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Chapter 1IntrodutionWe do not wish any so-alled interpretations of our musi; just play the notes; add nothing,and take nothing away. �Aaron Copland paraphrasing �modern� ompositional attitude,What to Listen for in Musi (1939)The history of Western lassial musi is rih with examples that doument the importaneof a performer's skill and artistry for onveying musial visions: Johann Sebastian Bah wasfamous for his feats of improvisation, not for his reoniliation of harmoni and ontrapuntalonerns. Clara Shumann enjoyed greater ontemporary suess than her husband Robert,as she was the better performer of the two. Niolò Paganini was able to build a wholeareer on virtuosity alone. Even the sporadi extreme ounter-reation to this fat (suhas in the above quote) only serves to underline the relevane of the subjet.1 Yet, in the�eld of musi information retrieval, the topi fousing on this partiular aspet�performaneanalysis�has only reently begun to reeive the attention it therefore deserves [Gab03, Wid02,WDG+03, LG03, Wid05, Sap07, Sap08℄. Part of the problem is the inadequay of urrentmethods for the determination of suh elementary performane attributes as tempo or dynamishaping: Automated proesses are too unreliable and error-prone for widespread usage, andmost urrent performane analysis studies fall bak on manual feature annotation. In aseswhere manual annotation is not an option, another ommon approah is to use speial-purposehardware suh as player pianos to transribe symboli information about the musi at the timeit is played. Of ourse, neither of these proedures generalize to settings where suh data isnot available or manual annotation is onsidered too labor-intensive.In this thesis, we present an alternative approah to the extration and proessing of attributesof musi data whih relate to its agogial aspets, in partiular the tempo. This approahdoes not rely on manually generated data or symboli transriptions of spei� performanes,but instead employs a general alignment tehnique known as dynami time warping (DTW).The main ontribution of this thesis lies in the development of methods to exploit the impliittempo information ontained in the so-alled warping path produed by the DTW tehniqueto generate data suitable for subsequent musial analysis. For this, we mostly stay on�nedto the domain of piano musi produed in the Western lassial period. This is due to severalreasons: It provides a large pool of available performane data (e.g. CD reordings) that lendsitself reasonably well to automati proessing with DTW; it is not restrited to musially1In the ontext of the quote, Copland disagrees with the expressed sentiment (alling it a �nonrealisti attitudeon the part of the omposers�) and quikly goes on to dispel the notion that an interpretation-less performaneis at all possible, or even desirable. 1



Chapter 1 Introdutiontrivial �aademi� examples but makes use of real-world data; and by employing a playerpiano, we were able to generate ustom data pairs of aousti and symboli representations ofthe same piee of musi that failitate a proper evaluation of our tehniques.The thesis is strutured deliberately in suh a way that it follows the omplete proess ofperformane analysis hronologially: Beginning at feature design and extration, going overthe proessing steps neessary to ompute more omplex data, and �nally losing with themusial analysis and evaluation of this data. The main fous and ontribution of the work liesin the middle part of this proess. Spei�ally, we explore several tehniques for the automatiomputation of tempo parameters from a piee of musi. These an be visualized in the formof a tempo urve that plots the tempo of the piee for eah point in time, as e.g. in Figure 1.1.The depited urve shows the tempo for an exerpt from Shubert's �Winterreise� as omputedby the approah presented in this work; one an learly see the artisti shaping of the twophrases, in partiular a slow-down at eah phrase ending. Note that tempo here refers to ahighly loalized view of the piee where we may even ompute the tempo of individual notes,unlike e.g. with beat trakers that only estimate an average overall tempo of a piee.
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Figure 1.1: Franz Shubert: Winterreise D911, �Der Lindenbaum� (Exerpt)The detailed organization of the thesis is as follows:Chapter 2 introdues basi terminology and a set of features and methods to extrat thesefeatures from di�erent musi representations. It also presents the DTW alignment proe-dure and explains how the features form the basis of the alignment that is gained by thisproedure.Chapter 3 ontains some thoughts on tempo and tempo measurement priniples and showshow the warping path omputed by the DTW tehnique may serve as the de�ning hara-teristi of suh attributes of a musial piee. Three tehniques are disussed that attempt toompute tempo data on the basis of the warping path using di�erent approahes.2



Chapter 4 gives two evaluations of the tehniques presented in the third hapter: The �rstfouses on a quantitative data analysis for an objetive performane measure, the seondillustrates the kind of results that an be obtained from applying these tehniques by disussingsome tempo urves generated for seleted musial examples.Chapter 5 has an overview of several related works that use tempo urve information (orsimilar data) for further analysis steps. These works an be lassi�ed roughly aording totwo main goals: One group fouses on ommonalities of di�erent performanes, the other isonerned with their respetive di�erenes.Chapter 6 onludes the thesis by giving a summary of what has been ahieved, and identi�essome opportunities for further researh based on the results obtained in this work.
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Chapter 2Musi SynhronizationIn fat the kind of musi [Havelok Vetinari℄ really liked was the kind that never got played.It ruined musi, in his opinion, to torment it by involving it on dried skins [...℄ and lumpsof metal hammered into wires and tubes. It ought to stay written down, on the page, inrows of little dots and rothets, all neatly aught between lines. Only there was it pure.�Terry Prathett, Soul Musi (1994)This hapter lays the foundation for the subsequent disussion onerning the main ontribu-tion of this thesis. Following a short overview of the possible forms of musi representationrelevant for this work, we introdue a number of desriptors of suh musi representationsalled features whih apture essential attributes of the data while disarding irrelevant (orrepresentation-spei�) information. We also demonstrate how these features are generatedfrom the data available, and how they are proessed afterwards. The presentation order of thefeatures is hronologial in that the feature produed from a partiular proessing step formsthe input for the next step (see Fig. 2.5 for an overview of the omplete proessing pipeline).After the feature proessing pipeline has been shown in full, we explain how to make use ofthe omputed features by inluding them in an alignment proedure known as dynami timewarping. This proedure is presented in a general fashion �rst, then an examination of howit is aommodated for the spei� needs of musi synhronization follows in a seond step.Musi synhronization here refers to the proess of �nding the semanti orrelations betweentwo di�erent interpretations of the same musial piee.The most important onept introdued in this hapter is the warping path, whih appears inthe disussion of dynami time warping. It will be used as the basis for all omputations inthe following hapters, in partiular with regard to the tempo urves introdued in Chapter 3.The warping path stores all orrelation information gained in the synhronization proess.2.1 Musi RepresentationsThe �rst step in understanding how to proess musi in an automated manner is to get alear view on the di�erent formats in whih musi may be represented.2 In this work, we willfous on three di�erent representations. Eah of these has its individual strong points, whihin turn neessitate individual proessing approahes. They an be lassi�ed aording to therelative degree of abstratness by whih the musi they embody is represented:2This hapter mostly follows [Mül07℄ in the presentation of the di�erent formats, features and algorithms. 5



Chapter 2 Musi Synhronization
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Figure 2.1: Ludwig van Beethoven: Sonata Pathétique, beginning of the �rst movement (PathBeg)Sore representation. The most �purely� symboli representation among the three an beregarded as a sort of referene or ground truth against whih more onrete realizationsof the same piee may be measured in order to gain information about spei�s of apartiular performane.MIDI representation. A kind of hybrid that (more or less suessfully) attempts to inorpo-rate both abstrat information about a piee and onrete information about a spei�realization of the piee, while still remaining on a symboli level.Audio representation. The audio representation favors onrete information over symbolidata, opting to apture a data set that allows nearly perfet reonstrution of a spe-i� interpretation of a piee while ompletely ignoring semanti orrelations of thatinterpretation to symboli representations of the same piee. This enables extrationof very nuaned interpretational features, but makes it di�ult to give a semantiallymeaningful analysis of the data.While the MIDI representation of musi data exists by its nature only in a digital format,both of the other representations have analog origins. Sine we are mainly interested inautomated musi proessing, we will brie�y disuss how to onvert �real-world� sore sheetsand physial audio data into their digital ounterparts. Following this, we will assume thatour representations our as digital versions only (unless expliitly stated otherwise). Thisdisussion will take plae as we look at the details and idiosynrasies of eah representationin turn.2.1.1 Sore RepresentationA musial sore (in analog ontexts also referred to as sheet musi) ontains a formalizeddesription of a partiular piee of musi. In its typial non-digitized form, it onsists ofgraphial and textual information on note pithes and lengths as well as meta-informationabout loudness, tempo and other musial attributes of individual notes or setions of thepiee. This information is organized aording to periodi strutural divisions, so that eahgroup of notes of a ertain overall length is ontained in a bar (or measure). As an example,Figure 2.1 depits the �rst bar of the �rst movement of Beethoven's Sonata Pathétique. Thesame exerpt will be used to illustrate the other onepts introdued in this hapter whereverpossible. It will be referred to as PathBeg, for �Pathétique beginning�. We also introduePathExp as a shorthand for the omplete exposition of this piee (measures 1�132).6



