
Saarland University

Faculty of Natural Sciences and Technology I
Department of Computer Science

Master’s Thesis

Towards automated segmentation of repetitive music

recordings

submitted by

Zhe Zuo

submitted

August 1, 2011

Supervisor / Advisor

Priv.-Doz. Dr. Meinard Müller

Reviewers

Priv.-Doz. Dr. Meinard Müller

Prof. Dr. Michael Clausen

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement under Oath

I confirm under oath that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum / Date) (Unterschrift / Signature)

Acknowledgements

First of all, I would like to express my greatest gratitude to my supervisor Priv.-Doz. Dr.
Meinard Müller, whom offers me this so interesting topic and gave me a lot of advices
and sources. It is him who teaches me how to do researches. Without his enlightening
instruction and patience, I could not have completed my thesis.

Next, greatly thanks to Peter Grosche. He always helped me on all kinds of problems
patiently and gave valuable supports even when he was busy. It is him who help me to be
familiar with the MATLAB and the sources.

I would like to express my great gratitude to many of my friends who support me during
writing of my thesis. Thomas Prätzlich, Jonathan Driedger have patiently helped to
proofread my thesis. I am grateful to them for giving me the detailed and very fast
feedback. I would like to specially thank to Nanzhu Jiang whose experiences helped me a
lot. And also thanks to her for proofreading my thesis patiently and carefully.

Last but not least, I want to thank my parents for their unlimited support and encourage-
ment. Finally, I cannot thank enough my wife Yuxin Gao. Thanks to her for encouraging
and accompanying me during my work.

Abstract

The principle of repetition is of central importance in music and the segmentation of
music recordings into recurrent patterns constitutes an important task in the field of
music information retrieval. In this thesis, we consider the special case of folk songs,
which often consist of a large number of stanzas. Here, a tune is repeated over and over
again with changing lyrics and possibly variations in melody and intonation. To deal with
such variations, we present and compare two different segmentation procedures. In the first
procedure, we assume the availability of a reference stanza given in form of a symbolic score
representation. This reference stanza is then locally compared with the audio recording
by means of a local variant of dynamic time warping to derive the segmentation results.
In the second procedure, we introduce a reference-free segmentation approach which does
not require any additional information. Here, the idea is to automatically derive the
recording’s most representative passage, which then plays the role of the reference. Our
experiments show that our reference-free procedure yields segmentation results similar
to the reference-based procedure. As a further contribution of this thesis, we show how
the segmentation results can be used for music visualization and navigation applications.
In particular, we describe several novel functionalities, which have been implemented as
plug-ins for the SyncPlayer framework.

Contents

1 Introduction 1

1.1 Repetitions in Music . 1

1.2 Music Segmentation Task . 1

1.3 Challenges of Segmentations . 2

1.4 Folk Song Collection . 2

1.5 SyncPlayer . 2

1.6 Contributions . 3

1.7 Organization of Thesis . 3

2 Feature Extraction 5

2.1 Pitch Features . 5

2.2 Local Energy(STMSP) . 6

2.3 Chroma Features . 8

2.4 CENS Features . 9

3 Dynamic Time Warping 11

3.1 Classical DTW . 11
3.2 Subsequence DTW . 13

4 Reference-based Segmentation 15

4.1 Procedure . 15

4.2 Experiment . 19

5 Reference-free Segmentation 21

5.1 Procedure . 21

5.2 Experiment . 24

6 SyncPlayer Framework 39

6.1 SyncPlayer Overview . 39

6.2 Audio Switcher . 40

6.3 Audio Structure . 41

7 SyncPlayer Extension 43

7.1 Interpretation Switcher . 43

7.2 Extension of Timeline Modes . 45

7.3 Image Mode . 48

7.4 User Interaction Extension . 50

iii

iv CONTENTS

8 Interpretation Switcher Documentation 55

9 Conclusion 75

A Reference-free Segmentation Result

List of Figures

List of Tables

Bibliography

Chapter 1

Introduction

1.1 Repetitions in Music

The principle of repetition plays a particularly important role in music [13]. Recurrent
patterns, which may be of rhythmic, harmonic, or melodic nature, evoke in the listener
the feeling of familiarity and understanding of the music (see [4, 10]). Many kinds of
music, for example pop music, contain literal and direct repetitions, making the music
more accessible. But some other kinds of music like classical music contain varied and
transformed repetitions [1].

As an example, we have a look at the well-known classical music Für Elise (WoO 591),
which is composed by Ludwig van Beethoven. This piece of music has the musical form
A1BA2CA3 consisting of three repeating A-parts, a B-part, as well as a C-part. The
musical parts are indicated by capital letters such as X, where all repetitions of X are
enumerated as X1, X2, an so on [14]. In this example, A-part has been repeated another
two times. It is considered to be the most significant part. In fact, people often associate
this music with the A-part. That is the effect of repetitions.

1.2 Music Segmentation Task

The general goal of music structure analysis is to divide an audio recording into temporal
segments corresponding to musical parts and then to group these segments into musically
meaningful categories. Considering the importance of repetitions in music, extracting the
repetitive structure from a given audio recording, which often closely correlates to the
musical form of the underlying piece of music, is a central subtask in music structure
analysis.

In this thesis, we consider the special case that the given piece of music basically consists
of the repetition of a single part, like it can be observed in many folk songs. Folk songs are
considered as a typical kind of repetitive music. Common people sing folk songs, which

1WoO is a list of all the compositions of Ludwig van Beethoven that were not originally published with
an opus number, or survived only as fragments [23]

1

2 CHAPTER 1. INTRODUCTION

have been passed down by oral tradition, during work or social activities [21]. Folk songs
are very important resources for studying the culture and history. They often consist of
a large number of stanzas. Here, a tune is repeated over and over again with changing
lyrics and possibly variations in melody and intonation. For example, the Dutch folk song,
named OGL49313, has a structure of A1A2A3A4A5. It consists of five repeating A-parts.

1.3 Challenges of Segmentations

Even though the segmentation for our special case seems to be an easy task, there are a
number of challenges one has to face when working with real audio recordings.

First of all, the notion of repetition is a rather ill-defined one. Actually, repeating parts are
never performed the same way but may differ significantly in dynamics, instrumentation,
execution of note groups, modulation, articulation, and tempo. For example, when deal-
ing with field recordings of folk songs, non-professional singers often deviate significantly
from the expected pitches and have serious problems with the intonation. Even worse,
their voices often fluctuate by several semitones downwards or upwards across the various
stanzas of the same recording [15].

Furthermore, there may be significant relative tempo differences between repeating parts [16].
One also often has to deal with changes in instrumentation, for example, the melody in-
strument may change throughout the recording or additional accompanying instruments
may join at a certain point playing secondary voices or ornamental elements.

It is our goal to introduce automatic algorithms for audio structure analysis that can find
the repetitive structure even in the presence of large variations in these parameters.

1.4 Folk Song Collection

In this thesis, the experimental dataset consists of 47 Dutch folk song recordings. They
are named as Onder de groene linde (OGL) and Nederlandse Liederenbank (NLB) with
additional number indices.

These folk songs basically have the musical form A1A2...AK consisting of K repeating A-
parts. They are performed by elderly non-professional singers in a poor recording condition
such that some of them are in poor quality. For example, sometimes singers forgot what
to sing, they stopped to talk or jumped to the next section. Even worse, there are some
loud noises, like bird singing, in the background during the recording.

1.5 SyncPlayer

The segmentation results can be used for music visualization and navigation applications.
We extend the SyncPlayer which is an advanced audio player for multimodal presentation
of high quality audio and associated music-related data [11]. It has been extended with

1.6. CONTRIBUTIONS 3

some useful plug-ins such as the Audio Switcher and the Audio Structure. People can get
more information of the music by using the SyncPlayer. For example, chord information
or structure information.

Based on the SyncPlayer and its plug-ins, the Interpretation Switcher, a new plug-ins of the
SyncPlayer, is developed. With some extra extensions, we integrate some functions which
make it more convenient and powerful. It is a useful tool to represent music information
retrieval (MIR) results. For example, with extension of user interaction, one can correct
the segmentation result in the application directly.

1.6 Contributions

In this thesis, we introduce a reference-based segmentation procedure which is used for
segmenting the repetitive music recordings with a reference. Then, based on the reference-
based segmentation, we developed a reference-free segmentation approach which does not
require any additional information. Our experiments show that our reference-free proce-
dure yields segmentation results similar to the reference-based procedure. Further more,
we describe several novel functionalities, which have been implemented as plug-ins for the
SyncPlayer framework. With this implementations, one can visually represent the seg-
mentation results. It can be used for some other music information retrieval results, such
as the chord recognition.

1.7 Organization of Thesis

The organization of this thesis is as follows.

• In Chapter 2, feature extraction is introduced. It is the transformation of a music
signal into a feature representation.

• In Chapter 3, we introduce Dynamic Time Warping (DTW), which is the basic
technique to compute the distance between two time-dependent sequences. The
distance function based on it is used in our music segmentation method throughout
this thesis.

• In Chapter 4, we introduce a reference-based segmentation procedure, which can
automatically segment the repetitive music recordings with a manually generated
MIDI reference.

• In Chapter 5, we develop a reference-free segmentation procedure to segment audio
recordings. It is based on the reference-based segmentation procedure, which au-
tomatically derive the recording’s most representative passage to replace the MIDI
reference. The result of our experiments is represented and discussed in detail.

• In Chapter 6, we describe the SyncPlayer framework which is an advanced audio
player. People can use it to represent MIR research results.

4 CHAPTER 1. INTRODUCTION

• In Chapter 7, we develop the Interpretation Switcher based on the SyncPlayer frame-
work. And we enriched the functionality of the Interpretation Switcher.

• In Chapter 8, we give a java documentation of the Interpretation Switcher.

• In Chapter 9, we give a summary of the thesis and discuss future work.

Chapter 2

Feature Extraction

In MIR, feature extraction is commonly used. It is the transformation of a music signal
into a feature representation. With a suitable feature representation, some musical unin-
teresting aspects for certain researches can be excluded, e.g., the loudness information. In
order to segment audio recordings, we need to transform the original data into a suitable
representation.

In this chapter three kinds of features are introduced. Pitch feature is a basic technique.
From pitch features, we build chroma feature. Then from chroma feature we describe the
CENS feature which is finally used for music segmentation in this thesis.

2.1 Pitch Features

Pitch is a perceptual attribute which allows the ordering of sounds on a frequency-related
scale extending from low to high [6]. Pitch feature are a technique to decompose an audio
signal into frequency bands. We can transfer musical notes into the corresponding MIDI
pitch p. A note corresponds to a frequency band but not single frequency value. In order
to define the frequency bands, we first define the center frequency of a note by the following
equation [14]:

f(p) = 2
p−69

12 · 440 p ∈ [1 : 120] (2.1)

The center frequency f(p) denotes the frequency which is in the center of the frequency
band. We can calculate the center frequency of pitch No.69, which denote note A4. The
center frequency of it equals to 440 Hz. With this formula we can also get f(57) = 220,
which is note A3. It shows that the center frequency of A3 is half of A4. Actually the
center frequency of a note is always half of the center frequency of the note that is 12
higher than it. Using the center frequency we can calculate the frequency bands of the
note. The bandwidth w is defined as follows [14]:

w = f(p)/Q (2.2)

5

6 CHAPTER 2. FEATURE EXTRACTION

Here, Q is a factor which denotes the ratio of the center frequency to the bandwidth.
As an example, w − 440/25 = 17.6Hz with Q = 25. So the left boundary of A4 is
440 − 17.6 = 431.2Hz and the right boundary of A4 is 440 + 17.6 = 457.6Hz. We can
find that the bandwidth for different notes is not the same since it depends on the center
frequency. The higher the pitch of note is , the wider the bandwidth is.

Until now, we talked about continuous time signals. The signal, which we are working on,
is discrete time signals. The sampling rate is an important parameter. For instance, if the
input signal is discrete and sampled with a rate of 4410Hz. The center frequency of note
A4 becomes 440/4410 ≈ 0.0998. Then the bandwidth w = 0.0998/25 ≈ 0.004. The left
boundary is 0.0978 and the right boundary is 0.1018.

Then we can establish a filter bank with the frequency band information of the notes.

Figure 2.1. Pitch filter bank for p ∈ [60 : 95] with sampling rate 4410Hz [14].

Figure 2.1 shows a pitch filter bank. With a suitable pitch filter bank, we can extract the
pitch subband corresponding to a certain note. In order to use the information, We need
a measurement function. The local energy is used here.

2.2 Local Energy(STMSP)

In the last section, we discussed how to decompose a music signal into different frequency
bands corresponding to the pitch information. But this is not enough, We need a method
to measure the value inside a frequency band. Local energy is a good choice.

Energy is a natural parameter of music signals. When we play or sing a note, it is a
process that we produce energy. A new note will always lead to an increase in the signal’s
energy [5], especially for instruments for which the sound of a note is loudest immediately
after it is played. For example, the piano and the drum. Beating a drum results in a
sudden energy increase. These energy changes occur in the pitch bands corresponding
to the fundamental frequents and harmonics of the respective note. According to these
theories, we can calculate the local energy of each frequency band to detect the candidates
for note onsets (see [18]).

Short-Time Mean-Square Power(STMSP) is used to calculate the local energy for the pitch

2.2. LOCAL ENERGY(STMSP) 7

subbands. The formula of the local energy is defined as follows [14]:

Ex(n) =
∑

k∈[n−bw
2
c:n+bw

2
c]

|x(k)|2 (2.3)

Ex(n) is the local energy of x at the point n where n ∈ Z. And window length w ∈ N

is with a fixed size and x is a subband signal, In order to improve the efficiency, instead
of computing the local energy for all samples, we evaluate every d samples where d ∈ N.
The factor d is called window step and usually equals to the half of the window length.
For example we choose window step d = 50 for w = 101. In this case the local energy
calculation has 50 percent overlap between two neighbors. We can control the overlap
area by changing the window step. After having computed the local energy, we apply
logarithmical decibel scale which makes the result clearly, since the STMSP values have
indistinct differences.

Figure 2.2 shows an example of the STMSP for each specified pitch. The colors denotes the
STMSP values according to the logarithmical decibel scale. The dark colors indicate that
the value at the corresponding time point and pitch is very low. Comparing to the score
of this audio piece, the STMSP values are very high at the onsets of notes and the energy
changes only occur on the corresponding pitch and the harmonics. With calculating the
local energy and representing the result on the diagram, we can roughly find out which
notes are played and when they are played.

0 1 2 3 4 5 6 7 8
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

0

1

2

3

4

5

6

7

8

9

10

Figure 2.2. Pitch plot for folk song OGL49313. The columns to time measured in samples with
a time resolution of 0.1s

8 CHAPTER 2. FEATURE EXTRACTION

2.3 Chroma Features

In Figure 2.2, we can find the energy exists not only at the corresponding frequency
band, but also the harmonic frequency bands. These energies interfere our experiment
result. As the example in the figure, although there are many noises, we can still find
some harmonics. The energy changes might be misconceived as a played note. We want
to exclude these noises during our experiment.

