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Chapter 1

Introduction

We do not wish any so-called interpretations of our music; just play the notes; add nothing,
and take nothing away.

—Aaron Copland paraphrasing “modern” compositional attitude,
WHAT TO LISTEN FOR IN MusIc (1939)

The history of Western classical music is rich with examples that document the importance
of a performer’s skill and artistry for conveying musical visions: Johann Sebastian Bach was
famous for his feats of improvisation, not for his reconciliation of harmonic and contrapuntal
concerns. Clara Schumann enjoyed greater contemporary success than her husband Robert,
as she was the better performer of the two. Niccold Paganini was able to build a whole
career on virtuosity alone. Even the sporadic extreme counter-reaction to this fact (such
as in the above quote) only serves to underline the relevance of the subject Yet, in the
field of music information retrieval, the topic focusing on this particular aspect—performance
analysis—has only recently begun to receive the attention it therefore deserves [Gab03],[Wid02),
WDG*03, LG03, Wid05), Sap08|. Part of the problem is the inadequacy of current
methods for the determination of such elementary performance attributes as tempo or dynamic
shaping: Automated processes are too unreliable and error-prone for widespread usage, and
most current performance analysis studies fall back on manual feature annotation. In cases
where manual annotation is not an option, another common approach is to use special-purpose
hardware such as player pianos to transcribe symbolic information about the music at the time
it is played. Of course, neither of these procedures generalize to settings where such data is
not available or manual annotation is considered too labor-intensive.

In this thesis, we present an alternative approach to the extraction and processing of attributes
of music data which relate to its agogical aspects, in particular the tempo. This approach
does not rely on manually generated data or symbolic transcriptions of specific performances,
but instead employs a general alignment technique known as dynamic time warping (DTW).
The main contribution of this thesis lies in the development of methods to exploit the implicit
tempo information contained in the so-called warping path produced by the DTW technique
to generate data suitable for subsequent musical analysis. For this, we mostly stay confined
to the domain of piano music produced in the Western classical period. This is due to several
reasons: It provides a large pool of available performance data (e.g. CD recordings) that lends
itself reasonably well to automatic processing with DTW; it is not restricted to musically

'Tn the context of the quote, Copland disagrees with the expressed sentiment (calling it a “nonrealistic attitude
on the part of the composers”) and quickly goes on to dispel the notion that an interpretation-less performance
is at all possible, or even desirable.



Chapter 1 Introduction

trivial “academic” examples but makes use of real-world data; and by employing a player
piano, we were able to generate custom data pairs of acoustic and symbolic representations of
the same piece of music that facilitate a proper evaluation of our techniques.

The thesis is structured deliberately in such a way that it follows the complete process of
performance analysis chronologically: Beginning at feature design and extraction, going over
the processing steps necessary to compute more complex data, and finally closing with the
musical analysis and evaluation of this data. The main focus and contribution of the work lies
in the middle part of this process. Specifically, we explore several techniques for the automatic
computation of tempo parameters from a piece of music. These can be visualized in the form
of a tempo curve that plots the tempo of the piece for each point in time, as e.g. in Figure [[L1]
The depicted curve shows the tempo for an excerpt from Schubert’s “Winterreise” as computed
by the approach presented in this work; one can clearly see the artistic shaping of the two
phrases, in particular a slow-down at each phrase ending. Note that tempo here refers to a
highly localized view of the piece where we may even compute the tempo of individual notes,
unlike e.g. with beat trackers that only estimate an average overall tempo of a piece.
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Figure 1.1: Franz Schubert: Winterreise D911, “Der Lindenbaum” (Excerpt)

The detailed organization of the thesis is as follows:

Chapter 2 introduces basic terminology and a set of features and methods to extract these
features from different music representations. It also presents the DTW alignment proce-
dure and explains how the features form the basis of the alignment that is gained by this
procedure.

Chapter 3 contains some thoughts on tempo and tempo measurement principles and shows
how the warping path computed by the DTW technique may serve as the defining charac-
teristic of such attributes of a musical piece. Three techniques are discussed that attempt to
compute tempo data on the basis of the warping path using different approaches.



Chapter 4 gives two evaluations of the techniques presented in the third chapter: The first
focuses on a quantitative data analysis for an objective performance measure, the second
illustrates the kind of results that can be obtained from applying these techniques by discussing
some tempo curves generated for selected musical examples.

Chapter 5 has an overview of several related works that use tempo curve information (or
similar data) for further analysis steps. These works can be classified roughly according to
two main goals: One group focuses on commonalities of different performances, the other is
concerned with their respective differences.

Chapter 6 concludes the thesis by giving a summary of what has been achieved, and identifies
some opportunities for further research based on the results obtained in this work.






Chapter 2

Music Synchronization

In fact the kind of music [Havelock Vetinari] really liked was the kind that never got played.
It ruined music, in his opinion, to torment it by involving it on dried skins [...] and lumps
of metal hammered into wires and tubes. It ought to stay written down, on the page, in
rows of little dots and crotchets, all neatly caught between lines. Only there was it pure.

—Terry Pratchett, SouL Music (1994)

This chapter lays the foundation for the subsequent discussion concerning the main contribu-
tion of this thesis. Following a short overview of the possible forms of music representation
relevant for this work, we introduce a number of descriptors of such music representations
called features which capture essential attributes of the data while discarding irrelevant (or
representation-specific) information. We also demonstrate how these features are generated
from the data available, and how they are processed afterwards. The presentation order of the
features is chronological in that the feature produced from a particular processing step forms
the input for the next step (see Fig. 2.0 for an overview of the complete processing pipeline).

After the feature processing pipeline has been shown in full, we explain how to make use of
the computed features by including them in an alignment procedure known as dynamic time
warping. This procedure is presented in a general fashion first, then an examination of how
it is accommodated for the specific needs of music synchronization follows in a second step.
Music synchronization here refers to the process of finding the semantic correlations between
two different interpretations of the same musical piece.

The most important concept introduced in this chapter is the warping path, which appears in
the discussion of dynamic time warping. It will be used as the basis for all computations in
the following chapters, in particular with regard to the tempo curves introduced in Chapter 3
The warping path stores all correlation information gained in the synchronization process.

2.1 Music Representations

The first step in understanding how to process music in an automated manner is to get a
clear view on the different formats in which music may be represented In this work, we will
focus on three different representations. Each of these has its individual strong points, which
in turn necessitate individual processing approaches. They can be classified according to the
relative degree of abstractness by which the music they embody is represented:

*This chapter mostly follows [Miil07] in the presentation of the different formats, features and algorithms.
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Grave.

Figure 2.1: Ludwig van Beethoven: Sonata Pathétique, beginning of the first movement (PathBeg)

Score representation. The most “purely” symbolic representation among the three can be
regarded as a sort of reference or ground truth against which more concrete realizations
of the same piece may be measured in order to gain information about specifics of a
particular performance.

MIDI representation. A kind of hybrid that (more or less successfully) attempts to incorpo-
rate both abstract information about a piece and concrete information about a specific
realization of the piece, while still remaining on a symbolic level.

Audio representation. The audio representation favors concrete information over symbolic
data, opting to capture a data set that allows nearly perfect reconstruction of a spe-
cific interpretation of a piece while completely ignoring semantic correlations of that
interpretation to symbolic representations of the same piece. This enables extraction
of very nuanced interpretational features, but makes it difficult to give a semantically
meaningful analysis of the data.

While the MIDI representation of music data exists by its nature only in a digital format,
both of the other representations have analog origins. Since we are mainly interested in
automated music processing, we will briefly discuss how to convert “real-world” score sheets
and physical audio data into their digital counterparts. Following this, we will assume that
our representations occur as digital versions only (unless explicitly stated otherwise). This
discussion will take place as we look at the details and idiosyncrasies of each representation
in turn.

2.1.1 Score Representation

A musical score (in analog contexts also referred to as sheet music) contains a formalized
description of a particular piece of music. In its typical non-digitized form, it consists of
graphical and textual information on note pitches and lengths as well as meta-information
about loudness, tempo and other musical attributes of individual notes or sections of the
piece. This information is organized according to periodic structural divisions, so that each
group of notes of a certain overall length is contained in a bar (or measure). As an example,
Figure 2] depicts the first bar of the first movement of Beethoven’s Sonata Pathétique. The
same excerpt will be used to illustrate the other concepts introduced in this chapter wherever
possible. It will be referred to as PathBeg, for “Pathétique beginning”. We also introduce
PathExp as a shorthand for the complete exposition of this piece (measures 1-132).
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The score may prescribe the overall tempo of a piece in an absolute measure of beats per minute,
but is not required to do so. In fact, composers commonly resort to relative tempo markings
like Andante, Presto or Lento instead, since this allows them to account for the performer’s
artistic freedom in the interpretation of the piece. Terms like those mentioned denote loosely
defined tempo ranges that depend on a performer’s musical intuition and experience to choose
a specific tempo for an actual realization of the piece. This dependency is true for other
musical attributes as well, e.g. local tempo, dynamics, articulation and all agogical aspects
(like use of Rubato). Hence, most of these attributes must either be notated in relative terms
or even left implicit. Dynamics (instructions pertaining to loudness) are always notated in
relative terms such as mezzoforte or pianissimo, and even explicit articulation instructions
like staccato will require artistic interpretation for a concrete performance.

The high abstractness degree of score data as compared to the other two representations
accounts for both the main advantage and the main disadvantage of this representation. Ex-
tracting musically meaningful information from a digitized score sheet may be nearly trivial
(such as with pitch and onset information for specific notes), or at least feasible (e.g. searching
for and locating recurring motivic ideas inside a particular score), which is typically not the
case for the other representations. On the other hand, the score was never meant to be able
to represent interpretation-specific information, but rather to indicate to the performer how
an interpretation should “sound”. While this is of course perfectly legitimate, not being able
to account for concrete performance data nevertheless disqualifies this representation from
being used as a basis for performance analysis tasks like the computation of complex timing
information of an interpretation.

Converting an analog representation of a score into its digital version is not a trivial feat. We
will refrain from dealing with this issue here (see e.g. [Miil07] for a more complete discussion),
but simply explain how the digital version might be represented. The underlying assumption
is that the score may always be digitized manually, if everything else fails.

The most trivial digital representation of a score sheet is the graphical equivalent of the
analog version in the form of some bitmap image format—in this case, nothing is gained by
the digitization process, since the graphical representation is not well-suited for automatic
processing. What is needed instead is a semantically meaningful symbolic representation
of the score. One such representation format is defined by the MusicXML standard [Rec09]
which (as the name suggests) is a Document Type Definition for XML documents that contain
musical data. XML documents prepared according to this definition can easily be converted
to a plethora of other formats and representations, including a graphical score sheet rendition,
MIDI output and proprietary formats for commercial scorewriters such as Sibelius or Finale—
even more esoteric output targets like e.g. Braille Music are easily achieved. While widespread
adoption of this standard has been relatively slow, a clearly superior or more popular format
definition has not yet emerged.

Note that even the minimal example given in Figure (which produces a staff containing
one whole note, an a’) is quite verbose. The reason for this is that MusicXML aims to store
semantic information about the music as well as the layout information necessary to produce
an @esthetically pleasing graphical output. Other formats focus on more specific goals, e.g.
LilyPond [Lil09] offers good score layouting capabilities, while Humdrum [Hum09] seems more
concerned with providing a data format that is well-suited for musical post-processing.



Chapter 2 Music Synchronization

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE score-partwise PUBLIC "-//Recordare//DTD MusicXML 2.0 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise>
<part-list>
<score-part id="P1">
<part-name>MusicXML Example</part-name>
</score-part>
</part-list>
<part id="P1">
<measure number="1">
<attributes>
<divisions>1</divisions>
<key>
<fifths>0</fifths>
</key>
<time>
<beats>4</beats>
<beat-type>4</beat-type>
</time>
<clef>
<sign>G</sign>
<line>2</line>
</clef>
</attributes>
<note>
<pitch>
<step>A</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
<type>whole</type>
</note>
</measure>
</part>
</score-partwise>

Figure 2.2: MusicXML example code

2.1.2 MIDI Representation

Musical Instrument Digital Interface, MIDI for short, was created as a protocol for the ex-
change of musical information between electronic instruments. It defines a large variety of
messages, starting with basics such as describing notes in terms of their pitch and onset /release
times with regard to a global time stream, and going further to include meta information and
control messages such as “Distort pitch by a specific factor”. Since its conception in 1981,
it has become the de facto standard used (or at least supported) by almost any application
(including hardware) that deals with the transmission or processing of symbolic music data.

For automated music processing, it is useful to gather the protocol messages which make up
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a single piece of music into one file, which can then be distributed or modified. The MIDI
standard provides for this with the SMF (Standard MIDI File) file format. In the following,
when we refer to the MIDI representation of a piece, we will usually mean the respective
SMF.

One major shortcoming of MIDI in comparison to an audio stream is its lack of support
for the representation of timbral attributes of a sound. On the other hand, the kind of
information which is supported is highly useful for a large variety of performance analysis
tasks. Of particular importance for this context are two commands: note-on and note-off,
which together serve to define the relative length of a note, as well as its position in the global
time stream. This time stream is defined in terms of ticks or clock pulses, which are sent out
periodically during the duration of the piece. The MIDI protocol is designed in such a way
that these ticks measure musical time units instead of absolute time units such as seconds:
Note lengths are defined in terms of the number of clock ticks passed. The respective unit of
measurement is called pulses per quarter note (PPQN), and the PPQN for a single piece is
specified by the user in the MIDI file header. Tempo of a piece is then controlled by changing
the clock pulse frequency. Hence, the absolute length of a time interval can be determined
by examining PPQN and tick frequency for that segment. Typical PPQN values are 480 and
960; in general, is is given by 24 - 2" and 30 - 2" for n € {2,...,6}.

Figure 2.3: PathBeg, MIDI piano roll representation. Reference data generated from the score is
shown in red, a specific interpretation of the piece is overlayed in blue.

As we have just seen, the onset /offset times of a note in MIDI representation is explicit and very
specific in its nature. This allows a very nuanced encoding of tempo changes in the performance
of a piece, as opposed to sheet music representations where such subtleties are mostly lost in
the notation. The difference can be seen in the so-called piano roll representation, which
is often employed for the visualization of MIDI data (Fig. 2.3): Each column represents
a discrete musical time interval, usually divided at least on the beat level Pitches are
distributed vertically, such that each row corresponds to a semitone step on the twelve-tone
equal tempered scale. Notes are displayed as horizontal bars in this structure. The example
shows two different versions of the beginning of Beethoven’s Pathétique—in red, a “ground-
truth” version generated as a straightforward translation of the score representation of the
same segment into MIDI data, and superimposed in blue, a real-life interpretation of the
same segment. We can plainly see the discrepancy between the different versions, and it is
in fact exactly this difference which will be used in later chapters of this thesis to work out

3Intuitively, the beat of a piece of music corresponds to the points in time where a listener might tap his foot
to keep in rhythm with the music. For details, see Section 3111
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the artistic idiosyncrasies of a specific interpretation with regard to tempo/timing attributes.
From the example it is also apparent that the heightened specificity of MIDI comes with a
loss in semantic expressiveness: Note timings no longer have musical connotations (e.g. “first
note of a new measure”), but float “freely” in the global time stream

The other main attribute dimension (besides timing) we may be interested in concerns the
dynamics of the piece. MIDI does not have a direct way of encoding loudness, in the same
way it does not feature a method of representing the timbre of a sound. Instead, it provides a
command for specifying the wvelocity of a note, which corresponds to the intensity with which
the note should be “played” (i.e., synthesized) by the output device. MIDI reserves seven bits
for this information, so 128 different velocity values can be represented. This information is
not displayed in the piano roll representation of MIDI data.

2.1.3 Audio Representation

The audio (or waveform) representation of music data is the most concrete of the three formats
presented here, it contains no abstract musical information at all. The name “waveform” is
derived from the graphical representation of such a signal, where pressure changes in a carrier
medium (usually air) are plotted over time (Fig. 2.4l shows an interpretation of the beginning
of the Sonata Pathétique). For a pure tone, this plot will yield a sinusoidal oscillation around
the zero reference (which is just the pressure of the carrier medium in an unexcited state).
The maximum distance between reference and waveform in this context is called the amplitude
a of the signal, while the time difference between two consecutive repetitions of an oscillation
is called the period T. The frequency f of the signal is defined as the inverse of the period,
f= % When we talk about the pitch of a sound, we usually refer to the acoustic property of
this sound that corresponds to this frequency.

0.5F
0.4
0.3
0.2
0.1F

-0.1
-0.2
-0.3f
—0.4}
—05+ 4

Figure 2.4: PathBeg, waveform representation, time in seconds

“Pitches cease to carry musical information about the key in which the piece is notated as well: Gb and Ff for
example are both represented as MIDI pitch 42. This is legitimated by the concept of enharmonic equivalence
in the equal tempered scale (see e.g. [Mic08], p. 85).

10



2.2 Pitch- and Chroma-Based Audio Features

In the analog case, all of these parameters are measured continuously. However, for a dig-
ital context one must define a suitable quantization scheme when discretizing the data. In
this work, we follow the Pulse Code Modulation (PCM) scheme laid out in the “Red Book”
standard defined for CDDA (Compact Disc Digital Audio), the most popular format in use
today. CDDA uses a sampling rate of 44.1kHz (i.e. 44,100 samples per second are taken) at
a resolution of 16 bit—hence, it is possible to distinguish 65,536 different “pressure points”
corresponding to the relative oscillation of the waveform. This is sufficiently detailed for the
average human listener not to notice any differences to an actual performance of the dis-
cretized data (although several alternative schemes with different sample and bit rates have
been proposed, e.g. Direct Stream Digital for the Super Audio CD or PCM at 96 kHz/24 bit
for DVD-Audio).

For the purposes of performance analysis, the audio representation offers an interesting mix
of properties: On one hand, the sheer quantity of interpretations only available in a waveform
representation (e.g. as a CD recording) is a convincing argument already to make this a
primary analysis target. On the other hand, the complete lack of symbolic information in this
format poses serious problems when trying to extract musically meaningful data. Unsolved
problems in the domain of music information retrieval from audio data (MIR) include the
determination of the fundamental frequency of a sound automatic separation of different
instruments or voices in a polyphonic context (the so-called source separation problem) and
alignment of the recording to a score sheet, although progress has been made to varying
degrees in either of these topics. The alignment or synchronization problem is of particular
interest, since its solution offers a way out of this conundrum: Aligning waveform and score
sheet would combine concrete and symbolic information about the data in one meta-format
that would lend itself to a great variety of analysis tasks. Section [Z4] introduces one possible
approach for tackling this problem.

2.2 Pitch- and Chroma-Based Audio Features

As we have learned in the preceding section, the representations of music data we are interested
in have vastly different attributes, making direct comparisons between them impossible. Yet
even if the representation is the same for two interpretations of a piece, direct comparisons will
often yield unsatisfactory results if they operate on a purely “syntactical” level (e.g., bit-level
comparison of the waveforms). Instead, it would be desirable to have an overarching concept
of similarity (i.e., a similarity metric) that has a semantic meaning. Such a concept should
abstract from the format of the data, such that it can be used to compare two pieces of music
regardless of how they are represented.

In trying to define a similarity metric, one has to keep in mind several aspects that need
to be reconciled with each other in order for the metric to be useful. For example, melodic
similarity would be a musically meaningful metric, but in a polyphonic context requires strong
assumptions in order to solve the prerequisite source separation problem (cf. [Bur08]). Hence,
the metric should be computationally feasible. It is also important to keep in mind robustness

%A sound is typically made up by a series of overtones (or harmonics) that grant it a unique texture or tone
color. By definition, the fundamental frequency corresponds to the first of these overtones.

11
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of the metric, so that it does not break even in the face of differently orchestrated interpre-
tations of the same piece (e.g. Liszt’s piano arrangement of Beethoven’s Fifth Symphony vs.
the original setting), or when the two performances use different instrument tunings (which is
usually the case for so-called historically informed or authentic performanced’). One metric
that fulfills the requirements of robustness, computability and, above all, has a straightforward
musical interpretation has been proposed by Miiller in [Miil07]. The idea is to determine the
harmonic similarity of two pieces, but since this is not an explicit attribute of a piece in any
representation, it introduces a number of features that approximate said measurement. We
will briefly present these features in the context of waveform analysis before discussing how
they are used to provide a musically meaningful metric to a music synchronization algorithm
in Section 2.4l Figure provides a rough overview of the audio feature extraction process
we will traverse in the course of this discussion.

Windowed
Energy Summation

Filter Bank Chroma Collapsing Feature Coarsening

STMSP Chroma CENS
Features Features Features

Subband
Signal

Onset Detection

Audio Signal

Onset
Features

12 Energy Vectors /
88 Energy Peak Vectors

1 PCM/CDDA Waveform 88 Subband Waveforms 88 Energy Vectors

12 Energy Vectors

Figure 2.5: An overview of the feature extraction pipeline

2.2.1 Pitch Features

The first step in the feature extraction pipeline deals with the decomposition of the audio signal
into groups of frequency components, which are determined according to their association to
pitches of the standardized equal tempered scale. Since this scale is designed primarily with
regard to human perception of sound, it takes into account the well-known logarithmic nature
of this perception. This nature is revealed in the fact that for any pitch s with frequency f,
the pitch with frequency 277! - f will be perceived as being n times higher than s (e.g. A6
at 1760 Hz is perceived as being three times higher than A4 at 440 Hz). The interval between
two consecutive such pitches is called an octavef| and it is clear that octaves (and indeed
any musical interval between two notes) span different frequency ranges, depending on the
respective base frequency. Any “musical” frequency grouping must necessarily take this into
account. In our case, this is handled by an adaptive window size in the grouping of frequency
ranges to specific pitches—as the absolute frequency decreases, so does the size of the respective
window that determines if a specific frequency still belongs to an individual pitchﬁ On the
technical side, this is implemented by an array of bandpass filters of varying size and sample

SAlso called period performances, these use a standard pitch of a’ = 415 Hz for early music instead of the
modern standard of a’ = 440 Hz, corresponding to a lowering by one semitone.

"The name “octave” is derived from the range of eight notes which are contained in this musical interval on
the diatonic scale (counting both ends). There is another interesting phenomenon concerning the perception
of sound called octave equivalence which we will encounter in Section 2231

8In other words: Low pitches have smaller windows than high pitches, since there is less space between two
low pitches than there is between two high pitches.

12
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rate. Figure shows a graphical representation of this where the varying interval sizes for a
fixed sample rate are particularly well visible.

0

Figure 2.6: A sample array of filters with their respective magnitude responses in dB (reproduced
from [Mul07] by permission)

Dealing with the technical details involved with the concrete realization of this design would
stretch the scope of this work too much, so the interested reader is referred to the original
monograph instead. Intuitively, after the frequency decomposition, one ends up with an array
of 88 different signals corresponding to the contributions of each of the 88 pitches produced
by a typical modern piano.