2.1 Musi RepresentationsThe sore may presribe the overall tempo of a piee in an absolute measure of beats per minute,but is not required to do so. In fat, omposers ommonly resort to relative tempo markingslike Andante, Presto or Lento instead, sine this allows them to aount for the performer'sartisti freedom in the interpretation of the piee. Terms like those mentioned denote looselyde�ned tempo ranges that depend on a performer's musial intuition and experiene to hoosea spei� tempo for an atual realization of the piee. This dependeny is true for othermusial attributes as well, e.g. loal tempo, dynamis, artiulation and all agogial aspets(like use of Rubato). Hene, most of these attributes must either be notated in relative termsor even left impliit. Dynamis (instrutions pertaining to loudness) are always notated inrelative terms suh as mezzoforte or pianissimo, and even expliit artiulation instrutionslike staato will require artisti interpretation for a onrete performane.The high abstratness degree of sore data as ompared to the other two representationsaounts for both the main advantage and the main disadvantage of this representation. Ex-trating musially meaningful information from a digitized sore sheet may be nearly trivial(suh as with pith and onset information for spei� notes), or at least feasible (e.g. searhingfor and loating reurring motivi ideas inside a partiular sore), whih is typially not thease for the other representations. On the other hand, the sore was never meant to be ableto represent interpretation-spei� information, but rather to indiate to the performer howan interpretation should �sound�. While this is of ourse perfetly legitimate, not being ableto aount for onrete performane data nevertheless disquali�es this representation frombeing used as a basis for performane analysis tasks like the omputation of omplex timinginformation of an interpretation.Converting an analog representation of a sore into its digital version is not a trivial feat. Wewill refrain from dealing with this issue here (see e.g. [Mül07℄ for a more omplete disussion),but simply explain how the digital version might be represented. The underlying assumptionis that the sore may always be digitized manually, if everything else fails.The most trivial digital representation of a sore sheet is the graphial equivalent of theanalog version in the form of some bitmap image format�in this ase, nothing is gained bythe digitization proess, sine the graphial representation is not well-suited for automatiproessing. What is needed instead is a semantially meaningful symboli representationof the sore. One suh representation format is de�ned by the MusiXML standard [Re09℄whih (as the name suggests) is a Doument Type De�nition for XML douments that ontainmusial data. XML douments prepared aording to this de�nition an easily be onvertedto a plethora of other formats and representations, inluding a graphial sore sheet rendition,MIDI output and proprietary formats for ommerial sorewriters suh as Sibelius or Finale�even more esoteri output targets like e.g. Braille Musi are easily ahieved. While widespreadadoption of this standard has been relatively slow, a learly superior or more popular formatde�nition has not yet emerged.Note that even the minimal example given in Figure 2.2 (whih produes a sta� ontainingone whole note, an a′) is quite verbose. The reason for this is that MusiXML aims to storesemanti information about the musi as well as the layout information neessary to produean æsthetially pleasing graphial output. Other formats fous on more spei� goals, e.g.LilyPond [Lil09℄ o�ers good sore layouting apabilities, while Humdrum [Hum09℄ seems moreonerned with providing a data format that is well-suited for musial post-proessing. 7



Chapter 2 Musi Synhronization<?xml version="1.0" enoding="UTF-8"?><!DOCTYPE sore-partwise PUBLIC "-//Reordare//DTD MusiXML 2.0 Partwise//EN""http://www.musixml.org/dtds/partwise.dtd"><sore-partwise><part-list><sore-part id="P1"><part-name>MusiXML Example</part-name></sore-part></part-list><part id="P1"><measure number="1"><attributes><divisions>1</divisions><key><fifths>0</fifths></key><time><beats>4</beats><beat-type>4</beat-type></time><lef><sign>G</sign><line>2</line></lef></attributes><note><pith><step>A</step><otave>4</otave></pith><duration>4</duration><type>whole</type></note></measure></part></sore-partwise> Figure 2.2: MusiXML example ode2.1.2 MIDI RepresentationMusial Instrument Digital Interfae, MIDI for short, was reated as a protool for the ex-hange of musial information between eletroni instruments. It de�nes a large variety ofmessages, starting with basis suh as desribing notes in terms of their pith and onset/releasetimes with regard to a global time stream, and going further to inlude meta information andontrol messages suh as �Distort pith by a spei� fator�. Sine its oneption in 1981,it has beome the de fato standard used (or at least supported) by almost any appliation(inluding hardware) that deals with the transmission or proessing of symboli musi data.For automated musi proessing, it is useful to gather the protool messages whih make up8



2.1 Musi Representationsa single piee of musi into one �le, whih an then be distributed or modi�ed. The MIDIstandard provides for this with the SMF (Standard MIDI File) �le format. In the following,when we refer to the MIDI representation of a piee, we will usually mean the respetiveSMF.One major shortoming of MIDI in omparison to an audio stream is its lak of supportfor the representation of timbral attributes of a sound. On the other hand, the kind ofinformation whih is supported is highly useful for a large variety of performane analysistasks. Of partiular importane for this ontext are two ommands: note-on and note-o�,whih together serve to de�ne the relative length of a note, as well as its position in the globaltime stream. This time stream is de�ned in terms of tiks or lok pulses, whih are sent outperiodially during the duration of the piee. The MIDI protool is designed in suh a waythat these tiks measure musial time units instead of absolute time units suh as seonds:Note lengths are de�ned in terms of the number of lok tiks passed. The respetive unit ofmeasurement is alled pulses per quarter note (PPQN), and the PPQN for a single piee isspei�ed by the user in the MIDI �le header. Tempo of a piee is then ontrolled by hangingthe lok pulse frequeny. Hene, the absolute length of a time interval an be determinedby examining PPQN and tik frequeny for that segment. Typial PPQN values are 480 and960; in general, is is given by 24 · 2n and 30 · 2n for n ∈ {2, ..., 6}.

Figure 2.3: PathBeg, MIDI piano roll representation. Referene data generated from the sore isshown in red, a spei� interpretation of the piee is overlayed in blue.As we have just seen, the onset/o�set times of a note in MIDI representation is expliit and veryspei� in its nature. This allows a very nuaned enoding of tempo hanges in the performaneof a piee, as opposed to sheet musi representations where suh subtleties are mostly lost inthe notation. The di�erene an be seen in the so-alled piano roll representation, whihis often employed for the visualization of MIDI data (Fig. 2.3): Eah olumn representsa disrete musial time interval, usually divided at least on the beat level.3 Pithes aredistributed vertially, suh that eah row orresponds to a semitone step on the twelve-toneequal tempered sale. Notes are displayed as horizontal bars in this struture. The exampleshows two di�erent versions of the beginning of Beethoven's Pathétique�in red, a �ground-truth� version generated as a straightforward translation of the sore representation of thesame segment into MIDI data, and superimposed in blue, a real-life interpretation of thesame segment. We an plainly see the disrepany between the di�erent versions, and it isin fat exatly this di�erene whih will be used in later hapters of this thesis to work out3Intuitively, the beat of a piee of musi orresponds to the points in time where a listener might tap his footto keep in rhythm with the musi. For details, see Setion 3.1.1. 9



Chapter 2 Musi Synhronizationthe artisti idiosynrasies of a spei� interpretation with regard to tempo/timing attributes.From the example it is also apparent that the heightened spei�ity of MIDI omes with aloss in semanti expressiveness: Note timings no longer have musial onnotations (e.g. ��rstnote of a new measure�), but �oat �freely� in the global time stream.4The other main attribute dimension (besides timing) we may be interested in onerns thedynamis of the piee. MIDI does not have a diret way of enoding loudness, in the sameway it does not feature a method of representing the timbre of a sound. Instead, it provides aommand for speifying the veloity of a note, whih orresponds to the intensity with whihthe note should be �played� (i.e., synthesized) by the output devie. MIDI reserves seven bitsfor this information, so 128 di�erent veloity values an be represented. This information isnot displayed in the piano roll representation of MIDI data.2.1.3 Audio RepresentationThe audio (or waveform) representation of musi data is the most onrete of the three formatspresented here, it ontains no abstrat musial information at all. The name �waveform� isderived from the graphial representation of suh a signal, where pressure hanges in a arriermedium (usually air) are plotted over time (Fig. 2.4 shows an interpretation of the beginningof the Sonata Pathétique). For a pure tone, this plot will yield a sinusoidal osillation aroundthe zero referene (whih is just the pressure of the arrier medium in an unexited state).The maximum distane between referene and waveform in this ontext is alled the amplitudea of the signal, while the time di�erene between two onseutive repetitions of an osillationis alled the period T. The frequeny f of the signal is de�ned as the inverse of the period,
f = 1

T
. When we talk about the pith of a sound, we usually refer to the aousti property ofthis sound that orresponds to this frequeny.

0 1 2 3 4 5 6 7 8

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2.4: PathBeg, waveform representation, time in seonds4Pithes ease to arry musial information about the key in whih the piee is notated as well: G♭ and F♯ forexample are both represented as MIDI pith 42. This is legitimated by the onept of enharmoni equivalenein the equal tempered sale (see e.g. [Mi08℄, p. 85).10



2.2 Pith- and Chroma-Based Audio FeaturesIn the analog ase, all of these parameters are measured ontinuously. However, for a dig-ital ontext one must de�ne a suitable quantization sheme when disretizing the data. Inthis work, we follow the Pulse Code Modulation (PCM) sheme laid out in the �Red Book�standard de�ned for CDDA (Compat Dis Digital Audio), the most popular format in usetoday. CDDA uses a sampling rate of 44.1 kHz (i.e. 44,100 samples per seond are taken) ata resolution of 16 bit�hene, it is possible to distinguish 65,536 di�erent �pressure points�orresponding to the relative osillation of the waveform. This is su�iently detailed for theaverage human listener not to notie any di�erenes to an atual performane of the dis-retized data (although several alternative shemes with di�erent sample and bit rates havebeen proposed, e.g. Diret Stream Digital for the Super Audio CD or PCM at 96 kHz/24 bitfor DVD-Audio).For the purposes of performane analysis, the audio representation o�ers an interesting mixof properties: On one hand, the sheer quantity of interpretations only available in a waveformrepresentation (e.g. as a CD reording) is a onvining argument already to make this aprimary analysis target. On the other hand, the omplete lak of symboli information in thisformat poses serious problems when trying to extrat musially meaningful data. Unsolvedproblems in the domain of musi information retrieval from audio data (MIR) inlude thedetermination of the fundamental frequeny of a sound,5 automati separation of di�erentinstruments or voies in a polyphoni ontext (the so-alled soure separation problem) andalignment of the reording to a sore sheet, although progress has been made to varyingdegrees in either of these topis. The alignment or synhronization problem is of partiularinterest, sine its solution o�ers a way out of this onundrum: Aligning waveform and soresheet would ombine onrete and symboli information about the data in one meta-formatthat would lend itself to a great variety of analysis tasks. Setion 2.4 introdues one possibleapproah for takling this problem.2.2 Pith- and Chroma-Based Audio FeaturesAs we have learned in the preeding setion, the representations of musi data we are interestedin have vastly di�erent attributes, making diret omparisons between them impossible. Yeteven if the representation is the same for two interpretations of a piee, diret omparisons willoften yield unsatisfatory results if they operate on a purely �syntatial� level (e.g., bit-levelomparison of the waveforms). Instead, it would be desirable to have an overarhing oneptof similarity (i.e., a similarity metri) that has a semanti meaning. Suh a onept shouldabstrat from the format of the data, suh that it an be used to ompare two piees of musiregardless of how they are represented.In trying to de�ne a similarity metri, one has to keep in mind several aspets that needto be reoniled with eah other in order for the metri to be useful. For example, melodisimilarity would be a musially meaningful metri, but in a polyphoni ontext requires strongassumptions in order to solve the prerequisite soure separation problem (f. [Bur08℄). Hene,the metri should be omputationally feasible. It is also important to keep in mind robustness5A sound is typially made up by a series of overtones (or harmonis) that grant it a unique texture or toneolor. By de�nition, the fundamental frequeny orresponds to the �rst of these overtones. 11



