUMAN MOTION

Figure 8.14.Experimental results with a different person (ToF data from a PMD camera).

input can be used to estimate the body shape of the actual person. First experiments have shown
that one can use the same motion reconstruction pipeline after applying a preprocessing step where
the pose database is retargeted to correspond to the estimated body shape.

A second limitation arises in situations where only parts of the actor are visible in the field of
view of the depth camera. Two assumptions within our framework lead to false pose estimates in
these situations. Firstly, in the local optimization component, correspondences between the mesh
and the depth data for all body parts of the mesh are established. If some limbsare not visible in
the depth data, then the correspondences will inherently be semantically incorrect. Secondly, the
geodesic extrema will not correspond to the limbs anymore and retrieved database poses can no
longer stabilize the pose estimation. Therefore, the full body of the actor should always be visible
in the depth data.

Another problematic situation can occur when the end effectors are not revealed for a longer
period of time. Although we run two pose estimation components in parallel, each component in
isolation does not give satisfying pose estimates as shown in the accompanying video—it is the
combination that facilitates stable and accurate results. Therefore, if one of the components fails
for an extended period of time, the results might become unstable. For example, if the end effectors
are not revealed by the geodesic extrema for many successive frames,our algorithm continues to
track using only local optimization. Then, fast motions lead to unstable pose estimation results,
which are resolved as soon as the end effectors are detected again. To overcome this limitation,
additional techniques for detecting end effectors could be employed. For example, a fast method
for detecting body parts similar to[Shottonet al., 2011] could be used to identify the end effectors
and supplement the geodesic extrema detections.

Finally, we expect the user to face the camera and rotate the body only within atypical range for
interaction (±45◦). We make use of this assumption in the normalization step in Section 8.3.4. By
normalizing the depth data with respect to the estimated viewing direction, we can use a compar-
atively small pose database that contains each pose only in one normalized orientation. However,
with our proposed method, the estimates for the viewing direction become unstable once the user
leaves the admissible range of rotations. Since the database lookup component relies on a correct
normalization of the input data, the retrieved pose hypotheses will not reflect the true pose in such
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cases. Another problem with strong rotations of the body is that then limbs aremore likely hidden
behind the body. To meliorate pose estimates in these situations, one could employa dynamic
model for simulating hidden limbs.

8.6 Conclusions

In this chapter, we introduced a combined generative and discriminative framework that facilitates
robust as well as efficient full-body motion reconstruction from noisy depth image streams. As one
main ingredient, we described an efficient algorithm for computing robust and characteristic fea-
tures based on geodesic extrema. These extracted geodesic extrema areused as query to retrieve
semantically meaningful pose candidates from a 3D pose database, whereno a-priori semantic la-
bels of the extrema are necessary. Finally, a stable fusion of local optimization and global database
lookup is achieved with a novel sparse distance measure that also accounts for the importance of
the limbs. For all components of the pipeline, we have described efficient algorithms that facilitate
real-time performance of the whole framework. In our experiments we improved on the results of
previous work, both in terms of efficiency and robustness of the algorithm, as well as complexity
of the tracked motions.

As for future work, we plan to integrate a dynamic model for achieving stablemotion reconstruc-
tion also for 360◦-rotations and for occluded limbs. Furthermore, the fast run time of our method
is one main building block that could spur further research for capturing several interacting people.
Finally, we aim to integrate a method for automatically estimating the surface mesh of the person
from depth data only.
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Chapter 9

Conclusions

Analyzing, tracking, and reconstructing human motions constitute important topics in computer
vision and computer graphics. In the analysis, one main challenge comes from the fact that seman-
tically similar motions may exhibit significant spatial and temporal variations. Although warping
and alignment techniques can effectively cope with temporal variations, they may be prohibitive
when dealing with large collections of mocap data due to complex computations andhigh memory
requirements. Further challenges can be found in the tracking and reconstruction tasks, where a
3D representation of the human pose from camera- or other sensor data isto be estimated. In
particular when using a small number of cameras, the task is considerably under-constrained.
Moreover, noise in the underlying data, fast motions, or self-occlusionsrender the problem even
more difficult.