2.2.2 Local Energy (STMSP) Features

Decomposing an input signal into frequency groups corresponding to specific pitches enables
us to measure the individual contributions each of the pitches makes to the overall signal.
What is not yet clear is the unit of measurement for these contributions. Since we are looking
for a measure closely correlated to the loudness of a certain signal, we choose local energy as
measured by the short-time mean-square power (STMSP) of this signal. For a signal z,, of one
specific subband n and some sampling points k taken from a time window of a (small) fixed

Figure 2.7: Selected STMSP features for PathBeg, time in seconds

13
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Figure 2.8: Chroma features for two different PathBeg versions, time in seconds

size, this is defined as Y |2, (k)|?. The size of the time window is typically chosen somewhere
in the order of a few milliseconds, the sampling rate in the order of about 88 Hz. The choice
of both parameters depends on the original sample rate of the respective subband. They
are defined in such a way that individual subbands yield comparable results in the STMSP
computation. This step is performed multiple times while the time window is shifted across
the whole of the input signal. The result is a sequence of individual STMSP features.

The example (Fig. 27 shows a time-pitch plot for the beginning of Beethoven’s Sonata Pathé-
tique, our running example. Note that only the most prominent pitches show up at all—this
is due to the fact that individual pitch contributions are usually not significant with regard to
the overall picture, and one has to do some more work to extract musically meaningful data
from this basic feature.

2.2.3 Chroma Features

The next step in the extraction pipeline is concerned with a reduction of the feature space
generated by pitch energy extraction to a 12-dimensional space that is suitable for harmonic
post-processing. To understand precisely how this is done (and why it is a valid processing
step), one has to consider the perceptual phenomenon known as octave equivalence: In human
hearing, any two tones separated by a distance of one (or more) octave(s) are considered to
“sound” alike, i.e. they are perceived as the same tone played in different pitch registers (for
details see [Mic08], p. 21). This enables the classification of pitches along two dimensions, the
first being the respective “note color” of the pitch as perceived by the human listener (which is
the attribute of the sound that does not change across different octaves), and the second being
an indication of the register in which the note is sounded. Usually, the first aspect is referred
to as chroma (Greek for “color”) and the second as tone height. As an example, consider the
pitch A4: its chroma is designated by the “A”, and the respective register or tone height is
defined by the number 4. The entirety of pitches of a single chroma is sometimes also called
a pitch class.

14
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As we learn that each octave of the equal tempered scale consists of twelve notes correspond-
ing to twelve different chroma, it becomes clear how the feature space reduction works: The
information on single pitches is simply collapsed across octaves, such that one ends up with
an indicator of the contribution all notes of a specific chroma make to the original signal,
irrespective of the octave in which they are played. This is in accordance with the traditional
theory of harmony which states that pitch register is largely irrelevant for the harmonic classi-
fication of a single chord. The collapsing step simply consists of adding up all individual note
contributions (i.e., their STMSP) of the same chroma for each element of the STMSP feature
sequence, so the computational effort required for this transformation is linear in the number of
these elements. The transformation result, a vector containing a sequence of 12-dimensional
features, is called chroma representation of the audio signal. Figure 2§ depicts a sample
output of this step, where the names of the chroma vectors have already been annotated

2.2.4 CENS Features

Conceptually, the chroma feature already gives a good approximation of the goal we were
trying to achieve with our feature design, namely extracting the harmonic characteristics of
a piece. Technically however, there is still some work left to do in order to make the feature
more robust and invariant with regard to certain data attributes that should be discarded
when focusing on harmonic similarity. This is done in the final phase of the feature extraction
pipeline with the computation of chroma energy normalized statistics (CENS) features.

The computation of CENS features is done in multiple stages and is thus best understood in
terms of being a pipeline itself, contained in the larger and more general feature extraction
pipeline. The CENS processing steps are as follows:

1. Normalization. Each feature vector of the chroma representation is normalized to a
range in the interval [0, 1]. In cases of near-silence, the uniform distribution is substituted
for the actual vector to avoid introducing statistical noise.

2. Quantization. The normalized sectors are quantized according to a logarithmic binning
function b : [0,1] — {0,1,2,3,4}. This coarsens the resolution to make the measure
insensitive to local variations.

3. Convolution. The quantized vectors are convolved with a Hann window of a specific
size to lessen the impact of local errors in the extracted features.

4. Downsampling. The resulting feature sequence is downsampled by a specific factor to
further coarsen the resolution.

5. Normalization. Finally, the single vectors are again normalized with respect to the
Euclidean norm.

The resulting CENS features are robust enough to ignore local variations in timbre, articulation
and other performance-specific attributes, while correlating very strongly to the harmonic
progression of a piece (Fig. [Z9)). They form the basis of a “globally-oriented” alignment
procedure which will be introduced in Section 2 4l—in this context, globally-oriented should

9Note the enharmonic spelling of Eb as Df.
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Figure 2.9: CENS features for the two PathBeg versions shown in Figure 2.8 time in seconds

be taken to mean that this feature is not suitable for the alignment of very subtle note-to-note
correspondences, since it is designed to suppress this level of detail. We will see a potential
source of “locally-oriented” alignment information in the next section.

2.2.5 Onset Features

CENS features are one example for the extraction of useful information from STMSP data on
a particular audio stream. Another interesting feature that the STMSP representation gives
rise to is concerned with the detection of note onsets. This information is especially useful
for the synchronization (or alignment) of two audio streams on a very high resolution level,
which of course is essential for the purposes of performance analysis. Onset information can be
extracted from STMSP features of an audio stream by applying the following observation: For
many instruments, sound generation is characterized by a sudden increase in energy, followed
by a gradual decline (also called attack and decay phases of the sound). This sudden energy
increase is especially pronounced in the pitch band corresponding to the fundamental frequency
of the sound (and, to a lesser extent, in its first few harmonics). Hence, measuring increases in
energy in a specific pitch band may give pointers to locations where a note corresponding to
this pitch is played. This measurement can be performed comparatively easily by computing
the first-order difference of consecutive entries of the STMSP curve x defined by 2/(n) :=
xz(n) —x(n —1),n € Z. This difference is then half wave rectified, a process that essentially
“cuts away” negative values of the curve and sets them to zero, leaving only positive values
for further processing. Finding peaks (local maxima) in this so-called onset signal then gives
good indicators to locations of potential note onsets.

In the case of MIDI data, note onsets can be extracted trivially by direct examination of the
data stream, without needing to resort to STMSP features. We will exploit this fact later on
to arrive at very precise onset measurements that can be used to facilitate analysis of a single
specific performance of a piece.
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2.3 Dynamic Time Warping (DTW)

2.3 Dynamic Time Warping (DTW)

In the preceding section, we encountered some features which allow us to make musically mean-
ingful assertions about a piece after their extraction. Comparing two feature sets extracted
from different interpretations of the same piece allows us to make an additional observation:
We can see how the different performances are interrelated and try to find out the main sim-
ilarities and differences between them. When focusing the comparison on a specific section
of the piece, however, one needs to be careful: There is no absolute timing reference that
can be used to locate such a section in a performance, hence it is possible that one artist
arrives at a specific section at e.g. 240 seconds into the interpretation, while another artist
may need 270 seconds to get to the same section. The process of computing an association
time frame that can be used to locate semantically equivalent sections of two pieces is referred
to as alignment of the pieces. This can be done accurately and efficiently using a technique
called Dynamic Time Warping (DTW), which is well-known and widely used. This section
presents this technique; in the next section, a discussion follows on its relation to performance
analysis.

Stated in general terms, the objective of DTW is to align two time-dependent sequences
X := (x1,x9,....,xy) of length N € Nand Y := (y1,¥2,...,ynm) of length M € N. The content
of these sequences consists of equidistantly sampled features taken from some fixed feature
space F. To measure the similarity of two features, a local cost measure (or local distance
measure) ¢ is employed, with ¢ : F x F — Rxg. This distance measure should be small
(indicating a low cost) when comparing two similar features, and high in the opposite case.
To obtain an optimal alignment, one has to compare all feature pairs. Storing the results of
these comparisons in a cost matriz C € RV*M with C(n,m) := ¢(xn,ym), one can imagine
the optimal alignment as a path running from lower left to upper right of the matrix along

Figure 2.10: Cost matrix and warping path for the two PathBeg versions of Figure B time in
seconds
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‘ Vector ‘ Stored Features ‘
X a bl ‘ co | dq ‘ do | e| f g h
Y ap [az [ b c d el fla]g|h]|h]hs

Table 2.1: Two feature vectors with semantically associated frames grouped together

‘ Reference Vector ‘ Warping Path Assignments ‘
X 111231456789 (9]10]10]10
Y 1123445567 [8]9]10] 11|12

Table 2.2: An optimal warping path for table 1]

the “valley” of minimal cost (see Figure 2.I0]).

A formalization of the concept of an alignment yields the following definition: A warping
path of length L € N between two sequences X and Y of length N and M, respectively, is a
sequence p = (p1,...,pr) with p; = (n;,m;) € [1 : N] x [1 : M] for | € [1 : L] which satisfies
the following conditions{

i) Boundary condition: p; = (1,1) and pr, = (N, M).
ii) Step size condition: Y1 € [1:L—1]:p11 —p € {(1,0),(0,1),(1,1)}.

Intuitively, the warping path defines a mapping between the two feature sequences such that
features x,, and y,,, correspond to the same semantic unit. Table illustrates how such a
mapping might look like for two sequences X and Y as defined in table 21 In this sample
case, F = {a,b,c,d,e, f,g,h}, N =10 and M = 12. It is easy to see from the table that the
first element of X corresponds to the first two elements of Y, and so on. We will sometimes
refer to the entries of the warping path by their association to a specific sequence, for instance
the elements n;, [ € [1: L] might be referred to as “X entries” of the warping path. Likewise,
the row containing such entries may be referred to as “X row” of the warping path.

The conditions ensure that the mapping is complete in the sense that no element of either
X or Y is neglected. Note that the step size condition implies monotonicity of the sequences
ni, N, ...,ng, and mi, ms,...,mr, a fact sometimes made explicit in a separately stated mono-
tonicity condition.

The total cost ¢,(X,Y) of a warping path p between X and Y using cost measure c is defined
as ¢p(X,Y) := Zle c(xpn,,Ym,). The path having minimal total cost over all possible warping
paths is called optimal warping path p*. The DTW distance between X and Y is then defined
by DTW(X,Y) := cp«(X,Y).

Computation of the Warping Path

A naive implementation of a DTW computation algorithm might simply compute all possible
warping paths between X and Y and then pick the one with minimal total cost. However, this

'9We define the shorthand [a : b] := {a, ..., b} for a,b € N.
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2.3 Dynamic Time Warping (DTW)

approach takes time exponential in N and M, so it is computationally infeasible. One can do
better by observing that DTW exhibits the properties of overlapping subproblems and optimal
substructure (since every globally optimal warping path must necessarily be locally optimal),
making it well suited for a dynamic programming approach with a time complexity of O(NM).
For the implementation of such an approach, we define an N x M matrix D called accumulated
cost matriz as follows: D(n,m) := DTW ((x1,...,xy), (Y1, ..., Ym)), i.e. every cell of this matrix
contains the cost of a “partial” warping path between some prefixes of X and Y.

D satisfies the following identities:

n

D(n,1) :Zc(azk,yl) forn e [1: N]
k=1

D(1,m) =Zc(x1,ym) for m € [1: M]
k=1

D(n,m) =min{D(n —1,m — 1), D(n—1,m), D(n,m — 1)} + c(xm, Ym)
forl<n<Nandl<m<M

Hence, DTW(X,Y) = D(N, M) This implies that D can be computed recursively, starting
at the upper right of the matrix at location (N, M) and working downward in a stepwise
manner till one arrives at the lower left (1,1), the base case. Reversing the process to work
iteratively in a bottom-up fashion from (1, 1) towards (N, M), one can cut down on memory
space requirements while preserving the computation complexity of O(NM).
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Figure 2.11: Accumulated cost matrix for the two PathBeg versions of Figure 2X9 time in seconds

Using D, the optimal warping path px = (pi,..,pr) can be computed by tracing the lowest
cost path between (1,1) and (N, M). Here we set p; := (1,1), pr := (N, M) and in case

"See [Miil07] for proofs and a detailed discussion.
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pr = (n,m) for [ € [2: L], then

(I,m—1) ifn=1
p—1:=1¢ (n—1,1) iftm=1
argmin{D(n —1,m —1),D(n —1,m), D(n,m — 1)} otherwise

See Figure 2I1] for a visualization of the basic idea. There is a large variety of possible
optimizations for the computation of the warping path, and we have barely begun to scratch
the surface. A more in-depth discussion is given in [Miil07].

2.4 DTW in Music Synchronization

To make use of the DTW algorithm for the purpose of music synchronization, one just needs
to define a suitable feature space F and cost measure c¢. Perhaps not surprisingly, we choose
the CENS features introduced in Section 2224 so F = {v € [0,1]'2 | ||v|la = 1}. For the cost
measure, we define ¢, by ¢, := 1 — (z,y) + « for some offset @ € R>g. The offset is necessary
to account for areas of little harmonic change where the CENS features cannot accurately
distinguish “good” and “bad” paths any longer. Without the offset, the path’s behavior in
these cases would be essentially random, since movement inside such a region does not incur
high costs—including it predisposes the warping path towards the geometric optimum, which
is the most reasonable alternative in such a case. Since the CENS features are normalized
with regard to the Euclidean norm, (x,y) is equivalent to the cosine of the angle between z
and y.

While the design described above is sufficient for a good intuition of a harmony-based align-
ment procedure, of course such a method would not yield very convincing results for our goal
of extracting detailed timing information from the warping path. In practice, the harmony-
based alignment is used as a basis for further refinements, for example using onset features
as introduced in 2225 Recently, this has been done by Ewert, Miiller and Grosche [EMGO09].
Their approach integrates chroma-based and onset features on the cost matrix level and affords
good alignment accuracy while preserving the robustness gained by the use of chroma-based
features. In the remainder of this work, we will suppose synchronization data generated by
such an algorithm, without going into the specifics of warping path refinement necessary to
obtain higher-quality alignments.

In the preceding sections, the presentation has focused on the alignment of audio/audio pairs,
since this is perhaps the most challenging problem. Alignment of MIDI/MIDI or MIDI/audio
pairs can be performed by using the same procedure as described before, except that STMSP
and onset features can be extracted from the MIDI directly since they are represented in
a symbolic manner. For the first, one only has to read the relevant parameters from the
respective note onset /offset messages and convert them to a suitable STMSP representation.
Onset features are even easier to extract, since they correspond exactly to the note onset
timings already present in said messages. Finally, the alignment of score/MIDI or score/audio
pairs can be reduced to MIDI/MIDI or MIDI /audio alignments by generating a standard MIDI
file from the score. This functionality is provided by default for all the toolkits that deal with
the processing of digital score data, so this does not pose any technical problems.

2Even though some notational ambiguities have to be resolved, see Section ZT.11
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Chapter 3

Tempo Curves

The notes I handle no better than many pianists. But the pauses between the notes—ah,
that is where the art resides.

—Arthur Schnabel, 1958

The previous chapter introduced the technical infrastructure necessary for the synchroniza-
tion of two interpretations of a piece of music. This chapter builds on that material buy
demonstrating how to use alignment information for the computation of tempo information.
However, it will first be necessary to discuss what exactly is meant by “tempo information”.

The chapter begins with the introduction of some of the different hierarchies (or levels) that
determine the structural layout of a piece. We then show how these levels form the basis of
a formal definition of the tempo and associated tempo curve of a piece, and discuss three
algorithms for its computation using alignment data as input. This forms the presentation of
the principal conceptual contribution of the work. Finally, we briefly touch on related topics
such as dynamics curves.

3.1 Measuring Tempo

Listening to a piece of music is always a subjective experience, and no two persons have
precisely the same thoughts or emotions when witnessing a specific performance of a piece.
Even so, there are certain characteristics of a musical piece that transcend subjectivity and
can be claimed to be universal, and among the most important of those is its tempo. The
feeling of pulse and rhythm is one of the central defining characteristics of nearly all Western
music up to (and mostly including) the 20 century, and thus measuring the tempo of a piece
as accurately as possible is an obvious goal of (automated) music processing.

Conceptually, a tempo curve is the natural result of such a measurement process; it plots the
tempo of a piece over the time span in which it is played (Fig. B]). Implementing this idea,
however, is harder than it first appears. Since “tempo” is hard to define in absolute terms,
one has to find a proper reference against which to measure deviations (e.g. to determine a
piece’s tempo in BPM, one could use the beat indicated by the piece’s time signature as a
reference). Even the very process of measurement is not as well-defined as one would wish:
Which musical properties characterize the tempo, and exactly how precisely can they be
measured before getting drowned in statistical noise? In the following, we will explore some
of the possibilities in an attempt to answer these questions.
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Figure 3.1: A sample tempo curve for the first seven measures of PathExp, time in mea-
sures and tempo in BPM. Phrase structuring and a temporary slow-down at a
particularly challenging passage in measure four are clearly visible.

3.1.1 Metrical Hierarchies in Tempo

Unlike visual media such as paintings, music is an inherently sequential art form. It can-
not exist outside a temporal reference frame, hence the relation between the development of
musical concepts on the one hand and the passage of time on the other hand is one of the
main expressive parameters which composer and performer manipulate for artistic purposes.
However, since it is quite easy to “get lost” in a completely free stream of time, Western clas-
sical music regularly employs rigid structures for the organization and sectioning of musical
episodes in time, which are observed and typically emphasized by the artist in a musical per-
formance [Cla87]. We have already seen the basic organizational structure called a measure
(or bar) in Section 2-I.Il There are other divisions possible on several levels that highlight
different musical entities, as can be seen in Fig. Accordingly, different division levels may
serve as the foundation of different tempo levels that can conceivably be measured.

Beat level. The beat forms the most basic building block of larger periodic structures such as
individual measures (inversely, it can also be regarded as a refinement of the sectioning
imposed on the piece by the bar structure). The beat provides a steady and regular
pulse as indicated by the time signature of the piece, e.g. for a piece in 3/4 time, there
will always be three beats (of quarter note length) per bar. Finer subdivisions based on
the beat are referred to as beat level (or mensural level) structures as well, e.g. divisions
on the level of eighth or sixteenth notes in a quarter beat context. If the tempo of a
piece does not change over time, sectioning on this level can be done by determining
the length of one beat and slicing the piece into time segments of that length. Here, the
main advantage of a beat level division is periodicity—each time segment can be relied
on to have the same length. This is also its main disadvantage: If the time segment is
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3.1 Measuring Tempo

too large, valuable information may be lost in the tempo measurement.

Note level. The note level division separates single consecutive notes from each other, regard-
less of their respective length. A division on this level has the advantage of automatic
adaptability to the “best” resolution available to capture a musical segment, although
this comes at the cost of lost periodicity—while the beat is guaranteed to occur at well-
known intervals throughout a piece (barring time signature changes), for the note level
division there is no such assurance. Due to the adaptive resolution, tempo measurements
done on the note level are usually more sensitive than measurements done on the beat
level. This means that they are better at spotting subtle tempo nuances while at the
same time being more susceptible to measurement errors or processing artifacts.

Motif level. A division on the motif level makes great musical sense, although it relies on the
assumption that motives exist in the piece and can be readily obtained either by analysis
or prior knowledge (which is not the case in general) However, if such a division is
possible, timing information based on it may reveal a great deal of information about
either the piece or the performing artist.

Phrase level. The same considerations as for the motif level hold for the phrase level, they
merely differ in their respective structural level—phrases obviously belong to a more
global structural context than simple motives.
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Figure 3.2: Franz Schubert: Winterreise D911, “Friihlingstraum” (Excerpt)

The differences between the structural hierarchies already point to a related issue, which
concerns the contrast between global tempo, local tempo and local timing. Figure[33lillustrates
how these are laid out with respect to each other: The global tempo refers to the complex
layout of a piece as envisioned by the composer and typically spans a wide number of bars
(though it still very much depends on the performer to realize the composer’s ideas). In
contrast, the term “local timing” is used to describe tempo variations on a very small scale
(in the order of at most a few hundred milliseconds). We are mainly interested in the local
tempo, which concerns small-scale tempo variations whose range typically encompasses a
small number of individual notes at the most. These variations can be due to various factors,
including artistic phrase shaping and realization of composer instructions such as fermatas
[FGWO0S].

3 As an additional difficulty, definitions of motives and phrases are always subjective and thus open for debate.
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local timing
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Figure 3.3: Different resolution levels of tempo measurement

From a performance analysis viewpoint, tempo and timing measures serve different purposes:
Information about the global tempo of a piece is much more useful for assertions about the
piece itself (i.e., the composition) than the timing measurement, although it may also be used
to analyze a specific performance. On the other hand, a performer’s artistic timing is strictly
tied to a specific interpretation and thus best suited for analysis tasks that aim to compare
and relate a number of different performances (possibly of the same piece). Here, the focus is
mainly on gaining information about the performers’ idiosyncratic playing styles. The local
tempo lies somewhere in the middle ground and can thus be used for both of these purposes.

In the following, any unqualified use of the term “tempo” should be taken to refer to the local
tempo, which is the main focus of this work. When necessary, the term “global tempo” will
be used explicitly to distinguish the two.

3.1.2 A Reference Frame for Tempo

As has been already mentioned, the tempo of a piece does not exist in an “absolute” space,
it always needs a reference frame to be meaningful (i.e., the piece must always get slower,
faster or stay the same in relation to something else). The implicit frame of reference for a
human listener is usually an idealized beat produced by his imagination—he picks up on the
pulse of a piece, and then (based on his musical intuition) extrapolates from it to estimate
the onset times of the next couple of notes. If these notes arrive at an earlier or later point in
time than expected, the listener notices a change in tempo. While we may take this frame of
reference for granted since it corresponds so closely to our subjective experience, it is in fact
somewhat arbitrary: What if the composer indicated in the score that he wanted the piece
to slow down, yet the performer maintained a steady tempo? An unsuspecting listener would
not notice anything unusual (unless he was familiar with a faithful recording of the piece),
but if one chose the composer’s given tempo as a basis for judging a performance, the steadily
held tempo would register as a speed-up.

One might argue that the BPM measure offers absolute information about a piece’s tempo,
but even this is not completely true: There are a multitude of different possible ways to notate
a piece of music that can be argued to be essentially equivalent (e.g. using 6/8 time instead of
3/4 time), but would produce different BPM results—after all, the 6/8 time signature implies
double the number of beats as 3/4 time, even though the duration of a single such beat is
then only half as long. This means that BPM information becomes meaningful only in the
context of a known time signature that can act as a reference frame.

Given this understanding, the first thing one needs to do in measuring the tempo of a piece is
to pick a sensible frame of reference. A natural choice for this is a fixed number of BPM tied
to a specific time signature as described above, since this corresponds closely to the regular
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listening experience. To avoid problems where different reference frames (e.g. composer’s
tempo indication vs. listener’s expectation) would yield different results for the tempo curve,
we assume that the only tempo changes in our input data are of a local nature; that is, we do
not permit that time signature changes or novel tempo markings occur in the passage we are
analyzing. This assumption is not overly restricting since such markings normally indicate
structural changes as well, e.g. the beginning of a whole new section. In such a case, it is
reasonable from a musical standpoint to analyze that segment separately.