Chapter 2 Musi Synhronizationof the metri, so that it does not break even in the fae of di�erently orhestrated interpre-tations of the same piee (e.g. Liszt's piano arrangement of Beethoven's Fifth Symphony vs.the original setting), or when the two performanes use di�erent instrument tunings (whih isusually the ase for so-alled historially informed or authenti performanes6). One metrithat ful�lls the requirements of robustness, omputability and, above all, has a straightforwardmusial interpretation has been proposed by Müller in [Mül07℄. The idea is to determine theharmoni similarity of two piees, but sine this is not an expliit attribute of a piee in anyrepresentation, it introdues a number of features that approximate said measurement. Wewill brie�y present these features in the ontext of waveform analysis before disussing howthey are used to provide a musially meaningful metri to a musi synhronization algorithmin Setion 2.4. Figure 2.5 provides a rough overview of the audio feature extration proesswe will traverse in the ourse of this disussion.
Figure 2.5: An overview of the feature extration pipeline2.2.1 Pith FeaturesThe �rst step in the feature extration pipeline deals with the deomposition of the audio signalinto groups of frequeny omponents, whih are determined aording to their assoiation topithes of the standardized equal tempered sale. Sine this sale is designed primarily withregard to human pereption of sound, it takes into aount the well-known logarithmi natureof this pereption. This nature is revealed in the fat that for any pith s with frequeny f ,the pith with frequeny 2n−1 · f will be pereived as being n times higher than s (e.g. A6at 1760Hz is pereived as being three times higher than A4 at 440Hz). The interval betweentwo onseutive suh pithes is alled an otave,7 and it is lear that otaves (and indeedany musial interval between two notes) span di�erent frequeny ranges, depending on therespetive base frequeny. Any �musial� frequeny grouping must neessarily take this intoaount. In our ase, this is handled by an adaptive window size in the grouping of frequenyranges to spei� pithes�as the absolute frequeny dereases, so does the size of the respetivewindow that determines if a spei� frequeny still belongs to an individual pith.8 On thetehnial side, this is implemented by an array of bandpass �lters of varying size and sample6Also alled period performanes, these use a standard pith of a′ = 415Hz for early musi instead of themodern standard of a′ = 440Hz, orresponding to a lowering by one semitone.7The name �otave� is derived from the range of eight notes whih are ontained in this musial interval onthe diatoni sale (ounting both ends). There is another interesting phenomenon onerning the pereptionof sound alled otave equivalene whih we will enounter in Setion 2.2.3.8In other words: Low pithes have smaller windows than high pithes, sine there is less spae between twolow pithes than there is between two high pithes.12



2.2 Pith- and Chroma-Based Audio Featuresrate. Figure 2.6 shows a graphial representation of this where the varying interval sizes for a�xed sample rate are partiularly well visible.
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Figure 2.6: A sample array of �lters with their respetive magnitude responses in dB (reproduedfrom [Mül07℄ by permission)Dealing with the tehnial details involved with the onrete realization of this design wouldstreth the sope of this work too muh, so the interested reader is referred to the originalmonograph instead. Intuitively, after the frequeny deomposition, one ends up with an arrayof 88 di�erent signals orresponding to the ontributions of eah of the 88 pithes produedby a typial modern piano.2.2.2 Loal Energy (STMSP) FeaturesDeomposing an input signal into frequeny groups orresponding to spei� pithes enablesus to measure the individual ontributions eah of the pithes makes to the overall signal.What is not yet lear is the unit of measurement for these ontributions. Sine we are lookingfor a measure losely orrelated to the loudness of a ertain signal, we hoose loal energy asmeasured by the short-time mean-square power (STMSP) of this signal. For a signal xn of onespei� subband n and some sampling points k taken from a time window of a (small) �xed
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Figure 2.8: Chroma features for two di�erent PathBeg versions, time in seondssize, this is de�ned as ∑

k |xn(k)|2. The size of the time window is typially hosen somewherein the order of a few milliseonds, the sampling rate in the order of about 88Hz. The hoieof both parameters depends on the original sample rate of the respetive subband. Theyare de�ned in suh a way that individual subbands yield omparable results in the STMSPomputation. This step is performed multiple times while the time window is shifted arossthe whole of the input signal. The result is a sequene of individual STMSP features.The example (Fig. 2.7) shows a time-pith plot for the beginning of Beethoven's Sonata Pathé-tique, our running example. Note that only the most prominent pithes show up at all�thisis due to the fat that individual pith ontributions are usually not signi�ant with regard tothe overall piture, and one has to do some more work to extrat musially meaningful datafrom this basi feature.2.2.3 Chroma FeaturesThe next step in the extration pipeline is onerned with a redution of the feature spaegenerated by pith energy extration to a 12-dimensional spae that is suitable for harmonipost-proessing. To understand preisely how this is done (and why it is a valid proessingstep), one has to onsider the pereptual phenomenon known as otave equivalene: In humanhearing, any two tones separated by a distane of one (or more) otave(s) are onsidered to�sound� alike, i.e. they are pereived as the same tone played in di�erent pith registers (fordetails see [Mi08℄, p. 21). This enables the lassi�ation of pithes along two dimensions, the�rst being the respetive �note olor� of the pith as pereived by the human listener (whih isthe attribute of the sound that does not hange aross di�erent otaves), and the seond beingan indiation of the register in whih the note is sounded. Usually, the �rst aspet is referredto as hroma (Greek for �olor�) and the seond as tone height. As an example, onsider thepith A4: its hroma is designated by the �A�, and the respetive register or tone height isde�ned by the number 4. The entirety of pithes of a single hroma is sometimes also alleda pith lass.14



2.2 Pith- and Chroma-Based Audio FeaturesAs we learn that eah otave of the equal tempered sale onsists of twelve notes orrespond-ing to twelve di�erent hroma, it beomes lear how the feature spae redution works: Theinformation on single pithes is simply ollapsed aross otaves, suh that one ends up withan indiator of the ontribution all notes of a spei� hroma make to the original signal,irrespetive of the otave in whih they are played. This is in aordane with the traditionaltheory of harmony whih states that pith register is largely irrelevant for the harmoni lassi-�ation of a single hord. The ollapsing step simply onsists of adding up all individual noteontributions (i.e., their STMSP) of the same hroma for eah element of the STMSP featuresequene, so the omputational e�ort required for this transformation is linear in the number ofthese elements. The transformation result, a vetor ontaining a sequene of 12-dimensionalfeatures, is alled hroma representation of the audio signal. Figure 2.8 depits a sampleoutput of this step, where the names of the hroma vetors have already been annotated.92.2.4 CENS FeaturesConeptually, the hroma feature already gives a good approximation of the goal we weretrying to ahieve with our feature design, namely extrating the harmoni harateristis ofa piee. Tehnially however, there is still some work left to do in order to make the featuremore robust and invariant with regard to ertain data attributes that should be disardedwhen fousing on harmoni similarity. This is done in the �nal phase of the feature extrationpipeline with the omputation of hroma energy normalized statistis (CENS) features.The omputation of CENS features is done in multiple stages and is thus best understood interms of being a pipeline itself, ontained in the larger and more general feature extrationpipeline. The CENS proessing steps are as follows:1. Normalization. Eah feature vetor of the hroma representation is normalized to arange in the interval [0, 1]. In ases of near-silene, the uniform distribution is substitutedfor the atual vetor to avoid introduing statistial noise.2. Quantization. The normalized setors are quantized aording to a logarithmi binningfuntion b : [0, 1] → {0, 1, 2, 3, 4}. This oarsens the resolution to make the measureinsensitive to loal variations.3. Convolution. The quantized vetors are onvolved with a Hann window of a spei�size to lessen the impat of loal errors in the extrated features.4. Downsampling. The resulting feature sequene is downsampled by a spei� fator tofurther oarsen the resolution.5. Normalization. Finally, the single vetors are again normalized with respet to theEulidean norm.The resulting CENS features are robust enough to ignore loal variations in timbre, artiulationand other performane-spei� attributes, while orrelating very strongly to the harmoniprogression of a piee (Fig. 2.9). They form the basis of a �globally-oriented� alignmentproedure whih will be introdued in Setion 2.4�in this ontext, globally-oriented should9Note the enharmoni spelling of E♭ as D♯. 15
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Figure 2.9: CENS features for the two PathBeg versions shown in Figure 2.8, time in seondsbe taken to mean that this feature is not suitable for the alignment of very subtle note-to-noteorrespondenes, sine it is designed to suppress this level of detail. We will see a potentialsoure of �loally-oriented� alignment information in the next setion.2.2.5 Onset FeaturesCENS features are one example for the extration of useful information from STMSP data ona partiular audio stream. Another interesting feature that the STMSP representation givesrise to is onerned with the detetion of note onsets. This information is espeially usefulfor the synhronization (or alignment) of two audio streams on a very high resolution level,whih of ourse is essential for the purposes of performane analysis. Onset information an beextrated from STMSP features of an audio stream by applying the following observation: Formany instruments, sound generation is haraterized by a sudden inrease in energy, followedby a gradual deline (also alled attak and deay phases of the sound). This sudden energyinrease is espeially pronouned in the pith band orresponding to the fundamental frequenyof the sound (and, to a lesser extent, in its �rst few harmonis). Hene, measuring inreases inenergy in a spei� pith band may give pointers to loations where a note orresponding tothis pith is played. This measurement an be performed omparatively easily by omputingthe �rst-order di�erene of onseutive entries of the STMSP urve x de�ned by x′(n) :=
x(n) − x(n − 1), n ∈ Z. This di�erene is then half wave reti�ed, a proess that essentially�uts away� negative values of the urve and sets them to zero, leaving only positive valuesfor further proessing. Finding peaks (loal maxima) in this so-alled onset signal then givesgood indiators to loations of potential note onsets.In the ase of MIDI data, note onsets an be extrated trivially by diret examination of thedata stream, without needing to resort to STMSP features. We will exploit this fat later onto arrive at very preise onset measurements that an be used to failitate analysis of a singlespei� performane of a piee.
16