In this thesis, we introduced novel data-driven algorithms to effectively tackle challenges in mo-
tion analysis, tracking, and reconstruction. As one main contribution, we developed a robust
framework for content-based annotation of unstructured collections of mocap data. In particular,
we introduced a novel keyframe-based search algorithm which can cope with significant tempo-
ral variations in the motions. By applying this algorithm in the annotation framework, we were
able to efficiently handle large collections of mocap data. As a further contribution, we developed
novel data-driven approaches for marker-less tracking and reconstruction. As common underly-
ing methodology, we dynamically extracted and integrated prior knowledge atruntime from a
database of mocap data using content-based retrieval techniques. In thisway, we significantly
increased the accuracy of the tracking and effectively prevented tracking errors. The application
of novel sensor types in motion analysis and reconstructions representsanother main contribution
of this thesis. Here, we showed how inertial sensors can be used for effectively detecting tracking
errors. Moreover, we introduced a novel approach for data-driven motion reconstruction from a
single depth camera which greatly improved accuracy, stability, and efficiency in comparison to
previous state-of-the-art algorithms. Efficiency issues played a major role in all parts of the thesis.
We developed and implemented efficient content-based techniques for retrieval and annotation of
large mocap collections. Furthermore, in the last part of the thesis, we introduced efficient algo-
rithmic components for data-driven motion reconstruction that lead to an overall run time of about
16 milliseconds per frame, which exceeds the requirements for real-time capability.

There are several interesting directions of research for future workindicated by this thesis. Chal-
lenging open problems for mocap annotation can be found for the analysis of gestures. Here, the
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automated temporal segmentation into the basic movement phases, which are represented by the
succession preparation—hold—stroke—hold—retraction, is still an open problem. Also, detect-
ing and automatically labeling different types of gestures is a difficult research topic. The main
challenges come from the high inter- and intra-person variability for the sametype of gesture.
Also, the extreme differences in the temporal extend of different gestures increases the difficulty
of the annotation task, where some gestures last for several seconds (for example, a ‘calm’ gesture
with an extended ‘hold’-phases), and other gestures might only last fora fraction of a second (for
example, a ‘pointing’ gesture).

Invariance to different motion style represents one main challenge of robust mocap annotation
procedures. As a complementary goal, strategies for identifying a specificactor in mocap data
could be explored in future work. Here, the extraction of motion nuances plays an important role.
Such automated analyses may be applied in areas such as medical rehabilitation, where one goal is
to detect anomalies in motion style. Moreover, the amount of deviation from a normal gait could
be measured.

As for the data-driven stabilization of tracking, we explored a method for integrating retrieved
motion priors from a mocap database. In this context, techniques for automatically enhancing
the database knowledge in an online learning manner could be subject to future research. In one
possible scenario, motions which are correctly tracked with a high confidence could be integrated
into the database. Therefore, a suitable confidence measure would haveto be developed that
correctly predicts whether a motion contains tracking errors. Here, special care has to be taken in
order to avoid that false predictions lead to an inclusion of motions with trackingerrors into the
database.