The concrete data used as a reference is a Standard MIDI File that is produced directly from
the score. Its tempo is fixed by obtaining the composer’s tempo marking of the relevant
passage, which is converted to a specific BPM value. As discussed in Section 21T this
is an inexact science: Tempo is usually indicated with a deliberately loosely defined term
that is open for interpretation. This ambiguity must be resolved at the time the MIDI is
produced. For this, we simply pick a likely tempo from the possible range of options. Since
we are interested in relative values rather than absolute ones, we accept that this may slightly
skew the concrete computed values upwards or downwards—the only relevant concern is that
the shape of the tempo curve be preserved, which is the case here. Note that even though
this is not a primary goal of our work, we may still compute accurate absolute BPM values
if the MIDI is set to a precise reference tempo. We refer to the generated MIDI file as the
reference; the musical interpretation we want to analyze is called either performance or simply
interpretation.

3.1.3 Extraction Methods of Tempo Features

After the reference has been established, we still have to measure the tempo of the actual
performance. This process can be split into two steps: The extraction of certain features
from reference and interpretation, and the comparison of these features. The features used for
this closely relate to the various levels discussed in the preceding section—in fact, for tempo
curves it is sufficient to use onset features that capture the point in time when an event on
such a level happens. As an example, features on the note level consist of note onset times as
presented in Section There are several different ways of obtaining these features:

Automatic annotation. Trying to automate the process of feature extraction is an obvious
(but challenging) idea in performance analysis. To date, no algorithm is known to
produce results which are as accurate as can be achieved by manual annotation, although
error margins may be small enough for certain applications [Dix01) [Dix07]. This work
tries to slightly improve this state.

Manual annotation. Human intervention is the most labor-intensive way of collecting fea-
tures, but also among the most accurate. It is usually done on the beat level, often
using a special-purpose tool (e.g. the Sonic Visualiser [Son(09]) that displays and plays
the waveform and lets the user graphically place the onsets in this representation. One
useful course of action is to take the output of an automated analysis and adjust it
manually to the desired degree of accuracy, thereby minimizing required human effort
while maintaining high data quality. In previous work, this method has enjoyed height-
ened attention because results produced by other approaches were often not satisfactory
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“Direct” annotation. By use of specialized equipment, one can capture onset times during the
actual recording of a piece of music. One example of this is the so-called player piano,
a computer-monitored piano that generates symbolic (MIDI) data when it is played.
Such data can be used as a basis for manual annotations, e.g. [Wid02, WDG™03|. The
advantage of this approach is that it produces the best data that can be gained (since
symbolic onsets correlate perfectly to physical onset times), the obvious disadvantage is
that special-purpose hardware needs to be used during the recording of the piece. In
particular, there is no way of adapting this approach to work on existing recordings, so
the huge amount of data available e.g. on CD recordings cannot be analyzed using this
approach.

It is worth pointing out that the method used for obtaining tempo features is essentially
irrelevant with regard to the performance analysis steps that follow feature extraction. This
means that an approach that operates on beat-level tempo features will take as input any
such feature set, regardless of whether it was produced manually or automatically. Hence,
one can choose the best feature extraction method available for the development of such an
algorithm—even if obtaining such a feature set is not feasible for regular usage, the algorithm
will work just fine with differently generated features (provided that they meet reasonably
high quality standards).

The alignment process described in Section 2.4] can be regarded as an automated annotation
of the interpretation by the data given in the reference file. This includes note onsets, offset
and possibly dynamics information—even song lyrics may be incorporated in the reference
MIDI.

3.1.4 Tempo Feature Comparison

The last step in tempo measurement is actually the easiest. After the required features have
been extracted, measuring the tempo of the piece amounts to a straightforward correlation
of these features and measurement of the difference in onset time between interpretation and
reference. For example, consider a short piece of music where only four note onsets occur
(Table B1). Each onset is designated by an individual letter corresponding to a musical note,
length of the notes is indicated by splitting single letters into multiple versions of the same
letter, distinguished by their indices.

In the reference, the onsets occur at times 1, 2, 3 and 4 (given by their respective index into
the data sequence) while in the interpretation, the onsets occur at times 1, 3, 5 and 7. We
can observe that the time difference between two consecutive onsets is constant in the two
versions, and that it is 1 in the reference and 2 in the interpretation. Thus, the translation
factor between reference and interpretation is %, and we can conclude that the interpretation
is played half as fast as the reference. This forms the basis of our understanding of the term
tempo: It is the progression factor of time units in the reference vs. the progression factor
of time unit in the interpretation. By using a known BPM value for the progression of time
units in the reference (where a time unit is defined as the duration of one beat), we are then
able to compute absolute BPM values for the tempo of the performance as well.
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3.2 Warping Path Based Tempo Curves

We are now ready to introduce the approach taken in this thesis. Its basic idea is to make
use of the fact that an alignment between reference and actual performance—i.e., a warping
path—can be regarded as a description of the performance’s tempo structure. This facilitates
analysis of the warping path to build a tempo curve from the information it contains. To
see how this is done, consider again Table Bl An optimal warping path for this example is
depicted in Table

Intuitively, one can “read off” the ratio of time progression in the reference vs. time progression
in the interpretation by looking at the respective length of semantically corresponding music
segments in the two data streams: In this example, each progress by one time unit in the
reference corresponds to a progression by two time units in the interpretation. This is reflected
in the warping path by the fact that each individual index into the reference must occur twice
to fit its tempo to the tempo of the interpretation. Hence, we can again conclude that the
translation factor between reference and interpretation is %, i.e. half-tempo.

Notice that in the plot of this warping path (Fig. B.4]), the gradient of the idealized warping
path (which is gained by averaging over the values of the actual warping path) is precisely
two—the inverse of the translation factor. We will now formalize this intuitive understand-
ing.

3.2.1 Sliding Window Computation of Tempo Curves

Let p = (p1,...,pr) be a warping path of length L between two sequences X and Y of length
N and M as defined in Section 2.3, where X is the reference of a given piece of music and Y
its respective interpretation. We define the extended warping path p®* for all | € Z by padding
the regular warping path p at the locations where it was not explicitly computed, using the
assumption that reference and interpretation have equivalent tempo there:

o= (ng,my) if 1 €[l:L]
=14 (L) il <1
(N+1—LM+1—L) ifl>L

For the following definitions, we will assume that the warping path is always padded like this
to avoid special treatment of “boundary cases”.

The computation of the tempo curve basically works by looking at each element of the reference
sequence, determining the length of the entries of the warping path semantically correspond-
ing to this element both in the reference row and the interpretation row, and computing the
quotient between both of these lengths. However, such an element-wise computation is ex-
tremely unstable in terms of robustness against alignment errors and artifacts. Therefore, we
also introduce an averaging window of size w that defines a broader range of elements of the
reference that are included in this examination. The tempo curve is then determined not by
finding semantically corresponding entries to a specific element x € X, but rather to a range
of w such elements centered around x. We formalize this by looking at the computation of
one particular entry of the tempo curve in detail.
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| Reference | e [ c[d ] g|

‘ Interpretation ‘ el ‘ €2 ‘ 1 ‘ C2 ‘ dy ‘ dy ‘ 91 ‘ 92 ‘

Table 3.1: Two schematic pieces of music, note onsets marked red

‘ Associated Vector ‘ Warping Path Assignments ‘

Reference 11112121334 4
Interpretation 112(3|14|5]6|7]|8

Table 3.2: An optimal warping path for Table [3.1]

Actual Warping Path
Idealized Warping Path

Figure 3.4: Visualization of the warping path of Table (notice different scaling for horizon-
tal reference and vertical interpretation, time given in indices into Table B.1)

Let n € [1 : N] be an arbitrary but fixed index into the reference data sequence X and
w € Ny the size of an averaging window. The tempo curve induced by the warping path p
with respect to w is a function 7 : [1 : N| — R>( that is defined by

b+1)—a
(mlb + 1) - mla

Tw(n) =

Here, [, and I, are computed according to the following definitions:

w—1
b:= —_
n+’r 5 -‘

lo == max{l € Z | n; = a}
lp := max{l € Z | n; = b}
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This means that a and b define the indices of the outer limits of the window w in the reference
sequence, i.e. the elements of the reference sequence included in this examination step are
given by the range [z, : xp]. The middle element of this range is always x,,. Although some of
the elements of this range may be non-existent (for a < 1 or b > N), their respective indices
are still included in the extended warping path. Hence, 7 is well-defined on the full domain
[1: N] for arbitrary window sizes. Just as a and b define the indices of window limits in the
reference sequence X, [, and [; represent the indices of window limits in the extended warping
path pf"t. In the case of ambiguities (when a or b occur multiple times in the reference row
of the warping path), their definition is designed to always pick the largest possible index still
denoting an occurrence of a or b, respectively. Other possible choices would have included
the smallest such index, or the index of the middle element of the respective range. Since the
impact of this choice is negligible with respect to overall accuracy, the only important point
here is that for any ambiguous case, exactly one index is picked that always remains the same
whenever that case is evaluated. This is the case with the maximum used in this definition.

Note that the tempo curve is defined in terms of the reference sequence, so the “resolution” of
this sequence (i.e. the length of the features that make up its individual elements) determines
the resolution (or precision) of the tempo curve as well. Since w = (b+ 1) — a, we can also
formulate the definition of 7 as follows:

w
(mlb + 1) - mla

Tw(n) =

In b+ 1 and my, + 1, the addition of “one” is necessary to account for the last element of
the sequence we are inspecting which would not be counted otherwise—e.g., even if a = b
and my, = my,, we are still examining exactly one element of reference sequence and warping
path.

Consider an example: We will evaluate the warping path depicted in Fig. B4l at n = 3 with
a window size w = 3. In this case, a =2 and b=4. As {l € [1: L] | n; = 2} = {3,4} and
{tel:L]|n =4} ={7,8}, lo =4 and [, = 8, according to the definition. Notice how
(4+1)-2 _ 3

(8+1)—4 — 5
The difference of this result to the “ideal” tempo of % is due to a general drawback of this
approach: Operating on the actual warping path is in general not equivalent to working on
an ideal warping path, and an important point of our contribution is to alleviate this problem
by smoothing (averaging) over various values to still arrive at adequate tempo curves.

the ambiguous borders are resolved in both cases. Next, we evaluate 73(3) =

In the algorithmic computation of the tempo curve, we will iteratively “slide” the window w
over all indices n € [1 : N] into the reference sequence to compute all entries of the tempo
curve. Consequentially, we refer to the class of algorithms presented here as sliding window
algorithms. The different evaluation techniques that distinguish these algorithms from each
other are based on some of the different feature levels from Section BT} The first technique
sections the warping path into equal-length snippets of a fixed time, correlating to the beat
level. The second technique introduces uneven sectioning based on a note-level division of the
music data, and the third technique tries to unify time based and note based approach.

A major advantage of the warping path based sliding window approach is that it can be
used in conjunction with the DTW method presented in Section 23l This allows us to exploit
advanced music alignment techniques to automatically generate tempo curves without the need
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for manual intervention. Since DTW is designed to work with a wide variety of features, we are
not limited to any particular feature resolution level but can use whatever features necessary
to build an accurate warping path. On the other hand, we can still decide to evaluate the
warping path on any precision level necessary for a specific performance analysis purpose—
one could even perform an analysis of the symbolic reference data stream to determine which
timings fall on heavy beat times, melodic highlights, deceptive cadences and so on, and can
use this knowledge to selectively evaluate the tempo at such points in time.

3.2.2 Fixed Window Size Warping Path Evaluation

The most straightforward approach to tempo curve computation consists of a literal algorith-
mic implementation of the formal description given in Section .21l The corresponding code
is presented in Algorithm Bl Tt expects only the extended warping path and the window
size w as input. Remember that n; designates elements of the reference, while m; is used for
elements of the interpretation.

The algorithm slides and centers the window of size w over every element n of the reference
sequence (lines 2-8), positioning the respective borders exactly as in the formal definition of
the procedure. While the presentation of the algorithm in this work remains faithful to that
definition, the actual implementation has a slightly different structure that avoids potentially
costly operations such as the set comprehension of lines 5-6. The call to EXTENDWARPING-
PATH extends p by the number of entries needed to accommodate a window of size w during
the execution of the algorithm.

Since w is fixed as a parameter to the algorithm, we call this algorithm the fized window ap-
proach to tempo curve computation (FW for short). Notice that the window size is the only
parameter that can be manipulated in this approach. Early experiments showed that a subse-
quent additional averaging over multiple entries of the tempo curve did not yield significantly
better results for the FW algorithm. Figures and may serve as a preliminary example
of the output produced by the FW algorithm before we come to a more detailed analysis in
Chapter [

Changing the window size obviously changes the outcome of the computation: Plotted are two
tempo curves generated by different parameter settings (blue) against a synthesized ground

Algorithm 3.1: Tempo curve computation based on the fixed window technique

Input: warping path p; = (n;,m;) (I € L), window size w € N5
Output: tempo curve 7
p — EXTENDWARPINGPATH(p, w);
for n — 1 to N do
@ —n— |8
be—n+ [“’Tflw,
lo —max{l € Z | nj =a};
Iy —max{l € Z | n; = b};

T(n) - my, —zrunza-l—l ;

end
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30 40 50 60 70 80 90 100

Figure 3.5: Results of the FW algorithm for w = 2s, time in seconds

30 40 50 60 70 80 90 100

Figure 3.6: Results of the FW algorithm for w = 55, time in seconds

truth reference (which will be discussed in detail in Section [.T], shown here in red). As per the
definition of the tempo curve, tempo is given here not in BPM but in relation to a reference
tempo: We start a bit slower than the reference, slow down to about 3/4 of the original speed,
then speed up again until we have reached the original tempo at t = 85s. Two characteristics
of the algorithm are immediately apparent: Fluctuations in the generated curve become less
pronounced as the window size increases, but sensitivity to changes lessens in turn (see e.g.
adaptation of the curve to a new tempo at ¢ = 41s). Another visible effect is caused by the
centering of the smoothing window which results in an anticipation of tempo changes even
before they have started happening. Although we give the size of the window w in terms of
seconds in these examples (and will continue to do so for reasons of intuitiveness), we actually
mean by that a size with respect to the feature rate used in the warping path computation
that corresponds to three seconds of the reference audio data.

Viewing the tempo curve at a higher resolution, one can see a plateau effect where certain
values have a much higher probability of appearing in the tempo curve than other values (Fig.
[B7). Furthermore, these seem to cancel each other out in their fluctuation around the ground
truth tempo curve. This phenomenon is due to the stepwise, “integer” nature of the warping
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0.7

44 46 48 50 52 54 56

Figure 3.7: Higher-resolution view of FW algorithm results for w = 25, time in seconds

path that prescribes a maximum resolution to the computed value. We will discuss all of these
aspects in greater detail in Chapter [l

3.2.3 Adaptive Window Size Warping Path Evaluation

As already mentioned in Section B.IT], segmenting and sampling the warping path according
to periodic intervals has the disadvantage that it does not adapt optimally to the musical
attributes of the data. A division that takes the distribution of the notes into account cir-
cumvents this problem: The adaptive window size algorithm (AW for short, see Algorithm
[B.2) is one of the possible implementations of this idea. Instead of computing the gradient
between two points in time that are always w reference time units apart, it computes gradients
(or slopes) only at the points in time between two distinct note onsets. If these onsets are
consecutive, such an interval is referred to as interonset interval (I0I).

The basic idea behind this approach is to acknowledge that note onsets are the main source of
tempo data available for performance analysis processing. This is especially true for Western
classical piano music, but also for pieces with different orchestrations (note onsets may be
some orders of magnitude harder to extract in such contexts, but this is an active research
field [GMEQ9]). Choosing to neglect arguably less important aspects such as note offsets or
pedaling, we can claim that measuring note onset information is sufficient to reconstruct the
tempo of a piece by correlating each measured onset to the respective onset in the reference
as described in Section BI.4l Consequently, computing the gradient between note onsets tries
to use the full amount of tempo information available from these onsets while discarding any
alignment artifacts that occur inside the region of an IOL.

For our theoretical discussion, we need to update the computation of the borders of the
averaging window. These are aligned to note onsets, which we model as a set of indices into
the reference sequence O C [1 : N]. For a number of K onsets, we define O := {o1,...,0K},
with 1 <01 < 03 < ... <0og_1 < ox < N (that is, we regard this set essentially as an ordered
list). Furthermore, without loss of generality we require that o; = 1 and oxg = N (if this is
not the case, extend O by inserting og = 1 and oxy+1; = N). This ensures proper window
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3.2 Warping Path Based Tempo Curves

alignment in the boundary cases (and also implies that K = L). Similar to the extended
warping path, we define an extended onset list O for all k € Z as follows:

Ok ifkell: K]
ot =¢ k if k<1
N-K+k itk>K

Simply put, this pads O with evenly-spaced onsets on both sides, which again enables us to
extend our averaging window beyond the boundaries of 1 and N, even when it must be aligned
to note onsets. We are now ready to define how the window edges are computed in the AW
case.

Let wio; € Nsg be the size of a window indicating the number of interonset intervals that
should be included in an averaging step. We first examine the case where wj,; = 1, i.e. we are
averaging between two consecutive onsets. Then, for k£ € [1 : K — 1], we have

b+1)—a
(mlb + 1) - mla

Twios (Ok) =

In this case, the following definitions are used for the window edges:

a = o
b= opp1
lo .= max{l €Z | n;=a}
lp := max{l € Z | n; = b}

Hence, this case is analogous to the FW approach—the only differences are in the location
of the window edges, and the “placement” of the computed value in the tempo curve. Where
the computed gradient between two locations a and b was formerly placed in their arithmetic
middle n = a + LI)_T“J due to the centered window, it is now placed simply at o = a, the
location of the first onset.

This only defines the tempo for locations where onsets are present, so we have to interpolate
the tempo at places where this is not the case. To do this, first of all set 7(K) := 1. Now we
can perform simple linear interpolation between all known onset locations: Let n € [1: N| \ O
be an arbitrary but fixed location where the tempo curve is not yet defined, and k € [1 : K —1]
the index of the onset which immediately precedes it, i.e. o < n < ogy1. Then,

T(Ok-i-l) : T(Ok) . (n - Ok)
Ok+1 — Ok

Twioi(n) = T(Ok)+

Let us now examine the case where wj,; > 1. Actually, we shall see that the definition is
general enough to accommodate wio; = 1 as well, so let wi,; € Nsg in the following. The
indices of the window edges are then given by this definition:

o=k — LwioiJ
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Figure 3.8: Warping path (blue) for PathBeg in cost matrix context and with interonset interpolation
(onsets red, interpolation black), time in seconds

Figure 3.9: High-resolution view of the results of interonset interpolation, legend as above

Here, ¢ and d index into the list of onsets O. All other definitions remain as above; notice
that in case wio; = 1, we have in fact a = o, and b = og1. This definition can also be used
to describe the FW case by setting O := [1 : N]. For such an O, this definition of 7 becomes
equivalent to the old definition of the FW case for w = wj;.

Figure B3] depicts an example of the combination of warping path (blue), onset information
(vertical red lines) and the idealized warping path (black) that is used by the AW approach
for the computation of the tempo curve (i.e., an interonset interpolation of the actual warping
path). Figure shows how the original warping path was obtained from its respective cost
matrix, demonstrating clearly the correspondence between artifacts in the warping path that
need to be smoothed out and regions of harmonic stagnancy in the original piece.
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Algorithm 3.2: Tempo curve computation based on the adapting window technique

Input: warping path p; = (n;,m;)(Il € L), onsets O = {o1, ..., 0k }, window size wie; € N5
Output: tempo curve 7

p < EXTENDWARPINGPATH(p, Wic;);
O «— EXTENDONSETS(O, wioi);
for k — 1 to K do
¢k —[u;
d—k+[45];
Q4 < Oc;
b — oy;
lo —max{l € Z | n;=a};
Iy — max{l € Z | n; =b};
Tonsets(oc) — Wﬁtﬁ;
end
7 « INTERPOLATE(Tonsets, O);

The structure of the algorithmic implementation (Alg. B.2)) is not largely different from the
theoretic outline. The main work is done in lines 3-11: We iterate over all onsets and compute
the gradients between them, paying respect to the averaging window defined by wjo;. After
this step, the tempo curve 7 is defined exactly at the places where an onset occurred, hence
we call the intermediate result 7opsets. For a definition on the full domain, we still have to
interpolate the values in between onsets. This is done in line 17 by calling the auxiliary
function INTERPOLATE. This function computes a linear interpolation as described, but of
course other interpolation methods could be used here as well.

In the case of the FW algorithm, smoothing of the tempo curve was done by choosing a
window of larger size. This is the case here as well, but the window size can no longer be
controlled directly: it is computed implicitly from the number of IOIs that are included in the
averaging step (lines 4-5). This has direct implications for the impact of the averaging: Areas
of the piece with high onset density are affected less than areas where only a small number
of note onsets occur. As in the case of the FW algorithm, the window for this computation
is centered around one specific location of the tempo curve og. The computed value is just
the average gradient between the two onsets o. and o4. Keep in mind that due to different
IOI lengths, the centering may be biased to one side: If wjo; = 3, the IOI to the left of oy (of
length of — 0x_1) may be significantly shorter or longer than the 10T to the right of of (which
has length o019 — 0g41).

As a result of this, the absolute size of the averaging window w depends a lot on the tempo
characteristics of the musical passage encompassed by o. and o4. Generally speaking, fast
and complex passages with small note lengths will cause it to shrink, while slow and simple
passages will yield a much larger window. This is the case as e.g. three half-notes will normally
take a longer time to play than three sixteenth-notes, even though the number wi,; = 3 stays
fixed. The results of this unpredictability can be observed in Figures 310 and BIT] which show
two sample outputs of the AW algorithm. Here, in the region from ¢ = 30 to ¢t = 70 there are
relatively few but longer notes (an average of approximately 3.4 onsets/s) while in the region
from t = 70 to t = 85, there are relatively more shorter notes (approx. 9.5 onsets/s on average).
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Figure 3.10: Results of the AW algorithm for wi,; = 3, time in seconds
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Figure 3.11: Results of the AW algorithm for w;o; = 9, time in seconds

As a result, the smoothing is noticeably stronger in the first region than in the second one.
This is especially apparent in the region of tempo change at ¢ = 62—here, only one note onset
occurs in a region over four seconds long, resulting in an extremely broad averaging window.
Notice how in contrast, the change-over to a new tempo at ¢ = 41 is processed remarkably
fast.

From the difference between Figures B.10] and B.IT], one can see the importance of the smooth-
ing step for the AW algorithm. Jitter from alignment artifacts dominates the picture from
t = 70 onwards in Figure B0l Though still far from perfect, the results become much better

for a larger wio; (Fig. BIT).