Shepard reported two distinct attributes of pitch, tone height and chroma, in order to
reduce the complexity of the pitch representation [20]. He found that the human auditory
system perceives the pitch represented as a helix was perceived better than as a one-
dimensional line. The idea is the pitch can be separated into tone height and chroma
(see [2]). Figure 2.3 shows a chromatic circle which has been annotated with chroma
names are on the bottom. As they are introduced in last section, the center frequency of
every 12 notes increase to be twice higher. To be consistency with it, the chromatic circle
are divided into 12 parts, which denote 12 chroma. The chroma set is {C,C],D, ..., B}.
For each chroma, there is a pitch class, which is a set of all pitches sharing the same
chroma. For instance, the pitch class of chroma D is {...,D0,D1,D2,D3, ...}. Chroma
features can account for the close octave relationship in both melody and harmony [2].

One can also use higher-dimensional versions of chroma features that refine the chroma
scale corresponding to certain fractions of semitones [8]. This allows for handling tuning
differences that are fractions of semitones. For example, considering one-half or one-third
semitone steps, one obtains 24-dimensional or 36-dimensional chroma features.

Figure 2.3. Illustration of Shepard’s helix of pitch perception. The vertical dimension is tone
height, while the angular dimension is chroma [12].

With the basic information of chroma and STMSP, we can use chroma feature to represent
the audio recording with the following steps:

• 1. Decomposing an audio signal into 88 pitch subbands.

2.4. CENS FEATURES 9

• 2. Calculating STMSP value for each pitch subband.

• 3. Adding up all STMSPs which belong to the same pitch class.

Then we can generate a chromagram for the audio recording as the Figure 2.4. As the
color scale in the right part, blue means the STMSP value is very low while red means
the STMSP value is very high. For each STMSP window, there is a 12-dimensional vector
v = (v(1), v(2), ..., v(12)) ∈ R

12. Here, v(1) corresponds to chroma C, v(2) to chroma C],
and so on.

In order to absorb differences in the sound intensity or dynamics, we normalized the chroma
representation. The vector v will be replaced by v = ‖v‖1. And ‖v‖1 :=

∑12
i=1 |v(i)|

denotes the l1 − norm of v. Sometimes random energy distributions exist in the music
signal, for example in passages of silence at the beginning and ending of music. We replace
the chroma vector v by the uniform distribution in case v = ‖v‖1 falls below a certain
threshold. Note that there is a light blue area at around 30s in Figure 2.4. That is a part
where the singer forgot what to sing next so that she stopped and kept silence for a while.

0 5 10 15 20 25 30

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

Figure 2.4. Chroma representation of the first stanza of folk song OGL49313

2.4 CENS Features

By transferring the audio signal into chroma feature, the information contains in the audio
becomes easier to analyze. But we can still reduce some noise information and make it
even clearer. The chroma energy normalized statistics (CENS) [17] has been developed
by Mueller, Kurth and Clausen. CENS feature is helpful for our further study like audio
matching.

The CENS feature is based on the chroma feature. So we do some further operation on
chroma feature. We quantify the chroma vector v from [0,1] to 0,1,2,3,4 following the
equation [14]:

τ(a) =

0 for 0 ≤ a < 0.05,
1 for 0.05 ≤ a < 0.1,
2 for 0.1 ≤ a < 0.2
3 for 0.2 ≤ a < 0.4,
4 for 0.4 ≤ a < 1

(2.4)

10 CHAPTER 2. FEATURE EXTRACTION

0 5 10 15 20 25 30

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

Figure 2.5. CENS(11,5) representation of the first stanza of folk song OGL49313

With this function, we compute τ(vn) := (τ(vn(1)), ..., τ(vn(12))). After that the chroma
energy distribution vector has been classified into several values. We have already reduced
the variance of the vectors and we can do even further.

Window length w and downsampling rate d are defined for CENS(d,w). We use a hann
window with window length w for smoothing first and then we downsample the result.
Sometimes there are some local errors inside the audio recording which will interfere our
final result. By smoothing the vectors, these local errors can be reduced. But the problem
is that the data accuracy will decrease at the same time. Therefore, to choose a suitable
window length is very important and it depends on the data collection. The purpose
for downsampling is straightforward. It can improve the efficiency of the program. For
example, for a feature with sampling rate of 10Hz, we downsampling it with d = 5. Then
the sampling rate will reduce to 2Hz which means two CENS vector per second. This is
only 20 percent of the original data set.

Comparing the Figure 2.5 and the Figure 2.4, we can easily see the difference between the
CENS feature representation and the chroma representation for the same audio recording.
The CENS feature representation contains less information which makes it more clearly.
According to the downsampling rate, the silence part at around 30s in the recording, which
was made by mistake, becomes smaller in CENS feature representation. It reduces the
influence of this part comparing to chroma representation.

Chapter 3

Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known technique to find an optimal alignment
between two given (time-dependant) sequences under certain restrictions [14]. In this the-
sis, a distance function, which is based on DTW, is developed for comparing the reference
with the audio recording.

We introduce the algorithm of the classical DTW in Section 3.1. Then the subsequence
DTW which has been used for building up the distance function, is described in Section 3.2.

3.1 Classical DTW

First we define two music pieces, which could be considered as two time-dependent se-
quences, X and Y . Here, X := (x1, x2, ..., xN) with n ∈ N while Y := (y1, y2, ..., yM) with
M ∈ N. These two sequences are transferred into feature representation. The local cost
measure c(x, y) denotes the distance between x and y. Generally speaking, a low value
of c(x, y) means high similarity between x and y. By calculating the cost for each pair
of elements of sequences X and Y , a two-dimensioned cost matrix C ∈ R

N×M can be
established. It is defined as C(N,M) := c(xn, yM). For example, we define a local cost
c(x, y) = |x − y|, x, y ∈ R. Let X = (1, 5, 2, 2, 3) and Y = (1, 2, 5, 2). We can get the cost
matrix as the Figure 3.1.

Figure 3.1. An example of a cost matrix

Based on the cost matrix, one can find the (N,M)−warping path of the two sequences.

11

12 CHAPTER 3. DYNAMIC TIME WARPING

A warping path is a sequence p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 : N] × [1 : M] for
l ∈ [1 : L] satisfying the following three conditions [14]:

• 1. Boundary condition: p1 = (1, 1) and pL = (N,M).

• 2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nL and m1 ≤ m2 ≤ ... ≤ mL.

• 3. Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L− 1]

These three basic rules restrict the warping path selection. A warping path should not
contain backward parts, the starting point should correspond to the first elements of
the two sequences, and the ending point should correspond to the last element of two
sequences.

The total cost cp(X,Y) of a warping path p between X and Y is defined as [14]:

cp(X,Y) :=

L
∑

l=1

c(xnl
, yml

) (3.1)

The distance DTW (X,Y) is the minimal total cost for all (N,M)−warping path between
sequences X and Y . Now we can compute the DTW (X,Y) for the example mentioned
in Figure 3.1. The result shows in Figure 3.2. And the total cost cp(X,Y) = 2. The gray
area shows the optimal warping path which leads to minimal total cost.

Figure 3.2. An example of DTW

However, it is very slow to compute all the possible paths and select the one with the
minimal total cost. In order to find the optimal warping path based on a cost matrix
efficiently, we can use an accumulated cost matrix. With an accumulated cost matrix, we
transfer the computation from the global total cost into the local total cost. The prefix
sequences of X and Y is used for computing the DTW value. We define X(1 : n) :=
(x1, ..., xn) for n ∈ [1 : N] and Y (1 : m) := (x1, ..., xm) for m ∈ [1 : M]. The accumulated
cost is defined as following [14]:

D(n,m) := DTW (X(1 : n), Y (1 : m)) (3.2)

By the equation, the accumulated cost D(n,m) is actually the DTW distance between
X(1 : n) and Y (1 : m). Using an accumulated cost matrix, one can compute D(n,m)

3.2. SUBSEQUENCE DTW 13

from the pervious computation, which makes the cost of DTW be very low. D(n,m) can
be calculated by the formula [14]:

D(n,m) =

c(x1, y1) for n = 1,m = 1,
D(n− 1,m) + c(xn, ym) for n 6= 1,m = 1,
D(n,m− 1) + c(xn, ym) for n = 1,m 6= 1,
min{D(n − 1,m− 1),D(n − 1,m),D(n,m − 1)}+ c(xn, ym) else

(3.3)

The accumulated cost matrix shows the minimal total cost directly, since D(N,M) is the
one we are looking for. The only task is to extract the path which leads to this minimal
total cost. This is done via backtracking. Using the pervious example again, the Figure 3.3
shows the accumulated cost matrix. The green arrows show the backtracking path and
the red ones show the optimal warping path. p∗ = p1, ..., pL denotes the optimal warping
path.

Figure 3.3. An example of accumulated cost matrix and the optimal warping path.

DTW is flexible, one can change some parameters of it such as the step size and local
weights (see [19]). Using the variation of the step size as an example. The normal step size
Σ = {(1, 0), (0, 1), (1, 1)} can be replaced by Σ = {(1, 2), (2, 1), (1, 1)}. The accumulated
cost matrix D can be computed withmin{D(n−1,m−1),D(n−1,m−2),D(n−2, m−1)}+
c(xn, ym) for n ∈ [2 : N] and m ∈ [2 : N]. And we set D(0, 0) := 0, D(1, 1) := c(x1, y1),
D(n, 0) := ∞ for n ∈ [1 : N], D(n, 1) := ∞ for n ∈ [2, N], D(0,m) := ∞) for m ∈ [1 : M]
and D(1,m) := ∞ for m ∈ [2 : M]. Using this step size, some of the elements in X and
Y might be omitted and do not cause any cost. And the lengths N and M should only
differ at most by a factor of two which also depends on the lengths of them. Otherwise,
one can not find a warping path or the total cost would be infinity.

3.2 Subsequence DTW

The normal DTW and variations of it are comparing two sequences from the starting point
to the ending point. But sometimes one sequence could be much longer than the other.
For example, one sequence is a stanza of music and another one is the whole piece of the
music. Computing DTW distance between these sequences is meaningless in this case.
Therefore, we focus on finding a optimal subsequence, which has the highest similarity

14 CHAPTER 3. DYNAMIC TIME WARPING

Figure 3.4. Optimal time alignment of the sequence X with a subsequence of Y [14].

to the short sequence, within the longer sequence. Subsequence DTW is used for the
segmentation strategies which will be introduced in the following chapters.

Let X := (x1, x2, ..., xN) and Y := (y1, y2, ..., yM) where M is much bigger than N . As
Figure 3.4 shows, the goal is to find a subsequence Y (a∗ : b∗) := (ya∗ , ya∗+1 , ..., yb∗) where
1 ≤ a∗ ≤ b∗ ≤ M [14]. It is clear that the strict rules of p(1, 1) and p(N,M) must be the
beginning and the ending of warping path has been broken. Instead, the beginning point
ya∗ and ending point yb∗ are not fixed. Our task is not finding the optimal warping path
but finding the optimal subsequence. Here, the optimal subsequence is the one that leads
to the minimal DTW distance comparing to sequence X.

The accumulated cost matrix D should be modified in order to fit the new task. Instead
of using D(1,m) :=

∑m
k=1 c(x1, yk), D(1,m) := c(x1, ym) is defined. The others stay the

same. One can determine b∗ as following [14]:

b∗ := argmin
b∈[1:M]

D(N, b) (3.4)

After having computed the b∗, one can apply the inverse optimal warping path to determine
a∗. We start with pL = (N, b∗), and find the maximal a∗ where a∗ ∈ [1 : b∗].

A distance function can be developed with respect to the DTW distance by the equa-
tion [14]:

∆ : [1 : M] → R, ∆(b) := D(N, b) (3.5)

The distance function specifies the minimal distance between a certain point of a sequence
and the reference sequence.

Chapter 4

Reference-based Segmentation

In this chapter, we introduce a procedure, developed by Müller, Grosche and Wiering, for
segmenting the folk song recording that consists of several repeating stanzas (see [15]).
The MIDI reference is used for segmenting the music, which has been generated by some
experts manually. Therefore, we call this procedure as reference-based segmentation in
this thesis.

We begin with introducing the reference-based segmentation procedure in Section 4.1.
After that, in Section 4.2 we represent the result of the experiment.

4.1 Procedure

The reference-based segmentation procedure is as follows. Firstly, applying feature extrac-
tion to transform the MIDI reference and the audio recording into chroma representation.
Secondly, locally comparing the reference with the audio recording be means of a suitable
distance function, we can generate a matching curve. Thirdly, we use a greedy strategy to
deriving the segmentation from local minima of the distance function. Finally, we apply
some evaluation functions to evaluate the segmentation results.

4.1.1 Feature Extraction

In Müller, Grosche and Wiering’s paper, the MIDI references are used for segmenting
recordings. In the folk song dataset, the MIDI references are a standard stanza of the
audio recording. In feature extraction step, both of the MIDI reference and the audio
recording are transformed into a same mid-level representation. Here, the CENS feature
representation which is summarized in Section 2.4 has been used.

4.1.2 Matching Method

A distance function is used for computing the distance between MIDI reference and subse-
quences of audio recordings (see [15]). Let X = (X(1),X(2), ...,X(K)) to be the sequence

15

16 CHAPTER 4. REFERENCE-BASED SEGMENTATION

of MIDI reference and Y = (Y (1), Y (2), ..., Y (L)) to be the sequence of the audio record-
ing. The distance function is defined as ∆ := ∆X,Y : [1 : L] → R ∪∞ with respect to X
and Y using a variant of DTW which has been introduced in Chapter 3:

∆(l) :=
1

K
min
a∈[1:l]

(DTW (X,Y (a : l))) (4.1)

Y (a : l) is a subsequence of Y which is from a to l, 1 ≤ a ≤ l ≤ L. Here, the
DTW (X,Y (a : l)) refers to the DTW distance between X and Y (a : l) with a step
size Σ = {(1, 2), (2, 1), (1, 1)}. Then normalize the minimal DTW value. As the equation
defined, ∆(l) refers to the smallest distance between X and Y (a : l), and it can be easily
recovered within the DTW computation procedure. ∆(l) is used for representing distance
value of the point l. A low ∆(l) value means we can find a Y (a : l) which has high
similarity to X.