Our approach for real-time tracking from a depth camera may open numerous applications in the
areas of human computer interaction, virtual reality, medical rehabilitation, orsports sciences.
However, some applications require even more robustness and stability thanachieved with current
state-of-the-art algorithms. For example, in our current approach, limbsthat are not visible in the
depth data (e. g., because of self-occlusions), might be mapped to the nearest visible body part.
One possible approach for improving tracking in such situations might includea bottom-up de-
tection of limb visibility with an approach similar to[Shottonet al., 2011]. Then, limbs could be
included or excluded from the motion reconstruction based on the detected visibility. As a further
improvement, approaches that are also capable of reconstructing 360◦-rotations could be explored.
At least two problems would have to be solved for this task. Firstly, rotations around the longitudi-
nal body axis inevitably lead to strong occlusion of the limbs. Secondly, the front/back ambiguity
would have to be solved: for many body shapes, the depth data for a posefacing the camera is
similar to the depth data for a corresponding pose facing away from the camera. One possible so-
lution for this problem could exploit temporal continuity assumptions. However, human motions
can be abrupt and unpredictable, where continuity assumptions might fail. Therefore, the inte-
gration of knowledge derived from additional sensors could assist thistask. For example, a color
camera could be used to estimate whether the front or the back of the personis visible based on a
detection of skin color in the region of the head. Another solution could be found by combining
motion reconstruction based on a depth camera with an additional inertial sensor. When placed on
the back of the person, the sensor could be used to resolve the front/back ambiguity. Moreover,
orientation data from the inertial sensor may lead to a stabilized detection of the viewing direction,
which could lead to improved pose reconstructions also in challenging body orientations.
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A further extension is motivated by body-controlled computer games. In order to control a game,
a full 3D pose reconstruction of the player might not always be required. However, the raw depth
input data might not carry enough information to control the game. Instead,the progression of
the game might be controlled by a mid-level representation comprising semantic motion classes.
For example, the input of a simple rafting game could consist of the motion classes “walk to the
left”, “walk to the right”, or “jump”, which could be detected from the player’s motion. One
advantage of such a strategy is that local tracking errors which still permita correct classification
of the motion would not influence the gameplay. In the game, the motions of the virtual character
could be played back based on the mid-level motion class input using previously recorded mocap
data. In particular, the displayed motion of the virtual character would only resemble the rough
order of motion events instead of exactly copying the poses of the player. Motivated by such a
scenario, classification methods similar to the ones in Part I could be extendedand combined with
methods for real-time motion reconstructions as described in Part III in order to build a real-time
input controller for computer gaming applications.
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Appendix A

Inertial Measurement Unit

An inertial measurement unit (IMU) consist of two basic sensors, namely a3D accelerometer and
a 3D angular rate sensor. Often, such an IMU is enhanced by an additional magnetic field sensor.
In this appendix, we describe the different sensors contained in an IMU (Sections A.1–A.3) and
briefly motivate how orientation data is commonly derived from the measured data (Section A.4).

As a prerequisite, we first define a global, fixed coordinate system of theinertial world FGI, see
Figure A.1. In this coordinate system, theX-axis points towards the north pole, theZ-axis is
the vertical axis pointing upwards, and theY-axis is chosen to yield a right-handed orthonormal
coordinate system. The coordinate system is defined in this way since an inertial sensor is able to
measure the direction towards north using a magnetometer as well as the upwards direction using
the accelerometer. The orientation of the sensor is defined as a rotationqI that rotates the basis
vectors ofFLI to the basis vectors ofFGI.

A.1 Magnetic field sensor

In the process of estimating the orientation of an IMU, the magnetic field sensorplays a crucial
role. In the following, we will explain that the magnetic field sensor allows an IMU to estimate

XGI (North)

ZGI (Vertical)

YGIFGI

XLI

YLI

ZLI

FLI

qI

Figure A.1. Relation between the global inertial coordinate systemFGI and the local sensor coordinate
systemFLI
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Geographic north poleMagnetic north pole

Figure A.2. Sketch of the earth magnetic field. Underlying image of the earth obtained with Google Earth.
Copyright note: Google earth,c©2012, TerraMetrics,c©2012, Cnes/Spot Image.

a fixed reference direction. As sketched in Figure A.2, the magnetic field vectors on the surface
of the earth are observed as horizontal vectors parallel to the ground near the equator, and are
perpendicular to the surface near the magnetic poles. The magnetic field sensor is a 3-dimensional
compass that measures the direction of the magnetic field. For estimating a stable orientation of
the sensor, we need to estimate the direction towards the magnetic north pole from the measured
magnetic field. Note that this is only possible when being sufficiently far away from the magnetic
poles.