2.3 Dynami Time Warping (DTW)2.3 Dynami Time Warping (DTW)In the preeding setion, we enountered some features whih allow us to make musially mean-ingful assertions about a piee after their extration. Comparing two feature sets extratedfrom di�erent interpretations of the same piee allows us to make an additional observation:We an see how the di�erent performanes are interrelated and try to �nd out the main sim-ilarities and di�erenes between them. When fousing the omparison on a spei� setionof the piee, however, one needs to be areful: There is no absolute timing referene thatan be used to loate suh a setion in a performane, hene it is possible that one artistarrives at a spei� setion at e.g. 240 seonds into the interpretation, while another artistmay need 270 seonds to get to the same setion. The proess of omputing an assoiationtime frame that an be used to loate semantially equivalent setions of two piees is referredto as alignment of the piees. This an be done aurately and e�iently using a tehniquealled Dynami Time Warping (DTW), whih is well-known and widely used. This setionpresents this tehnique; in the next setion, a disussion follows on its relation to performaneanalysis.Stated in general terms, the objetive of DTW is to align two time-dependent sequenes
X := (x1, x2, ..., xN ) of length N ∈ N and Y := (y1, y2, ..., yM ) of length M ∈ N. The ontentof these sequenes onsists of equidistantly sampled features taken from some �xed featurespae F . To measure the similarity of two features, a loal ost measure (or loal distanemeasure) c is employed, with c : F × F → R≥0. This distane measure should be small(indiating a low ost) when omparing two similar features, and high in the opposite ase.To obtain an optimal alignment, one has to ompare all feature pairs. Storing the results ofthese omparisons in a ost matrix C ∈ R

N×M with C(n,m) := c(xn, ym), one an imaginethe optimal alignment as a path running from lower left to upper right of the matrix along
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Chapter 2 Musi SynhronizationVetor Stored Features
X a b c1 c2 d1 d2 e f g h

Y a1 a2 b c d e f g1 g2 h1 h2 h3Table 2.1: Two feature vetors with semantially assoiated frames grouped togetherReferene Vetor Warping Path Assignments
X 1 1 2 3 4 5 6 7 8 9 9 10 10 10
Y 1 2 3 4 4 5 5 6 7 8 9 10 11 12Table 2.2: An optimal warping path for table 2.1the �valley� of minimal ost (see Figure 2.10).A formalization of the onept of an alignment yields the following de�nition: A warpingpath of length L ∈ N between two sequenes X and Y of length N and M , respetively, is asequene p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L] whih satis�esthe following onditions:10i) Boundary ondition: p1 = (1, 1) and pL = (N,M).ii) Step size ondition: ∀ l ∈ [1 : L− 1] : pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}.Intuitively, the warping path de�nes a mapping between the two feature sequenes suh thatfeatures xnl

and yml
orrespond to the same semanti unit. Table 2.2 illustrates how suh amapping might look like for two sequenes X and Y as de�ned in table 2.1. In this samplease, F = {a, b, c, d, e, f, g, h}, N = 10 and M = 12. It is easy to see from the table that the�rst element of X orresponds to the �rst two elements of Y , and so on. We will sometimesrefer to the entries of the warping path by their assoiation to a spei� sequene, for instanethe elements nl, l ∈ [1 : L] might be referred to as �X entries� of the warping path. Likewise,the row ontaining suh entries may be referred to as �X row� of the warping path.The onditions ensure that the mapping is omplete in the sense that no element of either

X or Y is negleted. Note that the step size ondition implies monotoniity of the sequenes
n1, n2, ..., nL and m1,m2, ...,mL, a fat sometimes made expliit in a separately stated mono-toniity ondition.The total ost cp(X,Y ) of a warping path p between X and Y using ost measure c is de�nedas cp(X,Y ) :=

∑L
l=1 c(xnl

, yml
). The path having minimal total ost over all possible warpingpaths is alled optimal warping path p*. The DTW distane between X and Y is then de�nedby DTW (X,Y ) := cp∗(X,Y ).Computation of the Warping PathA naïve implementation of a DTW omputation algorithm might simply ompute all possiblewarping paths between X and Y and then pik the one with minimal total ost. However, this10We de�ne the shorthand [a : b] := {a, ..., b} for a, b ∈ N.18



2.3 Dynami Time Warping (DTW)approah takes time exponential in N and M , so it is omputationally infeasible. One an dobetter by observing that DTW exhibits the properties of overlapping subproblems and optimalsubstruture (sine every globally optimal warping path must neessarily be loally optimal),making it well suited for a dynami programming approah with a time omplexity of O(NM).For the implementation of suh an approah, we de�ne an N×M matrix D alled aumulatedost matrix as follows: D(n,m) := DTW ((x1, ..., xn), (y1, ..., ym)), i.e. every ell of this matrixontains the ost of a �partial� warping path between some pre�xes of X and Y .
D satis�es the following identities:

D(n, 1) =

n
∑

k=1

c(xk, y1) for n ∈ [1 : N ]

D(1,m) =

m
∑

k=1

c(x1, ym) for m ∈ [1 : M ]

D(n,m) = min{D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)}+ c(xm, ym)

for 1 < n ≤ N and 1 < m ≤MHene, DTW (X,Y ) = D(N,M).11 This implies that D an be omputed reursively, startingat the upper right of the matrix at loation (N,M) and working downward in a stepwisemanner till one arrives at the lower left (1, 1), the base ase. Reversing the proess to workiteratively in a bottom-up fashion from (1, 1) towards (N,M), one an ut down on memoryspae requirements while preserving the omputation omplexity of O(NM).
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Chapter 2 Musi Synhronization
pl = (n,m) for l ∈ [2 : L], then

pl−1 :=







(1,m− 1) if n = 1
(n− 1, 1) if m = 1
argmin{D(n− 1,m− 1),D(n − 1,m),D(n,m− 1)} otherwiseSee Figure 2.11 for a visualization of the basi idea. There is a large variety of possibleoptimizations for the omputation of the warping path, and we have barely begun to sraththe surfae. A more in-depth disussion is given in [Mül07℄.2.4 DTW in Musi SynhronizationTo make use of the DTW algorithm for the purpose of musi synhronization, one just needsto de�ne a suitable feature spae F and ost measure c. Perhaps not surprisingly, we hoosethe CENS features introdued in Setion 2.2.4, so F = {v ∈ [0, 1]12 | ‖v‖2 = 1}. For the ostmeasure, we de�ne cα by cα := 1− 〈x, y〉+ α for some o�set α ∈ R≥0. The o�set is neessaryto aount for areas of little harmoni hange where the CENS features annot auratelydistinguish �good� and �bad� paths any longer. Without the o�set, the path's behavior inthese ases would be essentially random, sine movement inside suh a region does not inurhigh osts�inluding it predisposes the warping path towards the geometri optimum, whihis the most reasonable alternative in suh a ase. Sine the CENS features are normalizedwith regard to the Eulidean norm, 〈x, y〉 is equivalent to the osine of the angle between xand y.While the design desribed above is su�ient for a good intuition of a harmony-based align-ment proedure, of ourse suh a method would not yield very onvining results for our goalof extrating detailed timing information from the warping path. In pratie, the harmony-based alignment is used as a basis for further re�nements, for example using onset featuresas introdued in 2.2.5. Reently, this has been done by Ewert, Müller and Groshe [EMG09℄.Their approah integrates hroma-based and onset features on the ost matrix level and a�ordsgood alignment auray while preserving the robustness gained by the use of hroma-basedfeatures. In the remainder of this work, we will suppose synhronization data generated bysuh an algorithm, without going into the spei�s of warping path re�nement neessary toobtain higher-quality alignments.In the preeding setions, the presentation has foused on the alignment of audio/audio pairs,sine this is perhaps the most hallenging problem. Alignment of MIDI/MIDI or MIDI/audiopairs an be performed by using the same proedure as desribed before, exept that STMSPand onset features an be extrated from the MIDI diretly sine they are represented ina symboli manner. For the �rst, one only has to read the relevant parameters from therespetive note onset/o�set messages and onvert them to a suitable STMSP representation.Onset features are even easier to extrat, sine they orrespond exatly to the note onsettimings already present in said messages. Finally, the alignment of sore/MIDI or sore/audiopairs an be redued to MIDI/MIDI or MIDI/audio alignments by generating a standard MIDI�le from the sore. This funtionality is provided by default for all the toolkits that deal withthe proessing of digital sore data, so this does not pose any tehnial problems.1212Even though some notational ambiguities have to be resolved, see Setion 2.1.1.20



