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i
Abstract

The automatic segmentation and classification of an unknown motion data stream accord-
ing to given motion categories constitutes an important research problem with applica-
tions in computer animation, medicine and sports sciences. In this thesis, we consider
the scenario of trampoline motions, where an athlete performs a sequence of predefined
trampoline jumps. Here, each jump follows certain rules and belongs to a specific motion
category such as a pike jump or a somersault. Then, the classification problem consists
in automatically segmenting an unknown trampoline motion sequence into its individ-
ual jumps and to classify these jumps according to the given motion categories. Since
trampoline motions are very fast and spacious while requiring special lighting conditions,
it is problematic to capture trampoline motions with video and optical motion capture
systems. Inertial sensors that measure accelerations and orientations are more suitable
for capturing trampoline motions and therefore have been used for this thesis. However,
inertial sensor output is noisy and abstract requiring suitable feature representations that
display the characteristics of each motion category without being sensitive to noise and
performance variations. A sensor data stream can then be transformed into a feature
sequence for classification. For every motion category, a class representation (or in our
case, a class motion template) is learned from a class of example motions performed by
different actors. The main idea, as employed in this thesis, is to locally compare the fea-
ture sequence of the unknown trampoline motion with all given class motion templates
using a variant of dynamic time warping (DTW) in the comparison. Then, the unknown
motion stream is automatically segmented and locally classified by the class template that
best explains the corresponding segment. Extensive experiments have been conducted
on trampoline jumps from various athletes for evaluating various feature representations,
segmentation and classification.
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Chapter 1

Introduction

The automatic segmentation and classification of an unknown motion data stream accord-
ing to given motion categories constitutes an important research problem with applications
in computer animation, medicine and sports sciences. In general, classification means to
assign input data into one of a given number of categories based on its contents. In
relation with the general description, motion classification is the process of assigning a
motion label that matches best the characteristics of a given input motion document. In
this thesis, we consider the scenario of trampoline motions, where an athlete performs
a sequence of predefined trampoline jumps. Here, each jump follows certain rules and
belongs to a specific motion category such as a pike jump or a somersault. So stable and
accurate classification results are mainly based on three fundamental methodologies: the
performance of a motion, the capturing of a motion and the analysis of a motion.

Motion Performance. There are various kinds of motions that can either be simple and
natural motions of everyday life or sporting motions that can have either health, enjoyment
or professional competitive purposes. For this thesis, we chose a motorically demanding
but also very aesthetic sports motion consisting of several different motion types that can
be easily separated from each other: trampolining. Trampolining is closely related to gym-
nastics including similar acrobatic motions. However, due to the bounciness and elastic
properties of a trampoline, even more complicated and fast motions than in gymnastics
can be performed that will be challenging for classification. As every trampoline jump
starts and ends with a phase where the athlete is in contact with the trampoline bed, it is
however much easier to segment single jumps from a sequence of consecutive jumps than in
other sports. This property is helpful for classification issues. Overall, trampolining offers
a very interesting, but also stable and controlled environment for motion classification.

Motion Capturing. The idea of motion capturing has already been initiated in 1878,
when Eadweard Muybridge published a photo series about a galloping horse proving that
horses do not always keep contact with the ground with at least one leg. With his following
publications about animal locomotion and human motion in 1887 and 1901, Muybridge
was one of the pioneers for the analysis of (human) motion [37]. Since the beginning of
motion analysis, motion capturing became a professional industrial branch. Nowadays,
many motion capture systems for different application purposes are available that deliver
three dimensional motion information. Usual motion capture systems are either marker-
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Figure 1.1. Since the beginning of motion analysis, different motion capture systems have been
developed. (a) Mechanical motion capture setup with a triaxial goniometer from 1980'. (b)
Optical marker-based motion capturing. (c¢) Optical markerless motion capturing. (d) Inertial
motion capturing as used in this thesis.

based optical motion capture systems, mechanic or magnetic motion capture systems or
markerless optical motion capture systems based on two dimensional computer vision
techniques, see Figure [Tl All those systems offer advantages, but also disadvantages
regarding the size of the capture volume, the amount of mobility for the motion actor or
additional overhead regarding pre- and post-processing steps like calibration and system
setup. For example, optical motion capture systems offer good mobility and provide
the user with high-quality data. On the other hand, a wide capture volume for spacious
motions can only be obtained if combined with an appropriate indoor capture environment
and a large number of optical devices available. Furthermore, optical systems come up
with a highly inefficient overhead for pre-processing due to their extensive preparation
phase and difficult calibration. For easy and everyday use, it would be reasonable to
provide the user with some motion capture technique that does not restrict the capture
volume to indoor performances of non spacious motions and the actor’s mobility without
complicated setup procedures. Here, innovative motion capture systems like systems based
on inertial sensors can be useful, see Figure [[T}(d).

Inertial sensors, or inertial measurement units (IMUs), work with micro-mechanical com-
ponents as accelerometers and rate gyros that supply the user with information about
acceleration, rotation and orientation. Because of the mechanical components, data can
be captured without extensive preparation or calibration and the sensors are of small size
and weight so that they do not restrict the motion performance. Since trampoline mo-
tions are very fast and spacious and require special lighting conditions, it is problematic
to capture trampoline motions with video and optical motion capture systems. Here, in-
ertial sensors that measure accelerations and orientations are more suitable so that the
trampolining motions have been captured with inertial devices in this thesis. On the
other hand, the sensors do not yield positional information of a motion that can be used
directly for further applications as traditional motion capture systems. In contrast to
the very precise three dimensional positional data of optical marker-based motion capture
data, inertial data is noisy and tends to be sparse and unintuitive as no positional data and
only orientation and acceleration information can be obtained from the capture devices.
Therefore, suitable and good data representations have to be found that represent well

Yhttp : / Jwww.xsens.com/images/stories/gonio_old.jpg



Figure 1.2. Different application fields of motion analysis?. (a) Gait analysis system in or-
thopaedics. (b) Two dimensional video analysis tool Dartfish for sport performance monitoring.
(¢) Robot performing a learned human motion. (d) Computer animated scene from motion capture
data.

the characteristics of a given motion.

Motion analysis. Apart from the evolution of different motion capture systems, motion
analysis became an interdisciplinary research field since the beginning of motion analysis in
1878 by Eadweard Muybridge. Main research fields that deal with human motion capture
data are medicine, sports science, robotics and computer science. Figure shows an
overview over the application fields of motion analysis.

The most common request for motion analysis in medicine is the analysis of human gait
patterns for orthopedics. Abnormalities that lead to injuries or physical infirmities can be
detected from the captured motion data. In recovery applications and rehabilitation, the
motion data can be used for medical survey. For example, the healing process of a patient,
but also incorrect motion behavior can be determined. Survey issues that prevent fall and
injury of elderly people are another application for medical motion analysis [7, 10, 21].
The main purpose of using motion capture data in sports is to supply the athlete with
feedback about a previously performed motion. Using additional information from motion
capture data that cannot be detected during the performance helps to identify motion
phases that could be improved or to get an impression on how precise biomechanical
parameters have been obeyed. Two dimensional video analysis systems like Dartfish [I1]
are common tools for performance monitoring, whereas three dimensional data processing
tools have just started to become popular for motion analysis [6, 27]. In robotics, the main
purpose of motion analysis is to find the essential parameters that characterize a real-life
motion. Those characteristics can then be transfered on robots or can be automated
for virtual-reality applications to produce a realistic and natural motion pattern [30] [32].
One application of motion analysis using motion capture data in computer science is
computer animation. For realistic three dimensional animations, it is often required to
create a motion looking in a most natural way [2) [12], 17]. Three dimensional information
of a motion can be created manually by keyframe animation. The resulting motions,
however, often look artificial and unnatural. To obtain more realistic motions, a motion

2(a): http : /Jwww.zebris.de,
(b): hitp : //rosachiropracticfair fax.com/clients/2216/images/Dart fish_Fair fax_V A.jpg,
(c): hitp : | Jwww.weblogsinc.com/common/images/7707148614858914..J PG'70.3549340219832601,

(d): hitp : //thinkdrawsell. files.wordpress.com/2008/09/polar — mocap.jpg
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Figure 1.3. Classification method used in this thesis. Trampoline jumps from inertial sensor
input is separated by an automatic segmentation method and can be labeled as motion category
with previously computed motion class templates.

capture system can be used yielding positional data of the recorded motion that can easily
be transferred to the motion of a three dimensional character [9]. Another application
scenario in the field of computer science is the efficient retrieval of multimedia data (and
herewith also of human mocap data). Here, content-based procedures for data annotation
and efficient content-based retrieval methods have been developed that work on the raw
data itself and do not rely on manually generated textual annotations or metadata [16, 25,
26]. Meanwhile, several techniques for multimedia retrieval and classification have been
developed that make it nonessential to capture new motion data as the existing data from
an unknown database can be reused instead.

All application fields of motion analysis impose different requirements on the motion cap-
ture data and the motion capture systems, but also on the usage of the acquired data.
For example, in computer animation, the accuracy of the captured data is very important.
Consequently, common capture system are optical marker-based capture systems. Using
the precise positional data, further analysis by comparisons or similarity measures can
give detailed information about the motion. In medicine and sports sciences, however, it
is important to obtain the data in real-time from an easy-to-use capture system. Conse-
quently, preferred capture systems are inertial capture systems. Here, it is often sufficient
to examine statistical quantities like the correlation coefficient or the mean and median
of the motion capture data or to use the Fourier Transform [5, [34]. In our scenario, as we
want to analyze and understand previously performed trampoline motions on a very fine
level, we introduce how to use the analysis methods for positional data on the abstract
inertial data.

In this thesis, we consider the problem to automatically segment an unknown trampoline
motion sequence into its individual jumps and to classify these jumps according to given
motion categories. Two different processing steps are necessary for a stable and accurate
classification. In the first step, the captured inertial data is processed. We will discuss how



to find meaningful representations for every motion category that display the characteris-
tics of each motion category. As the inertial output is difficult to analyze because of it’s
noisy and abstract character, those feature representations have to be not too sensitive to
noise, performance variations and changes in recording set-up and calibration. A sensor
data stream can then be transformed into a feature sequence for classification. With an
additional segmentation algorithm, the motion data stream will be separated, so that we
may assume that every motion document consists of a single jump. In the second step, a
class representation (or in our case, a class motion template) is learned, where each motion
category is represented by example motions performed by different actors. In our scenario,
a finite number of motion categories are given. Now, the idea is to locally compare the
feature sequence of the unknown trampoline motion with all given class motion templates.
In this thesis we use variants of dynamic time warping (DTW) for comparison. Then, an
unknown motion is automatically segmented and locally classified by the class template
that best explains the corresponding segment. Figure [I.3] gives a schematic overview of
the classification pipeline in this thesis.

The main contributions of this thesis are the classification method based on inertial sensor
input for a complex motion scenario and the design and analysis of various feature rep-
resentations. For both, evaluation of feature representations as well as segmentation and
classification, extensive experiments have been conducted on real trampoline movements
performed by various actors.

Possible applications of the trampoline classification scenario are programs for motion un-
derstanding and motion analysis of athlete’s performance that can then for example be
used to supply the athlete with automatic feedback in training sessions or competitions.
While a motion is performed, the input motion data can be classified. Using those classifi-
cations, deviations within the labeled class from the learned class motion template or from
an optimal motion can be determined. Computer assisted training software can then use
this deviation information on motion performances to give the athlete feedback about his
motion technique, errors during motion performance and suggestions for improvements.

The thesis is structured as followed. In Chapter 2] elementary explanations to understand
the concept of trampolining are given. The most common trampoline jumps and their tech-
nical requirements are introduced based on their different levels of difficulty. Furthermore,
the elementary biomechanics of trampolining is explained. In Chapter B], different motion
capture systems and their modalities are listed and the requirements capturing trampo-
line motions imposes on a motion capture system are explained. The working principle of
inertial sensors as well as their properties are then discussed in detail. Besides, physical
quantities that occur while working with inertial sensors are recapulated. Chapter Ml gives
a general introduction into the motion analysis and classification task in this thesis. All
necessary methods and algorithms such as feature representations, similarity measures
and motion templates are introduced and described. In Chapter [ it is then explained
how the captured trampoline motions have been built into a database. Furthermore, this
chapter gives an overview of how the trampoline database has been structured and how
the data has been processed for further experiments. From Chapter [0l on, all experiments
that have been conducted for this thesis are described. In Chapter 6l experiments to eval-
uate the feature representations from Chapter [l are discussed. Chapter [ then evaluates
the general motion templates and describes how to improve motion templates to handle
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variations. Measures to quantify the evaluation results are introduced in both Chapter
and Chapter [l Chapter [ finally shows classification results for the chosen feature set
and motion templates and different similarity measures. The automatic method for seg-
mentation is explained as well. Again, all classification results for the different similarity
measures are evaluated.



Chapter 2

Basic Trampolining

For the classification experiments in this thesis, we chose trampolining that is closely
related to gymnastics where athletes perform acrobatic moves while bouncing on a tram-
poline. In 2000, trampolining became an Olympic Summer Discipline.

To better understand the specific requirements that are necessary to distinguish and clas-
sify different trampoline performances, it is helpful to understand the basic principles of
trampolining. In this chapter, we will specify standard trampoline jumps for beginners as
well as intermediate and advanced trampolinists and introduce the biomechanical princi-
ples and physical laws that build the base for a safe and correct jump and that allow the
athlete to perform a specific trampoline jump.

In Section 2.1l basic trampoline terminology and the elementary technical description of
trampolining is explained. In Section 2.2 easy trampoline jumps that can be learned
with few trampolining experience are introduced. Not all of the beginner’s moves listed
in this section are considered in later experiments or are useful for a classification task,
but as they are helpful to understand the technique and main idea of trampolining they
are explained, as well. Section 2.3 describes intermediate trampoline jumps that can be
learned with stable motorical knowledge of the basic moves. Many of the intermediate
jumps are used for experiments in this thesis. In Section 2.4 advanced moves that require
a lot of trampolining experience is listed. Those jumps have not been investigated in
this thesis, but can help to improve the understanding of the principles of trampolining.
Section explains physical laws and biomechanical concepts that are the base for all
trampoline moves and influence the performances of all trampolinists.

2.1 Trampoline Terminology

The trampoline bed is the elementary part of the trampoline and the part that the athlete
bounces on. The bed is made up of bands of elastic material. The width of these bands
contributes to the bounciness of the trampoline. The narrower the bands on the bed, the
bouncier the trampoline.

Different trampoline jumps require different motorical skills, but all jumps can be split

7
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Figure 2.1. Phases of a trampoline jump: C - Contact phase divided in landing (L) and takeoff
phase(T) and F - flight phase divided by the flight curve’s apex (A).

into the same main phases that characterize the morphology of trampolining: the contact
phase when the athlete is in contact with the trampoline bed and the flight phase when
the athlete is in flight and can perform various motions. Contact and flight phases can
be subdivided into further phases leading to a constant motion sequence of all trampoline
jumps. In the beginning contact phase, the jump is prepared until the athlete loses contact
with the trampoline bed and initiates a specific motion in the first half of the flight phase.
The main part of the motion is performed at the apex of the flight curve while in the
second half of the flight phase, the landing is already initiated. The jump ends with the
time the athlete gets in contact with the trampoline bed again. Figure 2] visualizes the
sequence of jump phases.

Trampoline moves can be separated easily by the contact phase and especially the moments
the athlete gets in contact and loses contact with the trampoline bed. The parts of the
trampolinist’s body that touch the trampoline bed at the beginning and the ending of a
motion further specify a trampoline jump. In general, there are four different fakeoff and
landing positions, see Figure 2.2], that lead to a variety of different motions:

Feet (FE): landing in a standing position

Seat (SE): landing in a sitting down position with the legs pointing straight ahead and
the hands placed behind the hip

Front (FR): landing on the belly, or front, with the hands under the chin

Back (BA): landing straight on the back or on the back with arms and legs pointing
upward

Landing on only one leg is not allowed as it can lead to serious injury.

The different landing and starting positions discriminate trampoline during the contact
phase. During flight phase, various jumps can be performed that can be distinguished by
their motion shape. The four different motion shapes for trampolining are:
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Figure 2.2. Different takeoff and landing positions: feet (FE), seat (SE), front (FR) and back
(BA)
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Figure 2.3. Four different possible motion shapes for trampoline moves: straight (st), piked (pi),
tucked (tu) and straddle (sd).

Straight (st): upright with the body fully extended and elongated in direction of the
longitudinal axis

Piked (pi): touching the toes like position with legs straight and together and the hands
near the feet

Tucked (tu): curled up in a little ball with the hands on the shins and the knees together

Straddle (sd): piked shape with the feet apart

Figure 2.3] shows all different motion shapes. Those motion shapes can be executed as a
single move (for example by starting and landing on both feet) as well as be contained
in all other forms of somersaults and rotations. The motion shapes are an important
indicator for performance differences in competitions.

During flight phase, the jumps can also be distinguished by rotational motion. In combina-
tion with the different starting and landing positions, the athlete has various possibilities of
performing rotations around both the lateral and the longitudinal axes. Rotations around
the dorsoventral axis are possible as well, but will not be discussed further in this thesis
as the resulting turntables are generally not considered to be valid moves within tram-
polining competitions and are more difficult to learn and to perform. Figure 2.4 shows an
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Figure 2.4. Overview over the three rotation axes: (a) lateral axis (red), (b) longitudinal axis
(blue) and (c) dorsoventral axis (green).

overview of the three axes of rotation. Articles about snowboard moves sometimes include
turntables moves and can offer additional information [14].

By using muscle forces of the legs and arms as well as making use of physical principles
and effects like the reactive forces of the trampoline bed, the athlete can gain and control
the height of the jump. For example, to take advantage of the elastic bed, the athlete can
make better use of muscular actions like the stretch produced by some knee action during
the landing phase.

2.2 Easy Trampoline Moves for Novices

The following jumps are basic technical skills each trampolinist has to master before
learning more complicated motions. They build a base for intermediate and advanced
jumping techniques and provide the athlete with knowledge about the basic shapes of a
trampoline jump. None of the further listed trampoline moves contains rotations of more
than 360°.

The first group of beginner’s moves are moves that do not include any rotation starting
and landing on both feet. The source for each trampoline motion is a simple straight jump.
It is necessary to be able to perform this jump with motorical reliability before learning
any other trampolining skills. Additionally to the straight motion style, trampoline moves
can be performed in the previously describes shapes, leading to the tuck jump, the pike
jump and the straddle jump.

The easiest rotational movement is the twist that can be seen as a straight jump with a
rotation around the longitudinal axis by multiples of 180°. The more rotational motion
the twist contains, the more difficult it becomes for the athlete.

A straight jump combined with a landing in the sitting position (or a start from the
sitting position) is another beginners’ move that does not require much expertise and can
be achieved just by dropping on the trampoline bed. The athlete should focus on a correct
landing into the seat drop simultaneously with the legs, the bottom and the palms of the
hands. For landing in a position different to on both feet (seat, front or back landing),



Back Drop
Back To Feet
Back Half Twist To Feet

FE—LaBW90—BA
BA—FE
BA—Lol180—FE
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Move 1D Description
Straight Jump STR FE—st—FE
Tuck Jump TJP FE—tu—FE
Pike Jump PJP FE—pi—FE
Straddle Jump SJP FE—sd—FE
Half Twist HTW FE—Lo180—FE
Full Twist FTW FE—Lo360—FE
Seat Drop SED FE—SE
Seat To Stand SST SE—FE
Seat Half Twist To Stand SHA SE—Lo180—FE
Seat Half Twist To Seat Drop SHS SE—Lo180—SE
Half Twist Seat Drop HTS FE—Lo180—SE
Front Drop FRD FE—LaFW90—FR
Front To Feet FRF FR—FE
Half Twist Front Drop HTF FE—Lo180—LaFW90—FR

Half Twist Back Drop - FE—Lo180—LaBW90—BA

Table 2.1. Overview of easy trampoline jumps divided into the morphologically similar motion
categories feet, twists, seat, front and back.

a correct landing technique is very important to prevent injuries like compressions of the
spine at the moment of landing. In contrast to a seat drop, landing in the back drop
requires more rotational motion that is initiated by higher pressure by the legs in forward
and upward direction at the moment of leaving the trampoline bed. The front drop on
the other hand requires higher pressure by the legs in backward and upward direction at
the moment of leaving the trampoline bed. As a result, both landings contain a rotational
motion of 90° around the lateral axis.

Body landings offer almost unlimited opportunities of execution for successive moves.
Some examples would be the cradle that is a back drop followed by a half twist to a back
drop, all different forms of twisting out of a seat drop and landing either on both feet or in
the seat drop again, dropping to the front out of a sitting start position, a rotation of 180°
around the lateral axis from the back to the front or vice versa, a rotation of 180° around
the longitudinal axis from the back to the front or vice versa. The variety is limited only
by the personal skills of an athlete and the physical properties that do not admit higher
amounts of rotations for a height of the motion and jumping position. Rotations of 360°
or more, however, cannot be considered as beginner’s moves anymore.

Table21]lists all easy trampoline jumps divided into groups of semantically similar motion
categories determined by their main morphologies. The ID for every jump that will be
used in this thesis is listed under ID, whereas the morpholic description of every motion
can be found in the third column. The description of the jumps reads as followed: takeoff
position—information about motion shapes and rotations—landing position. For the de-
scription of the motion shapes, the same abbreviations than in Section 21l with additional
information on the amount of rotation in degrees and the direction of rotation (forwards
or backwards).
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Move 1D Description

Somersault Backwards Tucked BWC FE—LaBW360 tu—FE
Somersault Backwards Piked BWB FE—LaBW360 pi—FE
Somersault Backwards To Seat BWS FE—LaBW360 tu—SE
Drop

Somersault Backwards Straight BWA FE—LaBW360 st—FE
Somersault Forwards — FE—LaFW360—FE

Barani BAR FE—LaFW360—Lol180—FE
Three Quarter Backwards 3QB FE—LaBW270 st—FR
Three Quarter Forwards - FE—LaFW270 st—BA

Table 2.2. Overview of intermediate trampoline jumps divided into the morphologically similar
motion categories somersaults backwards, somersaults forwards and three quarter rotations.