The term “magnetic north pole” is confusing in the sense that it actually describes the south pole
end of a bar magnet approximation of the earth magnetic field, see Figure A.2.The reason for
this is historic: magnets are used in a compass to determine the direction towards north. More
specifically, the needle of a compass itself consists of a bar magnet. The north pole end of this
needle is labeled with “N”. Since the north pole end of one magnet attracts the south pole end
of another magnets, the “N” on the compass needle is attracted by magnetic south pole of the
earth. Thus, the north pole on earth should more correctly be named “north-seeking” pole. In the
following, we will choose the conventional naming of the north pole although itis opposed to its
physical interpretation.

The direction and magnitude of the magnetic field vectors mostly depend on the latitudinal coor-
dinates on earth. For example, on the equator, the direction of the magnetic field vectors would be
approximately parallel to the ground, pointing towards the magnetic north pole.The magnetic field
vectorm is commonly described by the inclination and declination angles (ϕ andθ) as well as the
magnitude||m||2 in Tesla units. The inclinationϕ depicts the angle with respect to the horizontal
plane, where positive values represent the downwards direction, andnegative values represent the
upwards direction. The declinationθ is defined as the angle of difference between true geographic
north and the magnetic north. The meaning of a positive declination is that the true geographic
north is located west of the measured magnetic north. All three quantities change slowly in time
and can be looked up in the database of the National Oceanic and Atmospheric Administration
(NOAA) [2012] for a given location and time. For Saarbrücken in 2012, the corresponding values
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XGI (Geographic north)

ZGI (Vertical)

YGI (West)

FGI

m

mx

mz
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Figure A.3. Computation of the magnetic field vectorm in the global inertial coordinate systemFGI using
the inclination and declination angles.

are

ϕ = 64◦ 53′ = −66.883◦ (A.1)

θ = 1◦ 8′ = 1.133◦ (A.2)

||m||2 = 48.255µT (A.3)

For an algorithm with the goal of estimating the global coordinate systemFGI by using the mag-
netic field vectorm it is crucial to know how to mathematically express the measured vectorm
in FGI. In the following, we show howm given in the global coordinate systemFGI can be easily
computed from the quantities inclination, declination, and magnitude. In Figure A.3, we draw a
sketch of the geometric relations of the quantities with respect toFGI. The inclination is depicted
as−ϕ since positive values are defined as pointing downwards in the definition of[NOAA, 2012],
and we want it to point upwards in the sketch. Similarly, the declination is depicted as−θ since we
draw it in the direction opposite to its definition. From elementary geometry, we can determine
the components of the magnetic field vector as follows:

mz = ||m||2 sin−ϕ = −||m||2 sinϕ (A.4)

τ = ||m||2 cos−ϕ = ||m||2 cosϕ (A.5)

mx = τ cos−θ = ||m||2 cosϕ cosθ (A.6)

my = τ sin−θ = ||m||2 cosϕ sin−θ = −||m||2 cosϕ sinθ. (A.7)

Using these computations, the ground truth vector of the earth magnetic field expressed in the
coordinate systemFGI can be computed. The magnetic field sensor can estimate this direction
expressed in its local coordinate systemFLI . By claiming correspondence of the ground truth
direction expressed inFGI and the estimated direction expressed inFLI , the directional information
can be used as a constraint for estimating the rotational offsetqI . However, a directional constraint
alone does not carry enough information to fully determineqI . Also, the magnetic field sensor
reacts comparatively slow on changes of the IMU’s orientation since the strength of the earth
magnetic field is low. Moreover, the earth magnetic field is often disturbed by ferromagnetic
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materials or electronic devices which emit an electromagnetic field. Additionally, environments
can even be completely shielded against the influence of the earth magnetic field. Therefore, in
practice, special care has to be taken when incorporating these measurements for estimating the
orientation of the device. For example, if the measured magnitude of the magneticfield vector
deviates from the ground truth magnitude, then it is likely that the earth magnetic field is either
shielded or superimposed by disturbing fields. Then, the measurements should not have a strong
influence on the overall estimated orientation of the device. In an IMU, additional sensors as
presented in the next sections also have an influence on the estimated orientation qI .