Chapter 3Tempo CurvesThe notes I handle no better than many pianists. But the pauses between the notes�ah,that is where the art resides. �Arthur Shnabel, 1958The previous hapter introdued the tehnial infrastruture neessary for the synhroniza-tion of two interpretations of a piee of musi. This hapter builds on that material buydemonstrating how to use alignment information for the omputation of tempo information.However, it will �rst be neessary to disuss what exatly is meant by �tempo information�.The hapter begins with the introdution of some of the di�erent hierarhies (or levels) thatdetermine the strutural layout of a piee. We then show how these levels form the basis ofa formal de�nition of the tempo and assoiated tempo urve of a piee, and disuss threealgorithms for its omputation using alignment data as input. This forms the presentation ofthe prinipal oneptual ontribution of the work. Finally, we brie�y touh on related topissuh as dynamis urves.3.1 Measuring TempoListening to a piee of musi is always a subjetive experiene, and no two persons havepreisely the same thoughts or emotions when witnessing a spei� performane of a piee.Even so, there are ertain harateristis of a musial piee that transend subjetivity andan be laimed to be universal, and among the most important of those is its tempo. Thefeeling of pulse and rhythm is one of the entral de�ning harateristis of nearly all Westernmusi up to (and mostly inluding) the 20th entury, and thus measuring the tempo of a pieeas aurately as possible is an obvious goal of (automated) musi proessing.Coneptually, a tempo urve is the natural result of suh a measurement proess; it plots thetempo of a piee over the time span in whih it is played (Fig. 3.1). Implementing this idea,however, is harder than it �rst appears. Sine �tempo� is hard to de�ne in absolute terms,one has to �nd a proper referene against whih to measure deviations (e.g. to determine apiee's tempo in BPM, one ould use the beat indiated by the piee's time signature as areferene). Even the very proess of measurement is not as well-de�ned as one would wish:Whih musial properties haraterize the tempo, and exatly how preisely an they bemeasured before getting drowned in statistial noise? In the following, we will explore someof the possibilities in an attempt to answer these questions. 21
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Figure 3.1: A sample tempo urve for the �rst seven measures of PathExp, time in mea-sures and tempo in BPM. Phrase struturing and a temporary slow-down at apartiularly hallenging passage in measure four are learly visible.3.1.1 Metrial Hierarhies in TempoUnlike visual media suh as paintings, musi is an inherently sequential art form. It an-not exist outside a temporal referene frame, hene the relation between the development ofmusial onepts on the one hand and the passage of time on the other hand is one of themain expressive parameters whih omposer and performer manipulate for artisti purposes.However, sine it is quite easy to �get lost� in a ompletely free stream of time, Western las-sial musi regularly employs rigid strutures for the organization and setioning of musialepisodes in time, whih are observed and typially emphasized by the artist in a musial per-formane [Cla87℄. We have already seen the basi organizational struture alled a measure(or bar) in Setion 2.1.1. There are other divisions possible on several levels that highlightdi�erent musial entities, as an be seen in Fig. 3.2. Aordingly, di�erent division levels mayserve as the foundation of di�erent tempo levels that an oneivably be measured.Beat level. The beat forms the most basi building blok of larger periodi strutures suh asindividual measures (inversely, it an also be regarded as a re�nement of the setioningimposed on the piee by the bar struture). The beat provides a steady and regularpulse as indiated by the time signature of the piee, e.g. for a piee in 3/4 time, therewill always be three beats (of quarter note length) per bar. Finer subdivisions based onthe beat are referred to as beat level (or mensural level) strutures as well, e.g. divisionson the level of eighth or sixteenth notes in a quarter beat ontext. If the tempo of apiee does not hange over time, setioning on this level an be done by determiningthe length of one beat and sliing the piee into time segments of that length. Here, themain advantage of a beat level division is periodiity�eah time segment an be reliedon to have the same length. This is also its main disadvantage: If the time segment is22



3.1 Measuring Tempotoo large, valuable information may be lost in the tempo measurement.Note level. The note level division separates single onseutive notes from eah other, regard-less of their respetive length. A division on this level has the advantage of automatiadaptability to the �best� resolution available to apture a musial segment, althoughthis omes at the ost of lost periodiity�while the beat is guaranteed to our at well-known intervals throughout a piee (barring time signature hanges), for the note leveldivision there is no suh assurane. Due to the adaptive resolution, tempo measurementsdone on the note level are usually more sensitive than measurements done on the beatlevel. This means that they are better at spotting subtle tempo nuanes while at thesame time being more suseptible to measurement errors or proessing artifats.Motif level. A division on the motif level makes great musial sense, although it relies on theassumption that motives exist in the piee and an be readily obtained either by analysisor prior knowledge (whih is not the ase in general).13 However, if suh a division ispossible, timing information based on it may reveal a great deal of information abouteither the piee or the performing artist.Phrase level. The same onsiderations as for the motif level hold for the phrase level, theymerely di�er in their respetive strutural level�phrases obviously belong to a moreglobal strutural ontext than simple motives.
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beat levelFigure 3.2: Franz Shubert: Winterreise D911, �Frühlingstraum� (Exerpt)The di�erenes between the strutural hierarhies already point to a related issue, whihonerns the ontrast between global tempo, loal tempo and loal timing. Figure 3.3 illustrateshow these are laid out with respet to eah other: The global tempo refers to the omplexlayout of a piee as envisioned by the omposer and typially spans a wide number of bars(though it still very muh depends on the performer to realize the omposer's ideas). Inontrast, the term �loal timing� is used to desribe tempo variations on a very small sale(in the order of at most a few hundred milliseonds). We are mainly interested in the loaltempo, whih onerns small-sale tempo variations whose range typially enompasses asmall number of individual notes at the most. These variations an be due to various fators,inluding artisti phrase shaping and realization of omposer instrutions suh as fermatas[FGW08℄.13As an additional di�ulty, de�nitions of motives and phrases are always subjetive and thus open for debate.23



Chapter 3 Tempo Curves
Figure 3.3: Di�erent resolution levels of tempo measurementFrom a performane analysis viewpoint, tempo and timing measures serve di�erent purposes:Information about the global tempo of a piee is muh more useful for assertions about thepiee itself (i.e., the omposition) than the timing measurement, although it may also be usedto analyze a spei� performane. On the other hand, a performer's artisti timing is stritlytied to a spei� interpretation and thus best suited for analysis tasks that aim to ompareand relate a number of di�erent performanes (possibly of the same piee). Here, the fous ismainly on gaining information about the performers' idiosynrati playing styles. The loaltempo lies somewhere in the middle ground and an thus be used for both of these purposes.In the following, any unquali�ed use of the term �tempo� should be taken to refer to the loaltempo, whih is the main fous of this work. When neessary, the term �global tempo� willbe used expliitly to distinguish the two.3.1.2 A Referene Frame for TempoAs has been already mentioned, the tempo of a piee does not exist in an �absolute� spae,it always needs a referene frame to be meaningful (i.e., the piee must always get slower,faster or stay the same in relation to something else). The impliit frame of referene for ahuman listener is usually an idealized beat produed by his imagination�he piks up on thepulse of a piee, and then (based on his musial intuition) extrapolates from it to estimatethe onset times of the next ouple of notes. If these notes arrive at an earlier or later point intime than expeted, the listener noties a hange in tempo. While we may take this frame ofreferene for granted sine it orresponds so losely to our subjetive experiene, it is in fatsomewhat arbitrary: What if the omposer indiated in the sore that he wanted the pieeto slow down, yet the performer maintained a steady tempo? An unsuspeting listener wouldnot notie anything unusual (unless he was familiar with a faithful reording of the piee),but if one hose the omposer's given tempo as a basis for judging a performane, the steadilyheld tempo would register as a speed-up.One might argue that the BPM measure o�ers absolute information about a piee's tempo,but even this is not ompletely true: There are a multitude of di�erent possible ways to notatea piee of musi that an be argued to be essentially equivalent (e.g. using 6/8 time instead of3/4 time), but would produe di�erent BPM results�after all, the 6/8 time signature impliesdouble the number of beats as 3/4 time, even though the duration of a single suh beat isthen only half as long. This means that BPM information beomes meaningful only in theontext of a known time signature that an at as a referene frame.Given this understanding, the �rst thing one needs to do in measuring the tempo of a piee isto pik a sensible frame of referene. A natural hoie for this is a �xed number of BPM tiedto a spei� time signature as desribed above, sine this orresponds losely to the regular24



3.1 Measuring Tempolistening experiene. To avoid problems where di�erent referene frames (e.g. omposer'stempo indiation vs. listener's expetation) would yield di�erent results for the tempo urve,we assume that the only tempo hanges in our input data are of a loal nature; that is, we donot permit that time signature hanges or novel tempo markings our in the passage we areanalyzing. This assumption is not overly restriting sine suh markings normally indiatestrutural hanges as well, e.g. the beginning of a whole new setion. In suh a ase, it isreasonable from a musial standpoint to analyze that segment separately.The onrete data used as a referene is a Standard MIDI File that is produed diretly fromthe sore. Its tempo is �xed by obtaining the omposer's tempo marking of the relevantpassage, whih is onverted to a spei� BPM value. As disussed in Setion 2.1.1, thisis an inexat siene: Tempo is usually indiated with a deliberately loosely de�ned termthat is open for interpretation. This ambiguity must be resolved at the time the MIDI isprodued. For this, we simply pik a likely tempo from the possible range of options. Sinewe are interested in relative values rather than absolute ones, we aept that this may slightlyskew the onrete omputed values upwards or downwards�the only relevant onern is thatthe shape of the tempo urve be preserved, whih is the ase here. Note that even thoughthis is not a primary goal of our work, we may still ompute aurate absolute BPM valuesif the MIDI is set to a preise referene tempo. We refer to the generated MIDI �le as thereferene; the musial interpretation we want to analyze is alled either performane or simplyinterpretation.3.1.3 Extration Methods of Tempo FeaturesAfter the referene has been established, we still have to measure the tempo of the atualperformane. This proess an be split into two steps: The extration of ertain featuresfrom referene and interpretation, and the omparison of these features. The features used forthis losely relate to the various levels disussed in the preeding setion�in fat, for tempourves it is su�ient to use onset features that apture the point in time when an event onsuh a level happens. As an example, features on the note level onsist of note onset times aspresented in Setion 2.2.5. There are several di�erent ways of obtaining these features:Automati annotation. Trying to automate the proess of feature extration is an obvious(but hallenging) idea in performane analysis. To date, no algorithm is known toprodue results whih are as aurate as an be ahieved by manual annotation, althougherror margins may be small enough for ertain appliations [Dix01, Dix07℄. This worktries to slightly improve this state.Manual annotation. Human intervention is the most labor-intensive way of olleting fea-tures, but also among the most aurate. It is usually done on the beat level, oftenusing a speial-purpose tool (e.g. the Soni Visualiser [Son09℄) that displays and playsthe waveform and lets the user graphially plae the onsets in this representation. Oneuseful ourse of ation is to take the output of an automated analysis and adjust itmanually to the desired degree of auray, thereby minimizing required human e�ortwhile maintaining high data quality. In previous work, this method has enjoyed height-ened attention beause results produed by other approahes were often not satisfatory[Wid02, WDG+03, Sap07, Sap08℄. 25