2.3 Intermediate Trampoline Moves

Intermediate jumps usually include moves that contain at least one full 360° rotation or
combinations between somersaults and twists. Somersaults can be executed in various
ways either forwards or backwards in a tucked, piked or straight shape. Landing safely
on both feet after performing a somersault forwards requires a good local orientation of
the athlete during the rotation and is much more difficult than landing backwards with
the trampoline bed as a helping orientation point. Therefore, somersaults forwards are
usually combined with a half twist resulting in a Barani or with more twists resulting in
advanced jumps.

Somersaults with a three quarter rotation around the lateral axis are called Three quarter
somersault forwards or backwards. All moves containing somersaults with no full rota-
tional motion resulting in a front or back-sided landing position, are seen as intermediate
moves due to the difficulty of finding a proper landing position and the risk of injury by
wrong or inexact landing positions. By an equally distributed landing on the front or the
back successive rotational moves and somersaults are possible to come back to an upright
standing position again.

TableP.2lists all intermediate trampoline jumps divided into groups of semantically similar
motion categories determined by their main morphologies using the same representation
than in Table 21l The ID for the somersaults investigated in this thesis are chosen in
accordance to the official naming of trampoline jumps.

2.4 Advanced Trampoline Moves

Advanced jumps can be obtained by combining several easy and intermediate jumps in
one flight phase. The complexity of trampoline moves is only restricted by physical laws as
well as anatomical properties of the human body. The different landing positions can offer
further possibilities of motion performance. In principle, somersaults and twists can be
combined in one single move, leading to double or triple somersaults with several twists at
the beginning or ending of the somersault or to full rotations with additional three quarter
rotations.
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Figure 2.5. 2010’s world champion Dong Dong from China at the trampoline world championships
in Metz, France.

Move 1D Description

Rudolf - FE—LaFW360—Lo540—FE
Randolf - FE—LaFW360—Lo900—FE
Adolf - FE—LaFW360—Lo1260—FE
Cody - FR—LaBW450 tu—FE
Babyfliffis - BA—LaFW450 tu—Lo180—FE
Double Somersault Backwards - FE—LaBW720—FE

Double Somersault Forwards - FE—LaFW720—FE

Fliffis - BA—LaFW720—Lol180—FE

Table 2.3. Overview of advanced trampoline jumps divided into the morphologically similar
motion categories somersaults forwards with twists, somersaults starting from body landings and
multiple somersaults.

To be able to perform those demanding and complicated jumps, the athlete has to gain a
sufficient height of flight with motorical reliability. Figure shows the 2010 trampoline
world champion in trampolining who reaches heights of almost 10 meters. Advanced
jumps have not been further investigated in this thesis and are probably subject to further
investigation requiring technically advanced motion actors.

Table2.3lists all intermediate trampoline jumps divided into groups of semantically similar
motion categories determined by their main morphologies using the same representation
than in Table 21l As for this thesis advanced jumps will not be used, we do not assign
any ID to the moves.

2.5 Physical and Biomechanical Principles of Trampolining

Different trampoline beds offer different degrees of bounciness. This implies that the
athlete needs to exert more or less muscular forces to gain the same height than on
another trampoline bed. In dependency on the height of flight, the time to perform a move
varies. For moves that are performed with similar flight heights, the time that passes while
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Figure 2.6. Rotational motion can be initiated during the flight phase by transfer of angular
momentum. (a) Somersault rotation: the athlete has angular momentum only about his lateral
axis (red line) with no twisting motion. (b) During somersault rotation, the athlete can bring his
body into counterclockwise rotation (see light blue) by moving his arms in clockwise direction.
The body begins a twisting motion around the longitudinal axis in order to conserve angular
momentum. (c¢) The twisting and somersaulting motion continue without moving the arms and no
external forces acting upon the athlete.

executing the motion remains stable, which will be useful for the later experiments. The
higher the athlete gets thrown out of the trampoline bed, the more time he has to perform
his motion, it is easier to perform advanced high rotational motions and in general, the
motion technique is performed in a better way.

Different shapes of the trampoline moves as well as different starting positions require
different accelerations exerted by the legs on the trampoline bed. For example, for the
performance of a piked somersault compared to the performance of a tucked somersault,
less rotational velocity occurs (for the same amount of force) as the athlete’s moment of
inertia is higher due to the legs that are stretched forward and not curled in direction
of the center of gravity. Consequently, the athlete needs to transfer more reactive forces
from the trampoline bed into his move to perform the same rotational motion at the
same time, as a result the acceleration of the feet will be higher. The same principle is
valid for the comparison of a somersault straight with a somersault piked, whereas the
somersault straight is characterized by a higher moment of inertia. Differently shaped
somersaults therefore can probably be distinguished by the amount of acceleration of the
lower extremities. Omne physical idea that lies beyond this principle is the transfer of
momentum, that describes the passing of the momentum from one body to another or
from parts of a body to the whole body. In trampolining, the momentum can be set up in
one part of the body and then be transferred to the whole body by muscular action. For
example, starting in a front position and kicking with the legs transfers a momentum from
the legs to the whole body when the muscles are used to lock the body straight resulting
in a backwards rotation.

In general, all rotational motions are initiated by the transfer of angular momentum and
depend on the amount of transferred momentum. The higher the momentum, the more
rotations can be performed. Rotations around the lateral axis are usually initiated at the
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Figure 2.7. The physical parameters influence the quality of a motion performance. (a) Somer-
sault opening of an advanced trampolinist in a vertical position. (b) A less experienced athlete is
still in tucked shape at the same position and has to start the somersault opening later because
he lacks angular momentum.

contact phase at the beginning of the move before leaving the trampoline bed and entering
the flight phase. Rotational moves around the longitudinal axis can be initiated at the
beginning of the move, but also during the aerial phase after a lateral rotation by twisting
body parts. In this case, the angular momentum remains constant, but will be split over
both rotational axes. Even in the absence of external torque, rotational motion can be
initiated, see Figure and [I3].The biomechanics of trampolining have been investigated
exactly and can be found in [4], 40].

The more experienced a trampolinist is, the better he can control and utilize a motion’s
physical and biomechanical parameters during flight phase. We will explain this with
the motion phases for an ideal somersault technique on the trampoline (that would get
the highest grades in a competition). The first phase is characterized by a fast motion
initiation by the lower extremities with the upper body parts straight leading to high
angular momentum. It is followed by the main part of rotation and the opening of the
body by the legs to reduce the angular velocity (ideally in a vertical position with the head
pointing downwards). Finally, the preparation of the landing concludes the somersault.
Trampolinists on a higher level of skills usually master these phases much better than less
experienced athletes that lack enough angular momentum and consequently do not open
the somersault shape in a vertical position or maybe do not open their body at all to be
able to perform a whole 360° rotation as it is visualized in Figure 2771 Those differences
can be quite significant and may be challenging for later retrieval results and applications
including data of advanced and intermediate athletes.
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Chapter 3

Inertial Motion Capturing

The trampoline jumps which are analyzed in this thesis were recorded using an inertial
sensor-based motion capture system. To understand why we used such an inertial sensor-
based system it is important to know the advantages and disadvantages of commonly used
motion capture devices. Each of these motion capture systems has different properties and
requirements concerning e.g. the recording environment, the size of the capture volume
and the expressiveness of the provided data. For example, optical motion capture systems
which are widely used in movie and game productions, provide very rich and easy to
interpret data but they are also very restricted as far as the size of the capture volume
or the lighting conditions are concerned. Unfortunately trampoline motions require a
comparatively large capture volume. Furthermore, the recording of trampoline motions is
restricted to locations where controlled lighting conditions are often not possible. These
and other circumstances disqualify optical motion capture systems for the capturing of
trampoline motions.

In recent years inertial sensors have been used in many fields such as entertainment appli-
cations, but also in medicine and sport sciences. Such inertial sensors have the advantage,
that they do not impose any restrictions concerning the lighting conditions and only few
constraints concerning the size of the capture volume. The drawback of such inertial
sensor-based motion capture systems is the type of data they provide.

Section [3.] gives on overview over several conventional motion capture systems. Their
modalities, set up and properties will be discussed. In Section [B.2, we discuss the spe-
cial requirements capturing trampoline motions imposes on a motion capture system. In
Section 3.3l we show why it is reasonable to use inertial sensors for capturing trampoline
motions. In Section[3.4] we discuss the capturing with inertial sensors. We introduce iner-
tial sensors, their arrangement during the trampolining capture sessions and their working
principle. Furthermore, necessary physical backgrounds and the corresponding physical
quantities are recapulated.

17
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3.1 Motion Capture Systems

There exist many different systems to capture human motion. The most common systems
are: optical marker-based systems, optical markerless systems, mechanical systems, mag-
netic systems and inertial systems as used for this thesis. Every system is characterized
by a special setup, special capture devices and special capture requirements. Due to the
individual system modalities, the information content of the obtained motion capture data
differs, as well. While each technology has its strengths, there is not a single motion cap-
ture technology that is perfect for every possible use. In the following, a short description
of every system will be given. For further information, see [19] 38].

Optical systems. Optical marker-based systems use data from several image sensors to
triangulate the three dimensional position of a subject.

Marker-based systems use retroreflective markers that are attached to an actor’s body.
Retroreflective markers reflect light that is produced by the optical cameras back to the
cameras with a minimum scattering of light. The markers position can be tracked by the
cameras and computed into positional data. Marker-based optical motion capture systems
are common systems used for computer animation to obtain realistically moving objects
and characters. Marker-based systems are very accurate and yield high-quality data, but
are on the other hand very expensive and require an extensive setup.

Markerless systems use computer vision algorithms and methods to track motion of objects
and humans with either monocular camera views or multi perspective camera views. The
main contribution of markerless motion capture systems is that the motion can be captured
in a natural capture environment and do not require subjects to wear special equipment
for tracking.

Mechanical systems directly track body joint angles. The sensors are attached to the
human body with an skeletal-like structure. While the actor moves, the articulated me-
chanical parts move ion the same way, measuring the performers relative motion. Because
the system has an skeletal-like structure, it interferes with the the actor’s performance
much more than other capture systems.

Magnetical systems utilize sensors placed on the body to measure the low-frequency
magnetic field generated by a transmitter source. The sensors and source are cabled to
an electronic control unit that correlates their reported locations within the field. By
the relative intensity of the voltage, the range of motion can be measured and tracked.
The markers are not occluded by nonmetallic objects but are susceptible to magnetic and
electrical interference from metal objects in the environment like wiring, which affect the
magnetic field, and electrical sources such as monitors, lights, cables and computers. As
the system is cabled to the electronic control unit, mobility is restricted and does not allow
wide motion performances.

Inertial systems are based on miniature inertial sensors, biomechanical models and sen-
sor fusion algorithms. Most inertial sensors include at least an accelerometer, but can
consist of additional components that make the data more stable and reliable.The data is
transmitted wireless via Bluetooth to a computer, where the motion is recorded or viewed.
Inertial sensors are small and of low weight and do not need any external cameras, emit-
ters or markers. However, no positional data can be obtained from the data, but only
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Figure 3.1. Inertial sensors are used in the Nintendo Wii Remote controller and the Apple
iPhone?.

orientational or dynamic data. Inertial systems that use additional magnetometers are
sensitive to magnetic and electrical interferences in the environment, too.

Inertial sensors became quite popular during the last years. For example, inertial sensors
measuring accelerations and the rate of turn are used in gaming and entertainment appli-
cations like the Nintendo Wii or the Apple iPhone [I} 28]. For example, the Nintendo Wii
Remote controller with attached Wii MotionPlus includes a three dimensional accelerome-
ter and a rate gyro. From this information, easy gestures can be recognized and displayed

in the gaming application.

Table Bl gives an overview of the properties of all motion capture systems.
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Table 3.1. Overview of common motion capture systems and their advantages and disadvantages.
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Figure 3.2. Camera setup for capturing trampoline motion with an optical motion capture system.
(a) and (b) Cameras have to be mounted at the ceiling to avoid marker occlusions. (c) Capturing
at broad daylight is not possible. (d) Trampoline capture session. The cameras that spot the
motion from the top are clearly visible.

3.2 Capturing Trampoline Motions

Trampolining is a sport that cannot be performed as easily as many other common sports
and often requires special circumstances and a special environment. Some particularities
that have to be respected while capturing trampoline motion are:

Height of flight: Intermediate trampolinists can already reach heights of five meters,
world elite trampolinists can even reach heights of up to ten meters. This means
that the capture volume has to be large enough in vertical direction.

Motion complexity: Trampoline jumps are characterized by many rotational motions
around the lateral and longitudinal axes. A motion capture system should be able
to track the motions without marker occlusions and tracking errors.

Motion speed: Trampoline jumps are very fast. So the capture system should be able to
capture the whole motion without latency and markers should maintain their initial
position during the whole motion performance.

Mobility: As trampoline jumps are very complex, the used capture system has to pro-
vide excellent mobility for the athlete so that every motion can be performed with
technical accuracy.

3.3 System Evaluation for Capturing Trampoline Motions

The specialty of trampolining in relation to other sports also influences the necessary
motion capture conditions. Looking at Table[B.Il one can see that the special requirements
of trampolining already exclude many capture systems. Respecting a good mobility for the
actor, mechanical and magnetic motion capture systems will not be suitable. Because of
the motion speed and complexity as well as the large vertical capture volume, markerless
motion capture would not yield useful results, too.

In a previous work [§], trampoline motion has been recorded and captured with an optical
motion capture system by Vicon [35] to use the motion data for computer animation. The
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Figure 3.3. Continuity chart for all optical motion capture markers visualizes marker occlusions
with optical motion capture systems. Markers are listed in vertical direction. Occlusions are
indicated by gaps in the vertical timeline.

optical system offered good functionality and comfort for the actor, but the preprocessing
steps, the capture process and the post-processing steps have been very inefficient. To
be able to capture the whole motion and to cover the whole height of the jump with the
capture volume, it is necessary to place cameras at the gymnasium’s ceiling that can spot
the motion from a top view. Because of this prearrangements in camera setup, spontaneous
and short capture session seem to be impossible. Figure shows images of the camera
setup for optical motion capturing as conducted in [§]. Furthermore, the optical motion
capture system used turned out to be very sensitive to influences like bright daylight. For
example, outside capturing is only possible at night using artificial lights. Capturing at
the inside in a room with huge windows can become a problem, as well. Optical motion
cameras that faced directly into open windows and hereby daylight could not distinguish
between the optical marker’s reflection and the entering daylight.

One main problem of optical marker-based capture systems are marker occlusion that
occur while capturing. Figure B3] shows a continuity chart from the ViconlQ software
for optical motion capture data. In the continuity chart, in vertical direction all markers
are listed (indicated by different colors) while the time in frames progresses horizontally.
Marker occlusions are clearly visible as continuity gaps in the timeline. There are algo-
rithms that estimate missing markers from the captured data to become invariant against
the missing marker problem of optical motion capture data [3],29]. But in general, it is not
possible to use optical motion capture for all motions and capture scenarios and, which
can be problematic, not under all circumstances and in all locations. Marker occlusions
can sometimes be prevented by using either a small capture volume or using many cap-
turing cameras, but often they cannot be avoided as they are caused by the way a motion
is executed. For example, by bending the upper body to the ground markers at the upper
body may be occluded by the legs. For trampolining, those unavoidable marker occlusions
occur for example during a pike jump or a piked somersault, where marker from the front
hip or the thorax will be occluded by the bend legs and arms.

Overall, one can say that optical motion capture systems as provided by Vicon or Motion
Analysis [22] suffer from three main disadvantages that make it difficult to capture motion
with a such a vertically huge capture volume: the setup of the cameras to reach a huge
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capture volume, the influences by daylight and unavoidable marker occlusions. This leaves
space for the last possible capture system that has been chosen for this thesis: inertial
sensors. Inertial sensors are worn directly on the actor’s body and data is transferred from
a digital bus (worn on the actor’s back) via Bluetooth to the capturing computer. As the
sensors obtain all data by the mechanical elements that are embedded in the sensors, it is
not necessary to capture the motion from outside. This means, no marker occlusions as
for the optical motion capture system can occur. Additionally, the sensors are insensitive
against daylight and light differences. Due to the fact that principally no cameras have
to be used to capture the motion and the data transfer via Bluetooth to the computer,
the process of calibration and camera setup reduces to a short-time setup. Spontaneous
capturing becomes much easier and all above described problems that can occur while
capturing trampoline moves do not need to be taken into account. The working principle
of inertial sensors is explained in detail in the next section.

However, as the transmitting bus has been attached to the athlete’s back, the motion
performance has been slightly restricted, as well. Jumps that end in a back landing have
not been captured for the experiments. Additionally, inertial sensors are responsive to
ferromagnetic materials nearby. They will be described in Section G.11

3.4 Inertial Sensors

For this thesis, an inertial motion capture system provided by Xsens Dynamics Technolo-
gies [39] has been chosen to capture trampolining. Inertial sensors offer several advantages
that enable an easy and short time set up of the system as well as easy data acquisition.
We have seen that optical motion capture systems undergo a lot of disadvantages while
capturing trampoline motion and that those disadvantages can be avoided with an inertial
capture system.

The XSens inertial motion capture system consists of inertial MTx motion trackers. The
motion trackers are inertial measurement units (IMUs) that do not deliver positional
information as optical motion capture systems, but inertial data that can be obtained
by mechanical components. This data is abstract and does not give information about
a motion’s morphologic properties as it can be visualized with optical motion capture
Systems.

3.4.1 Inertial capture setup

Only ten inertial MTx motion trackers si,. . .,519 have been used to capture the trampoline
motion.

The sensors have been placed at the lower and upper extremities, where each extremity
has been equipped with two sensors at the outer and inner part of the extremity resulting
in four sensors at the lower extremity (left sy and s7, right s3 and sg) and four at the
upper extremity (left s4 and sg, right s5 and sjg), at the lower spine (s1) and next to the
actor’s clavicula (sg). Figure[B.4l(a) shows the location of the sensors subject to an actor’s
body. The sensors have been aligned to the growth direction of the bones of the actor so
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Figure 3.4. (a) Locations of the ten motion sensors attached to the human body. (b) Inertial
sensors are attached in direction of the body’s limb and can measure the limb’s orientation.

that the orientation of the equipped limb segments could have been calculated as shown
in Figure B.4(b).

3.4.2 Physical Background

As inertial sensors make use of physical principles and mechanical engineering, the most
important terms that occur while working with inertial sensors will shortly be recapulated.

Inertial sensors usually are made up of at least one accelerometer detecting the current
rate of acceleration, and a rate gyro detecting changes in rotational attributes. The term
IMU is usually referred to a box containing three accelerometers and three gyroscopes for
the local x-, y- and z-axis.

The accelerometer detects the local acceleration a of the sensor with respect to the axis
the accelerometer is aligned to in the local coordinate system. Using a test mass at one
end of a cantilever beam, the force that acts on this test mass can be determined. The
acceleration is then defined as the ratio between acting force and mass of the test element
(Newton’s second law). Besides, the acceleration designates the change of velocity over
time or the second derivative of the position over time. With the sensor in rest or a constant
motion of the sensor with no change in velocity, the acceleration caused by gravity g and
it’s direction can be measured. For the IMU, acceleration a is usually measured in three
orthogonal planes as th x-, y- and z-axis and can be thought of a superposition consisting
of the gravity g and the actual acceleration m of the motion in direction of each axis.

To determine rotation and angular velocity, a rate gyro is used. Rotation may occur with-
out a change in acceleration, think of rotating the sensor in the x-y plane parallel to the
earths surface. To determine the orientation of the sensor or the so-called rate of turn,
a rate gyro uses a vibrating structure measuring displacement caused by Coriolis force
that can be explained as followed: an object on a rotating disc is subject to tangential
acceleration due to the rotation. This acceleration is proportional to the object’s distance
from the center of the disk, hence the object experiences a greater acceleration near the
outside than near the center. A rotational motion about the sensor’s longitudinal axis
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produces this Coriolis acceleration proportional to the rate of rotation which can be mea-
sured and calculated to an externally applied torque and the angular velocity. In usual
Micro-Electro-Mechanical Systems (MEMS), the rate gyro consists of three small vibrat-
ing tuning forks as vibrating structure driven with different external signals for the three
axes. The tuning forks normal vibration mode is in one plane and the Coriolis induced
displacements are in another orthogonal plane.

Table lists the physical quantities for translational and rotational motion with their
common notation. The rotational quantities cohere in a similar way than the translational
quantities.

Translational Rotational

Translation Angle

Velocity—derivative of translation Angular velocity—derivative of angle
Acceleration—derivative of velocity Angular acceleration—derivative of angu-

lar velocity

Mass Moment of inertia
Linear momentum—overall system state Angular momentum—overall system state
Force—change of linear momentum Torque—change of angular momentum

Table 3.2. Overview of physical quantities for translational and rotational movement.

3.4.3 Sensor Properties

The XSens MTx motion tracker that is used for this thesis consists of six individual MEMS
sensors which are three rate gyroscopes and three accelerometers and of three additional
magnetometers.

As previously described, the three accelerometers and the rate gyros measure the local
acceleration and rate of turn for all three axes and the direction of gravity with the sensor
in rest. Using the fact that the sensor only measures gravity in case that it is in rest
or subject to an unaccelerated motion, 2 degree of freedom (DOF) orientation of the
sensor with respect to the canonical direction of gravity can already be calculated with
the accelerometer [18]. For devices such as the Apple iPhone, this information is sufficient
enough. To determine the orientation of the sensors around the global vertical axis (which
means to determine the direction of the magnetic north pole and the direction each inertial
sensor is pointing to), additional information from the magnetometers will be used. Those
magnetic field sensors can measure the direction of the earth’s magnetic field similar to a
compass and enable to calculate a full three DOF of the sensors with respect to a global
coordinate system defined by the North and the vertical axis defined by the measurements
of the inertial sensors. The third axis is defined by calculating the cross product of the
two previous axes yielding in the wanted global coordinate system. Figure shows the
working principle for the sensor in rest or in unaccelerated motion.