A.2 Angular rate sensor

The angular rate sensor measures the change of the orientationqI over time,i. e., the first temporal
derivative ofqI . Thus, given an initial orientation, the measurements can be used to update the
orientation of the sensor over time. Although theoretically this sensor alone yields enough infor-
mation to update the orientation estimates over time, noise in the measurements quickly leads to
drift in the orientation estimates.

In the following, we show how one can perform computations with rotational velocities. There-
fore, we derive an algorithm that can be used to compute rotational velocities (as measured by
an inertial sensor) from a given stream of orientationsqI—similar computations can be applied
for the opposite task of updating orientations given a stream of rotational velocities. The vector
ω = (ωx,ωy,ωz)T represents the 3-dimensional angular velocity,i. e., the sensor’s angular veloc-
ity around itsX, Y, andZ axis. By ω̂ = (0,ωx,ωy,ωz)T , we embed the angular velocity into a
quaternion with a zero real part. In physics books, the definition of the angular velocity in the
time-continuous case is noted as:

q̇ =
dq(t)

dt
=

1
2
ω̂(t)q(t) with (A.8)

ω̂(t) = 2
dq(t)

dt
q(t) (A.9)

Let us transform this equation into the discrete time case using a sampling rate of1/∆t. Let
q(t − ∆t) andq(t) be the orientations of the previous and the current sampled instances of time,
respectively. Then, the derivative discretizes to

dq(t)
dt
≈

q(t) − q(t − ∆t)
∆t

. (A.10)

Now, in order to extract the rotational velocity (a 3-dimensional vector) from the 4-dimensional
quaternion, we extract the imaginary components using the Im(·) operator:

ω(t) = 2 Im

(
q(t) − q(t − ∆t)

∆t
◦ q(t − ∆t)

)
(A.11)

Note that the difference in the numerator is implemented as a pointwise difference of the scalar
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Algorithm 5 Computation of rotational velocity

Input: q(t): Current orientation, mapping fromFLI to FGI.
q(t − ∆t): Previous orientation, mapping fromFLI to FGI.
∆t: Time that has passed between the current and the previous orientation.

Output: ω: Rotation that maps from the previous time to the current time, given inFLI .

1: if 〈q(t), q(t − ∆t)〉〉 < 0 then
2: q(t)← (−q(t))
3: end if
4: ω← 2

∆t Im
(
q(t) ◦ q(t − ∆t)

)

components of the quaternions. Equation (A.11) simplifies to

ω(t) =
2
∆t

Im
(
q(t) ◦ q(t − ∆t) − q(t − ∆t) ◦ q(t − ∆t)

)
(A.12)

=
2
∆t

Im
(
q(t) ◦ q(t − ∆t) − (1,0,0,0)

)
(A.13)

=
2
∆t

Im
(
q(t) ◦ q(t − ∆t)

)
(A.14)

The last simplifications is possible since the subtraction of the quaternion identitydoes not change
imaginary components extracted by the Im(·) operator.

Care has to be taken when the quaternion differenceq(t) ◦ q(t − ∆t) is implemented. The reason is
that there are two quaternionsq and−q that represent the same rotation in the sense that whenq or
−q are used to rotate a vector, they yield the same rotated vector. However, they represent different
rotation paths in the sense that they rotate about a different axis with a different angle. Assuming
thatq represents a rotation about the axisr with an angleα, then−q represents a rotation about
−r with an angle 2π − α (or −α):

q = (cos
α

2
, r sin

α

2
) (A.15)

−q = (− cos
α

2
,−r sin

α

2
) (A.16)

= (cos
2π − α

2
, (−r) sin

α

2
). (A.17)

This shows its effect when computing the mentioned quaternion difference. Only if the dot product
between both quaternions is larger than 0, the quaternion difference reflects the shortest possible
rotation. With a sufficiently small temporal quantization∆t, the shortest possible rotation will
always reflect the correct representation of the rotational velocity. The correct way to compute the
rotational velocity in local sensor coordinates is summarized in Algorithm 5.