3.2.4 Fixed Window Size Evaluation on Corrected Warping Paths

We have now seen two different approaches: The basic FW algorithm just sampled the warping
path at evenly spaced intervals, the AW algorithm introduced sampling at onset locations and
IOI smoothing. This section presents a third approach that tries to combine the two previously
discussed algorithms. The main idea of this hybrid approach (which will be referred to as FWC
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Algorithm 3.3: SMOOTHWARPINGPATH, smoothing of warping path entries by onsets

Input: warping path p; = (n;,m;)(l € L), onsets O = {0y, ..., 0K }
Output: smoothed warping path p
for k — 1 to K do
a < O;
b Op+1;
lo —max{l € Z | n;=a};
ly —max{l € Z | n; = b};
T mlbfmla .
ny, =N, ?
for i — 0 to n;, — ny, do
| Prori — (m, +i, my, +round(z - 7))
end

end

11 p «— FILLGAPS(p);

in the following, for fized window corrected) is to perform FW sampling on a smoothed (or
corrected) warping path, where smoothing is done by computing gradients between consecutive
onset locations, similar to the AW approach. The implementation is quite straightforward:
The warping path is re-computed analogously to the method presented in the AW approach
(with wje; = 1 fixed since smoothing is only done inside IOI regions), and the results are
exported as a new warping path (Alg. B3]). This corrected warping path is then used as input
for the FW algorithm (Alg. B).

The FILLGAPs function called in line 11 of Algorithm [B3] merely ensures that the step-size
condition of the warping path is always met. Up to that line, this may not have been the
case due to rounding in the computation of the interpolated values (line 8)—e.g., for z = 1.4,
in step ¢ = 1 the respective value in the interpolated warping path would be computed as
my, + round(1.4 - 1) = my, + 1, but in the subsequent step i = 2 it would become m;, +
round(1.4 - 2) = my, + 3. Hence, the value m;, + 2 would be skipped, violating the step-size
condition. FILLGAPS detects such violations and fills in the missing values.

The results produced by this algorithm are a marked improvement over both of the previous
approaches: Fig. no longer exhibits any sections dominated by alignment errors. Due to
the relatively broad time window w = 5, the transition to a new tempo is not as quick as e.g.
in the AW case. However, such sudden and severe transitions are rather unusual in the music
domain we are interested in, so this effect is in fact appropriate.

3.2.5 Interpretation-scaled Tempo Curves

Until now, the time axis of a plot was always scaled with regard to the reference. This is
important for the conceptual understanding of tempo curves and for the comparison of curves
generated from different performances, but inconvenient when working in a real-world perfor-
mance analysis context. Here, one would like to determine the tempo of a given interpretation
at a specific point in time ¢ by consulting this interpretation’s tempo curve at ¢t and using
the respective value. A naive (but working) approach would be to recompute the desired
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Figure 3.12: Results of the FWC algorithm for w = 5, time in seconds

tempo curve with reference and interpretation flipped, resulting in an “inverted” tempo curve.
Maintaining the horizontal scale, this curve could then be inverted again along the vertical
axis to arrive at the desired interpretation-scaled tempo curve. However, there are certain
disadvantages to this approach: Onset information is guaranteed to be available and accurate
for the reference, but this is not necessarily the case for the interpretation. Consequently, the
AW and FWC approaches may not be used for the recomputation.

Furthermore, the computational effort required for a fresh computation of the inverted tempo
curve from scratch are not strictly speaking necessary, since the existing data already contains
all necessary information to construct rescaled tempo curves. The idea with this rescaling
approach is simply to “warp” the tempo curve using the established warping path.

Algorithm B4l describes how this is done: Basically, one just has to establish evaluation points
in the tempo curve and then interpolate between the values of these points according to the
interpretation data stream instead of the reference data stream. Evaluation points can be
chosen according to note onsets, or just be set to [1 : N] for the case of FW tempo curves.

In the algorithm, the search for the relevant evaluation points of the original tempo curve is
performed in line 3. The values at these points are then entered into a new curve (line 4).
We keep track of the interpretation-scaled onsets by updating a set Opegealed that stores this

Algorithm 3.4: RESCALE, rescaling of tempo curves to performance tempo

Input: tempo curve 7, onsets O = {0y, ..., 0x }, warping path p; = (n;,m;) (I € L)
Output: rescaled tempo curve Tyescaled

Orescaled {}7
for k<~ 1 to K do

lp —max{l € [1: L] | n; = oy };
Trescaled(mlk) — T(Ok)§
Orescaled “— Orescaled U {mlk}§

end

Trescaled < INTERPOLATE(Trescaled; Orescaled)§
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information (line 5). The algorithm as presented relies on the assumption that interpretation-
scaled onsets are unique; if we define l; := max{l € [1 : L] | n; = o0;}, we can state this
requirement as Vi,j € [1 : K] : 0; # 0j = my, # my,;. However, this assumption is not
necessarily met by the warping path. To implement line 4 correctly, one would therefore need
to compute 7(my, ) by taking the average over all 7(o;) where (0;,m;,) € p. For didactic
purposes, we have chosen to retain the simple presentation of the algorithm that is easier to
digest.

Figure BI3lshows the result of a rescaling transformation: the time scale is changed according
to the length of the piece, but the tempo values are maintained. Notice that regions of the
interpretation where the tempo is comparatively slow take “longer” in the rescaled tempo curve
than in the original curve (e.g. at t = 35s in the interpretation-scaled curve), and vice versa
for faster passages.

[
T

12r

[
T

12r

Figure 3.13: Comparing a regular tempo curve (top) against a rescaled tempo curve (bottom),
time in seconds
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3.3 Dynamics Curves

As mentioned before, a useful way of looking at the alignment process between reference
and interpretation is to regard it as an automated annotation of the interpretation by the
data provided in the reference. Such annotations facilitate extraction of multiple kinds of
performance characteristics, not just the tempo. In particular, targeting levels other than the
beat level for such extractions becomes feasible with the introduction of note-level annotations.
Since automated annotations directly benefit from any improvements to the accuracy of the
DTW alignment algorithm, algorithms build on this basis are likely to yield better results over
time.

One example for how automatically generated annotations can be exploited in the computation
of dynamics curves is shown in Figure 314l Here, the dynamics of two different interpretations
of the same piece are plotted according to the time axis of the reference instead of the time axis
of the performances. This is made possible by using the annotations of the performances to
compute a kind of inverse rescaling of a regular dynamics curve: Where the original rescaling
procedure presented in the previous section translated from a reference-scaled tempo curve to
an interpretation-scaled curve, the rescaling used in this case translates from interpretation
time to reference time instead. The resulting reference-scaled dynamics curves are useful in
comparing multiple performances with each other, since their time axes can thus be normalized
to the reference. The example shown in Figure B.14] demonstrates that clear correlations can
be seen in such a direct comparison; Section gives a closer look at how such dynamics
curves relate to the performance analysis process.

Information about the dynamics of a recording is computed in the following way: The STMSP
features for all pitch subbands of the input signal at a specific point in time ¢ are summed
up, with the result energy, being the energy of the whole signal at this point. The dynamics
curve at point t is then defined by log,(energy, + 1).

20 40 60 80 100 120

Figure 3.14: Dynamics curves for two interpretations of PathExp, time in measures
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3.4 Chapter Summary
3.4 Chapter Summary

The present chapter introduced the main contribution of this work: Three algorithmic methods
to automatically compute the tempo attributes of an expressive musical recording, under a
well-grounded definition of “tempo”. The remainder of this work is concerned with establishing
data on the performance of these algorithms: How reliable they can be expected to be, which
technique delivers the best results, how tempo information generated by these algorithms looks
like and how it can be used for performance analysis.

We continue by presenting an evaluation on the techniques that incorporates both quantitative
and qualitative aspects.
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Chapter 4

Evaluation

The pleasure we obtain from music comes from counting, but counting unconsciously.
Music is nothing but unconscious arithmetic.

—Gottfried Wilhelm Leibniz (1712), quoted in Oliver Sacks,
THE MAN WHO MISTOOK HIS WIFE FOR A HAT (1985)

Any discussion of a new approach for the computation of tempo curves for expressive music
recordings would of course be incomplete without a proper evaluation of its effectiveness. We
divide this evaluation of our approach into two distinct parts: The first part tries to quantify
the performance of the three techniques using measurements aiming for maximum objectivity.
The second part is a deliberately subjective qualitative analysis that uses individual examples
to illustrate some aspects of the various techniques. The two parts of the evaluation are com-
plementary to each other—taken together, they should convey a fairly complete perspective
of the advantages and shortcomings of the approach presented in this work.

4.1 Evaluating Against Ground Truth Data

In order to be able to define an objective way of measuring the effectiveness of our techniques,
we first need to know exactly what output we are trying to achieve. Computing the mag-
nitude of deviations from that “ideal” goal is then a good way of establishing a quantifiable
performance measure. Figure 1] outlines the process that realizes this idea: Basically, we
create a number of artificial interpretations for which an “ideal” ground trut tempo curve
is known, compute a regular tempo curve for each of these interpretations, and compare these
computed curves against the ground truth. The detailed steps are as follows:

Step 1. Generate a number of reference MIDIs from a representative set of scores covering
several different music genres. Synthesize one or more tempo curves for each of these
references according to a certain parameter set, and use the synthetic curves to warp (or
distort) the reference MIDIs. Create an audio representation from these warped MIDIs
using a high-quality synthesizer. This results in a number of artificial interpretations
that have the tempo characteristics of the synthetic curves, i.e. the synthetic tempo
curves act as ground truth tempo curves for the respective artificial interpretations.
These artificial interpretations are stored as wave files.

4The term “ground truth” is derived from remote sensing applications such as cartography and satellite
imagery and describes data of a known good quality that can be used for measurement/calibration purposes.
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Figure 4.1: Schematic outline of the ground truth evaluation process

Step 2. Using the reference/artificial interpretation pairings from the first step, compute
tempo curves for these interpretations with all three techniques presented in this work
(for numerous settings of w and wje;). The only difference between a regular use case of
our algorithms and this run is that the input data used here is synthetic.

Step 3. Compare the tempo curves computed in the second step with the synthetic tempo
curves generated in the first step. Ideally, these would be identical, but in reality there
will of course be differences. Using some kind of distance metric, measure the respective
deviations of the computed curve from the desired ground truth.

From this process, a set of measurements is obtained that describe the performance of the
three algorithms over a range of several possible parameter settings. We will now show the
settings used for the generation of the evaluation data presented in this work, then proceed
to introduce a suitable distance metric and present the actual obtained results.

4.1.1 Evaluation Scenarios

For our evaluation, we produced data on a selection of 15 pieces from the RWC database
by Goto et. al [GHNOOQ2|. These pieces were chosen with the intention of representing three
different major musical fields: Five pieces were taken from the class of Western classical piano
music, five pieces contained classical music not focused on the piano (mainly orchestral), and
five pieces served as exemplary pop/jazz works. The individual choices are listed in Table [4.1]
along with their respective RWC ID for ease of reference. Since the synchronization algorithm
at the foundation of our approach depends on the availability of reliable onset information for
precise alignments, we expected the accuracy of computed tempo curves to be higher for the
data where this was the case, which concerns the piano pieces in particular.

To get a broad spectrum of analysis data, we formulated five different scenarios that presented
challenges of varying degree of difficulty to our techniques. We deliberately included scenarios
that incorporated somewhat realistic assumptions about the tempo attributes of a given piece
as well as scenarios representing unrealistic stress tests designed to expose the limits of our
approach.
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4.1 Evaluating Against Ground Truth Data

RWC ID Comp./Interp. Piece Instrumentation
C025 Bach Fuge, C-Major, BWYV 846 Piano

C028 Beethoven Op. 57, 1st Mov. (Appassionata) Piano

Co031 Chopin Etude Op. 10, No. 3 (Tristesse) Piano

C032 Chopin Etude Op. 25, No. 2 (The Bees) Piano

Co029 Schumann Reverie (Traumerei) Piano

C003 Beethoven Op. 67, 1st Mov. (Fifth Symphony)  Orchestra
Co15 Borodin String Quartett No. 2, 3rd Mov. Strings

Co022 Brahms Hungarian Dance No. 5 Orchestra
Co044 Rimski-Korsakov ~ Flight of the Bumblebee Flute/Piano
Co044 Schubert Op. 89, No. 5 (Der Lindenbaum) Voice/Piano
Joo1 Nakamura Jive Piano

JO38 HH Band The Entertainer Big Band
Jo41 Umitsuki Quartet  Friction Sax/Bass/Perc.
P031 Nagayama Moving Round and Round Electronic
P093 Burke Sweet Dreams Voice/Guitar

Table 4.1: Pieces used for quantitative technique evaluations

In a general sense, a scenario was characterized by three attributes which described strength
and frequency of the tempo variations allowed in that scenario. In a more specific sense, each
scenario consisted of a number of artificial interpretations which were produced according to
these attributes. The synthetic tempo curves necessary for the production of these interpre-
tations were generated in the following way: According to the range of allowed variation, a
random number generator picked several tempo indicators that prescribed a piece’s tempo at
distinct points in time. The tempo was then interpolated between these points to arrive at
a relatively smooth tempo curve. To account for the inherent variation of the randomized
process, three different synthetic tempo curves were produced for each piece in this way—the
subsequent evaluation then computed data points for each of the curves individually, and
returned an averaged result. Fach scenario included all 15 files, making the total number of
artificial interpretations and associated tempo curves of a single scenario 45, respectively.

The three parameters that guided synthesis of a scenario’s tempo curve were as follows:

Interpolation method. Two different interpolation models were used. Linear interpolation
performed a gradual change between two tempi to mimic ritardandi and accelerandi,
while the step-function interpolation method maintained constant tempo over a certain
amount of time, but then performed a sudden jump to another region of constant tempo.
This situation arises in regular scores e.g. in the case of fermatas that register as sudden
slow-downs in the span of a single note in the tempo curve.

Interpolation interval length. This interval describes the duration of one segment of the ref-
erence that would be warped according to a constant tempo in the case of step-function
interpolation, or to a constant acceleration/deceleration in the case of linear interpola-
tion. Two different durations were used for this, one of 5s and one of 10s.

Interpolation range. The range of acceptable tempi concerns the output boundaries of the
randomization algorithm, which were given in terms of the original tempo. Again, two
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Figure 4.2: Linearly interpolated ground truth tempo curve (black) approximated by FW
(green), AW (blue) and FWC (red) techniques, time in seconds (w = 35, wi,; = 10)

possible specifications were used: half to double the original tempo, and quarter to four
times the original tempo (allowing tempo changes of up to a factor of 16).

The five scenarios used for the actual evaluation were generated according to the following
parameter settings:

Scenario Interpolation method Interpolation interval Interpolation range

1 Linear 10s 1/2 to 2
2 Linear 5s 1/2 to 2
3 Linear 10s 1/4 to 4
4 Step-function 10s 1/2 to 2
5 Step-function 10s 1/4 to 4

The scenarios were ordered according to expected quality of performance, with Scenario 1 being
the easiest and Scenario 5 the hardest for the algorithms to process. Figure @2 illustrates how
a specific ground truth tempo curve (plotted in black) might look like for the first scenario
To give a feeling for the relative performance that can be expected for such a scenario, the
output of all techniques is plotted against this ground truth tempo curve as well. In this
rather benevolent example, the approximation of all three algorithms stays mostly true to the
expected output. In comparison, output for the fifth scenario (Fig. F.3]) seems less accurate,
even though this particular example is still essentially well-behaved. Note the different tempo
scaling for the two figures.

4.1.2 Evaluation Metric

The metric used to measure the “distance” of computed curve deviations from the ground
truth tempo is motivated by the idea of relating such a distance to the reference tempo

15The curve displays a small distortion compared to a fully linear curve. This is due to the specific process used
to generate the image and has no bearing on the fact that the performed interpolation was indeed linear.
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Figure 4.3: Step-function interpolated ground truth curve (black) approximated by FW
(green), AW (blue) and FWC (red) techniques, time in seconds (w = 48, wje; = 10)

laid down by the ground truth. The goal is to group deviations by scale rather than by
absolute value. For example, assume that the ground truth tempo curve was a simple constant
distortion of the original tempo by the factor two, i.e. the artificial interpretation has double the
tempo of the reference. Further assume that differently computed tempo curves yield different
approximations of the ground truth: In one case, the tempo is estimated to be constantly 1,
in the other case the result comes out as a constant 4. This means that the two computations
estimate the tempo of the artificial interpretation to be equivalent to the original tempo or four
times the original tempo, respectively. However, in relation to the actual (ground truth tempo)
of 2, both approximations have the same error ratio: The first computation underestimates
this actual tempo by a factor of two, the second one overestimates it by the same factor. Since
neither of these estimations has a qualitative difference over the other, the distance measure
should assign the same error value to both of these flawed approximations.

To fulfill this requirement, we define a distance measure ¢ as follows: Let N € N be the length
of a feature sequence describing a given musical piece, n € [1 : N] an arbitrary but fixed
index into this sequence, g : [1 : N] — R>g a ground truth tempo curve of an (artificial)
interpretation of this piece and 7 : [1 : N] — R>¢ a tempo curve computed for the same
interpretation of the piece. Then, the distance measure ¢ : [1 : N] — R>g between g and 7 is

a function defined by
log, <M> ‘ - 100
g9(n)

Here, dividing the computed tempo curve value by the ground truth value achieves the desired
effect of measuring error scale rather than error value. Taking the logarithm of the resulting
value has two different purposes: The first is to emphasize small-scale deviations from the
ground truth tempo and lessen the impact of outliers, the second is to adjust the computed
values to the graphical plots of the tempo curves that use a logarithmic tempo scale as well.
Since deviations of the computed curve from the ground truth tempo curve turn out to be
seldom larger than by a factor of two (i.e. half or double the ground truth tempo), and the

binary logarithm takes on an almost linear shape in the interval [0.5,2], this does not affect

5;(n) =
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the computed values too much. The sign of the computed value is discarded since we are
not interested in the respective nature of the deviation. Lastly, the computed value is scaled
up slightly since most measurements fell into the range between 0.01 and 0.20. This became
inconvenient to display, so the values were translated to 1 and 20, respectively. The result
approximates a measure of deviation in percent of the original tempo so a value of o7 (n)=2
can be taken to mean that 7 deviates from g in the order of 2% at point n—for a sample tempo
of 120 BPM, a deviation in the order of 2.4 BPM.

The result of evaluating d; at all points n € [1: N]is a data sequence describing pointwise
deviations of the computed tempo curve from the given ground truth tempo. Three char-
acteristics of this result sequence are of particular interest: The mean value, the maximum
value and the standard deviation of the complete data set. Of these, the mean represents
“overall performance quality” of the evaluated technique, the maximum indicates outlier val-
ues that may be the result of synchronization errors resulting in a faulty warping path, and
the standard deviation can be taken as a reliability measure of the technique—the higher
the standard deviation, the less confidence can be placed in the technique’s tempo estimate
for a given point in time. Result tables are given in terms of these three indicators. Here,
results for individual files are reproduced in full in the appendix (Tables [A-THALT6), but will
be shown in an abridged version for the discussion of this chapter. In particular, the abridged
table contains only average values for the different instrumental classes and an overall average.
Maximum values are left out in the abridged table, since they are indicative of exceptional
outliers rather than the more interesting regular behavior of the techniques.

4.1.3 Evaluation Results

In the following, we present and discuss the evaluation results for each of the five scenarios
individually. For each scenario, abridged result tables will show typical evaluation data, with
the full tables reproduced in the appendix. In all tables, the quoted value for the parameter w
designates the input for both the FW and the FWC technique, so that their individual results
are directly comparable (i.e., improvements from FW to FWC technique inside the context of
one table are always due to IOI correction of the warping path).

Scenario 1

The first scenario uses a conservative configuration for tempo variations and can thus be said
to be somewhat benevolent. This does not mean that it’s not representative of “real-world”
settings—in fact, the assumption that tempo changes occur every ten seconds and may range
within a factor of up to 4 in relation to a previous tempo is valid for a large number of cases.
The only thing that is excluded here are sudden changes of the tempo, as in the case of e.g.
fermatas.

Tables [A-THA 4l show the complete evaluation results of this scenario for ever larger settings of
w and wjo;. While the settings of Table[ATrepresent a very moderate smoothing configuration,

'®The result would be precisely equivalent to such a percentage if we set d; (n) :=

;Ez; _ 1‘ -100 for 7(n) > g(n)

% - 1’ - 100 otherwise. This is obviously not as elegant as the logarithmic solution.

and d; (n) =
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Results by instrumental class Fw AW FwC
mean std|mean std|mean std
Average over piano 5.66 10.42| 5.50 9.07| 3.25 6.24
Average over non-piano 4.17 5.20| 5.91 8.48| 3.22 4.17
Average over jazz/pop 3.67 5.10| 6.80 10.78| 3.20 4.70
Average over all 4.50 6.90| 6.07 9.44| 3.22 5.04

Table 4.2: Results for Scenario 1, w = 38, wje; = 10

Results by instrumental class Fw AW FwC
mean std|{mean std|mean std
Average over piano 4.90 8.33| 6.19 9.11| 3.19 5.98
Average over non-piano 3.55 4.39| 4.65 5.70| 2.89 3.78
Average over jazz/pop 3.15 4.31| 4.53 6.29| 2.81 4.10
Average over all 3.87 5.68| 5.12 7.03| 2.96 4.62

Table 4.3: Results for Scenario 1, w = 4s, wio; = 20

Table [A4] shows the effects of employing much stronger adjustments. Here and in the other
scenarios, the values of w and wjy; are chosen in such a way that one table shows optimal
results for the scenario, and the other tables show results resulting from suboptimal settings
of w and wje;. This is done in order to give a feeling for the dimension of change that can
be expected when experimenting with different parameter settings in different scenarios. For
the suboptimal results, the parameters were chosen by modifying the “optimal” parameters
until a clear trend could be identified in the new result table. In general, this meant larger
variations in the case of wjo; than for w.

Optimal settings for the first scenario are found in Tables [A.2] and [A-3] Abridged versions
of these are given in Tables and @3l Overall, the FW/FWC techniques produce their
best results for w = 4, with single files (like the second Chopin Etude C032) performing
better for w = 3. The AW technique profits from the high settings of wie; in Table 3] but is
generally outperformed by the other two techniques. Of the three techniques, FWC does best,
which was to be expected since it is the most sophisticated. The somewhat disappointing
performance of the AW technique is most probably due to the fact that in regions of high note
density, the smoothing is not strong enough; however, setting the wj,; parameter to a higher
value introduces too much blur in other regions. Here, the evaluation shows that the current
approach of using a fixed parameter for wjq; is not flexible enough.

One surprising finding is that this scenario does not exhibit the expected advantage of piano
music over other styles. This seems to be due to two factors: On one hand, there is a very
good alignment quality for the non-piano and jazz/pop pieces that keeps tempo curve errors
quite low. For such “harmless” distortions as used in this scenario, the harmonic progressions
in these pieces seem to be sufficient for the alignment algorithm to produce very accurate
results. On the other hand, the C-Major Fugue from the Well-Tempered Clavier (C025)
suffers from a comparatively bad performance over all techniques. This raises the suspicion
that the fault lies with the synchronization, which is confirmed by the tempo curve generated
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Figure 4.4: A synchronization error affecting tempo curve computation, time in seconds

for the first of the three synthetic distortions used for this piece in this scenario (Fig. E.A4]):
Here, a synchronization error becomes clearly visible in the region from ¢ = 88s to t = 97s.
The probable cause of this negative effect seems to be the rapid tempo change in this region
that switches from a nearly maximal tempo to the lowest possible value.