To predict the orientation of the sensor during movement phases, information about the
angular velocity out of the rate gyro will be taken into calculation. A more robust esti-
mation of the sensor’s orientation will be obtained combining the prediction from the rate
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Figure 3.5. Working principle for the MTx motion tracker in rest. A global coordinate system
is set up to determine global orientations. (a) By measured acceleration with the sensor in rest,
2DOF can already be determined. If no acceleration occurs, only the gravity g will be measured
that determines the vertical Z-axis of the global coordinate system. (b) The measurement of the
magnetic north pole is projected onto the plane perpendicular to Z (gray) and defines the global
X-axis. (c) For full 3 DOF, the Y-axis can be defined from X x Z.

gyros and the measurement from the accelerometer. Stable information about the sensor’s
orientation with respect to a direction defined by the gravity vector g can be calculated
using a Kalman filter, see [20]. This stable orientation information can then be used to
describe a motion in a sufficiently precise way, see Chapter Al

All information, that means the sensor’s three dimensional acceleration data, the sensor’s
rate of turn data, the sensor’s magnetic data and the sensor’s estimated orientation data
is made available from the captured data and can be used for further motion analysis.
Local orientation, rate of turn and acceleration of each limb segment of interest (as long
as equipped with a sensor) can be tracked.

Working with inertial data meansto work with abstract data that tends to be sparse.
The data can only deliver information about local accelerations and rotations within the
sensor’s coordinate system. The information can be transformed into orientation data,
but cannot deliver reliable positional information, so that captured motion cannot be
characterized by positional descriptions.

Positional data could be obtained by double integrating the measured accelerations, but as
inertial data is prone to noise and due to the integration, the computed position will not be
equal to the exact position. This means, inertial sensors cannot deliver reliable positional
data unaffected by drift, noise and inaccuracy. In navigation, one has to handle a similar
problem to estimate one’s current position by known or estimated speeds over elapsed
time and course out of a previous position. Here, this process of position estimating is
known as dead reckoning [36].

Because of this unreliability, only the stable acceleration, gyroscopic and orientation data
will be used and processed in this thesis. The three-dimensional orientation information
of the ten used MTx sensors has been used for classification, while the acceleration data
will be used for segmentation.
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Chapter 4

Motion Classification

The classification of unknown motion data streams according to given motion categories
requires three methodologies: motion performance (that have been predefined trampoline
jumps in our scenario), motion capturing (in our case, by inertial sensors) and motion
analysis. An extensive description on trampolining and inertial motion capturing has been
given in the latter chapters. The last main step in the classification pipeline then is to
analyze the sensor output motion data, to automatically segment an unknown trampoline
motion sequence into its individual jumps, and to classify these jumps according to given
motion categories.

The idea for motion classification is to locally compare the feature sequence of the unknown
trampoline motion with previously computed class representations in form of motion tem-
plates. Comparing a motion sequence with a motion template, we want to get information
on how similar the motion is to the template. Here, it is necessary to find a suitable def-
inition of similarity. To this end, one has to decide how to deal with different kinds of
variation in the data, as for example temporal or actor-specific variations. The unknown
motion sequence is then locally classified by the class template that best explains the cor-
responding segment. In this chapter, the general and principal idea of how to use inertial
sensor data for classification is given. Further information on methods and algorithms will
be given in the following sections that explain the experiments conducted for this thesis.

Analyzing the inertial output may be difficult as the data is noisy and abstract. Un-
derstanding the essential characteristics of a motion class, we can design various feature
representations that capture the characteristics of a motion category. In Section 1], we
explain how to use the inertial output data to transform it into feature representations.
In Section [4.2] we explain the classification process and introduce methods that define
similarity. In Section E.3] it is described how to build the motion templates for every
motion category.
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Inertial Data Stream Feature Output
Acceleration Inclination Ft
Rate of turn

E Angular F)
Orientation I
Magnetic Information Combined Fc

Figure 4.1. A feature representation can be defined by a feature function F' that maps the inertial
sensor data I on a feature output O = R/ for some f > 1.

4.1 Feature Representations

To use the abstract inertial output data, the motion information has to be transformed
into semantically meaningful and suitable feature representations. In this context, we
have to respect both motion semantics and motion performance. To maintain all motion
semantics, feature representations should grasp the essential characteristics of every motion
class and enable to distinguish all motion classes from each other. In this regard, we often
use the term discriminative power that gives information on how unique a motion category
can be represented by the chosen feature representation and how easily it can be separated
from the other moves. The better the discriminative power of a feature set, the better
the motion classes can be distinguished from each other. However, with respect to motion
performance, we also expect the feature representations to be less sensitive to performance
variations and changes in recording setup and calibration. Actor-dependent performance
variations might be interesting for other applications, but as they are of no interest for
our trampoline classification scenario, they are left unconsidered.

4.1.1 General Feature Notations

Each trampoline jump follows certain technical aspects and rules that are determined
by biomechanical parameters, see Section Those rules constitute the essential char-
acteristics of a motion class and hence assign a specific motion category such as a pike
jump or a somersault to every performed jump. To display those characteristics in the
feature representations, we have to transform the inertial data into suitable information,
see Figure A1

For the following, we need the definition of a feature representation. For this end, we define
a feature function F that maps the inertial sensor data I on a feature output O = R/ for
some f > 1:

F:I—0. (4.1)

One element v € O is then referred to as feature vector, one property of the inertial data
within the feature function as feature like for example the acceleration of the left arm’s
sensor. For every feature function, the output O is also referred to as feature space F = R/ .
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Figure 4.2. Binary feature matrices for two different motion classes evaluated in the same way.
Semantically differences are clearly visible. Every row represents one feature vector while time
runs along the horizontal axis.

With a feature function, the sensor input stream can then be transformed into a feature
sequence as for example X = (z1,x2,...,zN) with z, € Fforn € [1: N]:={1,2,...,N}.
N denotes the length of the feature sequence.

To obtain direct semantic information on specific motion classes and their characteristics,
we display the feature sequence as feature matriz M. For a motion data input stream D
of length N, the feature matrix is defined as M € Rf*N. Then, the nth column of M,
denoted by M (n), equals the feature vector F' (D (n)), n € [1 : N].

Two example feature matrices can be found in Figure For demonstration, we assume
that every feature only contains binary information, such as whether the sensor’s x-axis
is pointing downwards. In the feature matrices, every row denotes a feature (and here,
indicates the ten sensors used), whereas the temporal information is contained in the
feature vectors (which means framewise in the columns). Differences are clearly visible in
the feature matrices indicating semantical differences and therefore feature representations
of two different motion classes.

4.1.2 Feature Description

Previous experiments showed the results that feature representations based on pure ac-
celeration data do not yield powerful and robust discriminations between different motion
classes. So for the following experiments, the feature functions will be mappings of the
sensor input containing the orientations of the ten sensors relative to the common global
coordinate system. In order to express the orientation of the inertial unit with respect
to the global coordinate system we use rotations expressed as unit quaternions (see [33]).
Each such quaternion defines a 3D rotation R?® — R3, which we also refer to as q. Let
q[x] denote the rotated vector for a vector & € R3. The orientations of the ten sensors
are referred to as as I = (qy,...,9qy) with q4, s € [1: 10].

In the following, we will introduce features of two different types: inclination and angular-
based features.

Inclination features: The inclination features are very closely related to the sensor’s
orientation in the global coordinate system. For every sensor, the pitch ¢ is determined.
¢ describes the inclination of the sensor’s X-axis and therefore the bone’s inclination in
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Figure 4.3. (a) Pitch ¢ of a sensor with respect to the plane defined by g. (b) Inclination angle
FS4 = ¢S4

relation to the plane defined by the direction of the up direction §, see Figure A3l

The global up direction g, represented by the vector (0,0, 1)7 is transformed to the sensor
local coordinate system using qg[-]. Using this, the pitch is defined as the angle between a
sensor’s §s and the local X-axis:

95 =70g [(07 0, 1)T] ’ (4'2)
¢s = g — arccos (g, (1,0,0)7), (4.3)

For the ten sensors, we then obtain the inclination feature functions Fy := ¢, ... Fig 1=
¢s,,- Because of the definition of ¢ that determines the amount of inclination of the
sensor’s X-axis in relation to the up direction, those features are called inclination features.

Angular-based features: Based on the sensors’ orientation within the global coordinate
system, the angle between two sensors respectively between the two bones the sensors are
attached to can be calculated. This angle represents the difference of orientation between
the two bones. For example, an angle of zero between the sensors s5 and s1p means that
both sensors are pointing towards the same direction and consequently, that the right arm
has to be stretched.

Information whether the extremities are straight or bend will be obtained by the angle
0+ determined by orientation differences along the vertical direction, information whether
the legs are spread will be obtained by the angle 94 determined by orientation differences
along the horizontal axis between the limbs of the upper legs. Here, 0 represents the
relative position of elbows and knees to the sensor’s bones while ¥ represents the angle
between both legs, see Figure [4.4]

The angles 0, and ¥ between two different sensors can be computed in a quite easy way
as all sensors used for this calculation were attached at the actor’s body facing in the same
direction. To obtain the corresponding angle between both orientation vectors, one can
use the scalar product. Additionally, for the angle at the outer extremity we define an
absolutely straight extremity as 180° or m and the biologically not possible total bend as
zero. For the angle between the legs, we define a total spread of the legs as 180° or 7 and
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(a)

Figure 4.4. (a) The angle Fi3 := 6,, , between two bones of the same extremity, respectively
the left leg. (b) The angle Fi5 := ¢ between the bones of different extremities, respectively
the upper legs.

57,58

no spread as zero, see [15]. As before, we assume qg,q;, s,t € [1 : 10] to be the orientation
of the sensors. This results in following formulas

0s; = m — arccos (qq, 9¢) (4.4)

Vst = arccos (qg, gy - (4.5)

Those angular information results in five additional feature functions, the feature func-
tions F1j ... Fi4 for the angle between bones of the same extremity and F15 for the angle
between bones of different extremities. Because of the use of angles between two sensors
or respectively bones, the features are called angular-based features.

Table BTl lists a description of all used features, their type and their ID as they have been
used to compose different features.

ID Type Description

F}  inclination Inclination of lower spine ¢g,

Fy  inclination Inclination of left lower leg ¢s,

F3  inclination Inclination of right lower leg ¢s,

Fy inclination Inclination of left lower arm ¢s,

Fs  inclination Inclination of right lower arm ¢,

Fs  inclination Inclination of belly neck ¢,

F>7  inclination Inclination of left upper leg ¢s,

Fy  inclination Inclination of right upper leg ¢q,

Fy inclination Inclination of left upper arm ¢s,

Fio inclination Inclination of right upper arm ¢,

Fi1 angularl  Angle between left lower and upper arm 6,, ,
Fi> angularl  Angle between right lower and upper arm 6, s,
Fi3 angularl  Angle between left lower and upper leg 6, s,
Fy4 angularl  Angle between right lower and upper leg 6, s,
Fi5 angular2  Angle between left upper leg and right upper leg 9.

Table 4.1. Description of the used feature functions with feature ID and feature type.
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Figure 4.5. Feature matrices for the same database move represented by different feature types.
Semantically meaningful regions are marked. (a) Feature matrix for the inclination feature function
F110. (b) Feature matrix for the angular feature function Fjs.

4.1.3 Composed Feature Sets

From the different feature types, we built several feature sets that can either be pure
inclination feature sets, pure angular feature sets or combined feature sets. All feature
sets and their compositions are displayed in Table

1D Contained feature functions
F15 (F17~'~3F5)T

Frio (Fi,...,Fio)

Fys (Fi1,...,Fi5)

Fys (Fis,...,Fi5)

FISAS (qugv FAIJ;)T

Frions (Ffy0, Frs)™

Fispz (F, Fis)"

Frioas (Fio, FB)T

Table 4.2. Description of the composed feature sets listing their contained feature functions.

To combine the different feature types and to make the feature sets comparable among
each other, we have to normalize every feature vector within a feature set. For this, we
map every feature vector to the range of [—1,1]. In the following, the normalized feature
functions will be used.

In Figure [45] two sample feature matrices of inclination and angular feature type for the
same database move are visualized. Figure [.0J(a) shows the feature matrix computed
using the feature set Frio, while Figure [L5(b) shows the feature matrix of the same jump
computed using the feature set Fjs. One can see that the feature set Frio consists of ten
dimensional feature vectors whereas Fyg only consists of five dimensional feature vectors.
Semantically meaningful regions have been marked in the feature matrices. In region (1),
we can see that the pitch of all arms’ sensors and of the root reach the absolute maximum
value. This indicates that the sensor’s X-axis is pointing downwards and we can assume
that the jump contains rotational motion around the lateral axis as for a somersault
motion class. Region (2) indicates that the landing will be no feet landing as the pitch is
in the range of 0. In fact, the represented motion class is the motion class BWS Somersault
Backwards To Seat Drop. In case of the angular feature set Fjs, we can mainly see from
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region (3) that the jump has been performed in a tucked shape.

4.2 Classification by Similarity Measures

In this thesis, we will locally compare the unknown feature sequence with all given class
motion templates. Herewith, we determine it’s similarity to the already known motion
templates. Then, the unknown feature sequence can be classified by the class template that
best explains the corresponding segment. From a technical point of view, the classification
problem can be modeled as follows. Assume that we are given a finite set A referred to
as label set. An element A\ € A is referred to as label. The label set refers to the different
motion classes to be considered in the classification, i.e.,

A = {BAR, FRF, HTW, .. .}.

Now, let D :={Dy,Ds,...,Dg} be a motion database annotated with respect to a given
label set A. In other words, for each document Dy, we are given a label Ap, € A. Then
two documents are said to belong to the same motion class, if they have the same label.

To find similarities between motions, it is crucial to define the term of similarity. We will
then introduce distance measures for comparison, that are variants of DTW.

4.2.1 Motion Similarity

Motions can undergo various variations that can make it difficult to identify motions
that belong to the same motion class as similar. Especially, if performed by different
actors oder under different capture conditions, semantically similar motions do not need
to be numerical similar [23]. Similarity measures for comparison of two motions should
be invariant against those differences and variations. Variations that can occur during
motion performance are:

Spatial variations: those variations can occur while several motion performances have
been captured under varying capture circumstances or under different system setup
and calibration. For example, differences in the trampoline’s position and alignment
should not influence the motion similarity measure.

Temporal variations: those variations comprise all differences in timing and the overall
speed a motion is performed with. For example, the time of a jump depending on
the flight’s height should not influence the similarity measure.

Style variations: those variations mean differences that occur within different motion
performances. Style variations are mostly actor dependent, but can also occur within
the motions of one actor. For example, a technically excellent somersault perfor-
mance should still be similar to a technically less accurate performance.

In the following, we assume motions to be semantically similar if they represent the same
action including spatial and temporal variations.
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Figure 4.6. DTW variants used in this thesis. (a) Global DTW aligning two time-dependent
sequences X and Y. (b) Subsequence DTW aligning sequence X with a subsequence of Y.

By suitable feature representations, spatial variations should already be taken out of ac-
count for the similarity measure. In terms of the style variations, the feature representa-
tions have also been requested to be as invariant as possible. However, style variations
still occur. For the trampoline motions, the most style variations are mainly expected to
occur at the upper extremities as individual technical executions, but can also be found at
the lower extremities and the limb. With the similarity measure in the local comparison,
we cannot eliminate those variations. In the further experiments, we will discuss how to
deal with style variations. Here, we focus on eliminating temporal variations.

4.2.2 Classification strategies

For this thesis, we used two different scenarios for classification, where the similarity mea-
sure is based on DTW: document-based comparison with global DTW distance measures
and subsequence-based comparison with subsequence DTW and a distance function. Orig-
inally, DTW has been used in automatic speech recognition and data mining to cope with
time deformations of time-dependent data, but can meanwhile also be used to deal with
temporal variations in motion retrieval and classification tasks [31]. While global DTW
methods compares whole feature sequences (of similar length), subsequence DTW methods
compares feature sequences of different length, see Figure

Document-based: In a document-based classification scenario, the similarity between
two time-dependent motions respectively two feature sequences X = (x1,x2,...,2x) of
length N and Y = (y1,y2,...,yn) of length M has to be determined. The goal is to find
the optimal alignment between the given sequences. We associate X to a feature matrix
Mx = [z129...2,) € RN and Y to a feature matrix My := [y1y2...ym] € RM7*M. As
described in Section A1), the columns of My represent the feature vectors of X. For the
given sequences, the feature space F is determined by x,,y, € F for n € [1 : N| and
m € [1: M]. To quantify the differences between two feature vectors x,y € F, we need a
local cost measure which is also referred to as local distance measure and is defined as a
function

c: FxF — Rxo. (4.6)

If the cost ¢(x,y) is small, z and y are called similar to each other, if the cost c(z,y) is
large, z and y are different to each other. With computing the local cost measure for each
pair of elements of X and Y, one then obtains a cost matriz C € RVN*M with C(n,m) :=
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¢(Zn,Ym). Depending on the local cost measure used, the resulting cost matrices will
differ. Different local distance measures for motion data like the quaternion-based pose
distance can be found in [23] and will not be discussed further in detail. For this thesis,
only the Euclidean L? norm has been used that describes the length of a vector or ordinary
distance from the origin to a point 2. With the L? norm as distance measure, the cost is
defined by

() =l — yl. (4.7)

Using the cost matrix, we want to find an alignment between X and Y having minimal
overall cost.Such an alignment is represented by a warping path p; = (ng, mg) € [1: N] x
[1: M] with ¢ € [1: L] where L is the length of the warping path. Furthermore, the
warping path has to satisfy three conditions — the boundary condition, the monotonicity
condition and the stepsize condition. The boundary condition forces the warping path to
start at position p; = (1,1) and to end at position p;, = (N, M) (which means the entire
sequences X and Y have to be aligned). The monotonicity condition assures the warping
path to respect issues of timing and sequential time procession. The step size condition
ensures as kind of continuity condition that no element will be omitted and that there
are no replications in the alignment (the classical step sizes are (0,1), (1,0) and (1,1)).
Monotonicity condition and step size condition are closely related to each other. For more
information about warping paths and their conditions, see [23].

The cost of a warping path p between X and Y with respect to the local cost measure ¢
is defined as

L
p(X,Y) = c(@ng, Yn,)- (4.8)
/=1

The optimal warping path is then defined as warping path with minimal overall cost and

can be used as quantity to measure similarity of two feature sequences under the given
cost measure c.

The optimal warping path can be computed using dynamic programming techniques. To
this end we define the accumulated cost matrix D € RN*M . D hast to satisfy the following
requirements:

D(n,1) = ZC(-Tk’?ﬂ) (4.9)
for n € [1: N]
D(1,m)=> c(x1,y) (4.10)

for n € [1: M] and

D (n,m)=min{D(n—1,m—1),D(n—1,m),D(n,m—1)} + C (n,m) (4.11)
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Figure 4.7. Cost matrix (a) and accumulated cost matrix (b) for feature sequences of the same
motion class. High costs are represented by white color, low cost by dark color.

forl<n<Nandl<m<M.

The accumulated cost D(N, M) also referred to as DTW distance DTW (X, Y) represents
the overall cost for the similarity measure between two sequences X and Y (and herewith
the cost of the optimal alignment of X and Y'). In the following, we use DTW (X,Y) to
measure the similarity between two feature sequences.

Figure 7 shows one example cost matrix and accumulated cost matrix comparing two
trampoline jumps of the same motion class. Similar parts with low cost are characterized
by dark color, whereas high costs representing huge differences in the compared feature
columns are indicated by light color. In the cost matrix C, the ending of one motion
appears similar to the beginning of the other motion and vice versa. This is not surprising,
as for trampoline moves that are landing and starting on both feet, the beginning and
ending phase of each move should be similar which means moving in a straight and upright
position with the feet closed. For the accumulated cost matrix D, the optimal warping
path goes almost straight from the bottom left to the top right implying that the duration
of both jumps and the motion performance of both jumps is similar. Medium cost at the
top right end of the accumulated matrix where the warping path ends, on the other hand,
indicates that both motions are not absolutely similar accounting for actor-individual
motion performances.

Subsequence-based: In a subsequence-based classification scenario, similarities between
a feature sequence X with a much longer sequence Y like for example a trampoline routine
have to be found. Here, the goal is to identify the subsequence within Y which is most
similar to X.

Again, we use the feature sequences X and Y and the L? distance as defined in the previous
paragraph as cost measure to calculate the cost matrix C'. The main differences to the
global DTW are that boundary condition and stepsize condition will be modified. As we
compare a short query motion to a longer motion sequence, the boundary condition as
defined for the global DTW does no longer hold. The stepsize for the Subsequence DTW
will be modified to the step sizes (2,1), (1,2) and (1,1) accounting for the different lengths
of the two sequences and to avoid degenerations in the alignment.
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Figure 4.8. Sample distance function between motion sequence X and a longer motion sequence
Y. X is contained in Y at the position of zero cost. Passages around the position of zero cost are
indicated by low cost, as well and comprise semantically similar motions.

The most similar passages within Y are then retrieved using the following assumption:
First, we want to find a subsequence Y (ax : b%) := (Yax, Yast1,--->Yps) With 1 < ax <
bx < M that minimizes the DTW distance to X over all possible subsequences of Y for a
fixed cost function c. The optimal warping path can then be computed in a similar way
than for the global DTW to determine the accumulated cost matrix D. All subsequences
of Y that are close to X with respect to the DTW distance is then defined by a distance
function

A:[l: M]— R. (4.12)

The distance function assigns each index b € [1 : M| the minimal distance A(b) between X
and a subsequence Y (a : b) of Y ending in y,. The DTW-minimizing a can be determined
by computing the optimal warping path again and is defined as DTW (X,Y (a : b)).

The distance function gives a natural overview over the data within the database and ranks
the retrieved matches according to the cost represented by the A-values. This means, the
best match between X and Y can be determined by the index minimizing A. Figure (4.8
shows a sample distance function. Document endings within Y can be identified easily by
positions of lower cost. Furthermore, similar cost levels indicate similarities between the
passage of Y and X.