Until now, the local minima of the matching curve refers to the ending point of a segment.
In order to make it clear, we modify the algorithm to find the starting point of a segment.
The idea is before computing the matching curve, we left-right flip the sequences of audio
recording and MIDI reference. With this operation, sequences X and Y are converted
to be X = (X(K),X(K − 1), ...,X(1)) be the sequence of MIDI reference and Y =
(Y (L), Y (L−1), ..., Y (1)). We locally compare the flipped reference with the flipped audio
recording by the original distance function. Using those flipped sequences, we can derive a
backward-ordered matching curve. The local minima in the matching curve indicates the
ending point of the segment for the backward-ordered sequences of the audio recording.
Then, we left-right flipping the matching curve to get a forward-ordered matching curve.
With this operation, the local minima refers to the starting point of the segment.

A matching curve of folk song OGL49313 is shown in Figure 4.1. It is computed by
reference-based segmentation. In the figure, the horizontal time axis scaled as seconds and
the vertical cost axis scaled from 0 to 1. The horizontal black lines refer to the segments
which are derived by the segmentation procedure. The green vertical lines indicate starting
points of segments, which have been annotated manually. As it is introduced, lower ∆(l)
value corresponds to higher similarity. Comparing the matching curve and the ground
truth annotation, we can find that reference-based segmentation preforms pretty well for
folk song OGL49313. The local minima matches the ground truth annotation. Considering
the length of MIDI reference, the subsequences at the end of recordings are too short to
compare with MIDI reference. Therefore, the tail of the matching curve goes up to 1,
which means that part is not comparable with the reference.

4.1.3 Segmentation Method

Greedy segmentation strategy is used for finding the segmentation points. Firstly, we set
the point l ∈ [1 : L], which corresponds to the global minima value in the matching curve,
to be the start of a segment. Meanwhile, the ending point el is derived. The interval
S := [l : el] constitutes the first segment. Secondly, to avoid large overlaps between the
various segments to be computed, we exclude a [Ll:Rl]⊂[1 : L] around the index l from
further consideration. In this thesis we set Ll := max(1, l− 3

5K) and Rl := min(L,l+3
5K),

4.1. PROCEDURE 17

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

OGL49313

Figure 4.1. Matching curve of folk song OGL49313.

thus K denotes the length of the segment. We set ∆(m) = ∞ for m ∈ [Ll : Rl]. And then
repeat the same procedure to determine the next segment. The procedure is repeated
until all values of the modified ∆ lie above a quality threshold τ > 0. Let N denote
the number of resulting segments, then S1,S2,...,SN constitutes the segmentation result.
Finally segments are ascending sorted respect to the starting time of them.

4.1.4 Enhancement Strategies

Considering the problems described in the Section 1.3. The tempo changes have been
solved by applying the distance function. But the intonation difference still influences the
segmentation result. One method to solve it is to compute the distance not only with the
original chromagram, but also with the shifted chromagram. A chroma vector contains
12 different pitches. We can circularly shift the energy distribution from one pitch to the
upper pitch. For example the original energy located in the note C, and then we shift
it from C to C],D, ..., B one by one (see [9]). By shifting reference chromagram, we can
extend the reference chromagram into 12 versions. Then each of the reference chromagram
is used for comparing with the original audio chromagram, which can compute 12 matching
curves. For every l, we pick up the minima ∆ value among 12 versions. A new matching
curve will be computed. In Figure 4.2, the second chromagram is one step shifted from
the original one. With this method, the intonation problem can be solved. Even when
intonation differences between two repetition parts exist, we can still get low ∆ values.

One can improve the algorithm even further. Due to the problems of our data collection
introduced in Section 1.4. The voices of the singer often fluctuate by several semitones
downwards or upwards across the various stanzas of the same recording. To reduce the
influence of this condition, we can apply 24 shifts. That is to shift by half a semitone.
Then 24 distance values are computed and the one with minimal value will be selected.
Also we can apply 36 shifts depends on the data collection.

Even further, to deal with folk songs which are monophonic music, we can only picking
spectral components that correspond to the fundamental frequency [3]. Firstly, we esti-
mate the fundamental frequency for each frame. Then we determine the MIDI pitch which

18 CHAPTER 4. REFERENCE-BASED SEGMENTATION

0 5 10 15 20 25 30

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

Figure 4.2. CENS chromagram of the first stanza of OGL49313. Top: the original CENS
chromagram; Bottom: one of the shifted version.

center frequency is closest to the fundamental frequency. Secondly, we only assign energy
to the pitch subband that corresponds to the determined MIDI pitch, when decomposing
the recording into pitch. Finally, we compute the CENS feature representation as before,
see Section 2.4. Then we can get a cleaned chromagram named F0-enhanced chromagram,
see Figure 4.3

0 5 10 15 20 25 30

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

Figure 4.3. F0-enhanced chromagram of the first stanza of OGL49313.

4.2. EXPERIMENT 19

4.1.5 Evaluation Method

Two evaluation functions are used for evaluating segmentation results, one is the alpha-
beta-based evaluation and the other is the PR-based evaluation.

Firstly, alpha-beta-based evaluation contains α, β and γ. α is defined to be the average
over the cost of the starting point of ground truth segments. A low α value denotes high
similarity between the reference and one subsequence of the audio recording. β is defined
to be the average over all values of the matching curve. And γ = α/β, which shows how
well the desired minima are separated from possible irrelevant minima.

Secondly, PR-based evaluation contains Precision, Recall and F-measure (see [22]). Pre-
cision is a measure of the ability of a system to present only relevant items while recall
is a measure of the ability of a system to present all relevant items. Here, we only con-
sider the starting points of segments. We define a computed segment is true positive, if it
coincidences with a ground truth segment up to a small tolerance δ which is measured in
seconds. Otherwise, the computed segment is referred to a false positive. To be noticed,
if there are more than one segment are coincidences with a same ground truth segment
in the range of δ, only one of them is considered as a true positive and the others are
considered as false positive. Further more, the ground truth segment is a false negative, if
there is not any computed segment coincidences with it in the range of δ. Precision P is
defined as P = tp/(tp + fp), and recall R is defined as R = tp/(tp + fn). With precision
and recall, one can obtains the F-measure F = 2 · P ·R/(P +R).

4.2 Experiment

In this part, we implement the algorithm, introduced in [15]. The dataset is the same as
the one used in the paper. Finally, we derive a segmentation result which is used as a
reference for the following experimentations (see Section 5.2)

The experiment result is shown in Table 4.1. The basic experimental parameters are set
to be the same as the paper. In this thesis, the CENS(9,1) feature is used. Segmentation
precision tolerance δ = 2, which leads to a 4s tolerance range. The quality threshold
τ = 0.4. 24 shifts introduced in Section 4.1.4 is applied.

The evaluation result is closed to that in [15]. The average F0-measure in the paper is
0.900 while the average F0-measure for our experiment is 0.904.

Strategy P R F α β γ

Reference-based segmentation CENS(9,1) 0.915 0.899 0.904 0.265 0.389 0.674

Table 4.1. Performance of evaluation result for reference-based segmentation using CENS(9,1)
feature.

20 CHAPTER 4. REFERENCE-BASED SEGMENTATION

Chapter 5

Reference-free Segmentation

In the last chapter, reference-based segmentation is introduced. It is efficient but has some
limitations. The MIDI reference is used for the segmentation procedure. Without MIDI
reference, the segmentation method could not be implied. However, MIDI reference has
to be created manually by some experts. Due to this disadvantage, we want to find a
segmentation algorithm which can segment music automatically without any additional
reference.

Reference-free segmentation is developed. The idea is that, instead of using MIDI refer-
ence, we derive the most representative passage of the recording and use it as a reference
for segmentation. With this method, we can not only segment the recording but also find
the most representative passage of the recording.

In Section 5.1, we describe the mechanism of reference-free segmentation procedure. Then
we introduce some experiment results of reference-free segmentation, and show how do we
select the mid-level feature representation and the fitness measure. The causes of some
problems which occur in the segmentation results are analyzed in Section 5.2. At last, we
make a conclusion of the reference-free segmentation.

5.1 Procedure

The procedure of reference-free segmentation is similarly to reference-based segmentation
except for the optimal reference selection step. The optimal reference selection step is
to find the most representative passage of the recording. The passage plays a role of the
MIDI reference. After that step, we apply reference-based segmentation to segment music
using this optimal reference instead of the MIDI reference.

5.1.1 Audio Reference

Here, we call the reference in reference-free segmentation as audio reference to distinguish
it from the MIDI reference.

21

22 CHAPTER 5. REFERENCE-FREE SEGMENTATION

Different from the MIDI reference, the audio reference is a part of the audio recording,
which can be defined as R = Y [s : t] where Y = (Y (1), Y (2), ..., Y (L)) denotes the
sequence of the audio recording. we define R = (R(1), R(2)..., R(K)) with R(1) = Y (s),
R(2) = Y (s + 1),...,R(K) = Y (t). The features R(k), k ∈ [1 : K] and Y (l), l ∈ [1 : L], are
normalized 12-dimensional vectors.

One observable difference between using MIDI reference and audio reference can be found
in the matching curve. In Figure 5.1, the red curve is the matching curve of NLB70328 by
applying reference-free segmentation with CENS(11,5) feature. In this example, ∆ value
at 51 seconds equals to zero. That is exactly the starting point of the audio reference
(R = Y[51:67]) which is derived by the algorithm of optimal reference selection (see Sec-
tion 5.1.2). The ∆ value of that point equals to zero because an audio reference and its
corresponding part in the audio recording are exactly the same.

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB70238

Figure 5.1. Segmentation result of NLB70238 Black Reference-based segmentation with
CENS(9,1); Red Reference-free segmentation with CENS(11,5).

5.1.2 Optimal Reference Selection

Optimal reference selection is the step to select the most suitable reference for segmenta-
tion. We developed a fitness measure to evaluate segmentation results which are computed
by using different candidate references. We develop a new evaluation function because the
old ones, the alpha-beta-based evaluation and PR-based evaluation, are not suitable for
reference-free segmentation any more. These two evaluation functions are based on the
ground truth information which has to be created manually by some experts as well as the
MIDI reference. But we would like to develop a segmentation function which can segment
recordings without any manually created resources. The new fitness measure do not need
any additional information. Before introducing this new evaluation function, we need to
define the basic criteria of a good audio reference.

Optimal Audio Reference Criteria

The optimal audio reference, which is the most representative passage of the recording,
should satisfy the following criteria.

1.) Overlaps between segments, which are computed by an audio reference, can not be
greater than a certain tolerance τ .

2.) The union of the segments should cover as much of the audio recording as possible.

5.1. PROCEDURE 23

The more the union of the segments covers, the better the audio reference represents the
audio recording.

3.) The audio reference should be as short as possible. We are looking for the shortest
audio reference which can represent the whole recording well. A large reference could also
represent the recording but is useless for segmentation. For example, an audio recording
with an A1A2A3A4 structure. The first half of it can be used as an audio reference. The
segmentation result is that the recording is divided into A1A2 and A3A4. In this case, the
audio recording is not completely segmented. The best segmentation result should contain
four segments, which are A1, A2, A3, and A4.

4.) The average cost of the local minimal points in the matching curve should be as small
as possible. A low minimal value in the matching curve denotes high similarity between
the audio reference and the corresponding part of the music.

Fitness Measure

According to the audio reference criteria, we define a fitness measure φ, to score the
performance of audio references.

We segment the audio recording Y with an audio reference R. The length of the recording
is L. We define hit Hk, k ∈ [1 : K] to be segments in segmentation result. K is the number
of hits. Hstart

k denotes the starting point of Hk while Hend
k denotes the ending point of

Hk. And Hk = [Hstart
k : Hend

k]. The fitness score of reference R is φ(R) where φ(R) ∈ R
+.

Firstly, we detect the overlap condition. A small overlap tolerance τ is set. As Equation 5.1
shows, the overlap between two segments can not be bigger than τ , otherwise the fitness
measure procedure of the reference will be stopped and φ(R) = 0. Here, zero is the lowest
fitness score which means that the corresponding audio reference is dropped.

|Hend
k ∩Hstart

k+1 | < τ k ∈ (1 : K − 1) (5.1)

Secondly, after the first step, we calculate coverage rate ρ(R) if φ(R) 6= 0. As the following
equation shows, the coverage range of a segmentation result is calculated by summing up
the length of every segment, then minus the overlap range. And ρ(R) equals to the
coverage range divided by L which is the length of the audio recording.

ρ(R) := (| ∪k=1:K Hk| − | ∪k=1:K−1 H
end
k ∩Hstart

k+1 |)/L (5.2)

Finally, αQ, βQ and γQ are used for evaluating the matching curve. It is developed from the
alpha-beta-based evaluation function. αQ is defined to be the average over the cost which
is the value at the starting points of every segment. βQ is the average of all maximum cost
between two segmentation points. When calculating βQ, the tail of the matching curve,
where ∆ value equals to 1, is excluded. And γQ = αQ/βQ. Since 0 ≤ αQ ≤ βQ ≤ 1,
γQ ≥ 1. For example, we segment OGL49313 using a reference and the matching curve is
shown in Figure 5.2. In this example, αQ is the average cost of all green arrows pointed
points while βQ is the average cost of all yellow arrows pointed points. The limitation of
this evaluation function is the starting points of every segment may be incorrect. And αQ

is based on these points so that a low αQ do not mean the segmentation result must be
correct. It can only be used with other measures.

24 CHAPTER 5. REFERENCE-FREE SEGMENTATION

Figure 5.2. An matching curve of OGL49313.

We develop two kinds of fitness measure to compute the fitness score. The first one is
GammaQ-based measure. The fitness score of the reference R is φ(R) = (ρ(R) ∗ βQ)/αQ.
The idea of this measure is the cover rate of segmentation results should be as large as
possible and βQ/αQ should be as large as possible as well. Here, βQ/αQ indicates the
difference between the local minima and the local maxima of the matching curve. This
parameter is meaningful since its value will be small when over-segmented problem occurs.
However, this fitness measure do not work well according to the limitation of αQ, which
will be introduced in Section 5.2.2 with some experiments. The second fitness measure
is developed to exclude the limitation of αQ. It is named as BetaQ-based measure and
computed by φ(R) = ρ(R)∗βQ. We drop αQ and only use βQ. This fitness measure works
because the combination of ρ(R) and βQ can still get a meaningful fitness score. First,
we assume the qualities of recordings are good. We used one reference for segmenting the
recording. If the segmentation result contains over-segmented problem, the coverage rate
of it increases while the βQ value of it decreases sharply. Meanwhile, if the segmentation
result contains under-segmented problem, the βQ value increases while the cover rate
decreases sharply. Therefore, if a reference R leads to a under-segmented or a over-
segmented result, the fitness score of it will be low.

Candidate Audio References

Brute force algorithm is used for setting up a candidate group of audio references. The
idea is to extract the possible references and use them for segmenting the recording. These
references are set to be candidate audio references. Considering the runtime cost, we limit
the range of candidate audio references, for example the length of the reference. We
note the candidate audio references as R1, R2, ..., RM . The corresponding fitness scores
of them are φ(R1), φ(R2), ..., φ(RM). If φ(Rm), where m ∈ [1 : M], is the maxima of
this fitness score set, reference Rm is considered as the most representative passage of the
audio recording. Then Rm is used as the optimal audio reference for segmenting the audio
recording.