Chapter 3 Tempo Curves�Diret� annotation. By use of speialized equipment, one an apture onset times during theatual reording of a piee of musi. One example of this is the so-alled player piano,a omputer-monitored piano that generates symboli (MIDI) data when it is played.Suh data an be used as a basis for manual annotations, e.g. [Wid02, WDG+03℄. Theadvantage of this approah is that it produes the best data that an be gained (sinesymboli onsets orrelate perfetly to physial onset times), the obvious disadvantage isthat speial-purpose hardware needs to be used during the reording of the piee. Inpartiular, there is no way of adapting this approah to work on existing reordings, sothe huge amount of data available e.g. on CD reordings annot be analyzed using thisapproah.It is worth pointing out that the method used for obtaining tempo features is essentiallyirrelevant with regard to the performane analysis steps that follow feature extration. Thismeans that an approah that operates on beat-level tempo features will take as input anysuh feature set, regardless of whether it was produed manually or automatially. Hene,one an hoose the best feature extration method available for the development of suh analgorithm�even if obtaining suh a feature set is not feasible for regular usage, the algorithmwill work just �ne with di�erently generated features (provided that they meet reasonablyhigh quality standards).The alignment proess desribed in Setion 2.4 an be regarded as an automated annotationof the interpretation by the data given in the referene �le. This inludes note onsets, o�setand possibly dynamis information�even song lyris may be inorporated in the refereneMIDI.3.1.4 Tempo Feature ComparisonThe last step in tempo measurement is atually the easiest. After the required features havebeen extrated, measuring the tempo of the piee amounts to a straightforward orrelationof these features and measurement of the di�erene in onset time between interpretation andreferene. For example, onsider a short piee of musi where only four note onsets our(Table 3.1). Eah onset is designated by an individual letter orresponding to a musial note,length of the notes is indiated by splitting single letters into multiple versions of the sameletter, distinguished by their indies.In the referene, the onsets our at times 1, 2, 3 and 4 (given by their respetive index intothe data sequene) while in the interpretation, the onsets our at times 1, 3, 5 and 7. Wean observe that the time di�erene between two onseutive onsets is onstant in the twoversions, and that it is 1 in the referene and 2 in the interpretation. Thus, the translationfator between referene and interpretation is 1
2 , and we an onlude that the interpretationis played half as fast as the referene. This forms the basis of our understanding of the termtempo: It is the progression fator of time units in the referene vs. the progression fatorof time unit in the interpretation. By using a known BPM value for the progression of timeunits in the referene (where a time unit is de�ned as the duration of one beat), we are thenable to ompute absolute BPM values for the tempo of the performane as well.26



3.2 Warping Path Based Tempo Curves3.2 Warping Path Based Tempo CurvesWe are now ready to introdue the approah taken in this thesis. Its basi idea is to makeuse of the fat that an alignment between referene and atual performane�i.e., a warpingpath�an be regarded as a desription of the performane's tempo struture. This failitatesanalysis of the warping path to build a tempo urve from the information it ontains. Tosee how this is done, onsider again Table 3.1. An optimal warping path for this example isdepited in Table 3.2.Intuitively, one an �read o�� the ratio of time progression in the referene vs. time progressionin the interpretation by looking at the respetive length of semantially orresponding musisegments in the two data streams: In this example, eah progress by one time unit in thereferene orresponds to a progression by two time units in the interpretation. This is re�etedin the warping path by the fat that eah individual index into the referene must our twieto �t its tempo to the tempo of the interpretation. Hene, we an again onlude that thetranslation fator between referene and interpretation is 1
2 , i.e. half-tempo.Notie that in the plot of this warping path (Fig. 3.4), the gradient of the idealized warpingpath (whih is gained by averaging over the values of the atual warping path) is preiselytwo�the inverse of the translation fator. We will now formalize this intuitive understand-ing.3.2.1 Sliding Window Computation of Tempo CurvesLet p = (p1, ..., pL) be a warping path of length L between two sequenes X and Y of length

N and M as de�ned in Setion 2.3, where X is the referene of a given piee of musi and Yits respetive interpretation. We de�ne the extended warping path pext for all l ∈ Z by paddingthe regular warping path p at the loations where it was not expliitly omputed, using theassumption that referene and interpretation have equivalent tempo there:
pext

l :=







pl = (nl,ml) if l ∈ [1 : L]
(l, l) if l < 1
(N + l − L,M + l − L) if l > LFor the following de�nitions, we will assume that the warping path is always padded like thisto avoid speial treatment of �boundary ases�.The omputation of the tempo urve basially works by looking at eah element of the referenesequene, determining the length of the entries of the warping path semantially orrespond-ing to this element both in the referene row and the interpretation row, and omputing thequotient between both of these lengths. However, suh an element-wise omputation is ex-tremely unstable in terms of robustness against alignment errors and artifats. Therefore, wealso introdue an averaging window of size w that de�nes a broader range of elements of thereferene that are inluded in this examination. The tempo urve is then determined not by�nding semantially orresponding entries to a spei� element x ∈ X, but rather to a rangeof w suh elements entered around x. We formalize this by looking at the omputation ofone partiular entry of the tempo urve in detail. 27



Chapter 3 Tempo Curves Referene e  d gInterpretation e1 e2 c1 c2 d1 d2 g1 g2Table 3.1: Two shemati piees of musi, note onsets marked redAssoiated Vetor Warping Path AssignmentsReferene 1 1 2 2 3 3 4 4Interpretation 1 2 3 4 5 6 7 8Table 3.2: An optimal warping path for Table 3.1
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Figure 3.4: Visualization of the warping path of Table 3.2 (notie di�erent saling for horizon-tal referene and vertial interpretation, time given in indies into Table 3.1)Let n ∈ [1 : N ] be an arbitrary but �xed index into the referene data sequene X and
w ∈ N>0 the size of an averaging window. The tempo urve indued by the warping path pwith respet to w is a funtion τ : [1 : N ]→ R≥0 that is de�ned by

τw(n) :=
(b + 1)− a

(mlb + 1)−mlaHere, la and lb are omputed aording to the following de�nitions:
a := n−

⌊

w − 1

2

⌋

b := n +

⌈

w − 1

2

⌉

la := max{l ∈ Z | nl = a}

lb := max{l ∈ Z | nl = b}28



3.2 Warping Path Based Tempo CurvesThis means that a and b de�ne the indies of the outer limits of the window w in the referenesequene, i.e. the elements of the referene sequene inluded in this examination step aregiven by the range [xa : xb]. The middle element of this range is always xn. Although some ofthe elements of this range may be non-existent (for a < 1 or b > N), their respetive indiesare still inluded in the extended warping path. Hene, τ is well-de�ned on the full domain
[1 : N ] for arbitrary window sizes. Just as a and b de�ne the indies of window limits in thereferene sequene X, la and lb represent the indies of window limits in the extended warpingpath pext

l . In the ase of ambiguities (when a or b our multiple times in the referene rowof the warping path), their de�nition is designed to always pik the largest possible index stilldenoting an ourrene of a or b, respetively. Other possible hoies would have inludedthe smallest suh index, or the index of the middle element of the respetive range. Sine theimpat of this hoie is negligible with respet to overall auray, the only important pointhere is that for any ambiguous ase, exatly one index is piked that always remains the samewhenever that ase is evaluated. This is the ase with the maximum used in this de�nition.Note that the tempo urve is de�ned in terms of the referene sequene, so the �resolution� ofthis sequene (i.e. the length of the features that make up its individual elements) determinesthe resolution (or preision) of the tempo urve as well. Sine w = (b + 1) − a, we an alsoformulate the de�nition of τ as follows:
τw(n) :=

w

(mlb + 1)−mlaIn b + 1 and mlb + 1, the addition of �one� is neessary to aount for the last element ofthe sequene we are inspeting whih would not be ounted otherwise�e.g., even if a = band mla = mlb , we are still examining exatly one element of referene sequene and warpingpath.Consider an example: We will evaluate the warping path depited in Fig. 3.4 at n = 3 witha window size w = 3. In this ase, a = 2 and b = 4. As {l ∈ [1 : L] | nl = 2} = {3, 4} and
{l ∈ [1 : L] | nl = 4} = {7, 8}, la = 4 and lb = 8, aording to the de�nition. Notie howthe ambiguous borders are resolved in both ases. Next, we evaluate τ3(3) = (4+1)−2

(8+1)−4 = 3
5 .The di�erene of this result to the �ideal� tempo of 1

2 is due to a general drawbak of thisapproah: Operating on the atual warping path is in general not equivalent to working onan ideal warping path, and an important point of our ontribution is to alleviate this problemby smoothing (averaging) over various values to still arrive at adequate tempo urves.In the algorithmi omputation of the tempo urve, we will iteratively �slide� the window wover all indies n ∈ [1 : N ] into the referene sequene to ompute all entries of the tempourve. Consequentially, we refer to the lass of algorithms presented here as sliding windowalgorithms. The di�erent evaluation tehniques that distinguish these algorithms from eahother are based on some of the di�erent feature levels from Setion 3.1.1: The �rst tehniquesetions the warping path into equal-length snippets of a �xed time, orrelating to the beatlevel. The seond tehnique introdues uneven setioning based on a note-level division of themusi data, and the third tehnique tries to unify time based and note based approah.A major advantage of the warping path based sliding window approah is that it an beused in onjuntion with the DTW method presented in Setion 2.3. This allows us to exploitadvaned musi alignment tehniques to automatially generate tempo urves without the need29