4.3 Motion Templates

To assign a motion category to every trampoline jump, we need references that contain
information about the motion characteristics of every motion class. For this, we learn
a class representation for each category, that we call Motion Template (MT) according
to [25], while a finite number of motion categories are known in our scenario. Each motion
category is represented by a class of example motions performed by different athletes, so
that the motion template can be computed as average feature representation by all class
example motions. By the averaging process, those feature matrices should still represent
the most significant information of each motion class but discard regions that are variant
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among the example motions. This means, that variations from the example motions will
not influence the standardized motion template as classifier.

4.3.1 Computation

In general, we only compute the average over all learning motions that comprise the same
motion class to obtain the desired class representations for every motion class. However,
as the original motions are varying in length and temporal structure, the feature matrices
differ, as well, so that we cannot just compute the average over all feature matrices, see
Figure So the class MTs have been computed with the following algorithm that uses
temporal alignment.

First, one feature matrix is chosen as reference. With DTW, we can then compute the
optimal alignment of the remaining motions and determine the optimal warping path for
each alignment resulting in eight feature matrices of the same length than the reference
motion. The values of all feature matrices of same length can then be averaged to one
combined input representation of all input motions. Additionally, the standard deviation
for each matrix entry can be computed to identify those regions within the feature matrix
that undergo the most variation. Nevertheless, the averaged matrix does not represent the
real average of all motions yet as all remaining motions are aligned to the one reference
motion.

As the current feature matrix is biased by the influence of the reference motion, the
averaging step is repeated using all other motions as reference motion. As a result, we
get eight averaged matrices of different length. Each feature matrix has it’s individual
length then, whereas the semantic information is already very similar and the essential
information is maintained.

To improve the result and the average value of the MT, we iterate the averaging process for
each averaged feature matrix until the standard deviation undergoes a certain threshold
or after a predefined number of iterations. For the trampoline experiments, already ten
iterations turned out to deliver already similar results for each averaged matrix. To obtain
a MT that is almost average in all matrix entries, 20 iteration steps have been used and, as
all of the eight matrices contain very similar matrix entries, one of the averaged matrices
then be chosen as MT. The small number of iterations necessary to already get a low
standard deviation for each matrix entry can be explained by the fixed length of each
trampoline move in the range between 120 and 140 frames (captured at 100Hz). The
length of the moves could only differ to a large amount by differences in the jump height
of several decimeters and meters, but as all actors have been on a similar intermediate
level of skills, each move comprises of similar length. As the skills of all trampolinists
that performed for the used database have been on a similar level, the height only differs
to a small amount and each trampoline move lasts approximately the same, so that the
temporal differences between each feature matrix have been already quite small in the
beginning of the iteration process. Further details on the MT computation process can be
found in [25].

The differences between learned motions and the iterated MT is illustrated in Figure 49l
The essence of the class could been grasped out of all learning motions, whereas variations
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Figure 4.9. Variant feature matrices (a),(b) of a barani jump and the iterated MT (c). The
semantic information of the motion class is maintained while individual variations and both local
and global temporal variations are averaged.

that do not occur in all feature matrices have been weakened.
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Chapter 5

Database Description

As all of the following experiments have been conducted on a self-built trampoline database,
this chapter describes how the database has been acquired and how it has been organized
for all further experiments.

In Section Bl the recording setup and data acquisition is described. Furthermore, the
full information on the captured data and special particularities that occurred during the
capture process is listed in a table. Section describes the next step of the database
construction, the post-processing of the inertial data. It is described how the database
has been organized, ordered and splitted for special experiments as well as training and
testing issues. For this, we also introduce the notation of dissimilarity matrices based on
DTW distance measures.

5.1 Data Acquisition and Processing

5.1.1 Recording Setup

The data has been captured in a standard gymnasium using one new trampoline with
a high quality and bouncy trampoline bed. As it is described in Section B.3] inertial
sensors do not require intensive setup or calibration, so the data could be recorded with
little overhead and a short preparation phase using the Xsens Moven motion capture suit
equipped with 10 inertial MTx motion trackers as positioned in Figure B4 Two Xbus
master have been used that were connected to five sensors each to transfer the data to a
computer via Bluetooth.

5.1.2 Capture Process

In two capture sessions, motions four intermediate trampolinists have been captured. For
the following discussion, the actors will be named hb, pm, sh and sm according to their
initials.

Each actor had to perform ten different exercises in at least two takes with three repetitions

41
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per take resulting in the database DT. The exercises were either single moves, short
combined sequences of up to four moves or routines of ten consecutive different moves as
they have to be executed in trampoline competitions. The range of the moves’ technical
requirements varied from easy moves like a tuck jump to different landing positions like the
front drop and advanced moves like differently shaped somersaults. In the following table
one finds the list of all takes of DT (sorted first by actor and then by scene), the respective
lengths in frames, the corresponding XSens Take Number, a contents description, and,
possibly, a comment. Scene 08 has been an optional scene that has only been performed
by one actor while the routines have been captured at the end of the capture session in
the scenes 09, 10 and 11.

FileNamePrefixl | #(fr.) Take |Description Comments
TR2_hb_01_01 3522 085 |1: Basic Jumps (PJP, TJP, SJP)
TR2_hb_01_02 3814 086 |-
TR2_hb_02_ 01 3791 087 |2: Front combination (HFR, FRF)
TR2_hb_02_02 4566 088 |-
TR2_hb_03_01 6451 089 %\ngnggz?l%%eg&)comblnatlon (TIP, second combination: full twist
TR2_hb_03_02 6063 090 |-

4: Seat combination, Somersault Tucked
TR2_hb_04_01 4707 091 (SED, SST, SJP, ch)
TR2_hb_04_02 5840 092 |-

5: Somersault piked combination (PJP,
TR2_hb_05_01 6351 093 BWB)
TR2_hb_05_02 6942 094 |-
TR2_hb_06_01 6715 095 |6: Barani (BAR) tucked
TR2_hb_06_02 6624 096 |- tucked

7: Somersault straight, full twist (BWA,
TR2_hb_07_01 7503 097 FTW)
TR2_hb_07_02 6321 098 |-
TR2_hb_08_01 8885 099 |[8: Three quarter backwards (3QB) optionally
TR2_hb_08_02 9242 100 |- .
TR2_hb_09_01 3388 101 [9: L8 only 9 jumps
TR2_hb_09_02 3581 102 |- only 9 jumps
TR2_hb_09_03 3490 03 |-
TR2_hb_09_04 3199 04 |-
TR2_hb_10_01 3580 05 [10: Modified L7
TR2_hb_10_02 3574 06 |
TR2_hb_10_03 3402 07 |-
TR2_hb_11_01 4010 108 [11: Freestyle
TR2_hb_11_02 4065 109 |-
TR2_pm_01_01 3627 000 |1: Basic Jumps (PJP, TJP, SJP) 6/4 Sensor Setup
TR2_pm_01_02 3290 001 |- :
TR2_pm_02_01 2940 002 |2: Front combination (HFR, FRF)
TR2_pm_02_02 3852 003 |-

3: Somersault seat combination (TJP,
F52_pn_03_01 4266 | 004 |pws sHA, HTW)
TR2_pm_03_02 4363 005 |- Changed to 5/5 Sensor Setup

4: Seat combination, Somersault Tucked
1R2_pm_02.01 4492 | 006 J(spD, SST, SIP, BWC)
TR2_pm_04_02 4255 007 |-
TR2_pm_05_01 578 008 %ﬁ;mersault piked combination (PJP, Time outs

)

TR2_pm_05_02 1791 009 |- Time Outs
TR2_pm_05_03 3886 010
TR2_pm_05_04 4218 011 |-
TR2_pm_06_01 3315 013 |6: Barani (BAR) tucked
TR2_pm_06_02 4233 014 | tucked
TR2_pm_06_03 1003 015 |- Time outs, data loss
TR2_pm_06_04 — 016 |- data loss
TR2_pm_06_05 3875 019 |- straight
TR _pm_07_01 - 017 ;.T%(\)]r)nersault straight, full twist (BWA, data loss
TR2_pm_07_02 — 018 |- data loss



File Name Prefix
TR2_hb_01_01
TR2_hb_01_02
TR2_hb_02_01
TR2_hb_02_02
TR2_hb_03_01
TR2_hb_03_02
TR2_hb_04_01
TR2_hb_04_02
TR2_hb_05_01
TR2_hb_05_02
TR2_hb_06_01
TR2_hb_06_02
TR2_hb_07_01
TR2_hb_07_02
TR2_hb_08_01
TR2_hb_08_02
TR2_hb_09_01
TR2_hb_09_02
TR2_hb_09_03
TR2_hb_09_04
TR2_hb_10_01
TR2_hb_10_02
TR2_hb_10_03
TR2_hb_11_01
TR2_hb_11_02
TR2_pm_01_01
TR2_pm_01_02
TR2_pm_02_01
TR2_pm_02_02
TR2_pm_03_01
TR2_pm_03_02
TR2_pm_04_01
TR2_pm_04_02
TR2_pm_05_01
TR2_pm_05_02
TR2_pm_05_03
TR2_pm_05_04
TR2_pm_06_01
TR2_pm_06_02
TR2_pm_06_03
TR2_pm_06_04
TR2_pm_06_05
TR2_pm_07_01
TR2_pm_07_02
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FileNamePrefix | #(fr.) Take |Description Comments
TR2_pm_07_03 4289 020
TR2_pm_07_04 3904 021 |-
TR2_pm_09_01 3382 022 |9: L8
TR2_pm_09_02 3323 023 |-
TR2_pm_10_01 3495 024 [10: Modified L7
TR2_pm_10_02 3164 025 |-
TR2_pm_11_01 3757 027 |11: Freestyle Variation of M7
TR2_pm_11_02 3475 028 |- Variation of M7
TR2_sh_01_01 4235 029 |1: Basic Jumps (PJP, TJP, SJP)
TR2_sh_01_02 3928 030 |-
TR2_sh_02_01 4388 031 |2: Front combination (HFR, FRF)
TR2_sh_02_02 3913 032 |-
TR sh_03_01 4445 033 %V\?gfnselr{si‘jlﬁi?gvt)comblnamn (TJP,
TR2_sh_03_02 4152 034 |-

4: Seat combination, Somersault Tucked
TR2_sh_04_01 3796 035 (SED, SST, SJP, ch)
TR2_sh_04_02 3873 036 |-
TRZ s 05 01 3416 037 %\Sgr;wrsault piked combination (PJP,
TR2_sh_05_02 3208 038 |- data unuseful (wrong orientation)
TR2_sh_05_03 3044 039 | data unuseful (wrong orientation)
TR2_sh_06_01 5743 040 |6: Barani (BAR) tucked, only 2 barani
TR2_sh_06_02 4186 041 [ tucked, only 1 barani
TR2_sh_06_03 4471 042 tucked, only 1 barani
TR2_sh_06_04 2494 043 tucked, only 1 barani
TR2_sh_06_05 3302 044 |- tucked, only 1 barani
TRZ B 07 01 6098 045 IZ‘.T%}(\)/r)nersault straight, full twist (BWA,
TR2_sh_07_02 5864 046 |-
TR2_sh_09_01 430 047 19: 1.8
TR2_sh_09_02 07 048 |-
TR2_sh_10_01 4109 049 [10: Modified L7 only 9 jumps
TR2_sh_10_02 3419 050 |- only 9 jumps
TR2_sh_10_03 3014 051
TR2_sh_10_04 3143 052 |-
TR2_sh_11_01 3646 053 |11: Freestyle L3
TR2_sh_11_02 3176 054 |- L3
TR2_sm_01_01 3639 055 |1: Basic Jumps (PJP, TJP, SJP)
TR2_sm_01_02 4323 056 |-
TR2_sm_02_01 3206 057 |2: Front combination (HFR, FRF) Time outs at the end
TR2_sm_02_02 4283 060 |-
T2 0308 | 4196 | 061 |Gyva st o (T
TR2_sm_03_02 3703 062 |-

4: Seat combination, Somersault Tucked
TR2_sm_04_01 5041 063 (SED, SST, SJP, ch)
TR2_sm_04_02 4151 064 |-
TR SE 50T - 066 153.\5%1;1ersault piked combination (PJP,
TR2_sm_05_02 1160 067 |- Time outs, data loss
TR2_sm_05_03 1542 068 Time outs
TR2_sm_05_04 3408 069 |-
TR2_sm_06_01 4535 070 |6: Barani (BAR) tucked, after somersault bw
TR2_sm_06_02 6930 071 |- tucked, after somersault bw
TR2_sm_06_03 3024 072 |- tucked
TRI 5107 01 4016 073 ;.T%\)Il)nersault straight, full twist (BWA,
TR2_sm_07_02 3786 074 |-
TR2_sm_09_01 3262 075 19: I8
TR2_sm_09_02 3128 076 |- only 8 jumps
TR2_sm_09_03 2995 077 |-
TR2_sm_10_01 2886 078 110: Modified L7
TR2_sm_10_02 2872 079 |-
TR2_sm_11_01 2980 080 |11: Freestyle M5
TR2_sm_11_02 2755 082 |- M5
TR2_sm_11_03 2731 083 L3
TR2_sm_11_04 2809 084 L3



File Name Prefix
TR2_pm_07_03
TR2_pm_07_04
TR2_pm_09_01
TR2_pm_09_02
TR2_pm_10_01
TR2_pm_10_02
TR2_pm_11_01
TR2_pm_11_02
TR2_sh_01_01
TR2_sh_01_02
TR2_sh_02_01
TR2_sh_02_02
TR2_sh_03_01
TR2_sh_03_02
TR2_sh_04_01
TR2_sh_04_02
TR2_sh_05_01
TR2_sh_05_02
TR2_sh_05_03
TR2_sh_06_01
TR2_sh_06_02
TR2_sh_06_03
TR2_sh_06_04
TR2_sh_06_05
TR2_sh_07_01
TR2_sh_07_02
TR2_sh_09_01
TR2_sh_09_02
TR2_sh_10_01
TR2_sh_10_02
TR2_sh_10_03
TR2_sh_10_04
TR2_sh_11_01
TR2_sh_11_02
TR2_sm_01_01
TR2_sm_01_02
TR2_sm_02_01
TR2_sm_02_02
TR2_sm_03_01
TR2_sm_03_02
TR2_sm_04_01
TR2_sm_04_02
TR2_sm_05_01
TR2_sm_05_02
TR2_sm_05_03
TR2_sm_05_04
TR2_sm_06_01
TR2_sm_06_02
TR2_sm_06_03
TR2_sm_07_01
TR2_sm_07_02
TR2_sm_09_01
TR2_sm_09_02
TR2_sm_09_03
TR2_sm_10_01
TR2_sm_10_02
TR2_sm_11_01
TR2_sm_11_02
TR2_sm_11_03
TR2_sm_11_04
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Inertial sensors include some specific properties that have to be kept in mind during
the capture process as they can lead to noisy data and can deteriorate the quality of
the information captured. For example, ferromagnetic materials influence the sensor’s
measurement of the magnetic field and can therefore result in wrong orientation data.
To circumvent these inaccuracies, the sensors should be running for some time after the
system start or after changing the location and herewith changing the magnetic properties
of the surrounding before the capture process. During the capture process made for this
thesis, for example, no attention was paid to the magnetic property of the trampoline
skid leading to few unusable takes that were captured after the athlete took a rest near
the trampoline skid. Furthermore, one always has to expect some takes to fail because of
timeouts in the data transfer that occur due to problems with the wireless Bluetooth data
transmission, see Table

5.2 Post Processing

As counter draw to the easy use and short set up of the capture system, more post
processing steps and several steps of file format transfer are required until the data recorded
could be used. In detail, the raw data for every take consisted of two motion streams
(containing the data of five sensors) that have been transferred by the two Xbus master.
Those takes then had to be synchronized and combined into one signal. Additionally, the
data from one digital video camera that captured the athlete’s motion has been used to
annotate the motion streams. By this video annotations, the motion stream for each take
could then be segmented and cut into separate trampoline jumps.

As the other takes, the routine exercises have been annotated manually, but have been left
as one consecutive motion stream containing several trampoline jumps. The consecutive
routines and their annotations will be used for classification later in Chapter [§. With the
four actors and the single and combined motion exercises, a cut database D€ consisting
of more than 750 trampoline moves and 19 different moves could be acquired.

Out of this huge dataset, consistent data has then been determined and selected into a
selected cut database DS ¢ DC. In this context, consistent means that the motion has
been performed in a constant motion style without any technical or morphological outliers
that would make similarity measures between motions of the same motion class more

difficult.

In a first selection step, all data deviating clearly from the general style of a motion
class have been discarded for D®S. For this, the feature representation of every jump
in D€ in form of the feature matrix has been examined. By this, wrongly cut jumps
based on erroneous annotations (that would for example differ significantly in length) and
differences in motion style or failed jumps could be identified. Figure [5.1] shows sample
feature matrices for the same motion class. The outlier in motion style is clearly visible
by differing feature vectors 3,4,5 and 6. The variation can be traced back to the motion
performance, where the actor variated the position and orientation of the arms at the
ending of the jump depending on whether the move has been performed separately or
within a routine.
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(a) (b) (c) (d) J

Figure 5.1. Sample feature representations for the same motion class with feature set F1io. All
jumps have been performed by the same motion actor. While the arms are pointing upwards at the
end of each jump in (a), (b) and (c), for the outlier motion (d), they have been moved downwards
(see feature vectors 3, 4, 5 and 6).

In a second selection step, we discard all jumps of a motion class that are characterized
by high costs. Here, we compute a dissimilarity matriz that contains the cost for the
comparison of each pair of documents within all jumps in DPC that comprise the same
motion class.

5.2.1 Dissimilarity Matrix

Let D = (Dy, ..., D) be a database consisting of documents Dy, k € [1 : K|. F' is defined
to be a feature function and D € D to be a document. Then, F'(D) denotes the resulting
feature sequence. For two documents D and Do, we define the document-based distance
(or global DTW distance) between D; and Dy with respect to F' to be

DTW (D1, Do) := DTW(F(D1), F(Dy)).

Using this definition, we can compute a document-based dissimilarity matric Mp p €
RE*K for a given database D and a feature function F. Then, the matrix entry for the
i-th and j-th document in D is

Mp p(i,j) == DTWp(D;, Dj).
This similarity score will then be normalized over both document lengths into

mgj = Mp r(i,7)/ (|Di| + [Djl) .

The dissimilarity matrix is characterized as followed. Each document’s cost with itself can
be found at the diagonal axis and equals zero. Semantically different jumps should have a
higher cost than semantically similar jumps. Jumps of one motion class performed by the
same actor are supposed to have a lower cost in the comparison than the jumps performed
by different actors as each actor has it’s individual motion style which is almost constant
over several motion performances.

Figure shows the sample distance matrices for all motions within D€ for two different
motion classes. For both matrices, motions that are performed by the same actor than the
query motion are represented by lower costs than the remaining motion performances. In
Figure [5.2)(a), some significant variation is visible in the middle of the dissimilarity matrix



46 CHAPTER 5. DATABASE DESCRIPTION

. (b) .

Figure 5.2. Dissimilarity matrices for two different motion classes within D€. Motions of the
same actor are more similar to each other than other motions indicated by lower costs ¢ around
¢ = 0.5. Outlier in (a) are clearly visible by higher costs.

indicated by light matrix entries. Those jumps have been discarded as outliers for the
selection of DS, In Figure B2(b), four patterns indicating four different motion styles
(which means the individual style of every actor) are visible. Additionally, the motions
of actor hb and sh and the motions of actor pm and sm seem to imply higher numeric
similarities indicated by lower costs ¢ around ¢ = 0.5.

Finally, four moves per actor have been selected out of all captured trampoline jumps for
DS, Twelve motion classes have been chosen leading to a total number of 192 trampoline
jumps.



Chapter 6

Feature Set Evaluation

The following chapters document the extensive experiments that have been conducted on
the inertial trampoline database.

In Chapter 4 we have introduced several (composed) feature sets that transform the
inertial motion data stream into meaningful feature representations. Then, the similarity
of the feature representations to the previously computed MTs can be determined and the
passages within the feature sequences can be labeled as specific motion classes. To enable
stable and precise labelings, feature representations that show differences of dissimilar
motion classes are helpful. In the next experiments, we hence measure the discriminative
power of the given feature sets and determine the most discriminative one. Furthermore,
we explain the results of the experiments by interpretation of the semantic characteristics
of different motion categories as it is also done for motion understanding and motion
analysis in the fields of sports science. In our scenario, information on the morphological
or semantic aspects expresses how difficult it is to distinguish dissimilar motion classes.

We evaluate the feature sets on documents containing a single motion each using global
DTW in Section[6.1] and on one single document containing a sequence of different motions
using subsequence DTW in Section [6.21 Both sections evaluate the feature sets qualita-
tively and quantitatively. Finally, in Section [6.3] we conclude the chapter by choosing the
best and most discriminative feature set for all further experiments.

6.1 Document-based Evaluation

In a first experiment, we test the significance and power of the composed feature sets from
Chapter [] using the dissimilarity matrix in the same way as in Chapter Bl In this context,
the significance of a feature set expresses to which extent the numeric feature values can
represent the morphological and semantical properties of each motion class. We evaluate
how similar the feature representations for all motion classes are and how good motion
classes can be discriminated from each other with a given feature set. As we evaluate the
feature sets document-wise, we will use the cut trampoline jumps from the selected cut
database DS,

47
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For the following experiments, DS has been split into a test database D! with D =
(D1, Do, ..., Dk) that contains the documents with an even index and one training database
DC? with D = (Th, Ty, ..., Ty) that contains the documents with an odd index. In this
chapter, we will only use the data from DC'. D is chosen to compute the MTs and will
be used in later experiments, see Chapter [71

Before we start, we fix the IDs and abbreviations for every motion class that will be
used during the following experiments, see Table A precise overview of the different
motion categories and their semantics can be found in Chapter Bl The abbreviations for
the somersault jumps (BWC and BWB) are taken from common trampoline naming that
designates a tucked somersault as ¢- and a piked somersault as b-shaped.

ID (long) ID (short) Description

Bar BAR Barani

FrFeet FRF Front to feet

HaTw HTW Half twist

HaFr HFR Half twist front
PiJump  PJP Pike jump

SeHaTw SHA Seat half twist stand
SeStd SST Seat stand

SomPi BWB Somersault piked
SomSe BWS Somersault to seat
SomTu BWC Somersault tucked
SdJump  SJP Straddle jump
TuJump TJP Tuck jump

Table 6.1. Description and IDs (long ID and 3-digit short ID) for the motion classes used in our
experiments.