5.2 Experiment

Our experiment is based on the experimental dataset, which is used for reference-based
segmentation. It contains 47 Dutch folk songs. Considering the condition of it, we limit the

5.2. EXPERIMENT 25

length of candidate references is every 0.5 second from 6s to 40s and the offset of candidate
reference is every 1s from beginning to end of the recording. In the experiment, the basic
parameters are similar to that in reference-based segmentation. Segmentation precision
tolerance is 2s, which leads to a 4s tolerance range. 24-shifts algorithms introduced in
Section 4.1.4 is applied. And the global threshold for segmentation is 0.35, and the overlap
tolerance is 1s.

Our experiment is mainly focusing on two parts. The first part is to prove the feasibility
of reference-free segmentation, the second part is improving the segmentation result.

5.2.1 Feature selection

The feature CENS(9,1) has been used in reference-based segmentation. The feature rate
keeps the same as original one since the downsampling rate is 1. But CENS(9,1) feature
is not suitable for reference-free segmentation considering the runtime cost. Reference-
free segmentation could be considered as running reference-based segmentation thousand
times. Therefore, the runtime cost of reference-free segmentation would increase extremely.

Using OGL49313 as an example, we transform it into CENS(9,1) representation and the
feature rate equals to 10Hz. The total number of features is 1570. With reference-based
segmentation procedure, we only need to locally compare the MIDI reference with the
audio recording once. The runtime cost of them is acceptable. But the condition changes
for reference-free segmentation. In this example, around five thousand references are picked
out. As the mechanism of our optimal reference selection, the segmentation process need to
be repeated around five thousand times. Therefore, the runtime cost raises up extremely.

One method of reducing the runtime cost is to increase the downsampling rate. But
a higher downsampling rate means a lower resolution, which influences the quality of
segmentation result. Because of that we try to find a suitable downsampling rate which
could balance the time cost and the quality of the final result. After a series of experiments,
CENS(11,5) feature is used.

We compare the segmentation result of reference-based segmentation using CENS(11,5)
feature with using CENS(9,1) feature with four different strategies. Additionally, the
reference-based segmentation result is used for comparison. Here, we define the ground
truth segments as G1 = Y [Gs

1, G
t
1], G2 = Y [Gs

2, G
t
2], ..., GM = Y [Gs

M , Gt
M].

Before we discuss the experiment results, we introduce the table which shows the evalu-
ation results. See Table 5.1, P,R, F, α, β, γ, αQ, βQ, γQ have been introduced in last two
chapters. And the last two columns, Hits and ρ, are represented as well. Hits denote the
number of segments in the segmentation result. For example the average Hits values of
reference-based segmentation (CENS(9,1)) and reference-free segmentation (CENS(11,5))
are 10.38 and 12.26 in this table. This means using the reference-free segmentation
(CENS(11,5)) can segment recordings into more segments than using reference-based seg-
mentation (CENS(9,1)). ρ is the coverage rate of segmentation result. We can see the
difference of the average coverage rate among different segmentation strategies.

First Stanza Strategy

26 CHAPTER 5. REFERENCE-FREE SEGMENTATION

In this strategy, we use the ground truth information and select the first stanza of each
recording as a reference for both CENS(9,1) feature and CENS(11,5) feature, which means
R = G1. Table 5.1 shows the average result of applying this strategy. Comparing the
result of segmenting recordings using CENS(9,1) feature and CENS(11,5) feature, the
differences between the average precision, the average recall and the average F-measure
are not more than 0.03. And the result for reference-free segmentation in this strategy is
close to reference-based segmentation.

Strategy P R F α β γ αQ βQ γQ Hits ρ

Reference-based CENS(9,1) 0.915 0.899 0.904 0.265 0.389 0.674 0.262 0.471 0.553 9.91 0.899
Reference-free CENS(9,1) 0.853 0.928 0.880 0.169 0.295 0.571 0.172 0.375 0.463 12.26 0.947
Reference-free CENS(11,5) 0.835 0.898 0.857 0.163 0.275 0.594 0.165 0.342 0.488 11.98 0.950

Table 5.1. Average result comparison applying first stanza strategy.

Best Stanza Strategy

In this strategy, we try out all the stanzas noted by ground truth for both CENS(9,1)
feature and CENS(11,5) feature, which means R = G1, G2, ..., GM . Then we evaluate
segmentation results with the fitness measure. The stanza with the highest fitness score
is selected as the best stanza for segmentation. According to the evaluation values, the
results of segmenting recordings using CENS(9,1) feature and CENS(11,5) feature are
pretty good. Both of the average F-measures are above 95 percent, see Table 5.2. The
segmentation result is improved a lot comparing to the first stanza strategy. That is
because the first stanza is often not the most representative one, singer is still not confident
and large deviations exist in the first stanza. Note that, the segmentation results of
reference-free segmentation with best stanza strategy are even better than the reference-
based segmentation, which also prove the feasibility of reference-free segmentation.

Strategy P R F α β γ αQ βQ γQ Hits ρ

Reference-based CENS(9,1) 0.915 0.899 0.904 0.265 0.389 0.674 0.262 0.471 0.553 9.91 0.899
Reference-free CENS(9,1) 0.951 0.986 0.964 0.139 0.310 0.458 0.169 0.394 0.434 10.62 0.960
Reference-free CENS(11,5) 0.939 0.979 0.954 0.133 0.288 0.475 0.163 0.365 0.451 10.79 0.957

Table 5.2. Average evaluation result comparison applying best stanza strategy.

CENS(9,1) Feature-based Strategy

In this strategy, we use brute force algorithm and CENS(9,1) feature for reference-free
segmentation. An optimal reference R is derived when segmenting the audio recording.
After that, using this optimal reference R, we apply reference-free segmentation with
CENS(11,5) feature. Since the runtime cost is pretty large. We pick up two recordings,
OGL49313 and OGL25010. BetaQ-based measure is used as the fitness measure.

Figure 5.3 shows the segmentation result. An offset problem occurs since the selected
references shifts from the ground truth segments. Therefore, the PR-based evaluation
results are bad, although the structure of segmentation is correct. Applying the reference
with CENS(11,5) feature, the result is nearly the same.

Free Strategy

In this strategy, we apply brute force algorithm for both CENS(9,1) and CENS(11,5)

5.2. EXPERIMENT 27

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

OGL49313

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

OGL25010

Figure 5.3. Segmentation result of OGL49313 (Top) and OGL25010 (Bottom). Black Reference-
based segmentation with CENS(9,1); Red Reference-free segmentation with CENS(9,1); Green
Reference-free segmentation with CENS(11,5).

feature. In Figure 5.4 we can find that different audio references are selected by observing
the zero value point. For OGL49313, the offset problem still exists and the result is not
good either. But the precision raises up to 0.800 when using CENS(11,5) feature. The
fitness measure is the same as CENS(9,1) feature-based strategy.

Strategy P R F α β γ αQ βQ γQ Hits ρ

OGL49313 CENS(9,1) 0.000 0.000 0.000 0.237 0.290 0.818 0.190 0.428 0.445 5 0.949
OGL49313 CENS(11,5) 0.400 0.400 0.400 0.169 0.282 0.600 0.165 0.383 0.431 5 0.978
OGL25010 CENS(9,1) 0.100 0.100 0.100 0.248 0.306 0.809 0.190 0.421 0.452 10 0.985
OGL25010 CENS(11,5) 0.800 0.800 0.800 0.197 0.314 0.628 0.196 0.394 0.498 10 0.971

Table 5.3. Segmentation result comparison of free strategy.

According to the comparison results for these strategies, we can conclude that the re-
sult of reference-free segmentation using CENS(11,5) feature is nearly the same as using
CENS(9,1) feature. Meanwhile, the time cost when using CENS(11,5) feature is much less
than using CENS(9,1) feature. Using strategy 4 as an example, the total runtime is about
14.7 hours when we segment those two recordings with CENS(9,1) feature. This is far too
much. But running the reference-free segmentation procedure in the same environment,
the total runtime for using CENS(11,5) feature is only about 0.6 hour, which is about 25
times faster than using CENS(9,1) feature. In fact the final runtime for segmenting the
whole dataset, which contains 47 folk songs, is about 12.7 hours.

28 CHAPTER 5. REFERENCE-FREE SEGMENTATION

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

OGL49313

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

OGL25010

Figure 5.4. Segmentation result of OGL49313(Top) and OGL25010(Bottom). Black Reference-
based segmentation with CENS(9,1); Red Reference-free segmentation with CENS(9,1); Green
Reference-free segmentation with CENS(11,5).

We also do experiment with CENS(41,11), but the accuracy of the result decreases a lot.
The average F0-measure for the 47 folk songs is 0.548. Considering the quality of results
and the time cost, finally we use CENS(11,5) feature for reference-free segmentation.

5.2.2 Fitness Measure Selection

We define two fitness measures in Section 5.1.2, the BetaQ-based measure and the GammaQ-
based measure. Comparing to the BetaQ-based measure, the GammaQ-based measure
includes one more parameter which is αQ. But the performance of it is not as good as the
BetaQ-based measure. Table 5.4 shows the comparison of average results between these
measures.

Many of segmentation results, using GammaQ-based measure, have under-segmented
problem. The problem is caused by the limitation of αQ. Different from using MIDI
reference, the matching curve, which is computed by using audio reference, contains a
zero point. It is the starting point of the audio reference which is also the global minima
of the matching curve. Therefore, this point must be considered as a segment point and
included in αQ. And this zero value decreases αQ especially when the number of segmen-
tation is small. Since we define αQ value is the lower the better, a long references, which
lead to less segments, can get a better fitness score. Therefore, many recordings are seg-

5.2. EXPERIMENT 29

mented with under-segmented problem when using reference-free segmentation with the
GammaQ-based measure.

In order to solve this problem, we exclude the zero value when calculating αQ. A modified
GammaQ-based measure is calculated by using this modified αQ. The result is improved
extremely. The under-segmented problem, which is caused by the zero value, is solved.
But the limitation of αQ is still exist.

Considering the overall performances, we drop αQ, and choose the BetaQ-based measure
as the fitness measure.

Strategy P R F α β γ αQ βQ γQ Hits ρ

BetaQ-based measure 0.713 0.758 0.709 0.176 0.271 0.656 0.157 0.359 0.448 13.17 0.970
GammaQ-based measure 0.515 0.489 0.470 0.191 0.237 0.840 0.124 0.355 0.364 11.30 0.903
modified GammaQ-based measure 0.695 0.729 0.693 0.160 0.253 0.648 0.161 0.347 0.469 12.87 0.953

Table 5.4. Average evaluation result of reference-free segmentation with BetaQ-based measure
feature, reference-free segmentation with GammaQ-based measure, and reference-free segmentation
with modified GammaQ-based measure (The αQ for this fitness measure is the modified one).

5.2.3 Result and Problem Conclusion

The result of reference-free segmentation is not as good as reference-based segmentation.
Here, the BetaQ-based measure is used as the fitness measure. Table 5.5 shows the result.
The F-measure result of reference-free segmentation is lower than that of reference-based
segmentation. The decreasing F-measure is caused by optimal reference selection. To
summarize the results, there are mainly three kinds of problems: over-segmented Problem,
under-segmented problem and offset problem. In this section, the old version αQ is used,
which includes the zero point.

Strategy P R F α β γ αQ βQ γQ Hits ρ

Reference-based CENS(9,1) 0.915 0.899 0.904 0.265 0.389 0.674 0.262 0.471 0.553 9.91 0.899
Reference-free CENS(11,5) 0.713 0.758 0.709 0.176 0.271 0.656 0.157 0.359 0.448 13.17 0.970

Table 5.5. Comparison of reference-based segmentation using CENS(9,1) feature and reference-
free segmentation using CENS(11,5) feature with BetaQ measure.

5.2.3.1 Problems

Table 5.6 represents recordings which have been segmented wrongly. The segmentation
result of 17 recordings are not good. We listen to the music to find the reason why these
problems occurs.

Under-segmented Problem

NLB74028 is a song that is hard to sing. The tempo of it is very fast. Because of that,
the old lady sing the song full of intonation mistakes. And she starts talking at the end of
recording. But these problems do not influence the segmentation result. The cause of the
under-segmented problem is the length of the audio reference. Comparing the maximum

30 CHAPTER 5. REFERENCE-FREE SEGMENTATION

Offset Problem Over-segmented Problem Under-segmented Problem
OGL49313 OGL27517 NLB74028
OGL27516 NLB72395 NLB75059
OGL25011 NLB75068
NLB70134 NLB76271
NLB72355
NLB73993
NLB74437
NLB75167
NLB75325
NLB76426

Table 5.6. Conclusion of recordings with bad segmentation result.

length of reference(40s), the recording length, which is only 50s. The reference, which
length equals 39s, are used. This reference lead to only one hit, but it could get a very
high βQ. One possible improvement to deal with the problem is to limit the maximum
length of candidate reference no more than half of the length of the recording.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB74028

Figure 5.5. Segmentation result of NLB74028. Red: Reference-free segmentation with BetaQ
measure; Green: Reference-based segmentation

After limiting the maximum reference length to be the half length of the recording, the
segmentation result, which is shown in Figure 5.6, contains 2 hits. The F-measure raises
up from 0.4 to 0.7, although the under-segmented problem is still exist. Considering the
length of the recordings in our dataset, the limitation of the maximum reference length
only affects the recording. The improved segmentation results can be find in Appendix.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB74028

Figure 5.6. Segmentation result of NLB74028 with the maximum candidate reference length
limitation

5.2. EXPERIMENT 31

NLB75059 is another recording with under-segmented problem. In the recording, singer
forgets to sing the last phrase of the last stanza, which makes the length of the last
stanza shorter than the others. As Figure 5.7 shows, even for the best stanza strategy, the
segmentation result is not correct. There is a large overlap between the last two segments.
As our rules, the fitness score of the segmentation result is zero, when large overlap exists.
In this example, using one of the first six stanzas as the audio reference would lead to a
segmentation result with overlap. Therefore, we can not get a good segmentation result
for this recording. And using a long reference could get better βQ so that under-segmented
problem occurs.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB75059

Figure 5.7. Segmentation result of NLB75059 with different reference-free segmentation strate-
gies. Red: Reference-free segmentation with BetaQ measure; Green: Reference-free segmentation
using best stanza strategy.