Chapter 3 Tempo Curvesfor manual intervention. Sine DTW is designed to work with a wide variety of features, we arenot limited to any partiular feature resolution level but an use whatever features neessaryto build an aurate warping path. On the other hand, we an still deide to evaluate thewarping path on any preision level neessary for a spei� performane analysis purpose�one ould even perform an analysis of the symboli referene data stream to determine whihtimings fall on heavy beat times, melodi highlights, deeptive adenes and so on, and anuse this knowledge to seletively evaluate the tempo at suh points in time.3.2.2 Fixed Window Size Warping Path EvaluationThe most straightforward approah to tempo urve omputation onsists of a literal algorith-mi implementation of the formal desription given in Setion 3.2.1. The orresponding odeis presented in Algorithm 3.1. It expets only the extended warping path and the windowsize w as input. Remember that nl designates elements of the referene, while ml is used forelements of the interpretation.The algorithm slides and enters the window of size w over every element n of the referenesequene (lines 2�8), positioning the respetive borders exatly as in the formal de�nition ofthe proedure. While the presentation of the algorithm in this work remains faithful to thatde�nition, the atual implementation has a slightly di�erent struture that avoids potentiallyostly operations suh as the set omprehension of lines 5�6. The all to ExtendWarping-path extends p by the number of entries needed to aommodate a window of size w duringthe exeution of the algorithm.Sine w is �xed as a parameter to the algorithm, we all this algorithm the �xed window ap-proah to tempo urve omputation (FW for short). Notie that the window size is the onlyparameter that an be manipulated in this approah. Early experiments showed that a subse-quent additional averaging over multiple entries of the tempo urve did not yield signi�antlybetter results for the FW algorithm. Figures 3.5 and 3.6 may serve as a preliminary exampleof the output produed by the FW algorithm before we ome to a more detailed analysis inChapter 4.Changing the window size obviously hanges the outome of the omputation: Plotted are twotempo urves generated by di�erent parameter settings (blue) against a synthesized groundAlgorithm 3.1: Tempo urve omputation based on the �xed window tehniqueInput: warping path pl = (nl,ml) (l ∈ L), window size w ∈ N>0Output: tempo urve τ

p← ExtendWarpingpath(p, w);1 for n← 1 to N do2
a← n−

⌊

w−1
2

⌋;3
b← n +

⌈

w−1
2

⌉;4
la ← max{l ∈ Z | nl = a};5
lb ← max{l ∈ Z | nl = b};6
τ(n) ← w

mlb
−mla+1 ;7 end8 30



3.2 Warping Path Based Tempo Curves

30 40 50 60 70 80 90 100

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3.5: Results of the FW algorithm for w = 2 s, time in seonds
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Figure 3.6: Results of the FW algorithm for w = 5 s, time in seondstruth referene (whih will be disussed in detail in Setion 4.1, shown here in red). As per thede�nition of the tempo urve, tempo is given here not in BPM but in relation to a referenetempo: We start a bit slower than the referene, slow down to about 3/4 of the original speed,then speed up again until we have reahed the original tempo at t = 85 s. Two harateristisof the algorithm are immediately apparent: Flutuations in the generated urve beome lesspronouned as the window size inreases, but sensitivity to hanges lessens in turn (see e.g.adaptation of the urve to a new tempo at t = 41 s). Another visible e�et is aused by theentering of the smoothing window whih results in an antiipation of tempo hanges evenbefore they have started happening. Although we give the size of the window w in terms ofseonds in these examples (and will ontinue to do so for reasons of intuitiveness), we atuallymean by that a size with respet to the feature rate used in the warping path omputationthat orresponds to three seonds of the referene audio data.Viewing the tempo urve at a higher resolution, one an see a plateau e�et where ertainvalues have a muh higher probability of appearing in the tempo urve than other values (Fig.3.7). Furthermore, these seem to anel eah other out in their �utuation around the groundtruth tempo urve. This phenomenon is due to the stepwise, �integer� nature of the warping31
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Figure 3.7: Higher-resolution view of FW algorithm results for w = 2 s, time in seondspath that presribes a maximum resolution to the omputed value. We will disuss all of theseaspets in greater detail in Chapter 4.3.2.3 Adaptive Window Size Warping Path EvaluationAs already mentioned in Setion 3.1.1, segmenting and sampling the warping path aordingto periodi intervals has the disadvantage that it does not adapt optimally to the musialattributes of the data. A division that takes the distribution of the notes into aount ir-umvents this problem: The adaptive window size algorithm (AW for short, see Algorithm3.2) is one of the possible implementations of this idea. Instead of omputing the gradientbetween two points in time that are always w referene time units apart, it omputes gradients(or slopes) only at the points in time between two distint note onsets. If these onsets areonseutive, suh an interval is referred to as interonset interval (IOI).The basi idea behind this approah is to aknowledge that note onsets are the main soure oftempo data available for performane analysis proessing. This is espeially true for Westernlassial piano musi, but also for piees with di�erent orhestrations (note onsets may besome orders of magnitude harder to extrat in suh ontexts, but this is an ative researh�eld [GME09℄). Choosing to neglet arguably less important aspets suh as note o�sets orpedaling, we an laim that measuring note onset information is su�ient to reonstrut thetempo of a piee by orrelating eah measured onset to the respetive onset in the refereneas desribed in Setion 3.1.4. Consequently, omputing the gradient between note onsets triesto use the full amount of tempo information available from these onsets while disarding anyalignment artifats that our inside the region of an IOI.For our theoretial disussion, we need to update the omputation of the borders of theaveraging window. These are aligned to note onsets, whih we model as a set of indies intothe referene sequene O ⊆ [1 : N ]. For a number of K onsets, we de�ne O := {o1, ..., oK},with 1 ≤ o1 < o2 < ... < oK−1 < oK ≤ N (that is, we regard this set essentially as an orderedlist). Furthermore, without loss of generality we require that o1 = 1 and oK = N (if this isnot the ase, extend O by inserting o0 = 1 and oK+1 = N). This ensures proper window32



3.2 Warping Path Based Tempo Curvesalignment in the boundary ases (and also implies that K = L). Similar to the extendedwarping path, we de�ne an extended onset list Oext for all k ∈ Z as follows:
oext
k :=







ok if k ∈ [1 : K]
k if k < 1
N −K + k if k > KSimply put, this pads O with evenly-spaed onsets on both sides, whih again enables us toextend our averaging window beyond the boundaries of 1 and N , even when it must be alignedto note onsets. We are now ready to de�ne how the window edges are omputed in the AWase.Let wioi ∈ N>0 be the size of a window indiating the number of interonset intervals thatshould be inluded in an averaging step. We �rst examine the ase where wioi = 1, i.e. we areaveraging between two onseutive onsets. Then, for k ∈ [1 : K − 1], we have

τwioi
(ok) :=

(b + 1)− a

(mlb + 1)−mlaIn this ase, the following de�nitions are used for the window edges:
a := ok

b := ok+1

la := max{l ∈ Z | nl = a}

lb := max{l ∈ Z | nl = b}Hene, this ase is analogous to the FW approah�the only di�erenes are in the loationof the window edges, and the �plaement� of the omputed value in the tempo urve. Wherethe omputed gradient between two loations a and b was formerly plaed in their arithmetimiddle n = a + ⌊ b−a
2 ⌋ due to the entered window, it is now plaed simply at ok = a, theloation of the �rst onset.This only de�nes the tempo for loations where onsets are present, so we have to interpolatethe tempo at plaes where this is not the ase. To do this, �rst of all set τ(K) := 1. Now wean perform simple linear interpolation between all known onset loations: Let n ∈ [1 : N ] \ Obe an arbitrary but �xed loation where the tempo urve is not yet de�ned, and k ∈ [1 : K−1]the index of the onset whih immediately preedes it, i.e. ok < n < ok+1. Then,

τwioi
(n) := τ(ok) +

τ(ok+1)− τ(ok)

ok+1 − ok

· (n− ok)Let us now examine the ase where wioi > 1. Atually, we shall see that the de�nition isgeneral enough to aommodate wioi = 1 as well, so let wioi ∈ N>0 in the following. Theindies of the window edges are then given by this de�nition:
c := k −

⌊wioi

2

⌋

d := k +
⌈wioi

2

⌉

a := oc

b := od 33
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Figure 3.8: Warping path (blue) forPathBeg in ost matrix ontext and with interonset interpolation(onsets red, interpolation blak), time in seonds
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Figure 3.9: High-resolution view of the results of interonset interpolation, legend as aboveHere, c and d index into the list of onsets O. All other de�nitions remain as above; notiethat in ase wioi = 1, we have in fat a = ok and b = ok+1. This de�nition an also be usedto desribe the FW ase by setting O := [1 : N ]. For suh an O, this de�nition of τ beomesequivalent to the old de�nition of the FW ase for w = wioi.Figure 3.9 depits an example of the ombination of warping path (blue), onset information(vertial red lines) and the idealized warping path (blak) that is used by the AW approahfor the omputation of the tempo urve (i.e., an interonset interpolation of the atual warpingpath). Figure 3.8 shows how the original warping path was obtained from its respetive ostmatrix, demonstrating learly the orrespondene between artifats in the warping path thatneed to be smoothed out and regions of harmoni stagnany in the original piee.34



3.2 Warping Path Based Tempo CurvesAlgorithm 3.2: Tempo urve omputation based on the adapting window tehniqueInput: warping path pl = (nl,ml)(l ∈ L), onsets O = {o1, ..., oK}, window size wioi ∈ N>0Output: tempo urve τ

p← ExtendWarpingpath(p, wioi);1
O ← ExtendOnsets(O, wioi);2 for k ← 1 to K do3

c← k −
⌊

wioi
2

⌋;4
d← k +

⌈

wioi
2

⌉;5
a← oc;6
b← od;7
la ← max{l ∈ Z | nl = a};8
lb ← max{l ∈ Z | nl = b};9
τonsets(oc) ← (b+1)−a

(mlb
+1)−mla

;10 end11
τ ← Interpolate(τonsets , O);12 The struture of the algorithmi implementation (Alg. 3.2) is not largely di�erent from thetheoreti outline. The main work is done in lines 3�11: We iterate over all onsets and omputethe gradients between them, paying respet to the averaging window de�ned by wioi. Afterthis step, the tempo urve τ is de�ned exatly at the plaes where an onset ourred, henewe all the intermediate result τonsets. For a de�nition on the full domain, we still have tointerpolate the values in between onsets. This is done in line 17 by alling the auxiliaryfuntion Interpolate. This funtion omputes a linear interpolation as desribed, but ofourse other interpolation methods ould be used here as well.In the ase of the FW algorithm, smoothing of the tempo urve was done by hoosing awindow of larger size. This is the ase here as well, but the window size an no longer beontrolled diretly: it is omputed impliitly from the number of IOIs that are inluded in theaveraging step (lines 4�5). This has diret impliations for the impat of the averaging: Areasof the piee with high onset density are a�eted less than areas where only a small numberof note onsets our. As in the ase of the FW algorithm, the window for this omputationis entered around one spei� loation of the tempo urve ok. The omputed value is justthe average gradient between the two onsets oc and od. Keep in mind that due to di�erentIOI lengths, the entering may be biased to one side: If wioi = 3, the IOI to the left of ok (oflength ok− ok−1) may be signi�antly shorter or longer than the IOI to the right of ok (whihhas length ok+2 − ok+1).As a result of this, the absolute size of the averaging window w depends a lot on the tempoharateristis of the musial passage enompassed by oc and od. Generally speaking, fastand omplex passages with small note lengths will ause it to shrink, while slow and simplepassages will yield a muh larger window. This is the ase as e.g. three half-notes will normallytake a longer time to play than three sixteenth-notes, even though the number wioi = 3 stays�xed. The results of this unpreditability an be observed in Figures 3.10 and 3.11 whih showtwo sample outputs of the AW algorithm. Here, in the region from t = 30 to t = 70 there arerelatively few but longer notes (an average of approximately 3.4 onsets/s), while in the regionfrom t = 70 to t = 85, there are relatively more shorter notes (approx. 9.5 onsets/s on average).35
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Figure 3.10: Results of the AW algorithm for wioi = 3, time in seonds
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Figure 3.11: Results of the AW algorithm for wioi = 9, time in seondsAs a result, the smoothing is notieably stronger in the �rst region than in the seond one.This is espeially apparent in the region of tempo hange at t = 62�here, only one note onsetours in a region over four seonds long, resulting in an extremely broad averaging window.Notie how in ontrast, the hange-over to a new tempo at t = 41 is proessed remarkablyfast.From the di�erene between Figures 3.10 and 3.11, one an see the importane of the smooth-ing step for the AW algorithm. Jitter from alignment artifats dominates the piture from
t = 70 onwards in Figure 3.10. Though still far from perfet, the results beome muh betterfor a larger wioi (Fig. 3.11).3.2.4 Fixed Window Size Evaluation on Correted Warping PathsWe have now seen two di�erent approahes: The basi FW algorithm just sampled the warpingpath at evenly spaed intervals, the AW algorithm introdued sampling at onset loations andIOI smoothing. This setion presents a third approah that tries to ombine the two previouslydisussed algorithms. The main idea of this hybrid approah (whih will be referred to as FWC36