6.1.1 Dissimilarity Matrix

For the feature evaluation, we use a dissimilarity matrix (see Chapter B) M € RE*K by
computing the normalized similarity scores m;; for each pair of documents in DCL. Com-
paring the similarity scores among different feature sets, we obtain information on how
good every feature set discriminates all motion classes. In general, one can state the fol-
lowing. If the feature set is highly discriminative, the similarity scores for documents from
different motion classes are high and every motion class is separable from all other motion
classes. If the feature set is less discriminative, different motion classes will have simi-
lar similarity scores and cannot be separated accurately. If the similarity scores between
two motion classes are similar among several feature functions so that the motion classes
cannot be distinguished from each other, we expect the motion classes to be semantically
similar.

For all different feature sets, similarity matrices are computed to compare the feature sets
used. A qualitative evaluation of the dissimilarity matrix for a feature set can be made
as followed. In case of a discriminative feature design, dark blocks within every motion
class should be visible in the distance matrix around the diagonal. They indicate that m;;
for two documents within one motion class is smaller than m;; for two documents from
different motion classes.
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Figure 6.1. Dissimilarity matrices for document-based retrieval and selected feature sets. Left:
Inclination feature sets Frs (a) and Frio (b). Middle: Angular-based feature sets Fys (¢) and Fys
(d). Right: Combined feature sets Fispz (e) and Friops (f).

6.1.2 Results and Discussion

The dissimilarity matrices for all given composed feature sets visualize how precise every
feature set or feature type can discriminate between all motion classes, see Figure In
the following, we analyze all feature sets.

Inclination features: Fis appears to be a good discriminator for almost all motion
classes and does not seem to deliver worse results than the Fiqo feature set. This seems to
be surprising at first glance, as F11 offers more numerical information about the motions
(and especially about the motions of the extremities). However, data of the inner sensors,
as taken into account in Fqp does not seem to offer more and better information for a
feature description. Information on the pitch ¢ of the upper arms and upper legs seems
to be redundant as it does not contain other information than the pitch of the lower arms
and lower legs in most jumps. As it can be detected from Figure [6.I only between the
semantically very similar motions PJP, TJP and SJP, F1s does not yield any discrimination,
as the information that denotes differences between those jumps cannot be expressed by
the feature set. In particular, from the pitch ¢ of both lower legs only, one cannot tell
whether the legs are spread or not. Figure shows the feature matrices for one example
actor for all three jumps.

Angular-based features: The angular based feature Fjs does not obtain good dis-
crimination results for most motion classes. Only for the discrimination between motion
classes that are characterized by angular differences at extremities like the TJP and SJP,
the angular-based feature types yield a good discrimination of all motion classes. The
result, however, is natural, as for most other motion classes, no angular information and
changes occur in the extremities. As a result, the comparison between all motion classes
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Figure 6.2. Differences between the feature matrices of TJP (a), PJP (b) and SJP (c) can hardly
be discovered with the feature set Fis.

will result in equal similarity scores. Figure[6.3]shows the feature matrices for one example
actor for three different jumps of the motion classes SST, HTW and HFR. Hardly any differ-
ences in the feature matrices can be found with an angular feature set for those motion
classes similar than for the Fis feature set with the basic shaped motion classes PJP,TJP
and SJP. However, SST, HTW and HFR could have been discriminated well with Fis. In
cases where Fig fails, Fys discriminates well and vice versa, so that we interpret that the
F)ys feature set behaves complementary to the Fig feature set.

(a) (b) (c)
1 1 1
0.8 08 0.8
0.6 0.6 0.6
04 04 04
0.2 02 0.2
0 0 0
-0.2 -0.2 -0.2
-0.4 -0.4 -0.4
-0.6 -0.6 -0.6
-0.8 -0.8 -0.8
o1 - _

Figure 6.3. Differences between the feature matrices of SST (a), HTW (b) and HFR (c) can hardly
be discovered with the feature set Fjs.

During our experiments, we found out that variations in the execution style are very
frequent in the angle of the arms among all actors. To facilitate invariance under these
special variations, we created Fj3 which only represents angular characteristics of the
legs. Omne can see out of Figure 6.1l that the angular-based feature types become more
discriminative without the information of the arms.

Combined features: As both feature types offer strengths and weaknesses in discrimi-
nating several motion classes, a combined feature set should be ideal to discriminate all
motion classes. The combined feature types use features from both Fis and Fys leading
to a better discrimination between PJP, TJP and SJP than the pure Fig feature set and a
good discrimination among all remaining motion classes, see the differently colored blocks
in Figure and the high costs for similarity scores of documents of different motion
classes. By visible comparison, the feature set Fisps seems to deliver the best results. All
motion classes show certain differences in the feature matrices, see Figure[6.4] so that each
motion class can be distinguished from the other motion classes. In particular, this feature
set is less sensitive to variations in the arm movement among all actors. Moreover, even
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Figure 6.4. Feature matrices of example motions computed with the combined feature set Fisys.

Differences between PJP, TJP and SJP (upper row (a) to (c)) and SST, HTW and BWC (bottom row
(d) to (f)) are visible.

the motion classes PJP, TJP and SJP have differing feature matrices, which was impossible
with FI5-

After interpreting all distance matrices, one can conclude the following:

e Moves that are semantically similar, for example differently shaped somersaults BWB

and BWC or differently shaped basic moves like SJP and PJP jump, are hard to dis-
tinguish.

e Variations within the arm movements leads to differences that can worsen the dis-
criminative power of selected feature set.

6.1.3 Evaluation Measures

In addition to visual evaluations on dissimilarity and feature matrices, feature sets can
also be evaluated numerically. Now, any two motion documents within the same motion
class are considered as similar, whereas two motion documents from different classes are
considered as dissimilar. To measure the degree of performance invariance of a given

feature set F', we compute the distances between any two motion documents that belong
to the same motion class.

Let maxj be the maximum value of the resulting distances within one motion class (here
called as inner motions). Note that max; should be as small as possible for a good feature
set. Similarly, let ming be the minimum value of the distances of all remaining motion
classes (here called as other motions). Note that min; should be large to indicate a high
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Feature € v §

Fis 0.267 0.507 1.878
Fri0 0.304 0.555 1.849
Fis 0.518 0.827 2.937
Fas 0.381  0.902 3.785
Fisas 0.341 0.531 1.645
Fisas 0.288  0.484 1.657

Frions 0.343 0.556 1.735
F1i0a3 0.313 0.535 1.759

Table 6.2. Mean distance measures over all motion classes for all selected feature sets.

discriminative power of a feature set. Finally, we form the quotient ¢ := max; / ming. 6
should be less than 1 in case of a strong discriminative feature set. However, § is very prone
to outliers within the computed distances. One high cost value within the inner motion
class documents or one low cost within all other motion class documents can deteriorate
the measure. Therefore, we introduce further measures that are less influenced by outliers,
namely € and v.

Let u; be the mean and o7 the standard deviation over the computed distances. In
the case that the feature set has a high degree of performance invariance, u; should be
small. Similarly, let uo be the mean and op the standard deviation over the distances of
any two motion documents from different motion classes. If the feature sets are of high
discriminative power, po should be large. Then e := puj/uo expresses the within-class
distance pup relative to the across-class distance po. Note that a small value of € is a
desirable property of a given feature function F'.

For an even more meaningful evaluation, we then define yp,0 to be the mean over the
smallest p% of all distances of different motion classes. Finally, we get v := ur/pyo0 as
further distance measure. Again, v should be as small as possible.

6.1.4 Results and Discussion

To evaluate all feature sets quantitatively, we examine the previously described measures
0, € and v. The mean -, e- and v-values over all motion classes affirm the results that have
been visualized and determined qualitatively, see Table[6.2l The feature sets Fis and Fisas
result in the best e- and v-values. As it was mentioned before, the d-value is highly affected
by outliers, so the §-values are less significant. For every motion class, there is at least one
computed distance for jumps of different motion classes of lower cost than the distances
within one motion class. Nevertheless, the d-values are best for the combined-feature
types, as well. For the angular-based feature they are much worse than for the inclination
feature types indicating that those feature sets have lowest discriminative power.

We now want to have a closer look at the discriminative power of all feature sets for
different motion classes. For this, we use the v measure that comprises the most meaningful
information about the distribution of document distances. Table shows the v-values for
all motion classes and the mean v-value over all feature sets. As already indicated by the
qualitative analysis, the angular-based feature sets cannot distinguish between motions
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Feature BAR FRF HTW HFR PJP SHT SST BWB BWS BWC SJP TJP Mean
Fis 0.558 0.478 0.453 0.343 0.696 0.433 0.459 0.520 0.416 0.509 0.603 0.614 0.507
F110 0.478 0.500 0.461 0.409 0.702 0.521 0.615 0.603 0.437 0.609 0.680 0.641 0.555
Fys 0.900 0.835 0.980 0.672 0.914 0.819 0.770 0.983 0.661 0.850 0.932 0.601 0.827
Fp3 1.103 0.891 1.198 0.904 1.204 0.960 0.907 0.839 0.631 0.784 0.780 0.621 0.902
Fisps 0.563 0.516 0.518 0.388 0.609 0.516 0.544 0.574 0.480 0.605 0.587 0.472 0.531
Fisps 0.565 0.497 0.466 0.354 0.587 0.458 0.497 0.491 0.421 0.517 0.513 0.444 0.484
F1i0as 0.505 0.523 0.502 0.432 0.643 0.552 0.634 0.611 0.473 0.635 0.640 0.527 0.556
Frioas 0.494 0.512 0.472 0.412 0.639 0.529 0.627 0.568 0.442 0.593 0.611 0.523 0.535

Table 6.3. v values for p = 20% among all different motion classes for all feature sets.

that are not characterized by their motion shape, see Figure [6.3] but can discriminate
TJP and SJP. As visualized in Figure 62 inclination feature sets cannot discriminate
documents of motion classes PJP, TJP and SJP. For example, the v-values of the PJP for
F1s and Fr1i9 are much higher than the v-values for HTW, HFR or BWS.

6.2 Subsequence-based Evaluation

For a second feature evaluation experiment, we choose a much more realistic scenario
since a given data stream will not be segmented beforehand. Here, we do not evaluate
the distance between two jumps in D!, but compare one feature sequence X with a long
data stream using subsequence DTW.

For the experiments in this section, we will simulate the long data stream by concatenating
the test database D! to the consecutive database D54 without any separation data in
between each jump. We will store the concatenation information in an additional data
structure for later evaluation of the subsequence evaluation results.

We recapulate that in the subsequence DTW algorithm, a short feature sequence X is
compared to a longer feature sequence Y. Low costs in the computed distance curve
indicate passages in Y that are similar to the query. In the ideal case, all locations of
lowest cost indicate jumps of the same motion class as X, yielding a correct labeling of Y
with X. In practice, however, positions of low cost in the distance curve will also relate
to jumps of different motion classes, yielding to false label. For a good feature set, the
number of correct labels should be much higher than the number of false labels. Note that
morphological uniqueness of a motion class should lead to a very good separation from all
other motion classes and thus labels for these motion classes should all be correct.

6.2.1 Retrieval

We know from D! that every motion class is represented by eight jumps in D54, In our
experiments, we use this knowledge to retrieve the end positions of the eight most similar
jumps out of the distance curve that can be determined by using the ranked A-values
of the distance curve. The resulting positions are then compared with the concatenation
information from the database concatenation.

As feature sequence X, we use every jump contained in DC'. This means, that for every
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Figure 6.5. Distance curve for motion class BAR. The motion stream Y has been build so that
for every motion class, every second jump is performed by a different actor. The 5th BAR jump
within Y equals the query motion X. The cost for all jumps within the motion class varies among
different actors representing different motion styles.

query sequence X, the minimum cost of the distance function, also called cost of the match,
will be zero since X is also compared to itself. The position by of the cost of the best
match (rank 1) can be found at the end position of X within D54, Note that the cost
of positions in the neighborhood of by are also low as they are influenced by the low cost
of bg. Thus, we exclude the neighborhood around by for the following processing steps.
We call this neighborhood false alarm region and use half the query length to the right
and left of the index by. We continue in this manner to to find rank of the match 2... K.
Retrieval results that belong to the same motion class as X are called true hits, retrieved
results that belong to different motion classes as X are called false hits.

The distance curve can give information on how much variation all jumps from one motion
class undergo. Figure shows an example of how the distances for the BAR jumps within
DC! vary among all four actors (representing four different styles of motion performance).
BAR jumps that are performed by the same actor than the one in X have lowest costs.
Jumps from different actors even may have higher costs than jumps from different motion
classes due to high variation among different actors.

The number of true and implicitly the number of false hits among the results from rank
1 to 8 can deliver much information about the the quality of the feature set and it’s
discriminative power or the morphological aspects of the motion in comparison to all other
motions. The discriminative power of a feature set has already been described in section [G.1]
and will be evaluated in a similar way for the subsequence retrieval. With respect to
information on the morphological aspects, we expect the following. If it is easy to recognize
the characteristics of a motion class that occur in a real-life trampoline performance for
non-specialized spectators, the motion classes are also easier to characterize numerically.
Consequently, more true hits for the retrieval should occur. For the distance measure, this
means that the cost between jumps of different motion classes is high.
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6.2.2 Distance Measures

To quantify the differences and the discriminative power of each feature set, we define
similar distance measures than in Section [6.1] based on the a,  and v measures from [24].

Using the concatenation information, we can retrieve the costs for all jumps within D54
that belong to the same motion class than X which are the cost for all true hits. The
maximum of those costs is referred to as max%( . Among all jumps within D59 that belong
to different motion classes than X (which are all possible false hits), we define the minimal
cost as miny . Furthermore, let p7¢ be the mean over the cost values for all true hits of the
same motion class and ,uif the mean value over the cost values for all false hits of different
motion classes.

The ~ measure then is defined as

7% = max7’ /miny. (6.1)
Ideally, the y-value should be smaller than one indicating that all jumps that belong to one
motion class have lower cost than all jumps from different motion classes. Unfortunately,
the ~-value is prone to outliers and can not always deliver significant information.

Distance measures that yield more meaningful results are the o and the 3 measures. The
o measure is defined as

o = g Jug. (6.2)

The B measure states an even more meaningful distance measure. Here, we only respect
the mean value of the lowest p% cost values within all false hits M%X. [ is then defined as

BY = g [~ (6.3)

If 5 is small, we know that the difference between the mean cost of all true hits and the
false hits with the lowest costs is very high. So the § measure can display information on
the discriminative power of a feature set in a very exact way. An appropriate feature set
should yield small a-, §- and -values.

6.2.3 Results and Discussion

From the first eight hits for a specific query motion class in the corresponding distance
function we draw conclusions regarding morphological issues and feature evaluation.

Regarding the morphologies of a motion class, it becomes clear that there are motion
classes that we can transform better into significant feature representations than other
motion classes. Figure shows a distance curve for one sample actor for the morpholog-
ically significant motion class BWB and a distance curve for the semantically insignificant
motion class PJP that is semantically similar to the motion class SJP. For semantically
similar motion classes, the number of false hits raises and the a-, 8- and ~y-values deteri-
orate. The distance between the maximum cost within the correct motion class and the
minimum cost within the remaining motion classes decreases.
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Figure 6.6. Distance curves for the motion classes BWB (a) and PJP (b) for Actor hb. In (a), all
true hits are retrieved within the first eight hits (indicated by green dots) whereas in (b), false
hits (indicated by blue dots) appear. Note that the position of the document endings (indicated
by red dots) cannot always be found at the same position than the retrieved hits (blue dot for the
retrieval of the ninth pike jump in the database).

As one can see in Figure[6.6] the BWB jumps can be discriminated quite well from all other
motion classes. The rotational motion around the lateral axis leads to a very significant
pitch of all sensors and thus the somersault jumps stand out from all other motion classes.

On the other hand, motion classes that semantically do not differ to a large amount are
hard to distinguish. Those are, for example, all basic and easy jumps such as HTW, PJP,
TJP and SJP. All of those motion classes contain less discriminative characteristics and
are therefore hard to distinguish numerically. It was already mentioned that those moves
cannot be discriminated by all feature designs and can even hardly be described differ-
ently in a numerical way irrespective to the chosen feature set as they are morpholocially
similar. Figure illustrates morphological significance and shows a feature matrix of
the significant motion class BWB and a feature matrix of the less significant motion class
PJP. Both motion classes only differ by the rotational motion around the lateral axis.
This difference makes one motion class easy to retrieve within the concatenated database,
while the other one is hard to distinguish from other motion classes. In principal, it seems
that the easier one trampoline jump is, the less discriminative information it contains and
the harder it is to transform it’s morphologic properties into unique numeric descriptions.

It becomes obvious from Figure that for the PJP, the positions of lowest cost cannot
always be found at the document’s end within D54, Even if we define a tolerance of
several frames as natural deviations caused by the hand-made annotations, not all local
cost minima can be related to the document’s end position from the annotations. As
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Figure 6.7. Comparison between numerical representation of the significant motion class BWB
(a) and the insignificant PJP motion class (b). In (a), all features of Fis (rows within the feature
matrix) contain characteristic information whereas in (b) whole features do not contain enough
discriminative information to distinguish the motion class from similar motion classes or a standing
pose.

those shifts mainly occur for the basic jumps, we expect those variations to be a result of
different motion style and especially speed differences during the flight phase. This means,
that for some PJP jumps, the elementary motion technique (moving the legs and arms into
a piked motion shape followed by a motion release phase into the straight motion shape)
has been performed earlier or faster during flight phase. Then, for the rest of the flight
phase, nothing happens any more, so that the ending of a jump may be found before the
real end of the motion document within D54, This information could later be useful for
performance monitoring, but for the current experiments, it will be necessary to become
invariant against those temporal shifts.

For the document based retrieval, the Figps feature set turned out to be the best overall
feature representation. In concordance to those results, graphical visualizations with the
distance curves yield similar results for the subsequence-based experiments. With the
Figp3 feature set, most of the true hits could be retrieved and the distance to the remaining
motion classes is relatively high. In a quantitative evaluation with the introduced distance
measures, however, the a- and (-values are better for the Fis feature set. Based on the
results from the document based evaluation, only the three best feature sets have been
further evaluated in the subsequence evaluation process. Table shows an overview
over the distance measures (averaged over all query motions) for different feature sets.
However, we can see that the difference between the average (-values for Figpz and the
average (-values for Frg is much smaller than the difference of the a-values. As the G-value
is more meaningful than the a-value and as we already have seen that the Fig feature set
cannot discriminate all motion classes in a satisfying way, we nevertheless choose Fisys.

Feature wr 152 « wr M%O% I} marr Ming ¥

F1s 0.116 0.360 0.319 0.116 0.224 0.530 0.182 0.118 1.698
Fisps 0.154 0.344 0449 0.154 0.253 0.621 0.223 0.154 1.583
Fisas 0.117 0.326 0.361 0.117 0.224 0.541 0.176 0.128 1.532

Table 6.4. Averaged distance measures over all query motions for feature sets Fis,Fisss and Fisys.
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Selected distance curves including values for distance measure and the true and false hits
indicated by green dots (true hits) and blue dots (false hits) are listed in Figure at
the end of this chapter. For all distance curves, the feature set Fisas has been used. The
ending of each motion document within D59 is indicated by small red dots. One can
see that the retrieved positions do not always coincide exactly with the positions that
are given in the concatenation information. Within some tolerance region around the
document ending, hits are recognized as true hits.

6.3 Conclusion

With the feature evaluation experiments, we gained insight into the characteristics and
discriminative quality of every motion class. Furthermore, the discriminative power of all
given feature representations has been determined. The main results are as followed.

A combined feature set is the best to discriminate all motion classes from each other as by
the combination of the inclination features with angular-based feature sets, motion classes
that differ in angles between the up vector and the sensor’s X-axis and motion classes that
differ in angles between the bones of extremities can be distinguished.

By suitable feature representations, dissimilar motion classes can be distinguished better.
We can fix suitable feature representations in the feature evaluation step, but cannot
diminish the similarity costs within all motion classes.

For many motion classes, individual differences within the motion style of each actor
become visible. In general, each actor is recognizable by it’s individual technique that
slightly differs to the motion style of other actors. For example, the position of the arms
can vary at the beginning and the ending of each move. The athlete can start with
the hands pointing upwards or help to increase it’s inertial moment by moving the arms
from upwards from the side of the body. The amount of momentum transfer from the
trampoline bed to the body can vary as well as the timing of moves and flight phases
itself. Due to natural restrictions and individual proportions of the athlete’s body, the
shape of the moves will always slightly differ among different actors resulting in different
motion styles and shapes. How to cope with those variations will be discussed in the next
chapter.

As the Fisps feature set turned out to be the best discriminative feature set of all tested
feature sets, it will be used for all following experiments.
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Figure 6.8. Distance curves for selected motion classes and actors. The true hits are indicated
by green dots, false hits by blue dots and annotated document ends for the queried motion class
by red dots. The green line represents the maximal cost value max; within all true hits, the blue
line represents the minimum cost value miny within all false hits.
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Chapter 7

Motion Template Evaluation

To classify a feature sequence, we compare it to the previously computed class MTs that
are averaged feature matrices of sample jumps from one motion class. The MTs represent
the main characteristics of a motion class and lead to low costs in the distance measure
if compared to a jump of the same motion class so that the jump can be assigned the
correct motion class label. However, MTs can still not disregard actor-individual style
variations within the feature sequences leading to high costs in the distance measures.
We have seen that the trampoline jumps within one motion class undergo style variations
that cannot be addressed by the methods we used so far and that huge cost differences
between jumps from different actors occur. Especially the motion of the upper extremities
turned out to be very variant among all actors and even within the same actor. To make
the classification result invariant against style variations, we have to use information from
the MT computation step. By this information, we can mask out all those regions within
the feature sequence that are expected to be subject to highest variation. Then, the cost
of all true hits will be as close as possible, ignoring outliers in motion style so that the
classification should become more stable and precise.