Over-segmented Problem

OGL27517 is a typical example that small repetitions are contained in stanzas. The score
of one standard stanza of OGL27517 is indicated in Figure 5.8. We can find that the
last two lines in this stanza are nearly the same. And the differences between the first
line and these two lines are not so big either. When this kind of repetitions exist in the
standard stanza, these repetitions could also be considered as a stanza. It is a hard task to
decide which repetition is correct automatically. And as our criteria of optimal reference
selection, the reference should be as small as possible. In our experiment, the third line
of the first stanza is selected as the reference. The results is shown in Figure 5.9. The red
matching curve also shows the relations among three phase in one stanza.

Figure 5.8. Score representation of one stanza of folk song OGL27517.

The problem for NLB72395 is that the recording is messed up. There are considerable
differences between stanzas. For example, the old lady often misses several sentences
and jumps to the following part. And there are some hesitations in her voice during the

32 CHAPTER 5. REFERENCE-FREE SEGMENTATION

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

OGL27517

Figure 5.9. Segmentation result of OGL27517. Black: Reference-based segmentation; Red:
Reference-free segmentation.

recording. Considering the condition of this recording, it is very hard to segment it. Even
we use the best stanza strategy, the result is bad. In Figure 5.10, black line indicates result
of reference-based segmentation and the curve is very noisy. Similar to the best stanza
strategy, the reference-based segmentation do not get a acceptable result either.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB72395

Figure 5.10. Segmentation result of NLB72395. Black: Reference-based segmentation; Red:
Reference-free segmentation with BetaQ measure; Green: Reference-free segmentation using best
stanza strategy.

The segmentation result of NLB75068 reflects the shortage of the reference-free segmenta-
tion. In Figure 5.11, we can find the last part of the recording is no long the repetitions of
any stanza in the front part. In fact the singing part is only from 0s to 155s, and the singer
begins to talk in the rest part. It is a very big challenge to reference-free segmentation.
Unfortunately, it fails to extract the optimal reference. The red matching curve shows
that the distance between two dissimilar parts of recording could be small when they are
short enough. And the segmentation coverage rate could be pretty good when a short
reference is used. The coverage rate in this example is 94.8%.

NLB76271 is a very complex example. Firstly, the structure of the stanza is complex.
There are some small repetitions in one stanza. Secondly, the recording quality is the
worst one in our dataset. A bird keeps on singing loudly during entire recording. And the
singer talks from 57s to 68s and she missed many parts of the song. Figure 5.12 shows the
result. The length of the selected reference is 6s, which is similar to the last example.

In the last two examples, we find that a fixed threshold for segmenting is not flexible

5.2. EXPERIMENT 33

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB75068

Figure 5.11. Segmentation result of NLB75068. Black: Reference-based segmentation; Red:
Reference-free segmentation with BetaQ measure.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB76271

Figure 5.12. Segmentation result of NLB76271. Black: Reference-based segmentation; Red:
Reference-free segmentation with BetaQ measure.

enough. Although we can set it by estimating the average of the most common condition,
sometimes exception happens like this example. There are some hits even on the top of
matching curve, which messes up the result completely. So we develop a flexible threshold
which is the average cost of segmentation result. And the value equals to 0 and 1 is
excluded. Using this flexible threshold could not improve our result significantly, but
it could avoid selecting some meaningless references, especially for the very short ones.
Because the coverage rate of the result which is calculated with a short reference is very
low in these examples. But the experiment result is still not acceptable. As Figure 5.13
shows, although the matching curves looks better, the segmentation result is still incorrect.
The talking part in NLB75068 contains several segments wrongly, and both of NLB75068
and NLB76271 are segmented with offset problem.

Offset Problem

Offset problem is the main problem in segmentation results. This problem occurs in 10
recordings. According to the causes of offset problem, these recordings are classified into
three groups. The first group contains OGL25011, NLB72355 and NLB75325, the second
group contains NLB74437, NLB75158, NLB75167, and the third group contains the rest.

Firstly, recordings in the first group have a common character. All of them contain
one special stanza. This special stanza is not the same as the standard stanza. In this
case, segmentation result using the best stanza as a reference contains a large overlap

34 CHAPTER 5. REFERENCE-FREE SEGMENTATION

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB75068

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB76271

Figure 5.13. Segmentation result of NLB75068(Top) and NLB76271(Bottom) using flexible
threshold. Black Reference-based segmentation; Red: Reference-free segmentation with BetaQ
measure.

area. Considering the overlap rule, the fitness score of the reference is zero. Therefore, a
reference with offset problem is derived as the optimal reference.

Figure 5.14. Score representation for the standard stanza of OGL25011.

In the last stanza of OGL25011, one third part of standard stanza are missing. As Fig-
ure 5.14 shows, the structure of the stanza could be considered as A1A2B1B2. In last
stanza, singer only sings B1B2 part. The segmentation result could be found in Fig-
ure 5.15. The results of both Reference-based segmentation and reference-free segmen-

5.2. EXPERIMENT 35

tation with best stanza strategy contain overlaps. Therefore, the best stanza is dropped
when segmenting this recordings by reference-free segmentation with BetaQ measure. The
reference with a wrong offset is selected. The precision of segmentation drops to 0 while
the coverage rate is 93.8 percent.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

OGL25011

Figure 5.15. Segmentation result of OGL25011. Black: Reference-based segmentation; Red:
Reference-free segmentation with BetaQ measure; Green: Reference-free segmentation using best
stanza strategy.

The first stanzas of NLB72355 and NLB75325 are special. Figure 5.16 represents the score
of the first stanza and rest stanza of NLB72355. The length of first stanza is three forth
of the standard stanza. The condition for NLB75325 is nearly the same, but even more
complex. Figure 5.17 represents the segmentation result. It is the same as the condition
of OGL2011.

Figure 5.16. Score representation of two different kinds of stanzas of NLB72355. Left: First
stanza; Right: Standard stanza.

Secondly, the qualities of recordings in the second group are bad. NLB74437 is sang by
three old ladies. In fact, segmenting a recoding sang by one or more persons is not different.
But the problem in this recording is that one lady always sings the song with both an
octave below the melody and a different tempo from others. This special case influences
the segmentation result. In another example, the singer of NLB75158 forgets what to sing
and makes mistakes frequently, which makes her singing full of hesitations. NLB75167
is the audio recording with the worst quality, a female voice is in background towards
end. Singer omits several parts during her singing and she sang the last stanza with a
considerable different version of melody. The matching curves is shown in Figure 5.18.
Even for reference-based segmentation, the result is not good. The average value of the

36 CHAPTER 5. REFERENCE-FREE SEGMENTATION

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB72355

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB75325

Figure 5.17. Segmentation result of NLB72355(Top) and NLB75325(Bottom) using flexible
threshold. Black: Reference-based segmentation; Red: Reference-free segmentation with Be-
taQ measure; Green: Reference-free segmentation using best stanza strategy.

black curve is high, which shows low similarity between the audio recording and the MIDI
reference. And the shape of the curve is very special, which do not contain the distinct
local minima like other examples.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB75167

Figure 5.18. Segmentation result of NLB75167. Black: Reference-based segmentation; Red:
Reference-free segmentation with BetaQ measure.

Thirdly, recordings in the last group do not contain any quality problem, except for
OGL49313. The singer of OGL49313 forgets what to sing at the beginning of the sec-
ond stanza. She talks for several seconds and than continues to sing. According to the
similar cause of offset problem like others, this recording belongs to this group.

5.2. EXPERIMENT 37

One possible cause of the offset problem in these recordings is the short breaks between
two stanzas. Singer often breathes between two stanzas. These breaks are not included
in the segmentation parts, when we segment recordings using the MIDI reference which
do not contain these breaks. But using reference-free segmentation, these breaks could
be included into the selected audio reference. One possible way to include these breaks
is shifting the reference offset a little bit. This kind of reference is starting from the last
several notes of the previous stanza and the break between two stanza is included. Due
to this different aspect between MIDI reference and audio reference, the average coverage
rate of reference-based segmentations is smaller than that of reference-free segmentations.

Figure 5.19 indicates the result of reference-free segmentation for NLB76426. In this figure,
we can find that offset problem occurs when we segment NLB76426 with reference-free
segmentation. And the table shows that the segmentation is failed. The precision of
reference-free segmentation in this example is closing to zero. What interests us is that
the coverage rate measure, which is shown in the last row, is pretty good. It is about
0.100 higher that the result of reference-based segmentation.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

NLB76426

Figure 5.19. Segmentation result of NLB76426. Black: Reference-based segmentation; Red:
Reference-free segmentation with BetaQ measure.

5.2.3.2 Conclusion

The problem for reference-free segmentation can be concluded as two types, the problem
of the recording and the problem of the algorithm.

The problem of the recording is the bad quality of recordings. Unlike reference-based seg-
mentation using a standard MIDI reference, reference-free segmentation needs to extract
references from recordings. The optimal reference selection is sensitive to the quality of the
audio recording. That is because the mistakes and noises in the recording are considered
as a part of the song as well. Therefore, it is more sensitive to quality of recordings than
reference-based segmentation. A bad quality of recordings always leads to a bad result of
optimal reference selection.

The problem of the algorithm is how we measure a good reference. Using OGL25011 as
an example, the reference has to be shifted in order to avoid overlap occurs, so that the
best reference is dropped. The coverage rate parameter is very important. However, it
could cause the offset problem as well.

38 CHAPTER 5. REFERENCE-FREE SEGMENTATION

Chapter 6

SyncPlayer Framework

The SyncPlayer system is an advanced audio player for multimodal presentation of high
quality audio and associated music-related data [11]. The basic framework of the Sync-
Player is introduced in this chapter.

The basic framework of the SyncPlayer is introduced in Section 6.1. We show two plug-
ins of the SyncPlayer, the Audio Switcher and the Audio Structure in Section 6.2 and
Section 6.3.

6.1 SyncPlayer Overview

The SyncPlayer is a client-server based software [7]. It serves as a tool for MIR. The
framework of the SyncPlayer is shown in Figure 6.1.

Figure 6.1. Overview of the SyncPlayer Framework [7].

The basic function of the SyncPlayer is a standard audio player which supports MP3 and
WAV files. It is extended by some plug-ins such as the Audio Switcher, the MultiStructure
Visualizer and the SymbolicQuery Plugin. The input data is treated as two types. One is

39

40 CHAPTER 6. SYNCPLAYER FRAMEWORK

raw data and the other is derived data. Raw data refers to data which represents music,
like audio, MIDI or MusicXML files. It is also used to generate derived data. The derived
data could be features, annotations and so on. Using annotations as an example, one
can annotate a piece of music with different kinds of annotations such as structure and
chord information. With certain plug-ins, we represent the derived data in different ways.
Additionally, a database is built to index and store the raw data and derived data. One
can access the data on the SyncPlayer server.

6.2 Audio Switcher

The Audio Switcher is one of the available plug-ins for the SyncPlayer. It allows user to
switch among several interpretations for the same piece. Figure 6.2 shows a instance of
the Audio Switcher.

Figure 6.2. The SyncPlayer with Audio Switcher plug-in.

The understanding of music and style of interpretation varies among different performers.
Therefore, for a single piece of music, there exist many different interpretations from
various performers and instruments. By using Audio Switcher, users can listen to, compare
and switch between these interpretations smoothly.

Figure 6.2 shows five synchronized interpretations of Chopin Mazurka Op.068 No.3 playing
in the Audio Switcher. The duration of these interpretations are certainly not the same.
However, in our design, the sliders which contain related time information are all stretched
to the same length for visualization purpose. Therefore, the slider knob which indicates
the corresponding time position of each interpretation is running differently.

6.3. AUDIO STRUCTURE 41

The red arrow on the left side indicates the currently playing recording. It is considered as
a reference interpretation. Whenever the user wants, the playing recording can be changed
by clicking the arrows on the left side. The jump function of the slider stays the same
as a normal slider. One can choose any position within any of the recordings by clicking
a position of the respective slider. With this operation, the clicked recording is set as a
reference and the playing time is converted the synchronized time.

6.3 Audio Structure

The Audio Structure is also one of the plug-ins for the SyncPlayer. The repetitive seg-
ments which reveals important structure information is displayed in this plug-in. It is an
visualization of musical structure which helps users to understand and manage the audio
information.

Figure 6.3. The SyncPlayer with Audio Structure plug-in.

Figure 6.3 shows Hungarian Dance No. 5 composed by Brahms. In the plug-in component,
18 gray blocks are classified into 5 groups and the blocks inside a group are repetitions of
each other. In the visualization area, blocks of the same group are placed in the same line.
In the first line, there are two large blocks which represents the repeating two parts of
the recording. Additionally, blocks in the second line are actually subpart of those blocks
in the first line. This shows that in some large repetitions, small repetitions may exist.
Furthermore, the length of blocks in the same line is not always the same. That is because
of the tempo difference between two repetitive part.

42 CHAPTER 6. SYNCPLAYER FRAMEWORK

Chapter 7

SyncPlayer Extension

The Interpretation Switcher is considered as a plug-in of the SyncPlayer. It is based on
the Audio Switcher and the Audio Structure. Some of extensions of the Interpretations
Switcher, which is the extensions of the of the SyncPlayer as well, are developed.

Firstly, We introduce the basic functionalities of the Interpretation Switcher in Section 7.1.
Secondly, three extensions of the Interpretation, is represented in the following sections.

7.1 Interpretation Switcher

Two plug-ins for the SyncPlayer, namely the Audio Switcher and the Audio Structure,
were introduced in Chapter 6. They are helpful for music analysis. But the user can not
use them at the same time. The Interpretation Switcher is developed based on the ideas
of these two plug-ins. The user interface of the Interpretation Switcher, which has been
changed completely from the previous plug-in style, is indicated by Figure 7.1.

As the figure shows, except from the changes of the user interface, an annotation field is
added for each interpretation. Every annotation field contains several annotations. These
annotations may carry different musical information, such as structure segmentation of a
recording or chord information of a recording. Besides, they can be easily changed by the
user.

The annotation field is a good place for visualizing the MIR results. It is also useful
to show the relations among several interpretations. We use Chopin Mazurka Op.068
No.3 as example. In each annotation field, there are several annotations with previously
specified colors. In this example, one color denotes one chord type. With the help of these
annotations, one can get a rough idea about the selected recordings. As one can clearly
sees from the annotations in the figure, the chord distributions of different interpretations
share some common properties like the progression or duration of the chord, but it is also
obvious that at some points strong differences exits.

Some basic functions are modified in this version. The jump function is extended by
clicking annotation labels. The player plays the music from the beginning of the annotation

43

44 CHAPTER 7. SYNCPLAYER EXTENSION

Figure 7.1. New user interface of Interpretation Switcher extended with annotation field.

which the user left clicked. At the same time, the current playing recording will switch to
the corresponding recording at the same time. An Interval Repeat button is added at the
bottom of this application. One can turn on the repeat model by activating the Interval
Repeat button. The border of the selected annotation will be painted by yellow and the
annotation range of the recording will by played repeatedly.