A.3 Accelerometer

The linear acceleration of a rigid body is the second temporal derivative of the positional trajectory
of its center of mass, given in the continuous time case as

ã = v̇ = ẍ (A.18)
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Figure A.4. The measured accelerationa is an overlay of the acceleration due to the motionã and the
acceleration due to gravityg.

In the following, we show how the gravity affects the acceleration readings of an acceleration
sensor in order to motivate how one can make use of the gravity for the task of estimating the
orientation of the IMU. To this end, we derive equations in the discrete time case for simulating
sensor readings given the trajectory of its center of mass in coordinates of FGI.

First, Equation (A.18) has to be discretized. The derivative can be discretized in different ways,
in the simplest case by a one-sided difference. Let the position of the center of mass of the sensor
p(t) be given in coordinates ofFGI. In the following, we use the superscriptGI to indicate that the
computed velocity and acceleration are given inFGI as well. We derive the formula for computing
the acceleration of the motioñaGI:

v(t)GI =
p(t) − p(t − ∆t)

∆t
(A.19)

v(t − ∆t)GI =
p(t − ∆t) − p(t − 2∆t)

∆t
(A.20)

ãGI
t =

v(t)GI − v(t − ∆t)GI

∆t
(A.21)

=
p(t − 2∆t) − 2p(t − ∆t) + p(t)

∆t2
. (A.22)

An accelerometer measures an overlay of the accelerationãGI due to motion and the acceleration
due to gravitygGI ≈ (0,0,9.81)T m/s2, see Figure A.4.

aGI(t) = ãGI(t) + gGI (A.23)

Note that at first sight the measurementgGI ≈ (0,0,9.81)T m/s2 seems to be unintuitive since
the measured vector points upwards although the gravitational field on earthpoints towards the
center of the earth (downwards). This can be explained as follows. Themeasured component
of the gravity is zero if,e. g., the sensor is far away from any gravitational influence in space.
Also, if the sensor within the gravitational field of the earth falls down in a perfect vacuum, the
measured gravity component will be zero. However, in a non-vacuum, theair friction slows down
falling objects (resulting in a measured upwards acceleration) and as soonas the terminal velocity
of a falling object is reached, the full gravitational componentgGI (in upwards direction) will
be measured. Exactly the same situation is present when the sensor lies on a static surface—the
upwards acceleration that prevents the sensor from falling down will be measured.
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As shown in[Boynton, 2001], the magnitude of the gravity on earth is not constant but varies
mainly with latitude and altitude. Therefore, in order to simulate effects of the gravity on the sen-
sor, the exact magnitude of the vector should be looked up. The acceleration in global coordinates
aGI has to be transformed into the local coordinate system of the sensor using the current orienta-
tion of the sensorq(t) to yield the sensor readingaLI (t). Let q[v] be the vectorv rotated withq.
Then,

aLI (t) = q(t)[aGI(t)]. (A.24)

Now, suppose that the acceleration due to motionã is zero. In this case, only the gravitational
componentgGI is measured by the sensor. Then, we know that for the sought orientationq(t) of
the device the property

aLI (t) = q(t)[ gGI] (A.25)

has to hold. SinceaLI (t) is measured by the sensor andgGI is known, Equation (A.25) can give a
hint about the orientation of the IMU.

A.4 Orientation Data

For obtaining orientation data, all available measurements should be taken into account. As John
L. Crassidis has shown in his survey[2007], there is a multitude of methods for solving this task
described in a large body of literature. However, as he points out, the Kalman filter framework
“remains the method of choice for the great majority of of applications”[John L. Crassidis, 2007].