In Section [(.1], we first give an introduction into the use and purpose of motion templates
as averaged feature matrices. We will see why MTs are suitable as class representations.
In Section [[.2] we then introduce evaluation measures that enable to quantify the results.
In Section [(3] the general method of masking MTs to become invariant against actor-
specific variations is described. A further method of intelligent MT masking to handle
performance variations is then introduced in Section [[4l Finally, Section concludes
the chapter.

7.1 Usage of Motion Templates

As a first introductive experiment into the MT concept, we want to show the effect of MTs.
For this, we use subsequence DTW with the same retrieval algorithm than in Section [6.2]
We use D5 as long feature sequence Y, while all class MT feature matrices are used as
query X. To compute the MTs, D2 is used that contains feature representations of two
sample jumps per Actor and motion class. As for the computation of every motion class

61
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Figure 7.1. Distance curve for the query MT of motion class BAR. The cost differences between
all true hits is reduced in comparison to Figure

template jumps of all four actors have been used, actor-specific variations are averaged
and hence their influence on the distance measure is reduced. As a result, the subsequence
retrieval results will improve. To be more precise, the distances for a comparison between
X and Y among all jumps of the same motion class will approach approximately the same
cost level. Then, also the number of false hits among the eight first retrieval hits can be
decreased. For a quantitative evaluation, the previously described distance measures «, 3
and v will be used again, see Section

7.1.1 Results and Discussion

Using the MT as query feature sequence X, the costs of all true hits approach the same
cost. We can see in Figure [Tl that the distance curve for all jumps of the queried motion
class BAR is on nearly the same level (and so of similar cost).

One can see that in comparison to the subsequence retrieval distance curve from Figure[6.5],
the cost differences between all true reduced. As the query motion is standardized and not
subject to variations in motion style, only the essence of the motion description has been
grasped. Those semantic characteristics will be found in all feature representations of the
same motion class and therefore the retrieval cost for all jumps is at similar cost level.
On the other hand, as the query feature sequence is not contained in D!, the ideal cost
of the match will not occur any more. In the next section, we will introduce evaluation
measures and quantify the results.

Note that the retrieval results became better, but are still subject to variations that occur
in motion documents contained in D59, Furthermore, the retrieval cost for true hits is
high for some motion classes.



7.1. USAGE OF MOTION TEMPLATES 63
BAR FRF

HTW HFR

PJP SHA

SST BWB

BWS

SJP TJP

Figure 7.2. Normalized motion templates of all motion classes as given for the similarity measure
in alphabetical order from left to right and top to bottom.
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Retrieval

Database

Precision

Figure 7.3. Schematic view of precision P and recall R for information retrieval. P is determined
by the number of relevant documents within the retrieval results whereas R is determined by the
number of retrieved relevant documents within the number of all relevant documents inside the
database.

7.2 Precision and Recall as Evaluation Measures

We have seen that we can improve invariance against spatial variations by better suited
feature sets. We now want to introduce evaluation metrics that help to quantify improve-
ments in invariance against actor-individual variations on base of subsequence retrieval
methods.

7.2.1 Precision and Recall

Precision P and Recall R are measures to evaluate pattern recognition algorithms and
information retrieval methods. They are defined in terms of a set of retrieved documents
with relevant and irrelevant documents as schematically shown in Figure In our
subsequence retrieval, as described in Section [6.2] the set of relevant documents contained
in D5 has a size of eight for every queried motion class. Here, a true hit means that
a retrieved document is relevant. Analogously, irrelevant retrieved documents are called
false hits.

Let k, k € [1: K] be the rank of a given match, where K is the maximum rank (in our
case K = 96). Now, for every k, Precision P is defined as the number of true hits over
the number of all retrieved documents by Py :=|T N My|/| M| and Recall R is defined as
the number of true hits over the number of all relevant documents that are contained in
the database by Ry :=|T N My|/|T|. Here, My, is the set of all matches up to rank k and
T the set of all relevant documents (in our case |T'|=8).

In an excellent retrieval scenario, P will be one (which means 100%) and R will be one
after k = |T'| retrieval steps.

7.2.2 Evaluation with Precision and Recall

Combining Precision and Recall by the harmonic mean yields another metric to measure
the accuracy of the retrieval, the (standard) F-measure that is defined as Fj := 2- Py -
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Ry /(P;+ Rg). From the F-measure, we can determine the maximum F-measure that is
defined as F:=maxFy, ke [l: K].

With the F-measure, we can quantify the accuracy of retrieval results. Table [T1] shows
the average maximum F-measure for subsequence retrieval without MT as query motion
X and with MT as query motion X for selected feature sets that confirm the feature
evaluation results from Chapter [fl To guarantee that the results will be comparable, we
use all motions within D2 that are also contained in the averaged MT as query motions
for the subsequence retrieval from now on.

Feature Set F-measure F-measure with MT

Fis 0.617 0.854
Fisps 0.651 0.927
Fisps 0.680 0.906

Table 7.1. Averaged maximum F-measure for selected feature sets for subsequence retrieval with
and without MT as query motion X.

One can see that using MTs as query improves the average F-measure as we have already
illustrated. One can also see that the Fis,3 feature set that has been chosen as best feature
set has a good averaged F-measure.

We will now have a closer look on how to evaluate retrieval results by Precision and Recall.
We therefore store the values for precision and recall for the first K = 96 hits (which is
the length of the database) in an additional data structure. Then, we can plot both values
for every k € K in a Precision-Recall-diagram (PR-diagram). Figure [[4] shows the PR-
diagram for selected motion classes where precision is signed on the y-axis and recall is
signed on the x-axis. In the upper row, averaged PR-diagrams over all precision and recall
values for the retrieval process with all feature representations within D2 is presented.
In the bottom row, PR-diagrams for a retrieval with MTs is plotted.

In Figure[74] the PR-diagrams for selected motion classes are shown. Those motion classes
represent the results significantly. The PR-diagrams for all other motion classes appear
in a similar way. For all motion classes, one can see that the retrieval results improve by
using MTs.

In the ideal retrieval scenario, the number of retrieval steps to obtain the maximum F-
measure will be the number of similar motions contained in the database D59 (and the
maximal F-measure can easily be detected in the PR-diagrams as the edge at the plot’s
orthogonal shape then).

7.2.3 Confusion Matrices

With the definition of P and R, we now want to examine how motion classes are confused
with each other with regard to a given query feature matrix. Here, we count the number
of true hits nyrc until the position k that yields the maximum F-measure (which can vary
for different motion classes). Then, we normalize nyic by the number of retrieval steps k
and store the values in a confusion matricx Mg for every motion class that is visualized
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Figure 7.4. PR-diagrams for selected motion classes SST (left), PJP (middle) and BAR(right). In
the upper row, averaged PR-diagrams for subsequence retrieval can be found, in the bottom row
PR-diagrams for subsequence retrieval with a query MT can be found.
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Figure 7.5. (a) Confusion Matrix for subsequence retrieval without MT. (b) Confusion Matrix
for subsequence retrieval with MT.

in Figure [Z.Al The rows of a confusion matrix represent the motion classes of the query
feature sequence X, whereas the columns represent the motion classes of the match in the
feature sequence Y. Dark entries indicate a high percentage of the retrieved motion class
among all hits, whereas light colors indicate a low percentage.

The confusion matrix yields a good impression on how the motion classes are mixed up
under different query matrices. For example, one can see that for the subsequence retrieval
with MT query feature sequence, less motion classes are confused than for the subsequence
retrieval without MT.

All confusion matrices show that there are several motion classes that can be hardly be
discriminated and will be confused to other motions with a high probability. Especially
all those motion classes that have a high semantic similarity such as PJP and SJP will be
confused with each other as it has already been shown in Chapter [6l Motion classes that
only differ by their landing positions like BWC and BWS may be confused as well as motion
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Figure 7. 6 Varlant feature matrices ( ) of a barani jump and the AQM (c) of the MT shown
in Figure [4.91 Most variant regions mdlcated by green boxes are marked out.

classes that only differ in twist motions like SST and SHA. However, for all confused motion
classes, the results are not surprising as the semantical differences between those motion
classes are very small.

7.3 Dealing with Style Variations

We have seen that the results of the subsequence retrieval experiments got better by using
MTs, but are still affected by actor-individual variations from the motion documents within
D2 50 that the cost for all true hits have been relatively high. Variations of jumps within
DC? can raise the cost of a comparison between the averaged MT and a passage within Y
of the same motion class. As actor-individual style variations are also expected to occur
during motion classification in the unknown data stream, we now want to diminish the
influence of those variations.

The idea is that for all trampoline moves, variations usually occur in special temporal
regions. For trampolining, those regions are usually at points in time where each actor is
free to move without restrictions by biomechanical and physical properties. For example,
we expect those regions to be at the beginning and the ending of the motion performance
as each trampolinist has it’s own individual style of starting a motion and moving the
arms during the contact phase with the trampoline bed. Further possible regions for
large variations can also be during the flight phase like such as for the BAR, where every
actor is free to chose the jump’s motion shape. Those temporal regions can then be left
unconsidered in the similarity measure while comparing the MT to an unknown motion
document.

For this, we use the information we got out of the MT computation. Remember that
we stored the information on the standard deviation in the feature matrices of all MTs
for every frame in an additional data structure. Now, we can identify the most variant
regions and mark them as irrelevant for the distance measures. In our case, we define the
most variant 25% of all single values within every MT to be the automated quartile mask
(AQM) for the corresponding MT.

Figure [[.6] shows the masking of the most variant 25% of all feature values of the BAR
template that has already been shown in Figure [£.91 The masked regions are positioned
at the significantly different feature matrix entries 1nd1(:ated by the green boxes.
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Figure 7.7. Distance curve for motion class BAR with AQM query MT. The cost differences among
all true hits is reduced in comparison to Figure and Figure [[ 1]

7.3.1 Results and Discussion

Using AQM MTs, we do only consider those regions within the query MT that are almost
constant within all training jumps. In other words, we only consider those parts that
are the same for all jumps and should therefore probably contain relevant information
that describes the motion semantically. We will now evaluate the improvement on a
subsequence retrieval with AQM MTs.

We will now see in Figure [[.7] how the distances for motions of the same motion class
improved by the same BAR distance curve as in Figure and Figure [[Jl One can see
that we succeeded to equalize the cost of all true hits but also to reduce the average cost
to retrieve the relevant motions.

In a quantitative evaluation with the quality measures a, § and + it also becomes clear
that using a AQM MT as query feature sequence X improves the retrieval results. A
comparison of subsequence retrieval and subsequence retrieval with a AQM MT can be
found in Table

wr 733 o pr p2% B maxrr MIng 0l

0.049 0.240 0.204 0.049 0.143 0.357 0.068 0.072 1.049

Table 7.2. Averaged distance measures over all AQM query MT's for the Fisps. The measures got
better than for the subequence retrieval without MT masking and confirm the graphical results.

In the evaluation of Section [6.2, we saw that for some of the basic motion classes, the
local cost minimum is not found at the annotated document ends. By using a MT with an
AQM as query motion, the problem of spatial shift of the local minimum is minimized and
remains within the defined tolerance region so that all relevant motions can be retrieved
as true hits first. Figure [Z.8 shows the distance curve for the query motion class PJP.
Other than for the subsequence retrieval curve, the shift of the local minimum is so small
that it remains within a defined tolerance region for the AQM MT query sequence. We
suppose this is due to the fact that the masking of the PJP MT is mainly located in the
landing and takeoff phases close to the contact phase that are subject to many variations
and depending extremely on the accuracy and quality of the performed jump.
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Figure 7.8. Distance curves using AQM MTs for subsequence retrieval. (a) In subfigure (a),
the masked MT of motion class BWB was used as query, whereas in subfigure(b) the masked MT
of motion class PJP was used. The number of true hits raises while the number of false hits
diminishes. Better distance measures are displayed by higher cost differences between jumps of
the same motion class than the query MT and motions from other motion classes, lower costs for
max7 and higher costs for miny. In (b), The positions of a local minimum are located closer to
the annotated document endings.

The distance curve in Figure [Z.8 shows that by masking a MT, also differences in motion
styles can be left out of consideration in the retrieval process. Then, the same holds for
classification and the identification of similar motions is improved.

Figure [Z.8 shows that not only the number of true hits raises while the number of false hits
diminishes, but also that the distance between all motions from one motion class to all
other motion classes becomes larger so that the discrimination between different motion

classes becomes more accurate. One can also see that the relation between max;,)g and

miny gets better so that both values approaches or so that maxs even falls below miny

as it is expected to be for the ideal case.

Again, selected distance curves for each MT query including values for distance measure
and the true and false hits indicated by green (true hits) and blue dots (false hits) are
listed in Figure The hits within each motion class are of more similar cost than the
curves in Figure and the evaluation measure are of better value.

For further evaluation, we will now use the newly introduced measures P and R. In the
PR-diagram from Figure [(.9, one can see that with using a masked MT, the values for
Precision and Recall further improve. Again, only some selected motion classes will be
plotted that stand for the results for all motion classes.
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Figure 7.9. PR-diagrams for selected motion classes SST (left), PJP (middle) and BAR(right).
In the upper row, PR-diagrams for subsequence retrieval with a query MT can be found, in the
bottom row PR-diagrams for subsequence retrieval with a AQM query MT can be found.
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Figure 7.10. (a) Confusion Matrix for subsequence retrieval with MT. (b) Confusion Matrix for
subsequence retrieval with AQM MT. Less motion classes are confused with the queried motion
class and the number of false hits diminished.

If we visualize the retrieval results in a confusion matrix, the improvement of the retrieval
results can be affirmed as in Figure Nevertheless, for the confusion matrices, one can
see that the PJP, TJP and SJP jumps are still sensitive to confusion as they do not contain
enough semantically characteristic information.

As a result, we can confirm that for most motion classes, the used masking method offers
satisfying and stable retrieval results invariant to style variations with the Figp3 feature set.
Semantically insignificant motion classes cannot be addressed by the automatic masking
method so that we need another masking method for those motion classes.
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BAR

SJP TJP

Figure 7.11. Normalized motion templates with AQM for all motion classes in alphabetical order
from left to right and top to bottom. Masked regions are positioned at either feature vectors that
lie at the beginning and ending of a jump or at the beginning and ending of the flight phase.
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Figure 7.12. Distance curves for AQM MT queries of selected motion classes. The true hits
are indicated by green dots, false hits by blue dots and annotated document ends for the queried
motion class by red dots. The green line represents the maximal cost value maxs within all true
hits, the blue line represents the minimum cost value miny within all false hits.
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Figure 7.13. Matrices containing information on the differences between semantically similar
motion classes for intelligent masking. (a) Difference matrix for TIJP jumps. (b) Difference matrix
for PJP jumps. (c) Difference matrix for SJP jumps.

7.4 Intelligent Masking for Morphologically Similar Moves

We have seen that it is especially difficult to discriminate semantically less significant and
similar motion classes such as PJP, TJP and SJP. In this section, we investigate how to alter
the masking algorithm for a better discrimination among those motion classes. Possible
methods point out the potential evolution towards generic algorithms.

Here, the main idea is to use expert knowledge about every motion class to grasp the
relevant information contained in the feature representations in a more efficient way. In
particular, the influence of all unique motion class characteristics on the similarity measure
is amplified. This means that for every frame which contains characteristic information
in at least one feature vector entry, we mask all feature vector entries that do not contain
discriminating information. Consequently, only the unmasked feature entries containing
discriminative information are respected for the similarity measure.

From morphologic considerations, we know that the motion classes PJP, TJP and SJP only
differ by angular changes in the legs during the flight phase’s apex representing the different
standard motion shapes. We now want to learn this knowledge for a better motion class
discrimination.

To transfer the expert knowledge into numerical knowledge that can be used automatically,
we compute an averaged feature matrix over all three MTs. By subtracting the matrices
of the MTs from the averaged feature matrix, we get three so called difference matrices
for every motion class. To this end, we first have to warp all templates to the same length
using DTW. The difference matrices contain information about all discriminative and
unique regions within the feature representation for every motion class. For the difference
matrices, we then define a threshold ¢ that marks the t% most differing matrix entries
of highest absolute value. Figure [[.13] shows the difference matrices for all three motion
classes.

Using the thresholded difference information, we can create a new MT mask for the three
affected motion classes. Here, for all most variant frames within the class MT we exclude
all thresholded relevant feature vectors and mask all remaining feature vector entries.
This means for example that for the TJP jump, only the two rows representing Fi3 and
F14 within the feature matrix remain unmasked in all frames where the angle between
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Figure 7.14. Retrieval results with IM using expert knowledge. (a) The masking works fine to
discriminate the TJP motion class. (b) The masking did not yield significant improvements for the
PJP and SJP motion class so that the moves are still confused with each other.

upper and lower leg is significant. As this mask uses some trained expert knowledge about

the morphologic differences between the affected motion classes, we call it intelligent mask
IM.

For evaluation of the effects of the new MT masks, we will repeat the subsequence retrieval
scenario with the IM. Figure [[ 14l shows the results for TJP and SJP motion class query
MT (the results for the PJP class MT are very similar to the SJP class MT). One can
see that for TJP jump, the masking method works very well as the distance for all true
hits differs significantly to the costs for all other motion classes. For the SJP and PJP
motion class, on the other hand, no definite improvement could be achieved. A probable
explanation for this could be that for the two motion classes, only one feature (Fy5) differs
over relatively few frames (and hence over a short motion time). Those tiny differences
will not influence the similarity measurements sufficiently.

Finding the right threshold that defines the most variant regions within every difference
matrix is a difficult problem. If too many parts of the MT will be masked, even other
motion classes that have not been investigated for the intelligent masking and are semanti-
cally unique can no longer be discriminated from different motion classes (like for example
from the HTW motion class) as too many parts of the feature matrix that characterize the
motion class will be masked out. On the other hand, if we mark too less regions, differ-
ences cannot be identified and the motion classes will be mixed up. In Figure [[.T5 we
can see the problem of ’overmasking’ where the HTW motion class became similar to the
masked query PJP class MT leading to false hits. For our experiments, we use t = 25% as
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Figure 7.15. Retrieval result for a masked PJP class MT. As the threshold for masking has been
inappropriate, the HTW can hardly be distinguished from the query motion class leading to false
hits.

treshold to select regions of the most variant values which turned out to work well.

For the most precise masking, it would be necessary to use two levels of computation of
different granularities: the first one which retrieves semantically different motion classes
by the AQM MT and the second more precise one that retrieves all those motions that
are semantically similar and re-masks them with the IM algorithm then.

Another method to calculate a discriminative mask would be to use 'negative’ information
as discriminator, whereas, negative information means information from other motion
classes. Those motion classes do not contain the wanted discriminating characteristics.
If we then subtract the negative information from the averaged feature matrix, one can
again identify all regions of highest difference for masking the feature vector entries that
are not part of those regions. In our experiments, the usage of negative information did
not yield better results, so that this masking method will not been used for the consecutive
classification experiments. To get useful results, further experiments that define threshold
and other parameters will be necessary.

As it was already mentioned, the methods introduced are first algorithmic steps to control
and influence the similarity measures between semantical similar motion classes by expert
knowledge. For further exact and fully-automatic masking of the class MT, generic algo-
rithms would be necessary. They have not been investigated for this thesis and can be
examined in future work.

7.5 Conclusion

We have seen that masking all regions of high variance as irrelevant for the similarity mea-
sure improves the invariance against actor-specific variations. We have also seen that for
special semantically insignificant motion classes, the AQM method where we exclude the
most variant P% of every motion class MT does not suffice. Here, we need more sophis-
ticated masking methods that tranform morphological expert knowledge into numerical
information. However, it is very difficult to transfer this knowledge in a significant way.
This means that those algorithms have to be further investigated and evolved in future
work.



76 CHAPTER 7. MOTION TEMPLATE EVALUATION

Nevertheless, during the experiments that were described in the last two chapters, we
have fixed very discriminative and significant methods that enable a stable and satisfying
classification.



Chapter 8

Classification Evaluation

Using the best suited feature set as it has been determined in previous experiments and
the masked motion templates that are invariant to motion variations, we will now test
the accuracy of the developed classification method in various experiments. Here, we use
the DTW-based similarity measures introduced in Chapter ] and evaluate their accuracy
with respect to the jump labeling.

In Section B the jumps in the routines were manually segmented using the existing
annotations and the classification was conducted using global DTW. A more practical
scenario is described in Section where we use DTW on the unsegmented routines. As
further step, an automatic segmentation algorithm is introduced that automatically seg-
ments the routines into single jumps in Section B3l These jumps are then again classified
using global DTW. In Section B4l the previously described classification scenarios are
compared. Finally, Section ends the chapter with a conclusion.

8.1 Document-based Classification

As in the experiments from Chapter [6] we start with some classification tests that use
global DTW as similarity measure for classification in an controlled environment using
segmented jumps.

During the capture process, different routines have been recorded that will be used as
unknown data streams for classification now, see Section 5.1l The jumps from the routines
are not included in the test and training databases D! and D®2. One different routine
per actor has been chosen out of the captured database, so that overall 13 routines (three
routines from actor hb, three routines from actor pm, three routines from actor sh and
four routines from actor sm) have been available for classification, see Table Bl Two
routines have been performed by all actors in the same order of jumps (those routines are
predefined mandatory routines for intermediate trampoline competitions), whereas (at
least) one routine has been a free style routine that contained jumps individually chosen
by every actor. So the free style routines also contain motion classes that have not been
learned as motion templates. In the following, we will see as which motion class those

7
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ID Name Actor Description

R1 L8 hb HFR, FRF, TJP, BWS, SHA, PJP, BWB, SJP, BWC, BAR
R2 Modified L7 hb BWC, SJP, BWS, SHS, SST, FRD, FRF, HTW, TJP, BAR
R3  Freestyle hb BWA, HTW, SED, SHS, SHA, PJP, BWB, TJP, BWC, FTW
R4 18 pm HFR, FRF, TJP, BWS, SHA, PJP, BWB, SJP, BWC, BAR
R5 Modified L7 pm BWC, SJP, BWS, SHS, SST, FRD, FRF, HTW, TJP, BAR
R6  Freestyle pm 3QB, FRF, SJP, BWB, BAR, BWA, TJP, BWS, SST, BWC
R7 L8 sh HFR, FRF, TJP, BWS, SHA, PJP, BWB, SJP, BWC, BAR
R8 Modified L7 sh BWC, SJP, BWS, SHS, SST, FRD, FRF, HTW, TJP, BAR
R9  Freestyle sh SED, SST, SJP, HTS, SHA, TJP, SED, SHS, SST, HTW
R10 L8 sm HFR, FRF, TJP, BWS, SHA, PJP, BWB, SJP, BWC, BAR
R11 Modified L7 sm BWC, SJP, BWS, SHS, SST, FRD, FRF, HTW, TJP, BAR
R12 Freestyle sm 3QB, FRF, SJP, BWC, BAR, PJP, BWB, TJP, BWS, SHA
R13 Freestyle sm SED, SST, SJP, HTS, SHA, TJP, SED, SHS, SST, HTW

Table 8.1. Description of the routines used for classification experiments.

unknown motion classes will be labeled.