Different from traditional audio players, the Interpretation Switcher does not load a audio
file directly. Instead, one should open a Sync File. The Sync File, which is a text file,
contains the information of which audio files need to be loaded, the length of the audio
files, and the synchronization information. Figure 7.2 shows the Sync File which has been
used for the example shown in Figure 7.1. The Sync File can be separated into two parts.
The first part contains some basic information and the second part, called Sync Table, is
the synchronization data. Line 3, 4, 5 are the number of interpretations. Line 6 is the
number of rows of the Sync Table. The information of first interpretation is stored from
line 9 to line 12. Filename and the duration are two important parameters. The filename
determines which audio file and annotation file will be opened. The duration determines
the length of the corresponding interpretation. And the information of the other three
interpretations are set in the following part. In this example, the Sync Table starts from
line 35. Each column corresponds to one interpretation. The synchronization information
is contained in the table. For example, see line 46, the content of the second interpretation
at the time 0.1s corresponds to that of the first interpretation at the time 1.0s.

After opening the Sync File, the related audio file and Label File are loaded at the same
time. In the Label File, two kinds of information are included. The first part contains
the annotation information and the second contains the color classes. See Figure 7.3, The
number of annotations is determined in line 1, which is 21 in this example, such that the
following 21 lines are the boundaries and color types for 21 annotations. See line 2, the
first two numbers determine the boundary of an annotation, and the last number is the

7.2. EXTENSION OF TIMELINE MODES 45

Figure 7.2. An example of the Sync File of Chopin Mazurka Op.068 No.3.

color ID which indicates the color of the annotation which will be defined in the following
part. Note that, if the color number is not defined in the color class, the corresponding
color would be set to a default color. From line 24, the color classes are set. For example
in line 25, 1 indicate the ID of one color and [0,0,255] is the corresponding RGB value.

The main advantages of Interpretation Switcher are as follows. Firstly, the functionalities
of the Audio Switcher and the Audio Structure are integrated. Secondly, the meaning of
annotations are extended. It can not only representing the repetitive structure but also
some other musical characters. Additionally, comparisons among interpretations can also
be done by observing and comparing annotations. Meanwhile, with the improvement of
the jumping function and the extension of the repeating function, user can locate and
analyze some key points of recordings easily.

7.2 Extension of Timeline Modes

We have some further developments of the Interpretation Switcher. Two new modes for
the timeline slider is implemented. These timeline modes are named as relative mode,
absolute mode, and reference mode.

46 CHAPTER 7. SYNCPLAYER EXTENSION

Figure 7.3. An example of the Label File of Chopin Mazurka Op.068 No.3 performed by Csalog

Relative mode

The relative mode is what we have used until now. All the timelines are linearly stretched
to yield the same length. Figure 7.1 shows an example of the relative mode. Annotation
fields are linearly stretched too. It can be considered as a normalization process. The
length of each annotation is no longer absolute, it is stretched with the annotation field.
Therefore, we can not compare the length of annotations which are not in the same inter-
pretation. For instance, the first green annotations, which are noted by red arrows, in the
interpretation played by Csalog is smaller than the one played by Indjic. But their actual
durations are nearly the same, because the duration of the whole interpretation performed
by Csalog is longer than the one performed by Injic. The limitation for the relative mode
is that one can not infer the actual duration of each recording and annotations by the
length of them directly.

Absolute mode

The absolute mode leaves the timeline length corresponding to the actual duration for
each interpretation. All the sliders keep a uniform scale which is depends on the size of
the application window. In this mode, one can find out the duration differences between
recordings directly. Figure 7.4 is an example of the Interpretation Switcher in the absolute
mode. The sliders’ lengths for the interpretations played by Csalog and Indjic are different,
which shows difference in total duration between them. Indjic played this piece much faster
than Csalog. And the length of the two green annotations mentioned in the relative mode
is nearly the same.

Reference mode

In this mode, the sliders have the same length again. A reference recording is selected and
can be changed by clicking the check box under the play button. As it shows in Figure 7.5,

7.2. EXTENSION OF TIMELINE MODES 47

Figure 7.4. Interpretation Switcher in absolute mode.

Figure 7.5. Interpretation Switcher in reference mode.

the interpretation performed by Csalog is selected as the reference. The annotations of it
keeps the original form. We can find that the distribution of annotations is the same as it is
in absolute mode (see Figure 7.4). But the sliders and annotations of other interpretations
are temporally warped to run synchronously to the reference recording. In this mode, the
sliders will move at the same speed for all the interpretations. The relation between the
playing recording and the reference can be observed by the moving speed of the slider. If
current playing recording is the reference one, the slider will move with a constant speed.
But if we play another recording, the slider will move at nonconstant speed. A faster

48 CHAPTER 7. SYNCPLAYER EXTENSION

speed than normal one mean that performer of the current playing recording played faster
than who played the reference recording.

It is important to notice that if we change the reference recording in reference mode, the
display of annotations will be changed and the scale of sliders will be adapted to the
reference one. The changes are shown in Figure 7.6.

Figure 7.6. Comparison of selecting different reference recordings in reference mode. Top:
Indjic’s interpretation is selected. Bottom: Csalog’s interpretation is selected.

7.3 Image Mode

The previous extensions focus on representing the relations between different interpreta-
tions. But the image mode changes the function of Interpretation Switcher completely.
Instead of switching among different interpretations of the same piece of music, we only
focus on one interpretation and build an additional annotation field to representing some
special images. These images is helpful to represent the details of music. They could be
chromagram, matching curve, self-similarity matrix or any images which needed by users.

The advantage of image mode is that audio player, annotation information and visualizing
information are integrated together. Firstly, user can not only play a recording but also
get specified information of the recording from the image. For example, by adding the
chromagram image, one can know the chroma information of the played notes when listen-
ing to the recording. Secondly, it helps users to understand the image. For instance, the
shift problem occurred when we applying reference-free segmentation. Using image mode
of Interpretation Switcher, one can find possible causes of the problem more conveniently
than using traditional audio player. Thirdly, users are free to put any related image in
the image area. Several examples are introduced in the following part.

In Figure 7.7, folk song OGL49313 is represented by Interpretation Switcher in image
mode. The image in annotation field is the chromagram of OGL49313. And it has been
warped to be the same length as the slider so that they have a same time scale. The second

7.3. IMAGE MODE 49

Figure 7.7. An example of Interpretation Switcher (Image mode) representing the chromagram
of OGL49313

annotation field shows the segmentation information for this recording, and annotations
on it are colored to make them more clearly. The slider will jump to the corresponding
position when users left click the image or slider.

Figure 7.8. An example of Interpretation Switcher (Image mode). Top: representing the match-
ing curve of OGL49313; Bottom: representing the smoothed self-similarity matrix of OGL49313

Figure 7.8 shows two different examples. The chromagram image is replaced by matching
curve image and self-similarity matrix image.

In matching curve image, the black line is computed by reference-based segmentation
with CENS(9,1) feature and the red is computed by reference-free segmentation with
CENS(11,5) feature, which are introduced in the pervious chapter. The precision, recall
and F0-measure of the reference-free segmentation result are all equals to 0.4. The result
has an offset problem which has been introduced in Section 5.2.3.1. We can use interpre-
tation switcher to help us find out the cause of the problem. By clicking the image, the

50 CHAPTER 7. SYNCPLAYER EXTENSION

corresponding part is played immediately. With the help of the visualized user interface,
it is easier to target the key point. For this example, we can click the green vertical lines,
which denote the ground truth segmentation points. Listening to the beginning part of
each segmentation, the reason why shift problem occurs in this recording can be find out.
That is because the singer forgot what to sing at the end of the first stanza, which makes
the recording messed up at that part. According to this mistake, the reference which
shifted 3 second are selected since it get a better fitness score (see Section ??). It is very
easy to jump to the segmentation point and play from the corresponding time by using
Interpretation Switcher. However, working with a traditional audio player, users have to
know the time of each segmentation point and then click the slider to find those points.
This example shows one of the usage of the image mode. It is helpful for researchers to
represent and analyze their results.

The self-similarity matrix image is another example. In the image, the lighter blue denotes
lower similarity while the darker blue denotes higher similarity. There is a light area, noted
by red box, at the beginning of second stanza where the singer forgot what to sing. It
could be confused when user looks at the result without listening to the recording. With
the help of Interpretation Switcher, users can jump to and play that interesting part easily.

Figure 7.9. An example of Interpretation Switcher (Image mode) representing the score of
OGL49313’s first stanza

Figure 7.9 shows another possible application of image mode. The image is the score of
OGL49313’s first stanza, which could be considered as a standard stanza of the recording.
It has been repeated 5 times in this folksong. We extract the first stanza from the whole
piece of recording and use image mode to show its score information.

7.4 User Interaction Extension

Until now the annotations are loaded from the annotation files. In old versions, one has
to modify the original annotation files if the annotations in the user interface need to
be modified. Here in this version, the user interaction extension helps user to operate
annotations directly and easily in Interpretation Switcher. Especially in image mode, it
is easier to correct mistakes in annotations according to the image. For example, one can
modify or create annotations according to the ground truth line in the matching curve
image.

Here, we name these color-coded annotations in the annotation field as markers. The
meaning of markers may vary for different recordings, which is set manually.

The user interaction function includes modification, deletion and insertion. User can
use mouse and keyboard for operation. There are several rules for makers to limit the
modification operation. Firstly, the length of markers should be positive, which also

7.4. USER INTERACTION EXTENSION 51

means the starting position should be on the left of the ending position. Secondly, overlap
between two markers is not allow in this case. Respect to these rules, we can limit the
available modification area of a marker. Let TSn , n ∈ [1 : N] denote the starting time
of the nth marker while TEn , n ∈ N denote the ending time of the nth marker. L is the
length of the recording. The modifications must satisfy the following rule: 0 ≤ TS1

<
TE1

< TS2
< TE2

<, ..., < TSN
< TEN

≤ L.

7.4.1 Mouse Operation

User can use mouse to modify and insert the markers. The left button of mouse is used
for jump function in normal music player. In order to avoid the confliction, right button
of mouse is selected to operate the markers in our design.

Modification

The modification of a marker could be the starting position modification, the ending
position modification and the whole marker position modification. With the first two kind
of operation, the length of the marker is changed. But moving the whole marker, the
length of the marker stays the same.

As Figure 7.10 shows, we modified the starting position of the second marker colored
by yellow. And to modify the ending position is similar. The operation procedure is as
following:

• 1. Move the cursor onto the left(right) edge of the marker. The cursor changes to
the resize style when it reach a certain position.

• 2. Press the right button of mouse and drag the marker. The border of the marker
will be colored by light green to indicate the marker is being modified.

• 3. Release the mouse and the new starting(ending) position will be set.

Figure 7.10. The operation procedure of changing the starting position of a marker with mouse

52 CHAPTER 7. SYNCPLAYER EXTENSION

One can also move the maker without changing the length. Figure 7.11 shows the proce-
dure.

• 1. Move the cursor onto the marker (not the edges). The cursor changes to the move
style when it reach the right position.

• 2. Press the right button of mouse and drag the marker. The border of the marker
will be colored by light green to show the marker is being modified.

• 3. Release the mouse and the new maker position will be set.

Figure 7.11. The operation procedure of moving a marker with mouse

Insert

User can also insert a new marker. The color of it is set as the default color, the color
could be changed manually. The procedure is as following:

• 1. Find a starting position which has not been marked, and move cursor to the
position.

• 2. Right press mouse and drag the cursor to the ending position which should not
cross any marker.

• 3. Release the mouse and a new maker will be generated.

7.4.2 Keyboard Operation

The keyboard operation consists of deletion and modification of markers. The marker,
which would be operated, should be activated by right clicking the mouse. And the
activated marker’s border will change to be light green as Figure 7.12 shows. The marker
can be deactivated by right clicking it again or activating another marker.

Modification

7.4. USER INTERACTION EXTENSION 53

Sometimes modifying markers with mouse is not precise enough since it is hard to control
the moving distance of mouse. But with the help of keyboard, one can change the start
time of a marker from 4.5s to 4.6s by typing the keyboard once. And the modification step
size could be set manually, it could be 0.1s, 1s or even 10s. Therefore, with the help of
keyboard, one can adjust markers in a finer level. The modification function applies to the
starting position, the ending position and the whole marker position. The introduction of
using keyboard to modify markers is as following:

• Starting position: Press Ctrl + left (right) arrow.

• Ending position: Press Alt + left (right) arrow.

• Whole marker position: Press left (right) arrow.

Delete

By typing the delete button, user can delete the activated marker.

Figure 7.12. Example of moving a marker and deleting a marker with keyboard. Top: Marker
activated; Middle: Marker moved; Bottom: Marker deleted.

Color Changing

Except of modifying the position of markers, one can use keyboard for changing the color
of markers. A color library is established by reading files. By typing Shift + left (right)
arrow, the color will be switched to the previous(next) one.

54 CHAPTER 7. SYNCPLAYER EXTENSION

Chapter 8

Interpretation Switcher
Documentation

In this chapter, we represent the Java documentation of some main classes of the Interpre-
tation Switcher. As a plug-in of the SyncPlayer, the basic functions of the Interpretation
Switcher is called from the SyncPlayer, for example, play(), stop(), pause(), and so on.

Class InterpretationSwitcherAppletWrapper

A wrapper class used to start the applet directly from the IDE.

main

Main function of this class. Instantiation of InterpretationSwitcherAppletFramer

Class InterpretationSwitcherAppletFramer

This provides an applet viewer such that the applet can be run directly from the IDE. It
simulates the behavior of a web browser in terms of calling the applet’s methods init(),
start(), stop() and destroy().

InterpretationSwitcherAppletFramer

Creates an instance of interpretationSwitcherApplet.

Parameters:

appletname - text of appletname

width - initial width of applet

height - initial height of applet

55

56 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

Class InterpretationSwitcherApplet

This applet uses the interpretation switcher plugin for syncplayer to provide an user in-
terface for the Interpretation Switcher.

init

Initializes Interpretation Swticher.

start

start() is called immediately after init() and whenever the applet needs

to be restarted after a call of stop().

run

The run loop of the GUI updates the internal time counter.

Specified by:

run in interface java.lang.Runnable

stop

This method is used to stop the applet.

It is allegedly called whenever the applet loses focus.

destroy

destroy() is called when the application quits.

initComponents

Initializes GUI all the components are initialized in the function.

initSlider

Initializes a slider.

Sets orientation, initial & maximum value, name (used to decide

which slider was clicked later on), and changes listener,.

Parameters:

index - index of interpretation which the slider corresponding to

verticalOffset - vertical position of the slider

verticalSpacing - vertical space between two sliders

Returns:

check box

57

initMarkerLabel

Initializes the markerlabel.

The action performances of mouse and keyboard are added.

Parameters:

beginTime - the beginning time of the marker

endTime - the end time of the marker

label - the color index of the marker

songIndex - the index of the song which marker belongs to

MarkerNumber - the index of the marker.