In the following, we will give a high-level idea about the Kalman filter and we refer to Welch and
Bishop[1995] and references therein for a more in-depth introduction. The Kalman filter isa type
of recursive predictor-corrector framework. It is used to estimate the current state vector which
can be thought of as being a vector containing the current orientation of the sensor, the current
acceleration, the rate of turn and the magnetic field vector. In the first step,the current state is
predicted one timestep into the future by means of a user-supplied linear model. This model could
in the simplest case assume that the orientation is updated with the current rate of turn data and
the remaining state variables stay constant. In the second step, the predictedstate is corrected by
integrating all available measurements. The corrected state is the output of thecurrent time step
and it is used as the starting point for the next time step.

What makes the Kalman filter interesting is the thorough modeling of noise in all steps of the
framework. For example, in addition to the available measurements, their uncertainties can be
taken into account. For example, if a disturbed magnetic field is detected from the magnetic field
sensor, its estimate of the north direction should be integrated with only a very high uncertainty.
As a result of modeling the noise, not only the current state vector, but also its covariance is
estimated. Therefore, the certainty of the estimated orientation is supplied as anoutput as well. In
fact, it can be shown that a Kalman filter is optimal in the sense that it minimizes the estimated
error covariance—when some presumed conditions are met[Welch and Bishop, 2001].
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Transaction on Graphics, 28(5):169:1–169:8, 2009.

[Leeet al., 2010] Yoonsang Lee, Sungeun Kim, and Jehee Lee. Data-driven bipedcontrol. ACM Transac-
tion on Graphics (TOG), 29(4):129:1–129:8, 2010.

[Lewiset al., 2000] John Paul Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a
unified approach to shape interpolation and skeleton-driven deformation. InProceedings of the an-
nual conference on Computer graphics and interactive techniques (SIGGRAPH), pages 165–172. ACM
Press/Addison-Wesley Publishing Co., 2000.

[Li et al., 2007] Chuanjun Li, Punit R. Kulkarni, and Balakrishnan Prabhakaran. Segmentation and recog-
nition of motion capture data stream by classification.Multimedia Tools and Applications, 35:55–70,
2007.

[Li et al., 2010] Rui Li, Tai-Peng Tian, Stan Sclaroff, and Ming-Hsuan Yang. 3D human motion tracking
with a coordinated mixture of factor analyzers.International Journal of Computer Vision (IJCV), 87(1-
2):170–190, 2010.



BIBLIOGRAPHY 143

[Lindneret al., 2010] Marvin Lindner, Ingo Schiller, Andreas Kolb, and Reinhard Koch. Time-of-flight
sensor calibration for accurate range sensing.Computer Vision and Image Understanding (CVIU),
114(12):1318–1328, 2010. Special issue on Time-of-FlightCamera Based Computer Vision.

[Liu and Shah, 2008] Jingen Liu and Mubarak Shah. Learning human actions via information maximiza-
tion. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pages 1–8, 2008.

[Liu et al., 2003] Feng Liu, Yueting Zhuang, Fei Wu, and Yunhe Pan. 3D motion retrieval with motion
index tree.Computer Vision and Image Understanding (CVIU), 92(2-3):265–284, 2003.

[Liu et al., 2005] Guodong Liu, Jingdan Zhang, Wei Wang, and Leonard McMillan.A system for an-
alyzing and indexing human-motion databases. InProceedings of the ACM SIGMOD International
Conference on Management of Data, pages 924–926. ACM Press, 2005.

[Liu et al., 2006] Guodong Liu, Jingdan Zhang, Wei Wang, and Leonard McMillan.Human motion esti-
mation from a reduced marker set. InProceedings of the symposium on Interactive 3D graphics and
games (I3D), pages 35–42. ACM, 2006.

[Liu et al., 2011] Yebin Liu, Carsten Stoll, Juergen Gall, Hans-Peter Seidel,and Christian Theobalt. Mark-
erless motion capture of interacting characters using multi-view image segmentation. InIEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 1249–1256, 2011.
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