As a first experiment, we classify each document within the test database D! to can get
an overview of how exact each motion class will be classified with the methods chosen to
handle variation.

First, we compare each document with the given masked MTs (for the TJP, we used the
IM, whereas for all other motion classes, we used the AQM). Remember, that the MTs
have been build from the training database D2 which is disjoint to DC!. As a result, we
obtain a matrix M¢; that contains the distances for the similarity measures of each pair
of document and MT. We can then classify every database document as a specific motion
class by assigning a label to it. For this, we have to find the motion class that yields the
minimal distance in the similarity measure for each document within M¢; and constitutes
the document’s label.

For a second experiment, we will classify the additionally captured routine moves in the
same way than the test database DC!. In this scenario, we use the manual annotations of
each routine to cut single jumps that can be compared to the MTs. As some of the routines
include motion classes that have not been learned as MTs, we furthermore introduce an
additional motion class unknown UNK for the classification experiments. If the minimal
cost for a match overgoes a certain threshold, the document will then be classified as
unknown.

8.1.1 Results

Figure Il shows the classification results for the test database DC!. As the database has
been concatenated in alphabetical order, in the ideal case, the classification matrix would
only consist of correctly classified motion class blocks. One can see that almost every
jump within D! has been classified correctly. Only for the semantically similar motions
PJP and SJP that are already known as problematic from the previous experiments, a false
classification result occurs. Overall, the results are very good as we can see that in most
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Figure 8.1. Classification results for D! with document based classification using global DTW
methods. Single jumps have been cut by manual annotations. The classified motion class is plotted
on the vertical axis while the annotated documents are depicted along the horizontal axis.

cases, the correct motion class if of lowest cost.

For the routine classifications, the results are of similar quality. Most of the jumps could
have been classified correctly with the exception of some jumps from the PJP and SJP
motion class and some jumps inaccurately performed jumps. With respect to the clas-
sification of the unknown jumps, we can see that they could not always be identified as
unknown. Figure 8.2l shows an example of the Routines R4 and R11. For R4, all jumps
that belong to the routine have been classified correctly, whereas for R11, the unknown
motion classes could not been identified as unknown. The red boxes in the classification
plot show the positions and motion classes from the video annotations as ground truth.

As every routine starts and (usually also) ends with straight jumps, we will learn an addi-
tional MT for the STR motion class in the same way than the other MTs from Section [4.3]
Moreover, an additional automatic quartile mask for the STR MT is defined to circumvent
influences of style variation that will be used for all following classification experiments.
For all routines, the classification of the STR jumps yields most wrongly labeled motion
documents compared to all motion classes, see Figure Mislabeling of STR jumps espe-
cially occur for the motion classes HTW and UNK, as STR jumps do not contain any unique
characteristics and many variations. Consequently, the motion class cannot be distin-
guished from other motion classes as stable as all other motion classes. Especially the HTW
motion class, that only differs by rotational motion around the longitudinal axis, is se-
mantically very similar. As none of our given feature sets does use rotational information
from the rate gyros, both motion classes cannot be discriminated.

Again, finding a correct threshold to label jumps as UNK is a difficult design issue that can
degrade or improve the classification results considerably. In case of a threshold which is
chosen too high, unknown jumps will not be identified as UNK. In case of a threshold which
is set too low, even known motions (that would probably have been classified correctly)
will be classified as UNK. For our experiments, we defined a threshold ¢.,ss in accordance to
the minimal cost values that usually appear for a true classification of value t.455s = 0.18.
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Figure 8.2. Classification results for the Routines R4 and R11 with document based classification
using global DTW. Every jump has been cut using the manual annotations that also work as ground
truth (red boxes). (a) All motions from the routine are classified correctly. (b) Unknown motion
classes are not labeled as UNK, but as different motion class. STR jumps are often mislabeled as HTW
which can hardly be discriminated.

8.2 Subsequence-based Classification

Classifying documents that have already been segmented manually into single jumps is
not a very realistic scenario, as usually unknown data streams that occur in a classifica-
tion scenario will contain more than one motion. We therefore repeat all classification
experiments from Section Bl with subsequence DTW and the concatenated test database
DSed respectively the consecutive routine streams.

Other than for the global classification, we do not obtain cost matrices, but distance
curves. Additionally, we store the warping paths that will be obtained from the similarity
measure in an own data structure. To classify the motions within the motion stream, we
calculate a minimal distance curve DCy,, over all distance curves that are obtained by
subsequence DTW using the various MTs as queries.

We then find the position of absolute minimal cost within DCi,i, and identify the motion
class respectively the MT this minimal cost belongs to. With the computed warping
paths, we can define all frames within the motion stream that will be labeled by the same
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Figure 8.3. Classification results for the concatenated test database D54 using MTs either
masked with quartile mask or with an intelligent automatic mask (for the TJP category).

motion class than the one at position of minimal cost. Remember, that the minimal cost is
supposed to be found at the end of a document so that the warping path labels all frames
that come before the position of minimal cost. Within a region of half the template length
of the respective class MT of the minimal cost, we define a label stop region which acts
similar than the false alarm for the subsequence retrieval. This means that those frames
cannot be retrieved as minimal cost any more. The classification procedure will then be
repeated until every frame of the minimal distance curve has been classified.

Note that, as the label stop region excludes all frames that are near the local minimum
within half the class MT length, frames outside of this region can be labeled a second time
as different motion class. So, one time frame can be labeled multiple times.

8.2.1 Results

The results for the classification of all documents contained in the concatenated test
database D51 contain more mislabeled passages than mislabeled documents in the doc-
ument based classification, compare Figure and Figure This is not surprising, as
in the subsequence classification scenario, all motions are concatenated to one big data
stream without any segmentation. As a result, it may be that not all document endings
will be found at their exact (annotated) positions. Then, the similarity distance raises so
that the chance of mislabeling and confusing motion classes raises. Another problematic
result can be that not the whole jump can be classified within one classification step due
to inaccurately computed warping paths. As some frames may be missing in the warping
path computations, not all frames that belong to one jump will be labeled within one
computation step. This means, small regions can be left unclassified first and may be
classified by another motion label later. In Figure R3] one can see those subsequence
classification problems as for all classes, small passages between the documents have not
been classified or have been classified as wrong motion classes in a further computation
step.

In particular, most mislabeled motion classes are assigned to be HTW jumps. We have
already seen that the HTW jumps can not be characterized in a semantically meaningful



82 CHAPTER 8. CLASSIFICATION EVALUATION

0.5

0.4t -

0.35H | ’ ]
ot f
| il

\\ f‘m q “M
L

N
o

‘_\L.

‘ \
| ‘ ‘ ‘
1 I \‘ f\/ ,
il | “ il Mﬂ
\A\L\hl\”\“\ ‘//“‘\”’l IRyl Nl M‘M‘ M H‘ 4

U [

| | | | | | | | | | | |
BAR FRF HTW HFR PJP SHA SST BWB BWS BWC SJP TIP

Figure 8.4. Distance curve DC\i, of overall minimal costs for all distance curves. Every MT is
represented by it’s individual color. All mislabeled frames can be identified by wrong label color.

way with the chosen feature set. Framewise parts of other jumps that do not undergo any
characteristic information can then be similar to the HTW jump frames and consequently
be classified by the HTW label. Furthermore, again PJP jumps are confused with SJP jumps
indicating again that the distance of comparison between both motion classes is very small
and that the motion classes can hardly be discriminated.

For graphical visualization of the results, we chose another method. In Figure B4 we
plotted the minimal distance curve over all distance curves DCl,;, that has then been
used for the frame-wise classification. For all frames, the corresponding MT of lowest
cost has been computed. For every motion class, we define an individual color. We then
plot every frame of DCy, by the color of the motion class of lowest cost. As D¢ has
been concatenated alphabetically, every eight jumps, DC,i, should be classified by a new
motion class label. For motion classes that can be discriminated well like the somersault
jumps, eight positions of minimal cost can be identified in the distance curve plot. With
respect to mislabeling, mostly only frames in between the positions of local minimal cost
have been classified incorrectly. This displays the same problems as in Figure B3] where
small passages in between the document endings have been labeled with a wrong motion
class. Again, one can see that in between the significant positions of local minimal cost,
incorrect classified frames will be most likely classified as HTW (colored purple) even if they
do not comprise of HTW jumps.

The problems of unclassifying and mislabeling small passages within the subsequence clas-
sification will even become more clearly in the second experiment, the routine classification.
We recap that the routine moves have not been cut and do not only contain concatenated
jumps, but also every other information that has been obtained during the capture process
(like the contact phases with the trampoline bed or the phases of beginning and ending
when the athlete is standing still on the trampoline). So more information that has not
been learned in MTs has to be handled during the classified process leading to worse
results.

Since the region around retrieved positions of local cost is defined by half the length of
the corresponding MT to the left and to the right, but the number of frames that will
be classified is defined by information from the warping paths to the left of the retrieved
position, overlaps where a single frame has been classified as two motion classes can arise
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Figure 8.5. Classification results for the Routines R4 and R11 with subsequence-based classifi-
cation on the consecutive routine streams. Clutter that cannot be classified occurs regularly and
the classifications deviate from the frame-wise used ground truth.

as for the concatenated database D5°4. Due to the unknown frames that do not belong
to any learned motion but belong to some other event in the motion stream, furthermore
clutter (which means short shreddings of unclassified frames) occurs. This clutter will
mainly not be classified as full motion and is likely to be excluded from classification by
the classification stop regions, but can also be misclassified as part of a routine jump.
Those unclassified parts are similar to the incorrect classifications from Figure 4] but
confuse the classification results even more.

Because of those in-between parts, we will introduce another additional label not classified
NCL that will be assigned to all frames that cannot be identified as a given motion class and
can even not be identified as unknown motion class. For some cases, those unclassified
regions comprise the contact phases with the trampoline bed or to the beginning and
ending of the routine, but sometimes only consist of several small frames that do not
obtain any information. Figure shows the retrieval results for the same Routines
R4 and R11 than for the document-based classification with the additional classes NCL,
UNK and STR. Again, the red boxes indicate the positions of the motion classes from the
annotation as ground truth, whereas in the subsequence classification, the information
from the annotations will be used frame-wise and not document-wise as in Section B.1l

Deviations from the frame-wise ground truth often occur at the beginning of every jump,
see R4, but can also occur at other positions like the motion ending as in R11. Fur-
thermore, one motion can also be split into two different motion class labels. For those
deviations from the ground truth that mainly occur because of the clutter, we have to
eliminate them. The same holds for the overlaps in classification and the frames that
have been classified as any motion class without containing any motion information. For
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example, misclassified shreddings occurs to a large extent at the beginning of the move
where the actor is just standing on the trampoline bed. This phase cannot be identified as
unclassified waiting and standing motion so that consequently, parts of the phase will be
classified as jumps (mainly as an insignificant jump such as STR of HTW). The remaining
parts will then be left unclassified due to the classification stop regions, so that many
short classified regions occur that should not be classified at all. The same principle holds
for the end of the routine, when the athlete decelerates his body to return to a standing
position. In the following section, we will address this problem of missing segmentation
within the data stream.

8.3 Classification with Automatic Segmentation

We have seen in Section B.1] that the classification results will be very good while compar-
ing segmented motion documents with the MTs. In Section we have set up the more
realistic scenario that does not classify single documents, but passages within an unknown
motion stream. The classification results, however, degrade significantly in the more re-
alistic scenario. The classification becomes prone to clutter and additional information
that has not been learned as MT or that cannot be identified as unknown frames. To es-
tablish a classification method that uses the advantages of document based classification
in a realistic scenario we therefore implement an automatic segmentation algorithm that
splits the trampoline motion stream into it’s single jumps. As a result, labeling problems
of unlearned events that occur in a trampoline routine will be diminished.

Remember that trampoline data can easily be segmented by the moments the athlete
is in contact with the trampoline bed. For the athletes that acted in DT, all trampoline
jumps are designated by approximately the same jump lengths and similar motion heights.
Furthermore, the contact phases with the trampoline bed have characteristic kinematic
properties that can be identified quite easily and facilitate motion segmentation. We will
use those properties of the trampoline data now to enable more stable classification results.

8.3.1 Segmentation Algorithm

To retrieve every single jump within one trampoline routine, we use the following blanket
contact detection algorithm based on elementary physics. As we know from physics the
athlete will undergo a free fall motion during the flight phase of the jump (so any locally
measured acceleration has to be close to zero and can only be influenced by moving parts
of the body during motion performance). On the other hand, the acceleration will be
very high at the moments the athlete’s flight phase is interrupted (and the athlete gets in
contact with the trampoline bed). We can then use those simple assumptions to define
a natural separation between flight phase and trampoline contact phase: all frames that
contain accelerations higher than a certain threshold tse will be identified as contact phase
frames. In general, we will mark flight phase intervals from the moment the acceleration
undergoes the threshold until the acceleration reaches the threshold again.

For a stable acceleration that is irrespective to different landing positions and hence dif-
ferent sensor orientations, we will compute the absolute acceleration over all three accel-
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Figure 8.6. Acceleration Plot for root sensor (red) and the sensors attached to the left leg: left
ankle (black) and left hip (blue). The green line shows the threshold ts, = @ > 20m/s?. The
accelerations for the leg sensors are higher, whereas the acceleration peaks are much sharper for
the root sensor and do not merge into accelerations from the flight phase (as the acceleration from
the left ankle’s sensors).

eration axes. This means that the acceleration will always be positive and acceleration
information of all axes will be taken into account. As noise overlies the captured data,
we will additionally filter the absolute acceleration data with a low pass filter to obtain a
smooth acceleration curve.

While comparing the acceleration curves of every sensor, we find differences in the acceler-
ation depending on where the sensors are attached to the actor’s body. For example, the
highest acceleration occurs at the (lower) legs’ sensors, but those sensors are also subject
to highest accelerations during flight phases and do not offer as sharp acceleration peaks
as other sensors, though. The sensors of the arms yield sharp peaks of acceleration, but
are subject to several variations during the landing and takeoff phase, so that they do not
seem to deliver reliable results. Consequently, we decided to use the acceleration informa-
tion of the sensor s; that has been attached at the lower spine. As threshold, we choose
lseg = a > 20 m/s? which appeared to be a separative value between flight and contact
phase from the acceleration plots. Figure illustrates different acceleration plots for the
root sensor near the spine and the acceleration of the sensors attached to the legs. One
can see that the acceleration peaks of the leg’s sensors are much broader than the peaks
for the root sensor. For some of the leg’s peaks, the contact phase directly goes over into
the flight phase. Contact phase intervals could then not always bee identified correctly or
would be segmented over a too long period of time.

Despite of the sharper peaks in the root sensor’s acceleration during the contact phase,
segmentation errors may occur when the acceleration overgoes the defined threshold during
the flight phase. Those accelerations will mainly occur during high rotational motion
classes like for example during BAR jumps that are subject to dynamic motions and hence
accelerations during the flight phase. In this case, additional contact phases will be found
that do not exist in the routine. There are several ways to handle those segmentation
errors. One would be to raise the threshold #seg for the contact phase identification so that
the acceleration that occurs during flight phase will always lie beyond the threshold. Then,
it is however necessary to countervail the fact that the retrieved contact phases will be too
short compared to the real contact phases. One possibility would be to add some frames
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Figure 8.7. Automated Segmentations for the introduced segmentation algorithm. The automatic
segmentations are indicated by green lines, the red boxes represent the flight phases as from the
video annotations. (a) For high accelerations that occur during the flight phase, the routine will be
segmented during flight phase, as well. (b) With the additional segmentation condition of minimal
length, the move will not be separated and the routine will be classified correctly.
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at the ending and beginning of the contact phase interval so that the determined contact
interval will be prolongated. This method requires many trials to find the best suited
threshold and the ideal number of additional frames for the ending and beginning of the
contact interval so that this method will not been used. For the following classification,
we will use another method that is based on essential technical rules of trampolining.
Knowing that the flight phase of every trampoline jump has to consist of a minimal number
of frames, we add a heuristic to the segmentation algorithm which causes that a jump will
not be segmented if it consists of less frames than the defined minimal duration. This
means that, if the acceleration during flight phase will be high shortly after the beginning
of the jump’s flight phase, this high acceleration will not affect the segmentation. As all
trampoline moves from the trampoline database are in between 120 and 140 frames of
length, we will assume the half minimal length of 60 frames to be the minimal possible
length of a trampoline jump. Even for the first preparing jumps where the athlete gains
height at the beginning of the routine, the duration is longer than 60 frames. High
accelerations during the flight phase moreover only occur at the first half of the move (for
all trampoline jumps within DT that are used for this thesis). Consequently, only the real
blanket contacts will be segmented, see Figure B.71
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Figure 8.8. Classification results for the Routines R4 and R11 with document-based classification
for automatically segmented jumps from the routine streams. Classification results improve and
most deviations from the frame-wise used ground truth annotations only occur at the beginning
of the jumps.

Using again the video annotations for the jumps within the routines as ground truth
(indicated by the red boxes), we can see that the automatic segmented jumps deviate only
within few frames from the annotated segmentation. Overall, the segmentation algorithm
works very well and separates the jumps within the routine in motion documents of similar
lengths and positions than the handmade annotations.

8.3.2 Results

After segmenting all trampoline jumps within a routine into single documents by the
automatic segmentation algorithm, we can conduct document-based classification with
global DTW as in Section[81] As the subsequence-based classification results suffered a lot
from the problem of missing segmentation and unlearned events that occurred within the
motion stream, we expect the automatic segmentation to yield more stable classification
results.

We will visualize the classification results again with the Routines R4 and R11 to enable
a comparison between all classification methods in Figure B.8. The automatic segmented
contact phases will be labeled as additional motion type trampoline bed TRB.

At first glance, it becomes clear that the classification results are much better than for
the subsequence classification. The classification and labeling information is much more
regular and more consistent to the video annotations. Due to the document-based clas-
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sification, every frame within the routine is assigned just one label different than for the
unsegmented classification. Moreover, as the blanket contact phases are determined auto-
matically by inversion of the segmented jumps, they can be left out of consideration for
a distance comparison with the MTs. As a result, no clutter in form of short unclassified
passages or short incorrectly classified shreddings will occur as it has been especially at
the beginning and the ending of the routine for the subsequence-based classification.

With the automatic segmentation algorithm, the first and last blanket contacts in the
routine define beginning and ending of the relevant routine information. The two intervals
before and after this relevant phase can then also be treated as single motion documents
and be compared to the MTs like every other jump within the routine. In most cases,
they will be classified as UNK, as the beginning and ending of a routine is very different
to every regular trampoline jump (and hence to every learned template). Consequently,
all shreddings of incorrectly classified motions and tiny unclassified passages that have
affected the subsequence-based classification disappear.

The moves that are parts of the routines (excluding the preparing STR jumps) can be clas-
sified correctly in most cases. However, the straight jumps will still be confused with the
motion classes HTW and UNK. Remember those motion classes have already been confused
in the the document-based classification of the annotation-based segmented routines and
can be discriminated from each other less accurate than the other motion classes.

The ending phase often consists of a final deceleration jump, so that the ending phase can
sometimes also be confused with insignificant motion classes like the HTW or STR jump, see
Figure R (b). However, as those phases do not comprise any meaningful information,
the assigned label of this jump is of less significance for the overall classification than the
assigned labels for mid-routine jumps.

Deviations from the ground truth mainly appear at the beginning of a jump. We will ignore
them as natural deviations that occur because of slight differences between the manually
annotated contact intervals (that are defined by the annotated flight phases) and the
automatically segmented jump intervals. All in all, the results are much better than for
the subsequence-based classification and yield a stable classification for the trampoline
routines.

Figure BI0 at the end of this chapter shows the classification results for all 13 routines,
whereas the same Routines R1, R4, R7 and R10 as well as the same Routines R2, R5, RS
and R11 are plotted in a coherent way followed by the freestyle routines ordered by R3,
R6, R12, R9 and R13.

8.4 Evaluation Metrics for Classification Results

To quantify the classification result we already discussed during the last sections, we
will introduce an evaluation metric that works similar than the Confusion Matrices from
Chapter [ and visualizes all motion classes a motion class is mixed up with. To evaluate
all classification methods, we will store the information on how often every document or
frame will be classified correctly or incorrectly for all classifications methods. For the
incorrect classifications, we additionally store the label of the motion class that has been
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Documentwise AutoSegmentation Documentwise Annotations
Mean = 84.65% Mean = 83.99%
BAR FRF HTW HFR PJP BAR FRF HTW HFR PJP
100% 80.00% 85.71% 100% 100% 90.00% 70.00% 85.71%  75.00% 100%
SHA SST BWB BWS BWC SHA SST BWB BWS BWC
87.50%  88.89% 100% 100% 100% 87.50% 100% 100% 100% 100%
SJP TJP STR UNK SJP TJP STR UNK
100% 100% 33.93%  9.09% 91.67% 92.31% 40.18%  43.48%
Framewise AutoSegmentation Framewise Subsequence
Mean = 77.37% Mean = 57.05%

BAR FRF HTW HFR PJP BAR FRF HTW HFR PJP
84.77%  72.19% 77.54% 91.35% 90.56% 70.28%  80.05% 58.00% 64.46% 52.28%
SHA SST BWB BWS BWC SHA SST BWB BWS BWC
78.59%  80.30%  89.48% 88.84% 88.57% 57.07% 74.68% 67.58% 64.94% T74.25%
SJp TJP STR UNK TRB SJp TJP STR UNK NCL
91.16% 91.46% 32.74% 8.20%  94.81% 50.58% 51.16% 53.59% 0.0% 36.18%

Table 8.2. Evaluation of Classification results. Percentage of correctly classified documents
respectively frames for the total occurrence of a motion class.

classified instead. We can then count the overall quantity of all appeared jumps for every
motion class. By normalizing the number of correctly and incorrectly classified jumps by
the total number of appearances for every motion class, we can obtain information on the
accuracy of every classification method.