Returns:

MarkerLabel

initCheckBox

Initializes a checkbox.

Set title, position, bounds, initial state, action listener.

Parameters:

title - title of the check box

index - index of the interpretation which the checkbox corresponding to

Returns:

check box

alignComponents

Aligns the various components according to window/applet dimensions.

alignBasicComponents

Aligns components which are displayed in playBackPanel.

This function is called by alignComponents().

Components would be aligned when loading works, selecting different

displaying interpretations.

alignPlayBackComponets

Aligns components which are displayed in playBackPanel.

This function is called by alignComponents().

Components would be aligned when loading works, selecting different

displaying interpretations.

alignMarkerLabel

Aligns marker labels.

The function is called in normal mode.

58 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

alignMarkerLabelSeg

Aligns marker labels.

The function is called in seg mode.

updatePlaybackPanel

Dynamically updates elements for the interpretations depending on user selection.

updateSelectionPanel

Updates interpretations to selection panel.

updateInfoPanel

Displays meta info about currently active interpretation.

parameter:

index - index of currently active interpretation.

updateSlider

Updates slider positions and time displayed for interpretations.

setMarkerLabelBoundary

Sets the possible modification boundaries for each marker label.

The function is called when annotations are initialized.

Parameters:

pos - index of interpretation which marker label corresponding to

refreshMarkerLabelBoundary

Resets the marker label boundary when markers are modified.

Parameters:

pos - index of interpretation which marker label corresponding to

index - index of the modified marker

stateChanged

Reacts to position changes in the sliders.

Specified by:

stateChanged in interface javax.swing.event.ChangeListener

59

Parameters:

e - event

switchInterpretation

Updates the GUI to show the active interpretation

Parameters:

index - actived interpretation

deactiveAllMarkers

Deactives all markers.

syncPlayerEvent

Event listener for the syncplayer, updates GUI according to various events

Specified by:

syncPlayerEvent in interface syncplayer.client.SyncPlayerEventListener

Parameters:

event - SyncPlayerEvent

selectAll

Sets all interpretations to be displayed.

deselectAll

Reset the GUI when stop button is pressed or a new work is loaded

reset

Reset the GUI when stop button is pressed or a new work is loaded

getMaxDuration

Gets the maximum duration all over the selected interpretations.

Returns:

maximum duration

getTextWidth

Calculates the length of a string in a given font.

60 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

Parameters:

text - text content

font - font type of text

Returns:

length of the text

getTextHeight

Calculates the height of a string in a given font.

Parameters:

text - text content

font - font type of text

Returns:

height of the text

timeToString

Converts milliseconds to a string with the format MM:SS.MS.

Parameters:

time - time in double format

Returns:

time in MM:SS.MS format

getScaleOfSlider

Gets the scale of sliders. Relates to the maximum duration and

the width of playbackScrollPane

Returns:

scale of sliders

Class InterpretationSwitcher

The class of the Module of InterpretationSwitcher.

addSyncPlayerEventListener

Sets the external syncPlayerEventListener

Parameters:

syncPlayerEventListener

61

openWorks

Opens basic config file Config file containing info about the works to load,

including titles and paths.

Parameters:

codeBase - path of work config file

Returns:

true if work config file is loaded, otherwise false

openInterpretation

Opens interpretation files. CSV file contains config information of works.

Parameters:

workIndex - index of work

subWorkIndex - index of movement

progressBar - progress bar of loading files

openInterpretationSeg

Opens interpretation files. openInterpretationSeg is used when

InterpretationSwitcher is in segMode. In segMode, csv file and

color file are not required.

Parameters:

isFile - loaded sync file whose path information is used

openFile

Opens audio files.

Parameters:

file - loaded sync file whose path information is used

startPlaying - flag of whether play the loaded audio file or not

Returns:

true if successfully loads audio file, otherwise false.

openAudioContainer

Opens the sepecified AudioContainer.

Parameters:

ac - AudioContainer used for opening the audio stream

startPlaying - flag of whether play the loaded audio file or not

62 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

closeFile

Closes the loaded audio file

play

Calls the audioPlay.play() function and plays the loaded file

pause

Calls the audioPlay.pause() function and pauses the loaded file

stop

Calls the audioPlay.stop() function and stops the loaded file

reset

Calls the audioPlaygetAudioContainer().reset() function and resets

the loaded file

skip

Jumps to desired position in interpretation and possibly switch

the active interpretation.

Parameters:

position - desired postilion

index - index of selected interpretation

activeIndex - current playing interpretation

getStatus

Gets the status of the audioPlayer.

Returns:

status of the audioPlayer

getWorks

Gets the loaded files.

Returns:

loaded files

getStretchFactor

63

Gets stretch factor for audioPlayer.

Returns:

stretch factor for audioPlayer

getTime

Gets time of current playing interpretation.

Returns:

time of current playing interpretation

getLength

Gets length of current playing interpretation.

Parameters:

index - index of the interpretation

Returns:

length of the interpretation

getTimeCorrespondingToTimeInActiveInterpretation

Gets the synchronized time of the interpretation, which is corresponding to

the current playing interpretation. The synchronized time is set in sync file.

Parameters:

time_ms - currant playing time

songIndex - interpretation which is needed to be synchronized

activeIndex - currant playing interpretation

Returns:

synchronized time

getTimeCorrespondingToTimeInAnyInterpretation

Gets the synchronized time of the interpretation, which is corresponding to

another interpretation. The synchronized time is set in sync file.

Parameters:

time_ms - current playing time

questionSongIndex - index of the interpretation which is needed

to be synchronized

anySongIndex - index of the reference interpretation

Returns:

synchronized time

getLongTitles

64 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

Gets long titles of interpretations.

Returns:

long titles of interpretations

getShortTitles

Gets short titles of interpretations.

Returns:

long titles of interpretations

getMetaInfo

Gets meta information of interpretations The meta information has two versions,

English version and German version.

Returns:

meta information

getInterpretationFiles

Gets files of interpretations.

Returns:

files of interpretations

getTitleOfWork

Gets titles of interpretations Titles are in two versions,

English and German versions.

Returns:

titles of interpretations

getTitleOfWorkGerman

Gets titles(German version) of interpretations.

Returns:

titles(German version) of interpretations

getTitleOfWorkEnglish

Gets titles(English version) of interpretations.

65

Returns:

titles(English version) of interpretations

setEncoding

Sets encoding type.

Parameters:

encoding - encoding type

Class Interpretation

A class of interpretation. Holds all basic information for each interpretation.

Interpretation

Creates a new instance of Interpretation

Parameters:

fileName - text of wave file name

longTitle - text of long title of the interpretation

shortTitle - text of short title of the interpretation

infoTextEnglish - text information of the interpretation

in English

infoTextGerman - text information of the interpretation

in German

Class InterpretationSwitcherTextFile

Reads files of type AudioSwitcherTextFile. Reads the sync file. Sync file contains some
basic information of the audio recording, such as duration, interpretation number, and so
on.

InterpretationSwitcherTextFile

Creates a new instance of InterpretationSwitcherTextFile

openFile

Opens interpretationSwitcherTextFile

Parameters:

file - sync file

encoding - encoding type

Returns:

interpretations’ information in sync file

66 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

saveAs

Saves as InterpretationSwitcherTextFile

Parameters:

file - the config file

encoding - the encoding type

save

Renews InterpretationSwitcherTextFile

Parameters:

encoding - encoding type

writeRemoteAudioFileIDs

Writes remote audiofileIDs

Parameters:

remote_splf - SyncPlayListFile

getInterpretations

Gets interpretations

Returns:

interpretations

setInterpretations

Sets interpretations

Parameters:

interpretations

Class AudioContainer

This class extends the SyncPlayer AudioContainer to manipulate its behavior. When the
user opens an audio file, the program searches for an existing meta information file to get
the metainformation of the file. If it does not exists it creates one.

AudioContainer

Creates a new instance of AudioContainer

67

Class TitleLabel

The label shows the main title of some component, such as the title of work, the title of
help panel.

TitleLabel

Creates a new instance of TitleLabel

Parameters:

title - title text

font - font of title

Class TitleLabel

The label shows the current displayed interpretation label on the top of each slider. Each
interpretation has one TempLabel.

TempLabel

Creates a new instance of TempLabel

Parameters:

title - text shown in the label

index - index of the song which the label belongs to

horizontalOffset - horizontal offset of the label

width - width of the label

verticalOffset - vertical offset of the label

verticalSpacing - vertical space between two labels

updateLabel

Updates label text font

Parameters:

font - font style of the label

maxWidth - maximum width of the label

color - color of the text

getTextWidth

Gets the width of the label

Parameters:

text - text of the label

font - font of the label

68 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

Returns:

width of the label

Class MarkerLabel

The panel contains annotation information. Each interpretation could have several anno-
tations.

MarkerLabel

Creates a new instance of marker.

Parameters:

start - starting position of marker

end - ending position of marker

label - color label of marker

index - song index of marker belongs to

isSelected

Tests if the marker is selected.

Returns:

true if the marker is selected, otherwise false

isActiveFlag

Tests if the marker is actived

Returns:

true if the marker is active by right click, otherwise false

setSelected

Sets the marker to be selected

Parameters:

selected - flag of whether marker label is selected

setSongIndex

Sets song index.

Parameters:

songIndex - song index of the marker belongs to.

69

setSongLabel

Sets the color label of the maker.

Parameters:

label - color number

setMaxS_Left

Sets the left boundary of the marker.

Parameters:

Left - minimal value of the starting position in second

setMaxE_Right

Sets the right boundary of the marker.

Parameters:

Left - maximum value of the end position in second

setActiveFlag

Sets the maker state.

Parameters:

activeFlag - true if activated, otherwise false

setBoundary

Sets the marker boundaries.

Parameters:

maxLeft - left boundary

maxRight - right boundary

setStart_pos

Gets the start position of marker

Parameters:

start_pos - starting position of marker

setEnd_pos

Sets the end position of marker.

70 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

Parameters:

end_pos - ending position of marker

getSongIndex

Gets the song index.

Returns:

song index of the marker belongs to.

getSongLabel

Gets the song color label.

Returns:

song label of the marker belongs to.

getEnd_pos

Gets the end position of marker.

Returns:

ending position of marker

getStart_pos

Gets the start position of marker

Returns:

starting position of marker

getMarkerLength

Gets the length of marker

Returns:

length of marker

getMaxS_Left

Gets the left boundary of marker

Returns:

left boundary of marker

getMaxE_Righ

71

Gets the right boundary of maker

Returns:

left boundary of marker

Class LabelFile

Label file contains the information of annotations and color class. The information of an
annotation consists the starting time, the ending time and the label of color. Color type
is stored in a hash table. The hash code is corresponding to the label of annotation.

LabelFile

Creates a new instance of labelFile A label file contains the information

of annotations and color type.

Parameters:

file - the labelfile

encoding - the encoding type

Class IconButton

Extension of JButton. Buttons, which have specific icons are belongs to this class, such as
PlayPauseButton, StopButton. The iconButton has some specific interactions for example
the color changes when mouse moves on. The interaction of the button is set in synth.xml.

IconButton

Creates a new instance of IconButton

Parameters:

image - icon of the button

buttonToolTip - tool tip of the button

buttonText - text of the button

Class ColorFile

Color file sets the color class for annotations.

ColorFile

Creates a new instance of ColorFile.

72 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

Parameters:

file - color file name

encoding - file encoding type.

openChordLabelFiles

Opens chord label files.

Parameters:

labelFile - the label information

labelArray - hashtable of each color

Returns:

color label of each marker

Class LogoPanel

The panel with an Image as a background The image will not be resized. It is placed at
the bottom, centered.

LogoPanel

Creates a new instance of LogoPanel

Parameters:

logoURL - url of logo image

LogoPanel

Creates a new instance of LogoPanel

Parameters:

image - logo image

posX - x-axis position of image

posY - y-axis position of image

paintComponent

Paints the logo image.

Overrides:

paintComponent in class javax.swing.JComponent

Parameters:

g - graphics component

getBgPositions

73

Gets the logo position

Returns:

logo position

Class TempButton

The button which is the current activated interpretation switch button places on the left
of each slider. Each interpretation has one TempButton.

TempButton

Creates a new instance of TempButton.

Parameters:

title - text shown in the button

index - index of the song which the button belongs to

horizontalOffset - horizontal offset of the button

width - width of the button

verticalOffset - vertical offset of the button

verticalSpacing - vertical space between two buttons

icon - icon of the button

string - name part of the action command of the button

i - index part of the action command of the button

j - index j in action command of the button

Class TempAnnotationPanel

The panel holds annotations for each interpretation. Each interpretation has one Tem-
pAnnotationPanel.

TempAnnotationPanel

Creates a new instance of TempAnnotationPanel

Parameters:

title - text shown in the panel

index - index of the song which the panel belongs to

horizontalOffset - horizontal offset of the panel

width - width of the panel

verticalOffset - vertical offset of the panel

verticalSpacing - vertical space between two panels

height - height of the panel

color - color of the panel

string - text part of the panel name

pos - index part of the panel name

74 CHAPTER 8. INTERPRETATION SWITCHER DOCUMENTATION

Chapter 9

Conclusion

This thesis could be separate into two main part. In the first part, we introduce the au-
tomatic repetitive music segmentation procedure. The reference-based segmentation [15]
is developed by Mueller, Grosche and Wiering. We experiment on the Dutch folk song
dataset, which is used in [15]), and get a closed result. This result is used as a base-
line for our following experiment. Based on reference-based segmentation, we develop
reference-free segmentation which can segment music without any additional reference.
The precision of the reference-free segmentation result decreases since the optimal refer-
ence step is sensitive to the quality and the structure of the music. And the conditions of
actual recordings are complex. Therefore, automatically selected reference is not as precise
as the manually generated reference. However, using the reference-free segmentation can
segment most of recordings and derive the most representative passage of the recording.
In the second part of this thesis we introduce an application to visualize and navigate the
segmentation results. In particular, we describe several novel functionalities, which have
been implemented as plug-ins for the SyncPlayer framework.

Our main contributions can be summarized as follows. Firstly, we develop an automatic
segmentation procedure which can segment repetitive music without additional reference
file. Secondly, we extend the SyncPlayer with some useful functions.

As future work, one could improve he efficiency and accuracy of the reference-free segmen-
tation. For example, using single loop instead of double loop in optimal reference selection
step to reduce the time cost. Even further, self-similarity matrix could be used for seg-
menting music also. For the SyncPlayer, more extensions could be developed considering
different usages. For example developing a zoom in function for image mode, which helps
to show the image clearly.

75

76 CHAPTER 9. CONCLUSION

Appendix A

Reference-free Segmentation
Result

In this chapter, the reference-free segmentation result is represented for every recording.

Table of Segmentation Evaluation Results

In Table A.1, the evaluation results of some segmentation strategies introduced in this
thesis are represented.