The good performance of single files for a window size of w = 3 for the FWC case is likely due
to an inverse effect: Here, exceptionally good alignments allow the obtaining of high-quality
results (e.g. Rimski-Korsakov, C044, mean error 1.39 for w = 3 and 1.66 for w = 4), for
which a smaller window size is better suited as it preserves the accuracy of the synchronization
without blurring the regions of tempo changes.

Overall, the results seem very good in this scenario, with Table 3] representing a kind of ideal
case. The effect of broader window size in the FW/FWC cases seems to be advantageous up to
a size of about w = 4, after which the detrimental effects of slower adaptability to new tempi
seem to dominate the result. A window size of w = 3 produces better results only for special
cases. The AW technique exhibits an overall poorer performance, while still maintaining a
comparatively high quality level. Outliers are most pronounced in the AW case, indicating a
certain brittleness of the design that is also reflected in a slightly higher standard deviation.
The FWC technique seems most robust in the face of the comparatively easy challenges posed
by this scenario, and clearly benefits from the IOI interpolation as can be seen by the difference
to the “plain-vanilla” FW technique.

The tempo variations contained in this setting are representative of many real-world scenarios,
hence the good performance of the techniques serve as validation that usage of the FWC
technique is appropriate to derive tempo estimations of fair accuracy in these cases.

Scenario 2

The second scenario introduces more frequent tempo changes into an otherwise still benevolent
setting: The distance between regions of different acceleration is now 5s instead of 10s. The
result data (Tables [ALBHAT) confirms the expected effects of this: Overall quality is still
very high, with a slightly lower baseline due to a greater number of tempo change locations.
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Results by instrumental class Fw AW FWC
mean std|mean std|mean std
Average over piano 6.85 10.24| 7.36 9.99| 4.55 6.84
Average over non-piano 5.81 7.72| 7.22 9.25| 4.95 6.91
Average over jazz/pop 498 6.96| 6.98 9.96| 4.48 6.36
Average over all 5.88 831 7.19 9.73| 4.66 6.70

Table 4.4: Results for Scenario 2, w = 38, wie; = 12

Best results are obtained by smaller window sizes than in the previous example, with optimal
performance at w = 3 and wj,; = 12 (Table 4]). This is an obvious and expected result of
shortening the interpolation interval length, since the new setting demands higher adaptability
of the algorithms to a new tempo that can only be gained by smaller window sizes. For the
FWC technique, results for the piano pieces are comparatively better than in the first scenario,
as the Bach Fugue C025 is now processed correctly—this is especially pronounced for w = 2,
where the algorithm can profit from the high quality of available onset information. Still,
synchronization results are good enough for the other styles (jazz/pop in particular) that
there is no clear advantage for any of the three classes in the general case.

Scenario 3

The third scenario poses the first great challenge to the three techniques. Even though the
interpolation interval is scaled back to 10s, the interpolation range of 1/4 to 4 allows for
accelerations/decelerations of up to factor 16. This proves too much for a proper alignment:
The results of Tables [ALS8HA 1Tl show that most pieces are affected by more or less serious
synchronization errors. Only three pieces are exempt, with the piano pieces finally profiting
from better availability of onset information—two of the three pieces are of this class (Bach
C025 and Chopin C032), with the third piece (Rimski-Korsakov €044) also being partly
arranged for the piano. This last piece also had consistently excellent performance in Scenarios
1 and 2, which implies that it is especially well suited for the employed alignment procedure.
Performance improves in all instrumental classes for relatively strong smoothing configurations
(Table E3]). However, this improvement is relative: Synchronization errors dominate the
overall result, which has a low baseline that cannot be much polished, even using extreme
averaging parameters (Table [ATT]).

Figure illustrates how these numbers translate into “real-life” performance. Aside from
synchronization errors ranging from negligible to catastrophic (e.g. for the FW technique,
which shows a maximum deviation of 721.95 at ¢ = 120s), there are a number of other
interesting phenomena to be observed. We can identify two locations of high acceleration
followed by abrupt deceleration (¢t = 74s and ¢ = 103s), which the AW technique averages
out in both cases to produce results significantly below the tempo peak. The same happens to
the FW/FWC techniques in the second case, but in the first one, the tempo change provokes
a greater confusion. In this instance, the change seems to be registered at a slightly earlier
place in time than when it actually happens.
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Figure 4.5: Sample result for Scenario 3, Schumann C029, w = 3, wie; = 12, time in seconds

Results by instrumental class mea]i‘lw std meajrxlw std met::vcstd
Average over piano 19.12 32.14|21.94 31.73|16.44 28.38
Average over non-piano 21.92 35.03(23.93 35.84|20.88 34.58
Average over jazz/pop 27.45 40.26(29.57 42.48/26.95 40.25
Average over all 22.83 35.81|25.15 36.68|21.42 34.40

Table 4.5: Results for Scenario 3, w = 45, wje; = 20

Another “strange” occurrence takes place at t = 30s: Here, it seems that the FW/FWC tempo
curves overshoot the actual tempo, but then correct this error by underestimating the tempo of
the following two seconds until the approximations converge at the actual ground truth curve
again. Such a pattern occurs when an important synchronization event (e.g. a note onset or
a harmonic change) is aligned to an earlier place in time than when it actually occurs, while
the information in the surrounding context is processed accurately. For example, in a setting
where a note onset occurs every three beats, the region [1 : 9] might be evaluated in such a way
that onsets are not placed at times 1, 4 and 7 (as would be accurate), but at times 1, 3 and
7 instead. The distance between first and second onset is then shortened (with respect to the
actual distance), and the distance between second and third onset is lengthened. This would
cause the tempo in the first region to be overestimated by a factor of 1/3, and the tempo in
the second region to be underestimated by the same factor. The resulting tempo curve would
then resemble the tempo curve gained for the Schumann piece at ¢ = 30s. Similar scenarios
are of course possible for the reverse case as well.

A relatively consistent phenomenon is the mangling of beginning and end of a piece by all
three algorithms. This is due to three factors: First of all, lack of data in these regions
secondly the inadequacy of the assumption that tempo is constantly 1 at regions not defined by

1"Which is a problem since tempo is always dependent on context—after all, what is the tempo of a single
note? At the beginning and the end, this context information is simply absent.
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4.1 Evaluating Against Ground Truth Data

the warping path (indeed, results seem to be more convincing for ground truth tempo curves
where beginning and end happen to coincide with a tempo of 1), and thirdly the behavior of
the DT'W synchronization algorithm in these boundary cases, which sometimes leaves a little
room for improvement.

Scenario 4

The fourth scenario again limits the maximal factor of tempo change to 4, but instead allows
very rapid periods of change followed by regions of constant tempo. Contrary to our expecta-
tions, this scenario actually produced better results than the previous setting since it did not
provoke such a great number of synchronization errors. The limiting factor here was again the
size of the averaging window, with the algorithms needing to adapt to changes quicker than
in the otherwise comparable first scenario. The nature of these changes in this scenario leads
to an overestimation of the overall error: Figure shows the error curve for a specific file of
the scenario together with the corresponding mean error. Tempo curve results for this file are
shown in figure L7l It can be seen that even though the error baseline is much smaller than
the mean error, the great deviations caused by the rapid tempo changes inhibit better results
in this case.

Tables[A.12HA . 15show results that lie somewhere between Scenarios 2 and 3 in terms of overall
quality. Window sizes of w = 2 and w = 3 prove optimal for the FW/FWC algorithms, and
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Figure 4.6: Mean error (red) vs. actual error curve d; (blue) for Scenario 4, Bach C025, 7 computed
using the FWC technique (w = 3), time in seconds

M
0 O e

0 20 40 60 80 100 120

[

Figure 4.7: Ground truth tempo curve (black) and FWC tempo curve (red) for Scenario 4, Bach
C025, w = 3, time in seconds
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Results by instrumental class Fw AW FwcC
mean std{mean std|mean std
Average over piano 13.55 22.57|10.17 18.46| 9.26 17.13
Average over non-piano 10.29 15.16| 9.31 14.59| 8.95 14.37
Average over jazz/pop 10.39 16.24|11.42 18.99| 9.67 15.99
Average over all 11.41 17.99|10.30 17.35| 9.29 15.83
Table 4.6: Results for Scenario 4, w = 38, wjo; = 12
Results by instrumental class Fw AW Fwce
mean std|mean std|mean std
Average over piano 54.49 71.30|51.70 62.05|46.60 62.39
Average over non-piano 49.97 62.91|50.31 62.37|47.85 61.37
Average over jazz/pop 55.72 64.93|55.71 66.00|54.69 64.91
Average over all 53.39 66.38(52.57 63.47|49.71 62.89
Table 4.7: Results for Scenario 5, w = 38, wje; = 20

the AW technique produces best results for w;j,; = 12 (Table [L6]). The other visible trends
are repetitions of phenomena reported in earlier scenarios: The FWC technique continues to
outperform the other techniques, larger window sizes improve performance in cases of bad
synchronization and impair performance in cases of good synchronization, and performance
on piano pieces is (non-significantly) better than for other styles.

Scenario 5

In the final scenario, the performance finally breaks down in full. No piece can be synchronized
without errors; Figure L8l illustrates why this is the case. As can be seen there, the extreme
tempo variations on a very small time range do not permit satisfactory synchronization results.
We only reproduce one result table (Table A7) to demonstrate the output range that is to
be expected in such a scenario. Not much can be said here, other than that any amount
of smoothing is of course wasted on a faulty synchronization—results of the tempo curve
estimation will be better once these errors can be removed.

4.1.4 Evaluation Summary

The five scenarios that were evaluated demonstrate that in general, the presented techniques
(and the FWC approach in particular) work well for the extraction of tempo characteristics
of a piece of music. The three most realistic Scenarios 1, 2 and 4 feature mean error rates
averaging between 2-10, which is accurate enough for MIR applications concerned with phrase-
level tempo attributes. Using the FWC technique with a window size of w = 3 seems to be the
best compromise between result precision and robustness against synchronization artifacts—if
the alignment is known to be unreliable, a choice of w = 4 may be better suited, and if high
alignment qualities can be expected, w = 2 enables obtaining of higher-precision results.
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Figure 4.8: Sample result for Scenario 5, Bach C025, w = 3, wj; = 20, time in seconds

In case of significant synchronization errors, the techniques do not estimate the tempo reliably.
In our settings, such errors were provoked mostly by drastic tempo distortions that do not
occur in practice, but even for simple cases such as in the first scenario, the DTW procedure
occasionally computed faulty warping paths that resulted in a deteriorated performance. For
the practical usage of the presented approach, it will be necessary to compute estimations of
the alignment quality at the time of music synchronization in order to be able to judge during
which passages of a piece the tempo estimations might become unreliable.

Of the three techniques, the FWC technique is an easy choice as the best candidate for practical
employment: In all five scenarios, it produced the best results both in terms of precision and
robustness. The AW technique may have merit as a basis for further developments that
operate on note-level structures; the FW technique is primarily useful as a didactic device for
the subsequent introduction of the FWC approach.

4.2 Evaluating Selected Musical Examples

Although the quantitative evaluation of the presented techniques indicated that they were
well suited to be used for performance analysis purposes, their practical benefit has not yet
been demonstrated. This section showcases several different examples which illustrate that
the approach can indeed be used to derive musically interesting statements about specific
performances. For this, we compute performance curves for various interpretations of Western
classical piano pieces that were either taken from off-the-shelf recordings or produced for our
internal database, and discuss how they relate to musical properties of the respective pieces.
Since the FWC technique has been shown to yield the best results during the quantitative
evaluation phase, all qualitative evaluations will be done using this technique.

Performance analysis techniques can often be classified as either being concerned with simi-
larities or commonalities of playing style in the interpretations of different artists (or even in
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different performances by the same artist), or focusing on systematic differences between var-
ious interpretations of the same piece (usually done by different artists). In the first case, the
main research goal is to discover universal rules that govern playing style and musical inter-
pretation of a composer’s intentions; in the second case, the goal lies in identifying the unique
traits of an artist’s playing style that distinguish his performances from those by different
artists. Examples of both kinds of research will be discussed in Chapter

Our qualitative evaluation is divided in a similar manner. We begin by showing similarities
across different interpretations of the same piece that have straightforward musical explana-
tions, in order to demonstrate that our approach yields the expected results in such a case.

4.2.1 Evaluation Focusing on Common Interpretational Traits

Although each artist has his own idiosyncratic playing style that can be instantly recognizable
in the case of an established performer who has had the time and experience to develop a unique
artistic identity, they all speak the same musical language. Any score written in a specific
style calls for an interpretation that does justice to the musical demands and expectations of
that style, and this will be reflected in the respective performer’s playing style. The range
of this musical expectations extends from fundamentals like phrasing and shaping of musical
developments to agogical aspects like the interpretation of indicators such as “staccato”. In
this section, we will focus on the more basic aspects that have clear groundings in the musical
score which will be reproduced alongside the respective tempo curve.

Robert Schumann: Kinderszenen op. 15 no. 7, “Traumerei”

In the first example, we will discuss the first eight measures of the popular “Trdumerei” from
Schumann’s “Kinderszenen”. Here, three different interpretations were analyzed with respect
to their relation to the score (Fig. 9). Two of the interpretations were taken from regular
CD recordings, while a third one was produced by a member of our workgroup with a strong
musical grounding (Verena Konz). First of all, notice that the basic shapes of the tempo curve
have a surprisingly high degree of correlation. Even though their tempo baseline differs, the
different artists have chosen similar ways of illustrating the structure of the score. The first
musical point of rest reached by the performers is the subdominant B chord of the second mea-
sure, which coincides with a temporary melodic climax (the soprano voice’s f”). Accordingly,
the tempo curve shows a deceleration in the second measure for all three interpretations.

To underline the stronger sense of action conveyed by the eighth movements of measure three,
all pianists choose a faster pace that reaches or exceeds their previous maximum tempo. This
heightened sense of movement comes to a rest on the dominant C chord of measure 4, which is
in turn resolved in the next measure by the tonic F. Two of the three interpretations emphasize
this striving towards the resolution by giving the bass movement leading to the tonic root note
a distinct accelerando/ritardando shape.

The harmonic and melodic climax of this excerpt of the piece is reached in measure 6, where
all three performers take some time to let the listener appreciate the suspense created by the
AT chord that leads into the d chord of measure 7. To create an adequate feeling of closure
at the end of the completed musical thought, all interpretations follow the given phrasing
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Figure 4.9: Three interpretations of Robert Schumann: Kinderszenen op. 15, “Triumerei”, time in
measures, tempo in BPM, w = 2

direction that implies a somewhat uniform tempo from the middle of measure 6 until the final
target of the tonic F in measure 8 is reached. The ritardando of measure 8 is approached by
all performers a bit earlier than indicated, beginning at the end of measure 7. This may be
a result of prolonging the sense of unresolved tension on the diminished seventh chord that
precedes the final measure.

The last measure shows one difference between the two CD recordings and our “custom-made”
recording: Both regular recordings gather speed again to launch into a new rendition of the
repeat section, while the third interpretation did not perform the repetition and so comes to
a full stop on measure 8.

Overall, this example demonstrates that the shape of the tempo curves results from the per-
former’s interpretation of the musical meaning of the score, as should be expected. The
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phenomena visible in all three interpretations have clear explanations that in the majority
of all cases can be deduced from the score, and do not appear to be the result of arbitrary
processes of chance. Moreover, the three tempo curves bear a strong resemblance to each
other, giving credence to the claim that the harmonic and structural demands of this piece
dominate individual artistic playing style in this example.

Ludwig van Beethoven: Sonata No. 8 op. 13 “Pathétique”

An example which illustrates that our approach is capable of uncovering unexpected similar-
ities between different performances of a piece is given in Figure 10l Here, the interpre-
tations were performed by two students of a common piano class at the Saar Academy of
Music. Their actual tempo shaping is not relevant in this context, hence the accompanying
score is not shown here (it is, however, reproduced in Figure £I7). Striking about the two
interpretations is their choice of nearly identical absolute tempo for measures 5-10. We can
only speculate about the reason for this—they may have practiced together, or they may have
received similar instructions by a common teacher. However, their tempo phrasing seems too
much alike to dismiss this result as a mere coincidence Discovering such similarities could
potentially be automated by using the distance measure § on pairwise combinations of such
interpretations and searching for regions where the results fall below a certain threshold.

35K
30
25
20

151

Figure 4.10: Identical phrasing by two pianists: PathBeg, time in measures, tempo in BPM, w = 3

A second example from the same score illustrates how performers handle the transition from
one region of thematic material to the next. Such a change occurs in the Beethoven sonata
e.g. in measures 49/50 (Fig. EI1). Here, the second theme of the sonata’s first movement
is introduced for the first time. Beethoven modulates from the first theme in ¢ minor to the
second theme in eb minor by moving from Ab major (measure 39) to Bb major (measure 42),

8 Another case that turned up during our analysis seemed too perfect to be true: Here, the two tempo curves
where almost exactly identical over the whole course of the piece. Exploration of this quickly revealed that
the same recording had found its way into our database twice by accident, the two only differing by sample
rate. Of course, this explanation can be ruled out for the interpretations of Figure 10l
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Figure 4.11: Thematic change in PathExp (M. 42-55) reflected in tempo curves of various interpre-
tations (M. 25-75), time in measures, tempo in BPM

the dominant of the new key of the second theme. In measure 51, the dominant resolves into
the temporary new tonic for the first time, and the second theme is stated.

The tempo curves which were computed from several interpretations performed by students
of the piano class mentioned earlier on clearly show that all performers recognized this as an
important structural event. Depending on their initial tempo, they approached the passage
differently: Those who had performed the preceding section in a fast tempo had a general
tendency to slow down, in three cases even resting for a short while on the first beat of measure
49 before continuing in a slightly slower tempo than before. On the other hand, performers
who displayed a slow initial tempo used this transition to speed up their interpretation, in
some cases even arriving at a higher tempo rate than reached by their fellow students who
had a faster initial tempo.

The commonality across the different interpretations here does not lie in a similar tempo
structure that was chosen by all, but rather in the fact that this structural event was taken
by all performers as a reason to change their initial tempo. This indicates a similar musical
understanding of the structure of the score, even if the individual interpretation of how this
structure could best be conveyed to the listener differed from artist to artist.
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Franz Schubert: Winterreise D911 No. 5, “Der Lindenbaum”

A rich source of examples both for similarities and systematic differences among interpretations
can be found in the large variety of recordings available of Schubert’s Winterreise (for voice
and piano), e.g. in the Lied “Der Lindenbaum”. One case in point can be made for the
ending of this piece that shows nearly uniform shaping among many commercially available
interpretations (Fig. A12]). Here, the emotional affect of the song seems to call for a specific
musical interpretation that is universally understood and answered. The calmness suggested
by the lyrics of measures 72-76 is reflected by a ritardando that comes to a resting point at the
end of the phrase in measure 76. After the sung part of the piece has ended, the pianist plays
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Figure 4.12: Consistent ending forms for Franz Schubert: Winterreise D911, “Der Lindenbaum”
(M. 72-82), time in measures, tempo in BPM
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a few measures of what could be called musical afterthoughts that recall the agitation felt by
the song’s protagonist as he is thinking of the lime tree’s rustling branches, symbolized by
the characteristic triplet figures. In accordance with this interpretation, all pianists accelerate
the tempo until they come to a temporary rest on measure 78, then draw a wider phrase that
climaxes at an even higher tempo till the final fermata is reached.

4.2.2 Evaluation Focusing on Systematic Differences in Interpretation

As was already partly illustrated by the “Pathétique” example of the preceding section, the
individual understanding of a piece’s musical layout or a specific musical notion can differ
vastly between different artists. However, the most interesting cases are not found in the
lone exception to an otherwise unquestioned rule of performance (although these are of course
relevant in their own right), but rather in systematic differences between two or more classes
of interpretational thought. Simply put, in such a case there is one group of artists who decide
on one course of action, and another group of artists that chooses a different approach. Both
of these choices may be valid interpretations of the musical source material, but they highlight
the personal preferences and sensibilities of the performer.

Franz Schubert: Winterreise D911 No. 5, “Der Lindenbaum”

The same recordings that were already used to demonstrate commonalities among multiple
interpretations of Schubert’s “Lindenbaum” of course also exhibit sections where different
interpretations make use of different approaches. One such section can be found directly
at the beginning of the piece: Figure ATI3] shows how the phrase shaping of the first seven
measures is performed in these recordings. Beginning in measure 4, two classes of performers
can be distinguished: The first class paints measures 4-6 as a big phrase with a roughly
uniform tempo that ends with a cadential move to ff minor in measures 677 In contrast,
performers of the second class introduce a relatively early tempo relaxation in measures 4-5
and maintain the slower tempo throughout measures 6 and 7. There is no clearly discernible
musical reason for this pattern, other than that the four artists who implement it obviously
feel differently about the implications of this part of the composition than the first class of
performers.

Another section of this song that exhibits a similar pattern of differing phrase shapings can be
explained more directly by the lyrics and musical images used in the score. Figure L.14] shows
the relevant tempo curve, as well as the score providing context information. The lyrics of this
passage change from a melancholy “Hier find’st du deine Ruh” (M. 42-44) to an aggressive “Die
kalten Winde bliesen mir grad ins Angesicht” (M. 45749) Schubert has painted the “cold
winds” of this image by using triplets that move up and down in a chromatic fashion. Most
performers emphasize the protagonist’s anguish and bitterness by choosing a faster tempo for
the whole passage that comes to an end in measures 57-58. However, two artists instead seem
to focus on the swelling and subsiding of the blowing wind, which they realize by playing in
a similarly fluctuating manner. Since this gives the passage a comparatively quieter feel, the

19 A harmonically rather unusual ending. For E major, ff is the supertonic chord, i.e. the subdominant parallel.
20Translations: “Here you’ll find your rest” and “The cold winds were blowing straight into my face.”
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Figure 4.13: Systematic interpretation differences for Franz Schubert: Winterreise D911, “Der Lin-
denbaum” (M. 1-7), time in measures, tempo in BPM

need for a grand gesture of returning calm is obviated for these interpretations. Instead of
resting on the fermata of measure 58 as the other performers do, they continue in their regular
tempo, only to be joined by the other artists again in measure 60.

Ludwig van Beethoven: Sonata No. 8 op. 13 “Pathétique”

A different kind of deviation from the expected paths of phrase shaping emerged from the
recordings taken of Beethoven'’s “Pathétique” sonata, performed by art students from the local
Saar Academy of Music. Here, we found some tempo changes in performances by single
students that did not fit into their general tempo forms. Exploration of these deviations
quickly showed that these were involuntary: Perhaps due to a lack of preparation time, single
students did not produce “ideal” recordings, but made mistakes during their play that were
reflected in the tempo curve.

Figure [4.15] shows two examples of this for the complete PathExp. In one interpretation,
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Figure 4.14: Two performances deviating from common interpretatoric consensus for Franz Schubert:
Winterreise D911, “Der Lindenbaum” (M. 44-60), time in measures, tempo in BPM

errors occur at measures 40, 50, 70 and 90; the other performance displays one such error near
measure 80. These errors show in the tempo curve as sudden drops in tempo that last for a
short period of time before the performance returns to its initial tempo.