Table expresses those normalized quantities as absolute percentage of correct label-
ing. For a comparison between the subsequence-based classification and the automatic
segmentation algorithm, we will evaluate the classification frame-wise and mark for every
frame whether it is classified correctly or not. To compare the document-based classifi-
cation of manually annotated documents with the automatic segmentation algorithm, we
will evaluate the classification document-wise and mark for every document whether it is
classified correctly or not.

We can see from Table B.2] that the classifications that are based on global DTW achieve
higher accuracies in the labeling than the subsequence-based classifications. As for the
subsequence-based classification results, we compare every frame of all routines with the
annotated ground truth, the overall accuracy of the classification is much more affected
by noise in form of mislabeled frames in the frame-wise evaluation. Furthermore, we have
already mentioned in Section B2 that in a frame-wise subsequence classification, clutter
and mislabelings occur more frequently than for the classification on a segmented data
stream. Hence, the mean value for the classification accuracy is lowest in this scenario and
for all motion classes, frames are mixed up with labels of dissimilar motion classes. For
the document-wise evaluation, we can see that significant motion classes as somersaults
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that have already been discussed in Chapter [ are labeled correctly every time they occur
in a routine and hence have an accuracy of 100%. Less significant motion classes that
only differ by rotational motion around the longitudinal axis like SHA and SST cannot be
labeled correctly in all cases. Here, we expect the motion classes to be mixed up with each
other.

The graphical visualization of the data can be found in Figure As in Table B2]
we compare the results either document-wise or frame-wise in dependence of the used
classification method. In Figure[89 (a) and (b), we compare the classification results of the
document-based classification in a document-wise way with the automatic segmentation.
In Figure 89 (c¢) and (d), we compare the classification results of the subsequence-based
classification in a frame-wise way with the automatic segmentation.

The evaluation matrices can be interpreted as followed: on the vertical axis, the data
from the ground truth annotation is plotted. On the horizontal axis, the data from the
classification is plotted. For every row and it’s corresponding motion class, one can then
identify all motion classes that have been confused with the respective true motion class.
This also means that for every row, we can then easily see all motion classes the motion
class is mislabeled as. For example, the BAR has been labeled as BAR for mostly all frames
that belong to the BAR label according to the annotations, but also labeled as TRB for
several frames with the automatically segmented classification, see Figure (a). The
darker the box on the diagonal, the more correctly labeled jumps have been classified. In
the case of an ideal classification of 100% accuracy, the box would be of pure black color.

In the frame-wise classification evaluation of the automatically segmented jumps, we can
see that for every motion class, several frames are misclassified as TRB contacts according
to the information from the annotations. As we have already mentioned, the automatic
segmentations are some frames shorter than the annotations at the beginning, so those
frames will be marked as incorrectly labeled. On the other hand, the TRB contact phases
are also sometimes assigned different motion class labels, which is also due to the not
absolutely identical contact phase segmentations. All in all, one can see that the most
confusions occur for the motion classes STR, UNK, HTW and TRB which cannot always be
distinguished, as we already discussed in the last sections.

In the frame-wise evaluation of the subsequence-based classification, we can see that every
motion will be mislabeled as STR for some frames. This is mainly due to the problems of
clutter, overlaps and short misclassified shreddings we introduced in Section

In the document-wise evaluation we can see that for both matrices, most documents are
classified correctly and that the classifications do only undergo few labeling errors. So we
can state that both classification methods are very stable. For the classification of UNK
jumps, the automatic segmentation even performs better. This may probably be subject to
the different document lengths as the segmented jumps are all shorter than the annotated
jumps that eliminates similarities to learned motion classes at the beginning of the class
feature representation. We could assume hence, that, with a shorter jump length, UNK
jumps can be classified more precisely as UNK. Furthermore, we can see that jumps from
the motion classes SHA and SST are really mixed up with each other as it was supposed
while evaluating Table
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Figure 8.9. Evaluation of the classification results: document-wise (top row) for the automatic
segmentation (a) and annotation based segmentation (b) and frame-wise (bottom row) for the
automatic segmentation (c) and subsequence-based classification (d).

The evaluation measures confirm our results that the automatically segmented jumps offer
a stable and good possibility to classify a consecutive data stream without being prone to
clutter and noise. As we can see, the quality of the classification with automatic segmen-
tation lies in between the classification quality of the two other methods, but does not
offer much worse results than the artificial and unnatural document-based classification.

8.5 Conclusion

We have seen that document-based classification with global DTW computations yields
very good results to classify the trampoline data, but does not offer any realistic classi-
fication scenario. The realistic scenario with subsequence DTW computations however,
does not yield as excellent results as the document-based classification.

We therefore introduced a way to combine the more accurate document-based classifica-
tion with the classification of a long data stream. By an automatic segmentation algorithm
based on the detection of all contact phases with the trampoline bed, we obtained a stable
method to segment a long motion stream into (semantically correct) motion documents
that can then be classified document-wise. This segmentation is quite simple and ad-
ditionally offers satisfying classification results, so that it can also be used for further
classification scenarios in real-time and quasi real-time.
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Figure 8.10. Classification results for all routines with document-based classification of automatic
segmented jumps from the routines. First, the Routines R1, R4, R7 and R10 (first two rows), then
the Routines R2, R5, R8 and R11 (row 3 and 4) and finally the freestyle routines R3, R6, R12,
R9 and R13 are displayed (bottom rows).



Chapter 9

Conclusion

In this thesis, we introduced a method for automatically classifying unknown trampoline
routines that were captured using inertial sensors. To this end, we transformed the inertial
sensor data to a feature representation which reflects the specific characteristics of different
trampoline jumps. Then, the unknown feature sequence was automatically segmented and
locally classified using DTW as similarity measure. Here, the individual segments were
compared to previously learned MTs representing specific motion categories.

Our main contributions can be summarized as follows. Firstly, we recorded, annotated and
composed the databases used for the experiments. Secondly, we developed the algorithm
for the automatic segmentation of the feature sequences. Thirdly, we systematically ana-
lyzed various feature representations. Here, one goal was to find a feature representation
that shows high discriminative power. Another goal was to minimize the influence of style
variations within one motion class. We addressed this problem by introducing different
masking techniques for a given motion template. Here, our algorithm marks regions within
the feature sequence that are expected to be subject to high style variation.

By using the techniques presented in this thesis we obtained accurate classification results
for most motion classes tested. As the experiments showed, some motion classes which
include rotations about the longitudinal axis were often mixed up with semantically sim-
ilar motion classes that do not include such rotations. This behavior is due to the fact
that the examined feature representations do not capture rotations about this body axis.
This drawback could be solved by adding additional feature functions that indicate such
rotations.

As future work, we will extend the feature representations in a way that also rotations
about the longitudinal body axis are incorporated. Furthermore, the classification scenario
has only been tested on previously recorded trampoline motions and in a pure offline
scenario. Here, we want to create an application that can be used for sports science and
computer-assisted training. To this end, it is necessary to implement the classification
system within an online framework. In a real-time application, classification results can
then for example be used to generate direct feedback to the athlete about the technical
precision of his performance in an acoustical or visual way.

93



94

CHAPTER 9. CONCLUSION



Appendix A

Source Code

In this chapter, the headers of selected MATLABfunctions created during the writing
of this thesis are reproduced. The headers contain information about the name of the
described function and its input/output behavior.

Feature Evaluation

The getDistanceMatrix function computes and returns a distance matrix for all motion
feature representations within a selected database.

Sample usage:
distMatrix = getDistanceMatrix(IncliFeatures,Parameter);

TlotoToTa oo o 1o o oto o oo oo o T oo o oo oo oo oo oo o oo o To o oo o oo oo oo oo o oo o oo fo o oo oo oo oo oo o oo
%Name: getDistanceMatrix

%Author: Heike Brock

%Date: 2010/07/21

h

#DESCRIPTION:

%This function computes the distance matrix for given motion feature
%representations by computing the DTW distance d_ij for every feature
%representation with every feature representation. The distance matrix can
%then be plotted and saved.

)

%INPUT:

% The first argument must be a Kx1 cell array containing feature matrices
% of equal feature set.

h

%0PTIONAL PARAMETERS:

% The second argument can be a struct defining additional arguments:

% FeatureName : string defining the name of the chosen feature set
% FeatureSet : struct defining the chosen feature set

% Plot : boolean value defining whether the distance matrix will be
% plotted (false=default).

% FigDir : string defining the direcory the plotted figure will be
yA saved in.

h

%0UTPUT :

% The returned argument is the resulting distance matrix.

TR to s toToTolo oo oo o to oo ToToTo oo o o o o toto o To T o o o o o oo oo o T T o o o oo o oo oo o T oo o o oo oo o o T o T o oo
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The getDistanceMeasures function computes and returns the distance measures €, v and
¢ for all motion feature representations within a selected database.

Sample usage:
[DocAlpha, DocBeta, DocGamma] = getDistanceMeasures(distMatrix,FeatEval_Parameter);

TR to s toToTo oo oo oo oo ToTo oo o o o o o oo toTo oo o o o o oo oo oo To oo o o o o oo oo T T o o o oo oo o o T o T o oo
%Name: getDistanceMeasures

%Author: Heike Brock

%#Date: 2010/07/21

h

%DESCRIPTION:

%This function computes the mean distance measures alpha, beta and gamma for
%document based feature evaluation over all motion classes within the
%database. The function uses a previously computed distance matrix.

h

%INPUT:

% The first argument must be a KxK distance matrix containing the DTW

% distance d_ij for all motions.

)

%0PTIONAL PARAMETERS:

% The second argument can be a struct defining additional arguments:

% DBLength : integer defining the number of moves that are contained
yA in the database

% Percentile : double defining the percentage for the beta measure

h between O and 1

% NumMotClasses : integer defining the number of different motion

h classes contained in the database

h

%0UTPUT:

% The first returned argument is the mean document based alpha value.
% The second returned argument is the mean document based beta value.
% The third returned argument is the mean document based gamma value.

T toto 1o ToToTo oo oo o oot To oo o o o o o oo oo oo oo o o o oo oo To o oo o o o o oo oo o o o o o oo oo oo T o o o o

Subsequence Evaluation

The getDistCurves function concatenates the feature representations within a database
to one consecutive motion stream and computes the distance curves that will be obtained
with subsequence DTW. The function can either be used with the feature representations
from one database or from two databases. Using only the feature representations from one
database, the query motion will be included in the database. Using feature representations
from two different databases, one database will function as training database.

Sample usage:
[DistCurves, info] = getDistCurves(IncliFeatures,IncliFeatures,Subseq_Parameter);

Tt T to o to T oo ot To oo o To o oot To o oo To o oo o T o oo o T o oo oo oo oo o oo oo T o oo oo oo oo T oo o T oo
%Name: getDistCurves

%Author: Heike Brock

%Date: 2010/08/01

h

%DESCRIPTION:

%This function concatenates the feature representations of a database into
%one consecutive motion stream and computes the distance curve for every
%feature representation as query motion with subsequence DTW.

h

%INPUT:

% The first argument must be a Kx1 cell array containing feature matrices
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% of equal feature type.

% The second argument must be a Mxl cell array containing feature matrices
% of equal feature type.

yA

%O0PTIONAL PARAMETERS:

% The third argument can be a struct defining additional arguments:

% FeatureName : string defining the name of the chosen feature set
yA FeatureSet : struct defining the chosen feature set

% ConcatInfoStyle : string defining the type of concat info returned.
yA ’0ld’ or ’struct’ produces a struct with several

% fields.

% ’new’ or ’interval’ produces a Dx2 matrix with the

yA start and end indices of all D documents inside the

% concatenated data (default).

yA SubSequence : a boolean value defining wether this function shall
% do a subsequence match (true) or a global match

yA (false=default).

% dn : 1xS integer array defining valid steps (n direction of C).

h Default is [1 1 0].

% dm : 1xS integer array defining valid steps (m direction of C).

% Default is [1 0 1].

% dw : 1xS double array defining the weight of each step.

% Default is [1 1 1].

h

%OUTPUT:

% The first returned argument is a KxL array containing the distance curves
%  for every query motion.

% The second returned argument is a Kx2 array containing information of

% the position of the original documents inside the concatenated data

%  stream.
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The subsequenceEvaluation function performs subsequence retrieval for a chosen query
motion on base of previously computed distance curves. The first eight hits will be marked
and the distance measures will be defined. The results can be plotted in a graph.

Sample usage:
[RetrInfoVals, retrHits_Actor] = subsequenceEvaluation(IncliFeatures,DistCurves, info, SubseqRetr_Parameter);
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%Name: subsequenceEvaluation

%Author: Heike Brock

%Date: 2010/08/03

pA

%DESCRIPTION:

%This function evaluates the feature sets with subsequence DTW using
%previously defined distance curves and computes the distance measures for
%the retrieval results.

yA

%INPUT:

% The first argument must be a Kx1 cell array containing feature matrices
% of equal feature type.

% The second argument must be a KxL array containing the distance curves for
%  every query motion.

% The third argument must be a Kx2 array containing information of the

% position of the original documents inside the concatenated data stream.
h

%0PTIONAL PARAMETERS:

%  The fourth argument can be a struct defining additional arguments:

% FeatureName : string defining the name of the chosen feature set
% FeatureSet : struct defining the chosen feature set.

pA Percentile : integer defining the percentage for the beta measure
% in percent.

pA varTolerance : double defining a tolerance region around the
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yA document end positions indicating true hits.

% moveIndx : integer defining move acting as query motion. The range
% goes from 1 to 8.

% Plot : boolean value defining whether the retrieval results will be
% plotted (false=default).

% FigDir : string defining the direcory the plotted figure will be

% saved in.

% NumMoves : integer defining the number of moves each motion class
% consists of.

h

%0UTPUT:

% The first returned argument is a struct containing the distance

% measures for the chosen query.

% The second returned argument is a Kx1 array containing all retrieved
% hits of minimal cost.
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Motion Templates

SOURCE CODE

The computeMotionTemplate function computes first an averaged matrix over all feature
representations from one motion class and iterates the process of calculation for a specific

number of iteration steps.

Sample usage:

[MotTempl, MotTemplStd] = computeMotionTemplate(IncliFeaturesTraining,numClassMotions,MT_Parameter);
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%Name: computeMotionTemplate
%Author: Heike Brock

%Date: 2010/08/21

h
%DESCRIPTION:

%This function computes the Motion Templates for every motion class
%contained in a database and the standard Deviations for every motion
%template.

h

%INPUT:

% The first argument must be a Kx1 cell array containing feature matrices

% of equal feature type.

%  The second argument must be an integer defining the number of moves
% every motion class is characterised by.

h

%0PTIONAL PARAMETERS:

% The third argument can be a struct defining additional arguments:

% FeatureName : string defining the name of the chosen feature set

% FeatureSet : struct defining the chosen feature set.

% Plot : boolean value defining whether the motion templates will be
% plotted (false=default).

% Iterations : integer defining the number of iteration steps for

% calculating the MTs.

)

%0UTPUT:

% The first returned argument is a cell array containing the Motion

%  Templates for all motion classes.

% The second returned argument is a cell array containing the matrices
% defining std for every MT.
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The getMTMask function computes a mask for every MT according to a defined threshold

value and the standard deviations of every MT.
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Sample usage:
MTMask = getMTMask(MotTempl,MotTemplStd,MT_Parameter) ;
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%Name: getMTMask

%Author: Heike Brock

%Date: 2010/08/28

yA

JDESCRIPTION:

%This function creates a Mask for every passed MT in dependance of the Mts
%standard deviation and a defined threshold.

h

%INPUT:

% The first argument must be a Nx1 cell array containing MTs of equal

%  feature type.

% The second argument must be a Nxl1 cell array containing the std of

%  every MT.

h

%0PTIONAL PARAMETERS:

% The third argument can be a struct defining additional arguments:

% FeatureName : string defining the name of the chosen feature set

% FeatureSet : struct defining the chosen feature set.

% Plot : boolean value defining whether the masked MTs will be

% plotted (false=default).

% Threshold : double defining the threshold to mask the MTs.

%

%OUTPUT:

% The returned argument is a 12x8 cell array containing the masks for all
% MTs.
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The getMTMaskFromKnowledge function computes an intelligent mask for the MTs of the
motion classes tuck jump, pike jump and straddle jump. Additional knowledge about the
moves’shapes will be taken into account.

Sample usage:
Int_MTMask = getMTMaskFromKnowledge(MotionTemplate, MT_Parameter.Threshold);
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%Name: getMTMaskFromKnowledge

%Author: Heike Brock

%Date: 2010/09/15

%
#DESCRIPTION:

%This function creates an intelligent Mask using expert knowledge for the
%moves pike jump, tuck jump and straddle jump.

h

INPUT:

% The first argument must be a Nx1 cell array containing MTs of equal

% feature type.

%  The second argument must be a double defining the threshold that

% determines the most variant data.

%0UTPUT:
%  The returned argument is a 3x1 cell array containing the intelligent masks
% for all three motion classes tuck jump, pike jump and straddle jump.
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The determinePrecisionRecall function yields values for precision and recall for a de-

fined number of retrieval steps.

Sample usage:
[precision, recall] = determinePrecisionRecall(retrHits, res{m}, i, numClassMoves, varTolerance);
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%Name: determinePrecisionRecall

%Author: Heike Brock

%Date: 2010/10/12

h

%DESCRIPTION:

%This function determines Precision and Recall. It uses information about
%the retrieved hits and information about the true hits.

h

%INPUT:

% The first argument must be a Kx1 array containing the positions of

% retrieved hits.

% The second argument must be a 1x12 cell containing the intervall

% positions for every motion class.

% The third argument must be an integer defining the current number of

% retrieval step.

% The fourth argument must be an integer defining the number of trampoline
%  jumps within one motion class.

% The fifth argument must be a double defining the variance region within
% a hit can be determined as true hit.

%0UTPUT:

% The first returned argument is a double defining the value for

% precision.

% The second returned argument is a double defining the value for recall.
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Classification

The classifyRoutineMovesDocwise function classifies motion data streams document-
wise with global DTW with segmentation information (either annotations or automatic
segmentations). The label number of every classified document will be returned.

Sample usage:
ClassResDocWise = classifyRoutineMovesDocwise(Annotations, ClassifMotions, ClassifFeatureStreams, Class_Parameter);
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%Name: classifyRoutineMovesDocwise

%Author: Heike Brock

%Date: 2010/10/12

h

JDESCRIPTION:

%This function classifies a motion data stream based on segmentation
%information documentwise using global DTW.

h

%INPUT:

% The first argument must be a Rxl cell array containing structs with the
% segmentation information for the motion streams to be classified.

% The second argument must be a Rxl cell array containing structs with the
% motion data streams to be classified.

%  The third argument must be a Rxl cell array containing the feature

%  representation for the motion streams.

h

%0PTIONAL PARAMETERS:

% The fourth argument can be a struct defining additional arguments:

% FeatureName : string defining the name of the chosen feature set
% FeatureSet : struct defining the chosen feature set.

% MT: Nx1 cell array containing the MTs for every motion class.

%

%OUTPUT:

% The returned argument is a Rxl cell array containing the documentwise
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% classification results.
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The classifyRoutineMovesFramewise function classifies motion data streams framewise
with subsequence DTW with segmentation information (either annotations or automatic
segmentations). A matrix containing the label number of every classified frame will be
returned.

Sample usage:
ClassResFrmWise = classifyRoutineMovesFramewise (Annotations, ClassifMotions, ClassifFeatureStreams, Class_Parameter);
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%Name: classifyRoutineMovesFramewise

%Author: Heike Brock

%Date: 2010/10/17

h

#DESCRIPTION:

%This function classifies a motion data stream based on segmentation
%information framewise using global DTW.

h

%INPUT:

% The first argument must be a Rxl cell array containing structs with the
% segmentation information for the motion streams to be classified.

% The second argument must be a Rxl cell array containing structs with the
% motion data streams to be classified.

%  The third argument must be a Rxl cell array containing the feature

% representation for the motion streams.

%0PTIONAL PARAMETERS:
% The fourth argument can be a struct defining additional arguments:

% FeatureName : string defining the name of the chosen feature set
% FeatureSet : struct defining the chosen feature set.

% MT: Nx1 cell array containing the MTs for every motion class.

% Mask: Nx1 cell array containing the masks for all motion classes.
h

%0UTPUT :

%  The returned argument is a Rxl cell array containing the framewise
% classification results.
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The autoSegmentJumps function segments motion data streams automatically with a
threshold using the normed filtered acceleration data.

Sample usage:
[docIntv, blanketContacts] = autoSegmentJumps(ClassifMotions,Segment_Parameter);
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%Name: autoSegmentJumps

%Author: Heike Brock

%Date: 2010/10/17

h

%DESCRIPTION:

%This function segments the motions within a motion stream automatically on
%base of a filtered and normalised acceleration data.

yA

%INPUT:

% The first argument must be a Rxl cell array containing structs with the
%  segmentation information for the motion streams to be classified.

h

%OPTIONAL PARAMETERS:

% The second argument can be a struct defining additional arguments:
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% Threshold : integer defining the threshold of acceleration value

% for segmentation.

% Plot : defines whether the segmentation curves will be plotted

% Annotations : needed for the plot function to visualise the

% annotation based document endings.

yA

%OUTPUT:

% The first returned argument is a Rxl cell array containing the

% intervalls for every segmented document of every routine.

% The second returned argument is a Rxl cell array containing the blanket
% contact information of every routine.
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SOURCE CODE
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