Strategy 1: reference-based segmentation (CENS(9,1)).

Strategy 2: reference-free segmentation with first stanza strategy (CENS(11,5)).

Strategy 3: reference-free segmentation with best stanza strategy (CENS(11,5)).

Strategy 4: reference-free segmentation (CENS(11,5)).

Figures of Reference-free Segmentation Result

The figures of the segmentation results for every audio recording are represented. These
segmentation results are derived by reference-free segmentation, which correspond to the
Strategy 4 in Table A.1.

APPENDIX A. REFERENCE-FREE SEGMENTATION RESULT

Table A.1. Summary

No. Name Stanza Strategy1 Strategy2 Strategy3 Strategy4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

OGL49313
OGL38408
OGL37511
OGL27517
OGL27516
OGL27515
OGL26805
OGL25011
OGL25010
OGL25009
OGL19101
NLB70134
NLB70238
NLB71227
NLB72355
NLB72395
NLB72886
NLB73374
NLB73993
NLB74028
NLB74234
NLB74328
NLB74336
NLB74437
NLB74603
NLB74613
NLB74649
NLB74754
NLB75059
NLB75063
NLB75068
NLB75073
NLB75079
NLB75158
NLB75167
NLB75174
NLB75249
NLB75325
NLB75431
NLB75612
NLB75616
NLB75619
NLB75831
NLB76271
NLB76426
NLB76495
NLB76632
summary

5
13
6
5
6
5
4
11
10
34
24
10
7
14
12
12
5
10
14
4
9
7
12
8
27
17
8
8
7
7
10
5
6
4
4
8
10
9
10
7
12
9
14
7
12
7
10
9.9

P R F
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.909 0.909 0.909
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.900 0.900 0.900
1.000 1.000 1.000
1.000 1.000 1.000
1.000 0.833 0.909
0.300 0.500 0.375
1.000 1.000 1.000
0.889 0.800 0.842
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.900 1.000 0.947
0.875 0.824 0.848
1.000 1.000 1.000
1.000 1.000 1.000
0.833 0.714 0.769
0.857 0.857 0.857
1.000 0.900 0.947
1.000 1.000 1.000
0.667 0.667 0.667
1.000 1.000 1.000
0.600 0.750 0.667
1.000 0.750 0.857
1.000 1.000 1.000
0.778 0.778 0.778
0.900 0.900 0.900
1.000 0.571 0.727
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.143 0.143 0.143
0.667 0.667 0.667
1.000 1.000 1.000
0.800 0.800 0.800
0.915 0.899 0.904

P R F
1.000 1.000 1.000
0.923 0.923 0.923
0.833 0.833 0.833
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.909 0.909 0.909
0.800 0.800 0.800
1.000 1.000 1.000
0.923 1.000 0.960
1.000 1.000 1.000
1.000 1.000 1.000
0.857 0.857 0.857
0.087 0.167 0.114
0.333 0.750 0.462
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.478 0.917 0.629
1.000 1.000 1.000
0.964 1.000 0.982
0.293 0.706 0.414
1.000 1.000 1.000
1.000 1.000 1.000
0.750 0.857 0.800
0.857 0.857 0.857
0.471 0.800 0.593
1.000 1.000 1.000
0.667 0.667 0.667
1.000 1.000 1.000
0.750 0.750 0.750
0.500 1.000 0.667
0.263 0.500 0.345
0.188 0.333 0.240
0.900 0.900 0.900
1.000 1.000 1.000
1.000 1.000 1.000
0.818 1.000 0.900
1.000 1.000 1.000
0.857 0.857 0.857
0.833 0.833 0.833
1.000 1.000 1.000
1.000 1.000 1.000
0.835 0.898 0.857

P R F
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.909 0.909 0.909
1.000 1.000 1.000
0.971 1.000 0.986
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.393 0.917 0.550
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.800 1.000 0.889
1.000 1.000 1.000
0.964 1.000 0.982
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.857 0.857 0.857
1.000 1.000 1.000
0.400 0.800 0.533
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.375 0.667 0.480
1.000 1.000 1.000
0.875 1.000 0.933
0.923 1.000 0.960
0.818 1.000 0.900
1.000 1.000 1.000
0.857 0.857 0.857
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.939 0.979 0.954

P R F
0.400 0.400 0.400
1.000 1.000 1.000
1.000 1.000 1.000
0.333 1.000 0.500
0.333 0.333 0.333
1.000 1.000 1.000
1.000 1.000 1.000
0.000 0.000 0.000
0.800 0.800 0.800
0.853 0.853 0.853
1.000 1.000 1.000
0.500 0.500 0.500
1.000 1.000 1.000
1.000 1.000 1.000
0.000 0.000 0.000
0.188 1.000 0.316
1.000 1.000 1.000
1.000 1.000 1.000
0.143 0.143 0.143
1.000 0.500 0.667
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.500 0.500 0.500
1.000 1.000 1.000
0.938 0.882 0.909
1.000 1.000 1.000
1.000 1.000 1.000
0.000 0.000 0.000
0.857 0.857 0.857
0.149 0.700 0.246
1.000 1.000 1.000
1.000 1.000 1.000
0.500 0.500 0.500
0.000 0.000 0.000
1.000 1.000 1.000
1.000 1.000 1.000
0.111 0.111 0.111
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
0.096 1.000 0.175
0.083 0.083 0.083
0.714 0.714 0.714
1.000 1.000 1.000
0.713 0.763 0.715

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

1. OGL49313

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

2. OGL38408

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

3. OGL37511

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

4. OGL27517

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

5. OGL27516

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

6. OGL27515

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

7. OGL26805

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

8. OGL25011

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

9. OGL25010

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

10. OGL25009

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

11. OGL19101

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

12. NLB70134

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

13. NLB70238

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

14. NLB71227

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

15. NLB72355

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

16. NLB72395

APPENDIX A. REFERENCE-FREE SEGMENTATION RESULT

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

17. NLB72886

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

18. NLB73374

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

19. NLB73993

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

20. NLB74028

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

21. NLB74234

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

22. NLB74328

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

23. NLB74336

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

24. NLB74437

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

25. NLB74603

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

26. NLB74613

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

27. NLB74649

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

28. NLB74754

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

29. NLB75059

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

30. NLB75063

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

31. NLB75068

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

32. NLB75073

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

33. NLB75079

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

34. NLB75158

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

35. NLB75167

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

36. NLB75174

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

37. NLB75249

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

38. NLB75325

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

39. NLB75431

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

40. NLB75612

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

41. NLB75616

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

42. NLB75619

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

43. NLB75831

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

44. NLB76271

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

45. NLB76426

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

46. NLB76495

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

47. NLB76632

APPENDIX A. REFERENCE-FREE SEGMENTATION RESULT

List of Figures

2.1 Pitch filter bank . 6

2.2 Pitch plot for folk song OGL49313 . 7

2.3 Illustration of Shepard’s helix of pitch perception 8

2.4 Chroma representation . 9

2.5 CENS(11,5) representation . 10

3.1 An example of a cost matrix . 11

3.2 An example of DTW . 12

3.3 An example of accumulated cost matrix and the optimal warping path. 13

3.4 Optimal time alignment of the sequence X with a subsequence of Y 14

4.1 Matching curve of folk song OGL49313 . 17

4.2 CENS chromagram of the first stanza of OGL49313 18

4.3 F0-enhanced chromagram of the first stanza of OGL49313 18

5.1 Segmentation result of NLB70238 . 22

5.2 An matching curve of OGL49313. 24

5.3 Segmentation result of OGL49313 and OGL25010 27

5.4 Segmentation result of OGL49313 and OGL25010 28

5.5 Segmentation result of NLB74028 . 30

5.6 Segmentation result of NLB74028 . 30

5.7 Segmentation result of NLB75059 . 31

5.8 Score representation of one stanza of folk song OGL27517. 31

5.9 Segmentation result of OGL27517 . 32

5.10 Segmentation result of NLB72395 . 32

5.11 Segmentation result of NLB75068 . 33

5.12 Segmentation result of NLB76271 . 33

LIST OF FIGURES

5.13 Segmentation result of NLB75068 and NLB76271 using flexible threshold 34

5.14 Score representation for the standard stanza of OGL25011. 34

5.15 Segmentation result of OGL25011 . 35

5.16 Score representation of two different kinds of stanzas of NLB72355 35

5.17 Segmentation result of NLB72355 and NLB75325 using flexible threshold 36

5.18 Segmentation result of NLB75167 . 36

5.19 Segmentation result of NLB76426 . 37

6.1 Overview of the SyncPlayer Framework . 39

6.2 The SyncPlayer with Audio Switcher plug-in. 40

6.3 The SyncPlayer with Audio Structure plug-in. 41

7.1 New user interface of Interpretation Switcher extended with annotation field. . . . 44

7.2 An example of the Sync File . 45

7.3 An example of the Label File . 46

7.4 Interpretation Switcher in absolute mode. 47

7.5 Interpretation Switcher in reference mode. 47

7.6 Comparison of selecting different reference recordings in reference mode 48

7.7 An example of Interpretation Switcher (Image mode) 49

7.8 An example of Interpretation Switcher (Image mode) 49

7.9 An example of Interpretation Switcher (Image mode) 50

7.10 The operation procedure of changing the starting position of a marker with mouse 51

7.11 The operation procedure of moving a marker with mouse 52

7.12 Example of moving a marker and deleting a marker with keyboard 53

List of Tables

4.1 Performance of evaluation result . 19

5.1 Average result comparison applying first stanza strategy. 26

5.2 Average evaluation result comparison applying best stanza strategy. 26

5.3 Segmentation result comparison of free strategy. 27

5.4 Comparison of average evaluation result by different fitness measures 29

5.5 Comparison of reference-based segmentation . 29

5.6 Conclusion of recordings with bad segmentation result. 30

A.1 Summary .

LIST OF TABLES

Bibliography

[1] Anthony Brandt, How music makes sense. Website, January 2008.
http://cnx.org/content/m12953/latest/.

[2] M. A. Bartsch and G. H. Wakefield, Audio thumbnailing of popular music using chroma-
based representations, IEEE Transactions on Multimedia, 7 (2005), pp. 96–104.

[3] A. de Cheveigné and H. Kawahara, YIN, a fundamental frequency estimator for speech
and music., Journal of the Acoustical Society of America (JASA), 111 (2002), pp. 1917–1930.

[4] P. Dorrell, What is Music?: Solving a Scientific Mystery, Lulu.com, 2005.

[5] C. Duxbury, J. P. Bello, M. Davies, and M. Sandler, Complex Domain Onset Detec-
tion For Musical Signals, Proc. of the 6th Int. Conference on Digital Audio Effects, September
2003.

[6] D. FitzGerald and J. Paulus, Unpitched percussion transcription, in Signal Processing
Methods for Music Transcription, Springer, 2006, pp. 131–162.

[7] C. Fremerey, F. Kurth, M. Müller, and M. Clausen, A demonstration of the Sync-
Player system, in Proceedings of the 8th International Conference on Music Information Re-
trieval (ISMIR), Vienna, Austria, Sept. 2007, pp. 131–132.

[8] E. Gómez, Tonal Description of Music Audio Signals, PhD thesis, UPF Barcelona, 2006.

[9] M. Goto, A chorus-section detecting method for musical audio signals, in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hong
Kong, China, 2003, pp. 437–440.

[10] D. J. Hargreaves, The effects of repetition on liking for music, Journal of Research in Music
Education, 32 (1984), pp. 35–47.

[11] F. Kurth, M. Müller, D. Damm, C. Fremerey, A. Ribbrock, and M. Clausen,
SyncPlayer - an advanced system for multimodal music access, in Proceedings of the 6th
International Conference on Music Information Retrieval (ISMIR), London, UK, Nov. 2005,
pp. 381–388.

[12] G. H. W. Mark A. Bartsch, Audio thumbnailing of popular music using chroma-based
representations, IEEE Transactions on Multimedia, 7 (2005).

[13] R. Middleton, Form, in Key terms in popular music and culture, B. Horner and T. Swiss,
eds., Wiley-Blackwell, Sept. 1999.

[14] M. Müller, Information Retrieval for Music and Motion, Springer Verlag, 2007.

[15] M. Müller, P. Grosche, and F. Wiering, Robust segmentation and annotation of folk
song recordings, in Proceedings of the 10th International Society for Music Information Re-
trieval Conference (ISMIR), Kobe, Japan, Oct. 2009, pp. 735–740.

http://cnx.org/content/m12953/latest/

BIBLIOGRAPHY

[16] M. Müller and F. Kurth, Towards structural analysis of audio recordings in the presence
of musical variations, EURASIP Journal on Advances in Signal Processing, 2007 (2007).

[17] M. Müller, F. Kurth, and M. Clausen, Audio matching via chroma-based statistical
features, in Proceedings of the 6th International Conference on Music Information Retrieval
(ISMIR), 2005, pp. 288–295.

[18] M. Müller, F. Kurth, and T. Röder, Towards an efficient algorithm for automatic
score-to-audio synchronization, in Proceedings of the 5th International Conference on Music
Information Retrieval (ISMIR), Barcelona, Spain, Oct. 2004, pp. 365–372.

[19] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition, Prentice Hall Signal
Processing Series, 1993.

[20] R. N. Shpard, Circularity in judgments of relative pitch, Journal of the Acoustical Society
of America, 36 (1964), pp. 2346–2353.

[21] P. van Kranenburg, J. Garbers, A. Volk, F. Wiering, L. Grijp, and R. Veltkamp,
Towards integration of MIR and folk song research, in Proceedings of the International Con-
ference on Music Information Retrieval (ISMIR), Vienna, AT, 2007, pp. 505–508.

[22] Wikipedia, Precision and recall. http://en.wikipedia.org/wiki/Precision_and_recall,
Retrieved 06.06.2011.

[23] , Woo (beethoven). http://en.wikipedia.org/wiki/WoO, Retrieved 15.07.2011.

http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/WoO

	Introduction
	Repetitions in Music
	Music Segmentation Task
	Challenges of Segmentations
	Folk Song Collection
	SyncPlayer
	Contributions
	Organization of Thesis

	Feature Extraction
	Pitch Features
	Local Energy(STMSP)
	Chroma Features
	CENS Features

	Dynamic Time Warping
	Classical DTW
	Subsequence DTW

	Reference-based Segmentation
	Procedure
	Experiment

	Reference-free Segmentation
	Procedure
	Experiment

	SyncPlayer Framework
	SyncPlayer Overview
	Audio Switcher
	Audio Structure

	SyncPlayer Extension
	Interpretation Switcher
	Extension of Timeline Modes
	Image Mode
	User Interaction Extension

	Interpretation Switcher Documentation
	Conclusion
	Reference-free Segmentation Result
	List of Figures
	List of Tables
	Bibliography