Indeed, the typical error episode audible in the actual recordings confirms this pattern: The
performer plays a wrong note or chord, halts for a short time, then plays a correct version
of the passage and continues as normal. While this example of course does not fall into the
usual realm of performance analysis concerns, the ability to quickly locate such accidents may
nevertheless be very useful in a didactic context, e.g. in a piano lesson performed on a player
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Figure 4.15: Identifying problematic passages in student interpretations of PathExp, time in mea-
sures, tempo in BPM

piano that automatically monitors the student’s playing.

Of course, other examples from the Sonata Pathétique may display more “conventional” devi-
ations. Figure fI7 shows the tempo of four interpretations of the first ten measures of this
work (selected from the performances of art students mentioned in the previous example), and

Figure 4.16: Tempo curve (top) and dynamics curve (bottom) for performances of PathExp
(M. 1-10), time in measures, tempo in BPM, dynamics as in Section [3.3]
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Figure 4.17: Score for PathExp, measures 1-10)

also gives dynamics for two of these interpretations (red and blue, colors are consistent across
tempo and dynamics curves). Here, the dynamics curves are computed as log,(energy, + 1)
and then scaled to the reference time axis as described in Section .31

The corresponding score of the segment is shown in Figure [LI71 As can be expected, the
dynamic directives given by the score are implemented by both artists, albeit in slightly
different shapes. Both performances exhibit a gradual crescendo that climaxes in the multiple
subito forte directives of measure 4. This measure marks the end of the introduction of the
first theme of this movement, which is reflected in the score by the textural change in the
left-hand accompaniment starting in measure 5 as well as the cadential move to Eb major
(the first appearance of a “pure” major chord in the piece). Appropriately enough, the tempo
curves of almost all performances exhibit a slow-down at this juncture.

The next goal for the artists seems to be the subito forte piano of measure 9, which is preceded
by a crescendo in the eighth measure that is clearly visible in the two dynamics curves. Again,
the tempo curves confirm the structural importance of this measure (which, not coincidentally,
contains the highest note of the whole segment as well as a deceptive cadence) for the artists, all
of whom rest on the first beat of the measure for a short time before continuing. The performers
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choose different ways of approaching this goal: Beginning from measure 5, one artist displays a
marked speed-up with respect to the other performances. The same performance differs from
the other performances in its choice of dynamics as well. In measure 5, it starts out softer than
the other performance shown, but quickly builds up in energy and reaches a significantly louder
fortissimo than the other performance in measures 6 and 7, which is then only intensified in
measure 8. Here, it is interesting to note that both performances display a quieter fortissimo
in measure 7 than in measure 6, although their reasons for this are not entirely clear.

In measure 9, both performances have reached their climax and return to the piano dynamics
of the beginning of the piece. The tempo is quickened a bit for the last measure, but must
of course slow down for the final fermata before the beginning of the development section
(measure 10). Even though the “fast” performance again reaches a higher tempo in the middle
of measure 9 than all other performances (trying to match this measure to its former high
tempo, in all likelihood), the fermata is performed in the same tempo chosen by the other
artists. This suggests that the artist’s divergence from the path chosen by the other performers
was of a temporary nature, and that the following section may be performed in a manner
similar to the one chosen by different interpretations.

In summary, the analysis of the the dynamics of a performance in conjunction with its re-
spective tempo curve may yield results that are not readily apparent from either of the curves
alone. In this example, the tempo and dynamics information suggest that the “fast” performer
had a heightened sense of suspense and development towards measure 9 in mind, which is the
natural affective result of a joint increase in tempo and loudness. Such a claim can be stated
with a much higher degree of confidence when it is substantiated by multiple sources of infor-
mation than when only one such source is available.

4.3 Chapter Summary

The present chapter has demonstrated the potential and the limit both of theoretical and
practical ability of the proposed techniques to capture the essence of a piece’s temporal struc-
ture. The results are indicative of a good overall performance, in particular when high-quality
alignment information between reference and interpretation is available.

The FWC technique was put to pragmatic use in the exemplary evaluation of several musical
interpretations of pieces of Western classical music, and produced convincing results that were
analyzed using standard musicological criteria. Here, it was shown that the generated tempo
curves reflected artistic intentions in the musical shaping of phrases and the highlighting of
structurally important events of a piece. In one case, this was substantiated by additional
evaluation of dynamics curves generated by making use of the available alignment informa-
tion. This example in particular demonstrated that the annotation information automatically
created as a byproduct of the alignment process can provide useful assistance in tackling tasks
involving evaluation or analysis of performance data.

The following chapter extends the results obtained in this chapter by presenting various tech-
niques from related literature dealing with the automated processing of tempo and dynamics
information (i.e. data such as produced by our techniques).
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I’ll play it first and tell you what it is later.

—Miles Davis, 1963

As illustrated by the examples given in Section [£.2] the tempo curves generated by our tech-
niques can be used as a basis for deriving musical statements about specific performances.
The field of study concerned with the automation of such analysis processes is appropriately
called performance analysis. In this chapter, we present some interesting techniques of this
field that rely on tempo curve information for the computation of a number of related perfor-
mance attributes. According to the structural division already mentioned in Section [£.2] these
techniques are grouped according to the main focus of their studies, which lay either in the
commonalities or the differences among a number of interpretations of one or more pieces.

5.1 Research Focusing on Common Interpretational Traits

One interesting approach that falls into the former category tries to derive elementary rules
of performance that capture basic principles every performer adheres to [Wid02]. This is
done without falling back on domain knowledge; instead, the rules are induced empirically
from a large data set of piano music using machine learning methods. The employed data set
is created specifically for this undertaking: A recording of 13 complete Mozart piano sonatas
(about four hours of music overall), performed on a player piano. This enables using direct
onset annotation on the note level as input for the learning algorithm.

An example for a rule generated by this algorithm might look like this (in fact, this rule was
one of 17 rules produced and accepted for the final result set):

Context:

Two consecutive notes
Precondition:

Second note has same pitch as first note
Action:

Play the first note ’staccato’

2'Even though this approach uses data by a single pianist only.
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Rachmaninoff 1923 (34%)

Zak 1951 (28%)

Other Performers (15%)

Magaloff 1978 (3%)
Chiu 1999 (5%)

Kissin 1953 (3%)

Kapell 1951 (5%)

mazurka 63/3 (57 performances)

Figure 5.1: Sample Dynascape for Horowitz: Chopin Mazurka 63/3, 1949 performance (repro-
duced from [Sap08])

The authors call this the “temporal separation” rule, in that two notes of equal pitch become
easier to separate for the listener after application of the rule. An empirical evaluation of this
approach shows that the rules seem to capture basic performance principles very well. In fact,
they even perform better on some test data than on the training data, although the test data
consists of Chopin pieces, while the training was done on Mozart sonatas.

A different approach focusing on the comparative analysis of multiple performances at once
uses an innovative visualization method encoding similarity aspects of these performances
Sap08|. This visualization is called scape plot. The name derives from landscape
paintings, where, according to the author, “the interesting parts lie somewhere in the middle-
ground”.

One example plot is depicted in Figure 5l It shows the correspondence of loudness features
of one particular recording of a piece to other recordings of the same piece (of course, different
features such as tempo can be plotted as well). For this so-called dynascape, the reference
recording was done by Horowitz in 1949. The plot shows the closest matches for Horowitz’s
dynamic choices in different segmentations of the original—e.g., the top point corresponds
to the overall best match, while points in the middle of the plot correspond to matches of
segments that have half the length of the complete piece.

While the reader is referred to the original paper for a detailed explanation of the segmentation
procedure and results, one can intuitively conclude from Figure 5.1] that the first half of the
reference recording is best matched by a Rachmaninoff recording of this piece, while the second
half is better matched by Zak (1951).

The information used for scape plot generation is also evaluated to yield a non-visual, compu-
tational similarity metric for different performances of a given piece. Empirical testing of this
metric shows that it successfully ranks different interpretations of one piece by the same artist
as very similar. In the same work, the author introduces an interesting concept: Residual
tempo, the result of subtracting a smoothed tempo curve from a high-resolution tempo curve.
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Thus, the residual tempo describes the local, small-scale variations of a player without the
influences of larger-scale phrasing concerns.

5.2 Research Focusing on Systematic Differences Between
Interpretations

One technique that concentrates on systematic differences between artists (even across dif-
ferent pieces) was developed in an attempt to formally specify the basic musical gestures
individual artists are prone to use [WDGT03, Wid05]. Musical gestures here are defined in a
three-dimensional space of tempo-loudness variations over time. This movement is visualized
in the so-called performance worm (Fig. B.2]), where variations along the horizontal axis in-
dicate tempo changes and variations on the vertical axis indicate changes in loudness [LG03].
Progress along the performance’s time dimension is indicated by including depth information:
Recent information is displayed very clearly, while older data points begin to blur and become
smaller as if fading into the distance. Thus, the “worm” seems to move towards the viewer.

In order to get the necessary data for a successful classification of salient aspects which define
an artist’s playing style, a large collection of over 500 professional CD recordings was annotated
at the beat level using a semi-automatic approach. This data was then analyzed to derive
performance worms for the individual pieces, and the worms were divided into small segments
of about two bars length. After normalization of these segments, they were clustered according
to their shape, such that 24 prototype shapes emerged. The concluding stage consisted of rating
all artists according to their frequency of use of each of these shapes.

sone
Time: 14.3
Bar: 8
Beat: 16
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Figure 5.2: Performance Worm for Horowitz: Robert Schumann, Kinderszenen op. 15, “Von
fremden Lindern und Menschen”, measures 1-8 (reproduced from [WDG¥03])

The results show that this method is useful for computing a musically meaningful clustering
of artists by using their respective rating. Another idea, the derivation of “typical gestures”
of individual performers by means of searching for especially discriminating combinations of
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prototype shapes does not seem to produce convincing results: The outcomes are affected
heavily by artifacts stemming from the chosen processing approach. Here, single musical
shapes are codified as short strings of letters, where each letter designates a specific prototype
shape. Frequency analysis of these strings is performed on a purely lexical basis. However,
this neglects similarity relations between single shapes, and so the results do not lead to any
discovery of musically meaningful gestures.

22Meaning shape combinations that are employed particularly often by a single artist, but neglected by other
artists.
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Summary

1 like talking about ideas. I find them terribly interesting.

—Brian Eno

This chapter briefly summarizes the main points of the work, showing what has been achieved
and how it relates to the field of performance analysis as a whole. We then discuss some
opportunities for future work that might build on the results established here.

6.1 Contributions

In this work, we were concerned with the automatic extraction of tempo information from
expressive music recordings. Our goal in particular was to explore the potential of automatic
performance annotations gained by an alignment of symbolic MIDI data with concrete audio
recordings. In the course of this investigation, we have introduced three different techniques
for the automatic computation of tempo curves which describe the tempo structure of such a
recording. For this, we have shown how to synchronize two pieces of music using the DTW
algorithm, and explained how the alignment information obtained in this way can be used as a
basis for further algorithmic processing. The algorithms we presented built upon three ideas:
The first technique (FW) uses a fixed window size to compute average slopes of the warping
path. The second technique (AW) computes such slopes of the warping path between onset
locations. Finally, the third technique (FWC) uses onset locations to correct the warping
path and remove synchronization artifacts, and then apply the FW approach on the corrected
warping path to compute the tempo curve.

We have given an evaluation of the different techniques which strongly suggested that of
the presented approaches, the third approach delivers the best results; best in terms both
of accuracy and robustness. However, all three algorithms are vulnerable to synchronization
errors that may distort the warping path. We have shown the conditions under which such
errors are likely to occur, and the conditions under which the techniques work well. For
the latter case, we have given an explicit recommendation for practical deployment of the
approach: FWC with a setting of w = 3. Using such a configuration, we explored some
musical examples and found that the technique produced results that were in accordance with
our musical intuition.

The current state of the art in performance analysis research is to generate tempo and dy-
namics data on an interpretation using semi-automatic annotation for feature extraction. This
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data can be processed in a variety of ways, some of which we presented in an overview of re-
lated work. This work has introduced and discussed an attempt to extract tempo data from
an interpretation in a fully automatic fashion, using only the performance and a digital rep-
resentation of the score as a reference. Evaluation results indicate good performance, which
makes this technique a valid and worthwhile target of further studies.

6.2 Future Work

While the performance of the FWC technique was satisfactory for benign cases, synchroniza-
tion errors dominated results in the quantitative analysis of scenarios that put harder strains
on the alignment procedure. The research opportunities arising from this are twofold: The
obvious approach would be to try to increase synchronization quality, or barring that, at least
to give an estimation of synchronization accuracy. This estimate could be used to regulate the
window size of the tempo curve computation technique dynamically, increasing it in regions of
low synchronization accuracy and decreasing it for results of higher precision. This way, qual-
ity of the computed tempo curve could be improved due to feedback from the synchronization
algorithm.

However, feedback can be given in the inverse direction as well: Since we know that extreme
tempo variations are quite unrealistic and thus improbable, synchronization can likely be
improved by incorporating information about the locations of the tempo curve where such
extreme variations occur. This gives the algorithm an opportunity to reconsider the computed
warping path and possibly correct the synchronization error. On the technical side, this
could be implemented in the DTW computation phase by using a modified cost measure that
penalized high variability in the tempo curve, or even earlier during feature computation.
Since extraction and processing of features is computationally costly, it would be reasonable
to recompute features for single segments only where one suspected a synchronization failure.
For this recomputation step, both higher and lower feature resolutions may produce better
results, depending on the specific setting: Higher resolutions may incorporate information
that was previously blurred out, while lower resolutions may discard artifacts that hindered
proper synchronization.

A different potentially worthwhile approach might lie in further experimentation with the AW
algorithm. While performance of this algorithm has not been on par with the FWC approach,
it too might profit from a dynamic window size. As in the case discussed above, the respec-
tive window size might be determined by synchronization error estimations—however, if such
information should not be available, an interesting possibility would be to design a heuristic
based on note frequency in a specific time interval. For example, if two notes are played
within the time interval of one second, synchronization for this interval may be better than
if ten notes were played in the same interval. Observation of potential correlations between
error rate and tempo curve accuracy could help to confirm or reject this hypothesis. Another
related point is the integration of a greater variety of features into the current approaches
(in particular note offsets and pedalling) that could be used to yield results of even higher
precision.

In the current approach, linear interpolation has been used exclusively for the computation
of tempo curves. A different venue to explore might lie in the choice of different interpolation
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schemes, such as with polynomial or spline interpolation. One could also try to smooth the
warping path using techniques other than interonset correction, e.g. Gaussian smoothing or
Fourier smoothing. However, this would neglect the valuable information gained by deter-
mining note onset locations, so a combination of these approaches might be worth looking
into.

As has already been mentioned, tempo curves are not the only information that can be ex-
tracted from a performance using a reference score alignment as a basis. Dynamics curves
have been briefly mentioned but should be investigated in greater detail. Making use e.g. of
note offset features, one could try to determine the agogics of an interpretation.

Chapter [f] already discussed some possible applications where tempo curves are processed in
analysis steps of higher musical abstraction. Of course, there is great potential here, and
not all possible applications can be listed. One exciting prospect is the ability to automat-
ically correlate tempo data with semantic events of the score—melodic highlights, harmonic
surprises, even phrase structures. Semantically motivated recommender systems are another
option: “People who liked the playing style of artist X may also enjoy artist Y”. This can be
a great advantage when the meta-data used for such applications today is not available, e.g.
in the case of an artist who is not yet established on the market. Even recognizing individual
artists by their playing style may become feasible in the future, although much work will have
to be invested to let this vision be implemented in a real-world system.
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Appendix A

Result Tables

This chapter presents the full tables of the ground truth evaluation results discussed in Section
BTl As mentioned there, the quoted value for parameter w in each table designates the input
for both the FW and the FWC technique, so that one can directly read off the respective

impact of interonset correction of the warping path for the respective scenario.

FwW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max stdjmean max std{mean max std
C025 (Bach, piano) 12.11 320.59 23.83| 9.04 254.69 18.09| 6.80 117.72 13.32
C028 (Beethoven, piano) 10.54 308.48 18.53|17.39 320.53 25.23| 6.74 234.49 13.46
C031 (Chopin, piano) 11.80 400.39 29.22| 9.05 210.47 13.86| 5.17 104.78 8.19
C032 (Chopin, piano) 5.86 132.06 12.85| 9.76 134.19 10.73| 2.72 28.97 3.34
C029 (Schumann, piano) 21.28 512.58 47.80| 6.16 72.17 8.50| 5.22 54.57 7.88

Average over piano 12.32 334.82 26.45(10.28 198.41 15.28| 5.33 108.10 9.24
C003 (Beethoven, orchestra) 18.67 406.22 24.80|31.40 354.81 38.17|14.19 253.67 18.49
C015 (Borodin, strings) 11.95 227.24 15.43|17.91 337.82 26.63|10.00 227.08 13.32
C022 (Brahms, orchestra) 6.48 55.75 6.97(12.79 164.61 16.35| 4.26 51.15 5.34
C044 (Rimski-Korsakov, flute/piano) 2.66 25.92 2.62|11.78 131.70 12.29| 2.43 22.44 242
C048  (Schubert, voice/piano) 13.58 485.63 26.82|10.70 262.11 16.09| 6.00 125.89 9.31

Average over non-piano 10.67 240.15 15.33(16.92 250.21 21.91| 7.37 136.05 9.77
J001 (Nakamura, piano) 5.90 74.73 7.58| 6.82 122.30 8.47| 3.04 3342 3.31
J038 (HH Band, big band) 8.75 150.97 12.35/15.61 280.38 23.09| 6.85 134.11 10.07
J041  (Umitsuki Quart., sax/bass/perc.)| 7.10 124.40 9.73|19.02 268.37 24.15| 6.27 110.09 8.77
P031 (Nagayama, electronic) 9.74 197.52 14.13|30.86 340.32 36.15| 9.26 190.17 13.70
P093 (Burke, voice/guitar) 13.56 465.04 26.72|26.70 398.93 42.19|12.09 353.76 23.37

Average over jazz/pop 9.01 202.53 14.10(19.80 282.06 26.81| 7.50 164.31 11.84

Average over all 10.66 259.17 18.63|15.67 243.56 21.33| 6.74 136.15 10.29

Table A.1: Results for Scenario 1, w = 1s, wie; = 2
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FwW AW FWC
RWC ID  (Comp./Interp., Instr.) mean max stdjmean max std{mean max std
C025 (Bach, piano) 7.11 79.98 13.74| 6.14 69.69 12.13| 4.82 54.07 10.41
C028 (Beethoven, piano) 4.32 115.06 8.14| 6.98 261.04 13.29| 3.28 113.09 7.48
C031 (Chopin, piano) 5.07 127.01 10.81| 4.24 59.41 7.06| 2.84 37.30 4.94
C032 (Chopin, piano) 2.84 35.19 5.01| 3.92 32.37 5.44| 1.83 20.95 2.73
C029 (Schumann, piano) 8.97 120.66 14.42| 6.20 46.40 7.44| 3.49 36.08 5.64
Average over piano 5.66 95.58 10.42| 5.50 93.78 9.07| 3.25 52.30 6.24
C003 (Beethoven, orchestra) 7.24 75.18 8.83|11.84 222.06 15.91| 5.91 71.31 7.36
C015 (Borodin, strings) 4.63 64.59 b5.84| 6.77 207.45 12.45| 4.05 56.03 5.28
C022 (Brahms, orchestra) 258 19.78 2.69| 344 39.59 4.10| 1.85 16.58 2.15
C044 (Rimski-Korsakov, flute/piano) 1.42 17.38 1.93| 3.09 56.64 3.70) 1.39 17.12 1.90
C048  (Schubert, voice/piano) 497 56.53 6.70| 4.43 78.37 6.24| 2.88 41.87 4.19
Average over non-piano 417 46.69 5.20| 5.91 120.82 8.48| 3.22 40.58 4.17
J001 (Nakamura, piano) 2.41 28.90 3.15| 2.26 43.09 2.67| 1.52 18.31 2.01
J038 (HH Band, big band) 3.561 35.53 4.36| 4.53 74.97 6.80| 2.94 30.41 3.98
J041  (Umitsuki Quart., sax/bass/perc.)| 2.99 40.93 4.23| 5.33 13245 8.01| 2.70 34.89 4.00
P031 (Nagayama, electronic) 429 58.85 6.47(12.89 339.23 20.04| 4.12 58.01 6.43
P093 (Burke, voice/guitar) 5.15 56.39 7.27| 9.01 276.67 16.38| 4.71 56.38 7.07
Average over jazz/pop 3.67 44.12 5.10| 6.80 173.28 10.78| 3.20 39.60 4.70
Average over all 450 62.13 6.90| 6.07 129.30 9.44| 3.22 4416 5.04
Table A.2: Results for Scenario 1, w = 35, wje; = 10
FwW AW FWC
RWC ID  (Comp./Interp., Instr.) mean max std|mean max std|mean max std
C025 (Bach, piano) 6.37 69.25 12.43| 7.33 70.99 12.76| 4.71 54.65 10.02
C028 (Beethoven, piano) 3.75 77.14 6.78| 5.60 135.54 9.69| 3.01 75.89 6.43
C031 (Chopin, piano) 4.24 62.80 7.65| 5.02 4598 7.04| 2.70 32.77 4.67
C032 (Chopin, piano) 2.91 28.97 4.62| 3.67 39.63 6.34| 2.14 25.01 3.30
C029 (Schumann, piano) 7.24 72.14 10.18| 9.30 55.69 9.71| 3.37 34.30 5.46
Average over piano 4.90 62.06 8.33| 6.19 69.56 9.11| 3.19 44.53 5.98
C003 (Beethoven, orchestra) 5.80 67.07 6.96| 7.60 84.79 9.36| 4.81 64.72 5.86
C015 (Borodin, strings) 3.94 38.37 4.69| 5.52 106.46 7.24| 3.53 37.57 4.31
C022 (Brahms, orchestra) 2.35 19.52 2.64| 3.07 21.20 3.20| 1.86 18.09 2.40
C044 (Rimski-Korsakov, flute/piano) 1.67 20.98 2.62| 1.79 20.27 1.89| 1.66 20.71 2.61
C048  (Schubert, voice/piano) 4.01 39.78 5.04| 5.24 46.66 6.80| 2.61 31.64 3.73
Average over non-piano 3.55 37.14 4.39| 4.65 55.88 5.70| 2.89 34.55 3.78
J001 (Nakamura, piano) 2.25 23.94 2.89| 2.65 34.76 3.69| 1.60 21.67 2.38
J038 (HH Band, big band) 3.16 31.51 3.87| 3.46 31.67 4.00| 2.73 27.93 3.67
J041  (Umitsuki Quart., sax/bass/perc.)| 2.72 38.06 3.99| 3.46 57.82 5.13| 2.49 34.32 3.84
P031 (Nagayama, electronic) 3.73 46.75 5.75| 7.83 111.68 10.60| 3.61 46.15 5.73
P093 (Burke, voice/guitar) 3.87 35.88 5.04| 5.23 81.89 8.00| 3.62 33.62 4.87
Average over jazz/pop 3.15 35.23 4.31| 4.53 63.56 6.29] 2.81 32.74 4.10
Average over all 3.87 44.81 5.68| 5.12 63.00 7.03| 2.96 37.27 4.62

Table A.3: Results for Scenario 1, w = 45, wije; = 20




FW AW FWC
RWC ID  (Comp./Interp., Instr.) mean max std|mean max std{mean max std
C025 (Bach, piano) 6.22 64.41 11.36| 9.21 72.73 13.05| 5.17 58.92 10.29
C028 (Beethoven, piano) 3.79 53.99 5.99| 5.76 114.58 9.55| 3.38 54.90 5.94
C031 (Chopin, piano) 3.98 48.91 5.89| 6.63 56.82 8.72| 3.15 32.71 4.98
C032 (Chopin, piano) 3.82 34.99 5.38| 3.82 41.12 6.75| 3.44 34.87 5.13
C029 (Schumann, piano) 5.82 36.90 6.72|13.59 72.32 12.59| 3.88 39.43 5.92
Average over piano 4.73 47.84 7.07| 7.80 71.52 10.13| 3.80 44.17 6.45
C003 (Beethoven, orchestra) 5.02 49.87 5.84| 6.77 74.23 8.01| 4.29 47.97 5.13
C015 (Borodin, strings) 3.83 41.08 4.73| 6.53 73.35 7.62| 3.62 40.68 4.64
C022 (Brahms, orchestra) 2.87 26.65 3.87| 3.69 25.61 3.98| 2.59 26.35 3.80
C044 (Rimski-Korsakov, flute/piano) 2.73 30.27 4.37| 1.50 16.28 1.71| 2.74 30.21 4.36
C048  (Schubert, voice/piano) 3.81 32.47 4.56| 6.62 54.61 8.35| 3.13 34.99 4.36
Average over non-piano 3.65 36.07 4.67| 5.02 48.82 5.93| 3.27 36.04 4.46
J001 (Nakamura, piano) 2.80 31.03 3.85| 3.60 33.52 4.63| 2.37 30.86 3.77
J038 (HH Band, big band) 3.52 33.68 4.55| 3.85 31.92 4.33| 3.29 33.64 4.50
J041  (Umitsuki Quart., sax/bass/perc.)| 3.12 39.28 4.76| 3.27 45.36 4.67| 2.97 38.20 4.69
P031 (Nagayama, electronic) 4.14 44.81 6.18| 5.63 76.86 7.53| 4.08 45.03 6.17
P093 (Burke, voice/guitar) 3.79 35.06 4.79| 4.23 36.71 5.12| 3.67 35.06 4.73
Average over jazz/pop 3.47 36.77 4.83| 4.12 44.87 5.26| 3.28 36.56 4.77
Average over all 3.95 40.23 5.52| 5.65 55.07 7.11| 3.45 38.92 5.23
Table A.4: Results for Scenario 1, w = 68, wje; = 30
FW AW FWC
RWC ID  (Comp./Interp., Instr.) mean max std{mean max std|{mean max std
C025 (Bach, piano) 7.19 98.00 12.94| 5.36 51.19 7.04| 3.69 37.85 5.27
C028 (Beethoven, piano) 6.10 93.07 8.82| 8.44 239.31 14.04| 4.47 77.37 7.11
C031 (Chopin, piano) 7.84 269.76 18.18| 6.05 73.06 8.69| 4.37 62.36 7.03
C032 (Chopin, piano) 4.83 82.38 9.86| 540 b54.86 7.67| 3.73 47.72 7.00
C029 (Schumann, piano) 13.10 116.40 18.49| 8.24 74.16 9.98| 5.38 61.58 8.38
Average over piano 7.81 131.92 13.66| 6.70 98.52 9.48| 4.33 57.38 6.96
C003 (Beethoven, orchestra) 11.09 156.97 14.30|14.61 278.33 19.32| 9.22 105.67 11.59
C015 (Borodin, strings) 7.85 164.92 11.35|10.27 342.02 16.49| 7.08 170.75 10.79
C022 (Brahms, orchestra) 450 41.84 542| 539 83.34 7.14| 3.26 39.09 4.31
C044 (Rimski-Korsakov, flute/piano) 2.47 22.01 2.98| 4.28 45.60 4.97| 2.33 22.42 2.90
C048  (Schubert, voice/piano) 8.09 129.00 13.26| 6.47 96.21 8.72| 4.74 97.01 9.53
Average over non-piano 6.80 102.95 9.46| 8.20 169.10 11.33| 5.33 86.99 7.82
J001 (Nakamura, piano) 4.07 56.37 6.51| 3.70 73.22 4.83| 2.58 25.22 3.48
J038 (HH Band, big band) 5.70 65.89 7.36| 7.08 107.01 10.65| 4.66 54.38 6.60
J041  (Umitsuki Quart., sax/bass/perc.)| 5.80 146.29 11.83| 7.97 242.86 13.57| 5.19 107.81 10.40
P031 (Nagayama, electronic) 5.16 41.76 5.47|14.89 278.75 20.44| 4.86 40.86 5.34
P093 (Burke, voice/guitar) 7.05 65.28 9.29| 9.87 273.43 16.38| 6.58 63.89 8.99
Average over jazz/pop 5.56 75.12 8.09| 8.70 195.05 13.18| 4.77 58.44 6.96
Average over all 6.72 103.33 10.40| 7.87 154.22 11.33| 4.81 67.60 7.25

Table A.5: Results for Scenario 2, w = 25, wje; = 8
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FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max std{mean max std|mean max std
C025 (Bach, piano) 6.52 62.70 10.27| 6.60 57.38 8.44| 4.08 43.12 5.71
C028 (Beethoven, piano) 5.37 66.42 7.16| 7.65 181.11 12.39| 4.41 58.60 6.41
C031 (Chopin, piano) 6.51 101.66 10.77| 6.98 76.37 9.86| 4.47 55.32 6.82
C032 (Chopin, piano) 5.09 65.54 8.50| 4.83 54.76 7.76| 4.48 46.67 7.41
C029 (Schumann, piano) 10.75 81.94 14.51|10.74 77.95 11.49| 5.32 58.35 7.86

Average over piano 6.85 75.65 10.24| 7.36 89.51 9.99| 4.55 52.41 6.84
C003 (Beethoven, orchestra) 8.64 101.04 10.63|11.42 199.13 13.82| 7.57 84.91 9.36
C015 (Borodin, strings) 6.49 89.18 8.64| 9.47 241.75 13.33| 6.16 90.20 8.50
C022 (Brahms, orchestra) 4.01 32.45 4.66| 4.57 66.58 5.55| 3.23 31.71 4.08
C044 (Rimski-Korsakov, flute/piano) 3.11 30.24 4.20| 3.20 26.77 3.41| 3.04 30.08 4.18
C048  (Schubert, voice/piano) 6.78 94.62 10.49| 7.45 96.35 10.11| 4.76 76.31 8.41

Average over non-piano 5.81 69.50 7.72| 7.22 126.12 9.25| 4.95 62.64 6.91
J001 (Nakamura, piano) 4.01 51.63 5.72| 4.19 58.96 5.43| 3.10 33.90 4.44
J038 (HH Band, big band) 493 45.60 6.08| 5.97 76.97 8.11| 4.29 40.38 5.71
J041  (Umitsuki Quart., sax/bass/perc.)| 5.44 113.62 10.72| 6.33 164.15 11.71| 4.99 89.07 9.56
P031 (Nagayama, electronic) 4.80 43.58 5.35[10.60 189.51 13.78| 4.63 43.99 5.31
P093 (Burke, voice/guitar) 572 54.28 6.91| 7.82 94.00 10.79| 5.39 51.42 6.77

Average over jazz/pop 498 61.74 6.96| 6.98 116.72 9.96| 4.48 51.75 6.36

Average over all 5.88 68.97 8.31| 7.19 110.78 9.73| 4.66 55.60 6.70

Table A.6: Results for Scenario 2, w = 35, wje; = 12
FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max std|mean max std|mean max std
C025 (Bach, piano) 6.89 60.35 9.59| 8.48 68.25 10.41| 5.26 51.85 6.88
C028 (Beethoven, piano) 5.91 57.66 7.38| 7.47 184.30 11.85| 5.25 56.90 7.16
C031 (Chopin, piano) 6.71 70.03 9.07| 8.14 76.90 10.89| 5.35 59.37 7.39
C032 (Chopin, piano) 6.12 56.27 8.52| 5.10 54.75 8.63| 5.81 52.50 8.28
C029 (Schumann, piano) 9.75 72.76 12.61|12.99 86.69 13.16| 5.94 59.49 8.08

Average over piano 7.08 63.41 9.43| 8.44 94.18 10.99| 5.52 56.02 7.56
C003 (Beethoven, orchestra) 8.05 80.52 9.39|10.24 114.43 11.52| 7.38 72.09 8.68
C015 (Borodin, strings) 6.78 84.94 8.51| 9.88 159.13 12.17| 6.56 85.69 8.67
C022 (Brahms, orchestra) 4.56 35.73 5.35| 4.63 52.65 4.89| 4.08 35.57 5.12
C044 (Rimski-Korsakov, flute/piano) 4.45 38.49 5.86| 2.74 23.21 2.95| 4.41 37.94 5.86
C048  (Schubert, voice/piano) 6.74 81.17 9.63| 8.63 95.47 11.18| 5.47 70.99 8.53

Average over non-piano 6.11 64.17 7.75| 7.23 88.98 8.54| 5.58 60.46 7.37
J001 (Nakamura, piano) 4.88 47.69 6.44| 4.90 57.49 6.22| 4.28 43.26 5.92
J038 (HH Band, big band) 5.43 4748 6.41| 5.92 59.16 7.28| 4.99 47.10 6.33
J041  (Umitsuki Quart., sax/bass/perc.)| 6.08 93.69 10.28| 5.82 142.64 10.75| 5.74 74.32 9.44
P031 (Nagayama, electronic) 5.38 52.30 6.39| 8.68 101.83 9.80| 5.27 52.30 6.39
P093 (Burke, voice/guitar) 5.86 44.86 6.80| 6.86 61.83 8.55| 5.64 45.92 6.67

Average over jazz/pop 5.53 57.20 7.27| 6.44 84.59 8.52| 5.19 52.58 6.95

Average over all 6.24 61.60 8.15| 7.37 89.25 9.35| 5.43 56.35 7.29

Table A.7: Results for Scenario

2, w :4S, Wioi = 16




FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max stdmean max std{mean max std
C025 (Bach, piano) 9.32 129.97 15.17| 6.66 80.98 10.09| 4.90 74.42 8.26
C028 (Beethoven, piano) 17.20 542.30 39.63|21.58 475.24 47.11|13.61 517.29 36.30
C031 (Chopin, piano) 24.92 313.20 46.98|20.32 236.52 36.62|20.09 303.86 41.87
C032 (Chopin, piano) 7.73 119.86 16.50|10.41 117.44 17.06| 5.13 72.36 10.09
C029 (Schumann, piano) 62.71 672.71 103.29|47.90 304.08 61.59|46.67 396.93 70.33

Average over piano 24.38 355.61 44.32|21.37 242.85 34.49|18.08 272.97 33.37
C003 (Beethoven, orchestra) 32.61 455.72 48.42|38.55 478.94 58.05|28.77 435.07 46.11
C015 (Borodin, strings) 22.93 533.19 45.46|23.15 388.05 39.26|19.85 334.75 34.88
C022 (Brahms, orchestra) 19.30 123.60 27.78|22.14 229.22 35.12|17.67 121.30 27.25
C044 (Rimski-Korsakov, flute/piano) 2.60 31.20 3.20| 6.44 63.96 8.24| 2.30 30.28 3.01
C048  (Schubert, voice/piano) 53.15 640.39 86.62|49.25 431.62 80.49|48.59 603.79 82.80

Average over non-piano 26.12 356.82 42.29|27.91 318.36 44.23|23.43 305.04 38.81
J001 (Nakamura, piano) 15.09 178.90 31.44|14.66 191.09 30.83|13.07 179.17 30.58
J038 (HH Band, big band) 14.89 139.19 22.87|17.31 279.79 28.54|13.45 139.05 22.69
J041  (Umitsuki Quart., sax/bass/perc.)|44.50 397.81 58.57|48.27 419.48 60.86|43.84 397.71 58.25
P031 (Nagayama, electronic) 52.81 346.64 65.4861.84 392.52 67.47|52.42 346.10 65.58
P093 (Burke, voice/guitar) 23.18 493.03 44.29|28.60 541.15 52.45|22.29 419.56 43.87

Average over jazz/pop 30.09 311.11 44.53|34.14 364.80 48.03|29.01 296.32 44.19

Average over all 26.86 341.18 43.71|27.81 308.67 42.25|23.51 291.44 38.79

Table A.8: Results for Scenario 3, w = 25, wje; = 8
FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max std{mean max std|{mean max std
C025 (Bach, piano) 7.82 80.13 12.25| 7.24 72.47 10.75| 4.47 55.34 7.04
C028 (Beethoven, piano) 13.72 402.44 31.13|18.50 477.71 41.88|11.74 374.75 30.38
C031 (Chopin, piano) 22.16 308.71 42.68(20.31 163.83 33.77|18.97 248.50 38.68
C032 (Chopin, piano) 6.36 105.20 13.23| 8.95 111.15 16.35| 4.88 63.17 9.88
C029 (Schumann, piano) 54.20 721.95 87.02|48.67 305.10 57.92|44.26 401.58 65.67

Average over piano 20.85 323.68 37.26|20.73 226.05 32.13|16.87 228.67 30.33
C003 (Beethoven, orchestra) 27.29 267.65 42.65|33.83 466.15 53.36|25.14 256.86 42.19
C015 (Borodin, strings) 18.30 467.90 35.56|20.39 379.35 34.58|16.44 240.85 29.78
C022 (Brahms, orchestra) 17.59 116.29 26.18|19.73 213.11 31.25|16.61 115.08 25.83
C044 (Rimski-Korsakov, flute/piano) 236 26.72 3.42| 4.64 46.91 5.74| 2.25 27.06 3.39
C048  (Schubert, voice/piano) 49.53 592.25 78.96|48.16 380.38 75.86|46.78 497.78 77.05

Average over non-piano 23.01 294.16 37.35(25.35 297.18 40.16|21.44 227.53 35.65
J001 (Nakamura, piano) 14.11 181.14 30.54|14.78 181.85 30.65|12.91 180.27 30.33
J038 (HH Band, big band) 12.92 121.70 20.77|14.54 176.81 23.45|11.91 119.02 20.52
J041  (Umitsuki Quart., sax/bass/perc.)|42.63 351.31 56.64|45.41 377.11 58.89/42.11 351.30 56.50
P031 (Nagayama, electronic) 51.05 353.29 62.75|58.13 384.23 66.27|50.87 352.88 62.72
P093 (Burke, voice/guitar) 19.90 259.56 38.82|24.03 333.43 44.00|19.24 258.50 38.80

Average over jazz/pop 28.12 253.40 41.90|31.38 290.69 44.65|27.41 252.39 41.77

Average over all 24.00 290.41 38.84(25.82 271.31 38.98|21.91 236.19 35.92

Table A.9: Results for Scenario 3, w = 35, wje; = 12
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FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max std{mean max stdimean max std
C025 (Bach, piano) 7.19 63.07 10.95|10.22 100.37 15.47| 4.73 53.69 7.44
C028 (Beethoven, piano) 12.36 321.83 27.47|16.44 462.16 35.83|10.93 321.04 27.10
C031 (Chopin, piano) 21.26 263.44 39.60|22.07 166.24 34.35|18.84 226.94 36.64
C032 (Chopin, piano) 6.42 88.68 12.64| 8.46 98.99 16.65| 5.33 76.60 10.57
C029 (Schumann, piano) 48.35 551.74 70.03|52.53 272.87 56.33|42.38 406.05 60.13

Average over piano 19.12 257.75 32.14(21.94 220.13 31.73|16.44 216.87 28.38
C003 (Beethoven, orchestra) 25.01 246.51 40.66(29.54 443.10 46.46|23.49 245.68 40.53
C015 (Borodin, strings) 16.70 250.94 30.76|19.77 249.28 30.76|15.48 198.76 28.53
C022 (Brahms, orchestra) 17.37 109.90 25.78|18.32 150.66 26.52|16.61 109.77 25.63
C044 (Rimski-Korsakov, flute/piano) 277 37.98 4.80| 3.28 29.65 4.05| 2.71 38.16 4.82
C048  (Schubert, voice/piano) 47.75 379.61 73.14|48.74 329.73 71.38|46.11 376.98 73.38

Average over non-piano 21.92 204.99 35.03|23.93 240.48 35.84|20.88 193.87 34.58
J001 (Nakamura, piano) 14.28 178.94 30.38|15.67 172.10 30.62|13.46 176.90 30.41
J038 (HH Band, big band) 12.27 116.37 20.12(13.49 140.52 21.11|11.51 113.46 19.97
J041  (Umitsuki Quart., sax/bass/perc.)|42.07 287.70 54.91|43.36 350.61 57.27|41.66 287.26 54.90
P031 (Nagayama, electronic) 50.07 274.93 59.09|54.96 344.35 64.56|49.96 274.65 59.16
P093 (Burke, voice/guitar) 18.58 222.80 36.82|20.37 230.90 38.83|18.18 223.66 36.83

Average over jazz/pop 27.45 216.15 40.26|29.57 247.69 42.48(26.95 215.19 40.25

Average over all 22.83 226.30 35.81{25.15 236.10 36.68|21.42 208.64 34.40

Table A.10: Results for Scenario 3, w = 48, wj,; = 20
FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max stdjmean max std{mean max std
C025 (Bach, piano) 9.13 83.08 13.49(15.03 113.30 19.91| 7.96 83.92 13.00
C028 (Beethoven, piano) 12.66 167.73 22.85|16.39 346.97 32.98|12.09 167.27 22.78
C031 (Chopin, piano) 22.24 175.85 34.90|25.55 177.70 36.34|21.15 171.42 34.78
C032 (Chopin, piano) 8.51 114.69 15.23| 8.42 97.97 17.10| 8.38 113.45 15.16
C029 (Schumann, piano) 44.16 297.26 52.33|59.91 293.09 57.41|42.23 285.68 52.40

Average over piano 19.34 167.72 27.76(25.06 205.81 32.75|18.36 164.35 27.62
C003 (Beethoven, orchestra) 24.68 224.28 39.79(28.47 266.32 42.67|23.88 224.42 39.80
C015 (Borodin, strings) 17.36 219.35 29.47|22.63 210.74 32.99|17.00 218.85 29.59
C022 (Brahms, orchestra) 19.24 121.15 27.45/19.00 120.04 25.87|18.90 121.09 27.50
C044 (Rimski-Korsakov, flute/piano) 592 62.59 9.51| 2.82 32.44 3.94| 590 63.13 9.52
C048  (Schubert, voice/piano) 47.31 314.58 67.02|49.74 310.09 67.71|46.77 311.05 67.28

Average over non-piano 22.90 188.39 34.65(24.53 187.93 34.64|22.49 187.71 34.74
J001 (Nakamura, piano) 17.53 162.76 31.58|18.32 172.02 31.66|17.19 162.67 31.68
J038 (HH Band, big band) 14.04 133.04 21.87|14.51 126.23 21.38|13.76 133.73 21.85
J041  (Umitsuki Quart., sax/bass/perc.)|42.62 249.58 52.73|42.65 298.61 55.28|42.36 249.65 52.79
P031 (Nagayama, electronic) 50.56 196.71 55.17(53.23 334.47 63.49|50.54 196.58 55.21
P093 (Burke, voice/guitar) 19.62 206.72 35.75|19.38 214.48 36.36|19.41 206.33 35.78

Average over jazz/pop 28.87 189.76 39.42|29.62 229.16 41.63|28.65 189.79 39.46

Average over all 23.70 181.96 33.94(26.40 207.63 36.34|23.17 180.62 33.94

Table A.11: Results for Scenario 3, w = 78, wjo; = 30




FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max stdjmean max std{mean max std
C025 (Bach, piano) 26.02 543.55 57.16(13.16 153.34 25.38|13.51 258.37 24.84
C028 (Beethoven, piano) 16.38 466.21 30.03|12.83 357.34 25.18|10.64 315.51 21.32
C031 (Chopin, piano) 18.32 518.24 43.32| 7.66 151.73 14.47| 7.70 241.97 14.89
C032 (Chopin, piano) 13.76 372.64 43.23| 6.14 112.71 9.63| 4.80 109.09 9.77
C029 (Schumann, piano) 29.36 376.35 53.78| 9.78 116.77 18.65| 8.01 103.24 14.03

Average over piano 20.77 455.40 45.50| 9.92 178.38 18.66| 8.93 205.63 16.97
C003 (Beethoven, orchestra) 25.58 501.63 34.71{22.35 358.00 29.87|19.85 320.51 25.39
C015 (Borodin, strings) 17.83 267.29 22.47|15.11 282.92 22.61|15.22 227.21 19.33
C022 (Brahms, orchestra) 12.02 371.17 25.49| 7.81 108.74 11.58| 7.45 103.70 10.86
C044 (Rimski-Korsakov, flute/piano) 544 84.05 9.14| 6.76 103.51 9.22| 4.54 82.74 8.17
C048  (Schubert, voice/piano) 21.40 485.06 40.91| 7.98 185.51 15.21| 8.99 183.20 15.26

Average over non-piano 16.46 341.84 26.55(12.00 207.74 17.70|11.21 183.47 15.80
J001 (Nakamura, piano) 10.15 488.16 21.54| 5.04 192.31 10.82| 5.06 103.52 8.80
J038 (HH Band, big band) 15.66 464.87 31.79|12.06 171.43 18.49|11.98 151.62 18.12
J041  (Umitsuki Quart., sax/bass/perc.)|11.63 262.42 20.07|12.34 237.20 19.70/10.42 248.34 17.96
P031 (Nagayama, electronic) 18.85 418.99 28.87|29.40 422.94 40.77|17.96 384.71 28.36
P093 (Burke, voice/guitar) 19.94 472.18 35.28|19.12 369.89 32.62|17.04 304.40 28.29

Average over jazz/pop 15.24 421.32 27.51|15.59 278.75 24.48|12.49 238.52 20.31

Average over all 17.49 406.19 33.19(12.50 221.62 20.28|10.88 209.21 17.69

Table A.12: Results for Scenario 4, w = 18, wjs; = 6
FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max std{mean max std|{mean max std
C025 (Bach, piano) 22.30 472.55 48.88(13.92 137.80 26.47|13.27 155.57 24.88
C028 (Beethoven, piano) 11.45 280.50 19.31|10.08 326.10 20.24| 8.84 211.44 17.62
C031 (Chopin, piano) 13.10 282.97 30.63| 8.29 100.82 15.10| 6.89 104.48 12.75
C032 (Chopin, piano) 11.45 436.25 34.16| 5.29 114.77 10.23| 5.66 110.45 12.80
C029 (Schumann, piano) 18.93 427.97 36.15|11.81 107.82 20.49| 7.66 96.86 13.70

Average over piano 15.44 380.05 33.83| 9.88 157.46 18.51| 8.46 135.76 16.35
C003 (Beethoven, orchestra) 16.86 178.16 21.12|17.58 312.54 23.62|14.23 150.67 18.85
C015 (Borodin, strings) 12.14 126.83 16.39|12.76 282.60 19.61|11.06 121.85 15.47
C022 (Brahms, orchestra) 8.16 109.91 13.25| 5.95 99.00 10.35| 6.13 94.62 10.68
C044 (Rimski-Korsakov, flute/piano) 5.37 82.36 10.78| 4.82 85.31 7.92| 5.00 82.36 10.65
C048  (Schubert, voice/piano) 13.04 153.30 18.35| 7.69 120.53 14.34| 7.73 106.38 13.67

Average over non-piano 11.11 130.11 15.98| 9.76 179.99 15.17| 8.83 111.18 13.86
J001 (Nakamura, piano) 7.17 101.52 12.53| 5.13 151.52 11.64| 5.21 103.41 10.82
J038 (HH Band, big band) 10.87 185.57 17.89| 9.61 104.63 15.25| 9.38 121.40 15.41
J041  (Umitsuki Quart., sax/bass/perc.)| 8.91 161.37 15.61| 9.58 218.77 17.49| 8.33 156.80 15.13
P031 (Nagayama, electronic) 14.23 179.13 22.15|22.62 410.39 33.93|13.79 176.53 22.09
P093 (Burke, voice/guitar) 12.99 197.43 18.55|13.83 246.75 22.23|11.90 180.85 17.71

Average over jazz/pop 10.84 165.00 17.34(12.15 226.41 20.11| 9.72 147.80 16.23

Average over all 12.46 225.05 22.38|10.60 187.96 17.93| 9.01 131.58 15.48

Table A.13: Results for Scenario 4, w = 28, wjo; = 10
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FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max std{mean max stdimean max std
C025 (Bach, piano) 19.94 226.24 33.76(14.35 139.46 26.61|14.03 143.65 25.84
C028 (Beethoven, piano) 10.61 249.83 17.55| 9.66 316.82 19.17| 9.16 221.23 16.93
C031 (Chopin, piano) 11.27 207.03 20.02| 8.69 97.75 15.30| 7.51 105.09 13.36
C032 (Chopin, piano) 10.78 150.33 20.74| 5.36 114.22 10.69| 7.36 109.39 15.10
C029 (Schumann, piano) 15.17 144.08 20.80|12.77 108.90 20.54| 8.24 98.98 14.40

Average over piano 13.55 195.50 22.57(10.17 155.43 18.46| 9.26 135.67 17.13
C003 (Beethoven, orchestra) 14.17 135.33 18.06|16.20 267.96 21.53|12.72 128.70 16.94
C015 (Borodin, strings) 11.23 121.94 15.98|12.42 232.36 18.73]10.60 120.05 15.50
C022 (Brahms, orchestra) 7.97 94.72 12.92| 5.81 95.26 10.35| 6.90 93.00 12.37
C044 (Rimski-Korsakov, flute/piano) 6.59 81.93 12.69| 4.34 80.79 7.96| 6.37 81.47 12.70
C048  (Schubert, voice/piano) 11.49 110.14 16.13| 7.80 108.49 14.40| 8.16 106.58 14.35

Average over non-piano 10.29 108.81 15.16| 9.31 156.97 14.59| 8.95 105.96 14.37
J001 (Nakamura, piano) 7.60 101.23 13.17| 5.50 122.36 12.25| 6.34 104.67 12.71
J038 (HH Band, big band) 10.21 109.80 15.55| 9.37 106.33 15.18| 9.33 107.92 15.04
J041  (Umitsuki Quart., sax/bass/perc.)| 8.88 119.74 15.53| 8.99 221.54 16.93| 8.48 121.16 15.33
P031 (Nagayama, electronic) 13.87 136.68 21.33|20.35 409.51 31.16|13.60 134.79 21.38
P093 (Burke, voice/guitar) 11.37 114.69 15.63(12.89 181.09 19.40|10.61 114.95 15.49

Average over jazz/pop 10.39 116.43 16.24(11.42 208.17 18.99| 9.67 116.70 15.99

Average over all 11.41 140.25 17.99(10.30 173.52 17.35| 9.29 119.44 15.83

Table A.14: Results for Scenario 4, w = 38, wje; = 12
FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max stdjmean max std{mean max std
C025 (Bach, piano) 19.06 135.59 29.72|15.44 127.43 26.93|15.08 135.25 26.71
C028 (Beethoven, piano) 11.02 130.43 17.16| 9.21 272.77 17.94|10.01 129.60 16.95
C031 (Chopin, piano) 11.04 96.26 16.90| 9.80 94.30 16.13| 8.60 102.22 14.25
C032 (Chopin, piano) 11.63 111.69 18.88| 6.18 117.03 12.34| 9.29 111.08 16.96
C029 (Schumann, piano) 14.18 112.33 18.11|15.67 101.49 22.03| 9.31 98.53 15.27

Average over piano 13.39 117.26 20.16(11.26 142.60 19.08|10.46 115.34 18.03
C003 (Beethoven, orchestra) 13.38 124.89 17.52|14.97 149.04 19.33|12.47 124.37 16.73
C015 (Borodin, strings) 11.42 122.49 16.51(12.74 150.97 18.03|10.98 122.29 16.18
C022 (Brahms, orchestra) 8.78 93.75 14.05| 594 89.46 10.98| 8.08 92.48 13.87
C044 (Rimski-Korsakov, flute/piano) 8.13 81.98 14.14| 4.21 81.36 8.56| 7.96 81.80 14.17
C048  (Schubert, voice/piano) 11.28 108.78 16.30| 8.71 108.78 15.31| 9.11 106.36 15.48

Average over non-piano 10.60 106.38 15.70| 9.31 115.92 14.44| 9.72 105.46 15.29
J001 (Nakamura, piano) 8.69 103.80 14.52| 6.43 116.12 13.50| 7.76 103.87 14.36
J038 (HH Band, big band) 10.88 102.96 15.66| 9.46 108.80 15.11|10.23 104.49 15.53
J041  (Umitsuki Quart., sax/bass/perc.)| 9.76 118.61 16.52| 8.66 225.72 16.55| 9.47 117.05 16.38
P031 (Nagayama, electronic) 14.26 133.20 21.95|18.01 304.43 27.32|14.09 132.81 21.99
P093 (Burke, voice/guitar) 11.24 113.43 15.65(11.30 123.25 16.63|10.68 113.48 15.58

Average over jazz/pop 10.97 114.40 16.86(10.77 175.66 17.82|10.45 114.34 16.77

Average over all 11.65 112.68 17.57(10.45 144.73 17.11|10.21 111.71 16.69

Table A.15: Results for Scenario 4, w = 48, wjo; = 16




FW AW FWC

RWC ID  (Comp./Interp., Instr.) mean max stdjmean max std{mean max std
C025 (Bach, piano) 51.08 348.22 56.59(47.49 211.05 47.02|41.86 213.55 45.03
C028 (Beethoven, piano) 37.08 392.19 58.52|37.77 439.19 62.00|35.05 390.64 58.60
C031 (Chopin, piano) 60.67 408.90 78.94|55.17 272.65 68.18|53.88 287.83 70.60
C032 (Chopin, piano) 35.41 500.49 69.95(29.66 271.07 57.14|27.55 274.42 52.95
C029 (Schumann, piano) 88.20 642.16 92.49(88.41 320.59 75.89|74.65 395.91 84.78

Average over piano 54.49 458.39 71.30(51.70 302.91 62.05|46.60 312.47 62.39
C003 (Beethoven, orchestra) 44.95 386.81 60.31|47.83 374.92 63.63|42.84 389.13 60.06
C015 (Borodin, strings) 56.19 515.18 75.43|59.66 473.41 71.78|52.18 392.47 68.08
C022 (Brahms, orchestra) 48.80 273.32 52.54|47.57 378.17 55.99|47.64 273.54 52.83
C044 (Rimski-Korsakov, flute/piano) [30.71 173.44 35.65|29.45 192.95 35.00|30.34 172.91 35.74
C048  (Schubert, voice/piano) 69.22 601.92 90.64|67.06 375.06 85.44|66.24 492.55 90.14

Average over non-piano 49.97 390.13 62.91|50.31 358.90 62.37|47.85 344.12 61.37
J001 (Nakamura, piano) 28.10 262.31 49.39(28.92 267.13 50.89|26.30 259.86 49.66
J038 (HH Band, big band) 34.84 273.86 50.79|34.66 271.74 51.45|33.60 273.86 50.46
J041  (Umitsuki Quart., sax/bass/perc.)|67.83 398.69 73.67|66.99 397.32 74.30|66.72 399.84 73.28
P031 (Nagayama, electronic) 91.91 315.15 73.82(92.95 342.43 76.03|91.84 314.18 73.91
P093 (Burke, voice/guitar) 55.93 366.57 76.99(55.01 362.56 77.35|55.00 362.89 77.24

Average over jazz/pop 55.72 323.32 64.93|55.71 328.24 66.00|54.69 322.12 64.91

Average over all 53.39 390.61 66.38|52.57 330.02 63.47|49.71 326.24 62.89

Table A.16: Results for Scenario 5, w = 38, wje; = 20
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Appendix B
Source Code

In this chapter, the headers of selected Matlab [Mat09] functions created during the writing
of this thesis are reproduced. The headers contain information about the name of the de-
scribed function and its input/output behavior. The organization of the headers is according
to chronological usage order of the respective function in the tempo curve computation pro-
cess, starting with feature extraction and continuing with curve computation procedures and
auxiliary functions.

Feature Extraction

The file_to_feature function is used as a wrapper for several low-level functions that per-
form feature extraction or loading of precomputed features. In the case of MIDI files, dirname
and filename locate the specific file; for wave files, filename denotes the name of the file in
question, but dirname indicates the directory where precomputed features are stored.

Sample usage:
[f_pitch, f_peaks] = file_to_feature(’features’, ’pathetique.wav’);

o toTololo b lototoTo Tl o o 1o 1o o To o o o To 1o T To T o oo o T To T o o oo 1o T T oo o o T T o o oo o T T o oo o o T T oo o o T o o oo
% Name: file_to_feature

% Version: 1.0

% Date: 10.10.2008

% Programmer: Meinard Mueller, Verena Konz

% Description:
% Load or compute features for audio and MIDI files

% Input:

% - dirname: Directory where the file or features are located

% - filename: Name of the file for which to load/compute features
% - parameter

% .win_len: Window length used for STMSP feature generation
% .win_res: Window resolution

t

% Output:
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% - f_pitch: Pitch features (STMSP)
% - f_peaks: Energy peaks for onset computation
% - f_onsets: Precise onsets (only generated in case of MIDI input data)

o toloto1oToToToToTo o fo oo o o o o o o To o 1o T T To T To T o o oo o oo oo o o T 1 To T T T T o o o o oo oo o o 1o 2 T T T T o o o o oo oo

Warping Path Computation

The feature_to_warpingpath function uses methods such as described in [Miil07] and [GMEQ9]
to compute warping paths from pitch and onset features extracted in a previous step.

Sample usage:
warpingpath = feature_to_warpingpath(f_pitch_reference, f_peaks_reference,
f_pitch_interpretation, f_peaks_interpretation);

o toloto16ToToToToTo o To o o o o o o o To 1o 1o 1o T To To T T o o oo o oo oo o o 1o 1 T T T T T o o oo oo oo o o 1o 2 T T T T T o o oo oo o
% Name: feature_to_warpingpath

% Version: 1.0

% Date: 20.03.2009

% Programmer: Meinard Mueller, Sebastian Ewert

% Description:
% Compute a warping path from pitch and onset features using multiscale
% DIW with DLNCO features

% Input:

f_pitch_1: Pitch features (STMSP) of the reference audio stream
% - f_peaks_1: Onset features of the reference audio stream
f_pitch_2: Pitch features (STMSP) of the performance audio stream
f_peaks_2: Onset features of the performance audio stream

=
1

=N =X
! !

% Output:
% - warpingpath: A regular warping path between reference and
% interpretation

Tl T Tolototo ool ToToToto o o o To JoTo 1o 1o o o T To T T 1o o o o o To T o o oo o T Fo T o o oo o T Fo T o o oo o T To 1o 1o o oo o T Fo T 1o o o o o T

Tempo Curve Computation (FW Approach)

As the name suggests, warpingpath_to_tempocurve_SlidingWindow computes a tempo
curve from a warping path using a sliding window of fixed size. This size is determined by
parameter.windowSize_sec. The resulting tempo curve is scaled to the reference time axis
(i.e. it has length equal to warpingpath(end, 1)).

Sample usage:
parameter.windowSize_sec = 3;
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tempocurveFW = warpingpath_to_tempocurve_SlidingWindow(warpingpath,
parameter) ;

hteh el loloTololoToToToToToToToTotototo oo o o o o o o o o o o o o T o To T T oo o oo oo oo o o o o o o o ol o o o T To T T o
% Name: warpingpath_to_tempocurve_SlidingWindow

% Version: 1.0

% Date: 6.4.2009

% Programmer: Meinard Mueller, Verena Konz

h

% Description:

yA Compute tempo curve from warping path using a fixed-width sliding
% window approach

h

% Input:

% - warpingpath: A regular warping path between reference and

% interpretation of some piece of music

% - parameter

% .vis_warpingpath: If true, visualize warping path together

% with generated tempo curve

% .vis_tempocurve: If true, plot the generated tempo curve

% .windowSize_sec: Determines the window size of the averaging
A window for curve computation

h

% Output:

% - tempocurve: A regular, reference-scaled tempo curve

Tl T Tolototo ool ToToToto o o oo JoJoTo 1o 1o o o T To T T 1o o o o o To T o 1o o o o T Fo T o o oo o T T T o o oo o T To T 1o o o o o T To T 1o o o o o o o

Tempo Curve Computation (AW Approach)

Similar to the previous function, the warpingpath_to_tempocurve_onsets function computes
a tempo curve from a warping path, this time using onset information to adapt the window
size. Hence, the window size is here determined by parameter.windowSizeIOI. Again, the
resulting tempo curve is scaled to the reference time axis.

Sample usage:

[f_pitch, f_peaks, f_onsets] = file_to_feature(’midi’, ’pathetique.mid’);

parameter.windowSizeIOI = 12;

tempocurveAW = warpingpath_to_tempocurve_onsets(warpingpath, f_onsets,
parameter) ;

hteh ool lololoToToToToToToToTatototo oo o o o o o o o o o o o o o T o To T T oo o oo oo o oo oo o o o o o o o o o T To T T T
% Name: warpingpath_to_tempocurve_onsets

% Version: 1.0

% Date: 6.5.2009

% Programmer: Andi Scharfstein, Verena Konz
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% Description:
%  Compute tempo curve from warping path using an adaptive window aligned
% to note onset timings

% Input:

% - warpingpath: A regular warping path between reference and

%  interpretation of some piece of music

% - onsets: A vector of all unique frames of the warping path which contain
% at least one note onset event.

% - parameter

% .vis_warpingpath: If true, visualize warping path together
% with generated tempo curve

% .vis_tempocurve: If true, plot the generated tempo curve

% .windowSizeIOI: Determines how many interonset intervals

% should be included in the curve averaging
% Output:

% - tempocurve: A regular, reference-scaled tempo curve
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Tempo Curve Computation (FWC Approach)

As described in Section B.2Z4] the FWC approach relies on performing the FW technique on
a smoothed warping path. The function smooth_warpingpath performs this smoothing on an
interonset level.

Sample usage:

smoothedWarpingpath = smooth_warpingpath(warpingpath, f_onsets);

tempocurveFWC = warpingpath_to_tempocurve_SlidingWindow(smoothedWarpingpath,
parameter) ;
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% Name: smooth_warpingpath

% Version: 1.0

% Date: 16.01.2009

% Programmer: Andi Scharfstein, Verena Konz

% Description:
% Perform IOI smoothing of a given warping path by re-computing the path
%  between onset locations as a straight line.

% Input:

% - warpingpath: A regular warping path between two pieces of music

% - onsets: A vector of all times (reference time axis) which contain at
% least one note onset event in the reference
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% Output:

% - smoothedWarpingpath: A warping path of the same dimension as the input
% warping path, but with linear slopes between onset locations
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Onset Index Transformation

The conversion between onset times that are given relative to the reference time axis and
indices into the warping path that locate the occurrences of these onsets if performed by the
auxiliary function compute_warped_onsets. The function can be characterized by the equiv-
alence onsets == warpingpath(compute_warped_onsets(onsets, warpingpath), 1). The
parameter invertWarping may be set to true to indicate that the onsets relate to the inter-
pretation instead of the reference. In this case, the onsets will occur at warpingpath(n, 2)
instead of at warpingpath(n, 1).

Sample usage:
dtwOnsets = compute_warped_onsets(f_onsets, warpingpath);
dtwOnsetsInterpretation = compute_warped_onsets(f_onsets, warpingpath, 1);
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% Name: compute_warped_onsets

% Version: 1.0

% Date: 16.01.2009

% Programmer: Andi Scharfstein

% Description:
% Convert absolute onset information into a representation relative to a
% given warping path (i.e., determine indices of the onsets in this path)

% Input:

% - onsets: Onset information for the reference audio stream

% - warpingpath: The warping path of reference audio and comparison

% - invertWarping: If true, compute indices of onsets with respect to the
%  interpretation column of the warping path instead of the reference

%  column

% Output:

% - dtwOnsets: The indices of warping path entries where the reference
% column (or the interpretation column if invertWarping is true)

% corresponds to a note onset event
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Appendix B Source Code
Curve Interpolation

The interpolation function simply connects the points defined by the pairs (onsets(i),
values(i)). The length of the resulting curve is equivalent to onsets(end). In case the
first onset is not located at position 1, the vectors are extended by including (1,1) before
interpolation.

Sample usage:
interpolation = interpolate_between_onsets(values, f_onsets);
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% Name: interpolate_between_onsets

% Version: 1.0

% Date: 16.01.2009

% Programmer: Andi Scharfstein, Verena Konz

% Description:
% Simple linear interpolation between onsets using a set of given values.

% Input:

% - values: Vector of values used to interpolate between consecutive onsets
% - onsets: Onset times between which to interpolate (length of values and
% onsets vectors should be exactly equal)

% Output:

% - tempocurve: A tempocurve where intermediate values between onsets have
% been filled out according to ’values’ parameter. Here, values(i) will
% be used as the value for onsets(i)
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Curve Rescaling

The rescaling procedure translates from a reference-scaled tempo curve to an interpretation-
scaled tempo curve. For this, it “warps” the original tempo curve according to warpingpath.

Sample usage:
tempocurveInterpretation = rescale_tempocurve(tempocurve, f_onsets,
warpingpath) ;
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% Name: rescale_tempocurve

% Version: 1.0

% Date: 20.03.2009

% Programmer: Andi Scharfstein

h
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% Description:

% Rescales standard tempo curves on the time axis to fit the interpretation
% they are describing, i.e. rescaled_tempocurve(x) is the tempo of

% interpretation at interpretation time point x instead of reference time

% point x.

% Input:

% - tempocurve: A regular (reference-scaled) tempo curve

% - reference_onsets: The onsets of the reference. If these are unknown,
% just use (1l:warpingpath(end,1))’ to set onsets at every frame

% - warpingpath: A regular warping path

)

% Output:

A - rescaled_tempocurve: The rescaled tempo curve
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Tempo Curve Visualization

Plotting of tempo curves can be done comfortably using the visualize_tempocurve function.
It is highly flexible: Calls of the form visualize_tempocurve (tempocurve) as well as calls
of the form visualize_tempocurve ({tempocurvel tempocurve2}) are supported, and there
is a great variety of parameter settings available. Scaling of the temporal axis is controlled
by the settings of parameter.plotInMeasures together with parameter.startMeasure and
parameter.endMeasure, while scaling of the tempo value axis depends on the settings of
parameter.plotInBPM and parameter.referenceBPM. If the tempo is plotted in BPM, the
vertical axis is scaled linearly; otherwise, it is scaled logarithmically.

Sample usage:

% Linear curve plot
parameter.plotInBPM = 1
parameter.referenceBPM = 33;
visualize_tempocurve (tempocurve, parameter);

[

% Multiple curves plot, time axis in measures

parameter.plotInMeasures = 1;

parameter.endMeasure = 55;

% parameter.startMeasure = 1; (this is the implicit default value)
visualize_tempocurve ({tempocurvel tempocurve2 tempocurve3}, parameter);
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% Name: visualize_tempocurve

% Version: 1.0

% Date: 04.02.2009

% Programmer: Andi Scharfstein, Verena Konz
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Appendix B Source Code

% Description:
% A function for visualizing one or more tempo curves. If you want to
% display more than one curve, wrap them in a cell array.

% Input:

% - tempocurve: One or more vectors containing tempo information
%  (wrap in cell array to show multiple curves at once).

% - parameter

% .plotInBPM: If true, plot the curve in BPM instead of factors
A .referenceBPM: Needed to compute the curve (factor 1 becomes

% parameter.referenceBPM) if plotInBPM is true

% .plotInMeasures: If true, use measures for the time axis

% instead of seconds or frames

A .startMeasure: Optional, denotes the first measure if

% plotInMeasures is true

% .endMeasure: Needed to compute the measures if plotInMeasures
b is true

% .holdFigure: If true, use gcf instead of creating a new figure
A .scaleToSeconds: If true, plot time axis in seconds instead of
b frames

% .lineStyle: Sets the line style of the plot

% .lineWidth: Sets the line width of the plot

A .win_res: Used to scale the plot to seconds if scaleToSeconds
b is true

h

% Output:

% - figureHandle: The handle of the figure that was created for
% visualization of the tempo curve(s).
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Warping Path Visualization

As for tempo curves, there also exists a specialized function for plotting warping paths. Unsur-
prisingly, this is the visualize_warpingpath function. It supports calls similar in structure
to visualize_tempocurve, in particular both visualize_warpingpath(warpingpath) and
visualize_warpingpath({warpingpathl warpingpath2}) are possible. Optional parame-
ters include parameter.dtwOnsets and parameter.tempocurve that can be used to include
vertical onset lines or a tempo curve in the plot, respectively. Onsets must be given in their
“warped” version as indices to the respective warping path. If one of those parameters is set,
the warpingpath argument must be a single path and may not contain a cell array.

Sample usage:
visualize_warpingpath({warpingpathl warpingpath2});

tempocurve = warpingpath_to_tempocurve_onsets(warpingpath, f_onsets,
parameter) ;
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parameter.tempocurve = tempocurve;
parameter.dtwOnsets = compute_warped_onsets(f_onsets, warpingpath);
visualize_warpingpath(warpingpath, parameter);
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Name: visualize_warpingpath

Version: 1.0

Date: 15.01.2009

Programmer: Andi Scharfstein, Verena Konz

Description:
A function for visualizing one or more warping paths. If you want to
display more than one warping path, wrap your paths in a cell array.

Input:
- warpingpath: One or more regular warping paths (wrap in cell array to
plot multiple warping paths).
- parameter
.dtwOnsets: Optional, plots vertical lines at onset positioms.
Must be given in terms of warping path indices,
not in terms of a reference time axis as usual
.tempocurve: Optional, but must be given if dtwOnsets is set.
A regular tempo curve computed from the given
warping path is plotted against this path
.scaleToSeconds: If true, plot time axis in seconds instead of
frames
.win_res: Used to scale the plot to seconds if scaleToSeconds
is true

Output:
- figureHandle: The handle of the figure that was created for
visualization of the warping path(s).
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