3.2 Warping Path Based Tempo CurvesAlgorithm 3.3: SmoothWarpingpath, smoothing of warping path entries by onsetsInput: warping path pl = (nl,ml)(l ∈ L), onsets O = {o1, ..., oK}Output: smoothed warping path pfor k ← 1 to K do1
a← ok;2
b← ok+1;3
la ← max{l ∈ Z | nl = a};4
lb ← max{l ∈ Z | nl = b};5
x←

mlb
−mla

nlb
−nla

;6 for i← 0 to nlb − nla do7
pla+i ← (nla + i, mla + round(x · i))8 end9 end10

p← FillGaps(p);11 in the following, for �xed window orreted) is to perform FW sampling on a smoothed (ororreted) warping path, where smoothing is done by omputing gradients between onseutiveonset loations, similar to the AW approah. The implementation is quite straightforward:The warping path is re-omputed analogously to the method presented in the AW approah(with wioi = 1 �xed sine smoothing is only done inside IOI regions), and the results areexported as a new warping path (Alg. 3.3). This orreted warping path is then used as inputfor the FW algorithm (Alg. 3.1).The FillGaps funtion alled in line 11 of Algorithm 3.3 merely ensures that the step-sizeondition of the warping path is always met. Up to that line, this may not have been thease due to rounding in the omputation of the interpolated values (line 8)�e.g., for x = 1.4,in step i = 1 the respetive value in the interpolated warping path would be omputed as
mla + round(1.4 · 1) = mla + 1, but in the subsequent step i = 2 it would beome mla +
round(1.4 · 2) = mla + 3. Hene, the value mla + 2 would be skipped, violating the step-sizeondition. FillGaps detets suh violations and �lls in the missing values.The results produed by this algorithm are a marked improvement over both of the previousapproahes: Fig. 3.12 no longer exhibits any setions dominated by alignment errors. Due tothe relatively broad time window w = 5, the transition to a new tempo is not as quik as e.g.in the AW ase. However, suh sudden and severe transitions are rather unusual in the musidomain we are interested in, so this e�et is in fat appropriate.3.2.5 Interpretation-saled Tempo CurvesUntil now, the time axis of a plot was always saled with regard to the referene. This isimportant for the oneptual understanding of tempo urves and for the omparison of urvesgenerated from di�erent performanes, but inonvenient when working in a real-world perfor-mane analysis ontext. Here, one would like to determine the tempo of a given interpretationat a spei� point in time t by onsulting this interpretation's tempo urve at t and usingthe respetive value. A naïve (but working) approah would be to reompute the desired37
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Figure 3.12: Results of the FWC algorithm for w = 5, time in seondstempo urve with referene and interpretation �ipped, resulting in an �inverted� tempo urve.Maintaining the horizontal sale, this urve ould then be inverted again along the vertialaxis to arrive at the desired interpretation-saled tempo urve. However, there are ertaindisadvantages to this approah: Onset information is guaranteed to be available and auratefor the referene, but this is not neessarily the ase for the interpretation. Consequently, theAW and FWC approahes may not be used for the reomputation.Furthermore, the omputational e�ort required for a fresh omputation of the inverted tempourve from srath are not stritly speaking neessary, sine the existing data already ontainsall neessary information to onstrut resaled tempo urves. The idea with this resalingapproah is simply to �warp� the tempo urve using the established warping path.Algorithm 3.4 desribes how this is done: Basially, one just has to establish evaluation pointsin the tempo urve and then interpolate between the values of these points aording to theinterpretation data stream instead of the referene data stream. Evaluation points an behosen aording to note onsets, or just be set to [1 : N ] for the ase of FW tempo urves.In the algorithm, the searh for the relevant evaluation points of the original tempo urve isperformed in line 3. The values at these points are then entered into a new urve (line 4).We keep trak of the interpretation-saled onsets by updating a set Orescaled that stores thisAlgorithm 3.4: Resale, resaling of tempo urves to performane tempoInput: tempo urve τ , onsets O = {o1, ..., oK}, warping path pl = (nl,ml) (l ∈ L)Output: resaled tempo urve τrescaled

Orescaled ← {};1 for k ← 1 to K do2
lk ← max{l ∈ [1 : L] | nl = ok};3
τrescaled(mlk) ← τ(ok);4
Orescaled ← Orescaled ∪ {mlk};5 end6

τrescaled ← Interpolate(τrescaled , Orescaled);7 38



3.2 Warping Path Based Tempo Curvesinformation (line 5). The algorithm as presented relies on the assumption that interpretation-saled onsets are unique; if we de�ne li := max{l ∈ [1 : L] | nl = oi}, we an state thisrequirement as ∀i, j ∈ [1 : K] : oi 6= oj ⇒ mli 6= mlj . However, this assumption is notneessarily met by the warping path. To implement line 4 orretly, one would therefore needto ompute τ(mlk) by taking the average over all τ(oi) where (oi,mlk) ∈ p. For didatipurposes, we have hosen to retain the simple presentation of the algorithm that is easier todigest.Figure 3.13 shows the result of a resaling transformation: the time sale is hanged aordingto the length of the piee, but the tempo values are maintained. Notie that regions of theinterpretation where the tempo is omparatively slow take �longer� in the resaled tempo urvethan in the original urve (e.g. at t = 35 s in the interpretation-saled urve), and vie versafor faster passages.
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Figure 3.13: Comparing a regular tempo urve (top) against a resaled tempo urve (bottom),time in seonds 39



Chapter 3 Tempo Curves3.3 Dynamis CurvesAs mentioned before, a useful way of looking at the alignment proess between refereneand interpretation is to regard it as an automated annotation of the interpretation by thedata provided in the referene. Suh annotations failitate extration of multiple kinds ofperformane harateristis, not just the tempo. In partiular, targeting levels other than thebeat level for suh extrations beomes feasible with the introdution of note-level annotations.Sine automated annotations diretly bene�t from any improvements to the auray of theDTW alignment algorithm, algorithms build on this basis are likely to yield better results overtime.One example for how automatially generated annotations an be exploited in the omputationof dynamis urves is shown in Figure 3.14. Here, the dynamis of two di�erent interpretationsof the same piee are plotted aording to the time axis of the referene instead of the time axisof the performanes. This is made possible by using the annotations of the performanes toompute a kind of inverse resaling of a regular dynamis urve: Where the original resalingproedure presented in the previous setion translated from a referene-saled tempo urve toan interpretation-saled urve, the resaling used in this ase translates from interpretationtime to referene time instead. The resulting referene-saled dynamis urves are useful inomparing multiple performanes with eah other, sine their time axes an thus be normalizedto the referene. The example shown in Figure 3.14 demonstrates that lear orrelations anbe seen in suh a diret omparison; Setion 4.2.2 gives a loser look at how suh dynamisurves relate to the performane analysis proess.Information about the dynamis of a reording is omputed in the following way: The STMSPfeatures for all pith subbands of the input signal at a spei� point in time t are summedup, with the result energyt being the energy of the whole signal at this point. The dynamisurve at point t is then de�ned by log2(energyt + 1).
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Figure 3.14: Dynamis urves for two interpretations of PathExp, time in measures40



3.4 Chapter Summary3.4 Chapter SummaryThe present hapter introdued the main ontribution of this work: Three algorithmi methodsto automatially ompute the tempo attributes of an expressive musial reording, under awell-grounded de�nition of �tempo�. The remainder of this work is onerned with establishingdata on the performane of these algorithms: How reliable they an be expeted to be, whihtehnique delivers the best results, how tempo information generated by these algorithms lookslike and how it an be used for performane analysis.We ontinue by presenting an evaluation on the tehniques that inorporates both quantitativeand qualitative aspets.
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Chapter 4EvaluationThe pleasure we obtain from musi omes from ounting, but ounting unonsiously.Musi is nothing but unonsious arithmeti.�Gottfried Wilhelm Leibniz (1712), quoted in Oliver Saks,The Man who Mistook his Wife for a Hat (1985)Any disussion of a new approah for the omputation of tempo urves for expressive musireordings would of ourse be inomplete without a proper evaluation of its e�etiveness. Wedivide this evaluation of our approah into two distint parts: The �rst part tries to quantifythe performane of the three tehniques using measurements aiming for maximum objetivity.The seond part is a deliberately subjetive qualitative analysis that uses individual examplesto illustrate some aspets of the various tehniques. The two parts of the evaluation are om-plementary to eah other�taken together, they should onvey a fairly omplete perspetiveof the advantages and shortomings of the approah presented in this work.4.1 Evaluating Against Ground Truth DataIn order to be able to de�ne an objetive way of measuring the e�etiveness of our tehniques,we �rst need to know exatly what output we are trying to ahieve. Computing the mag-nitude of deviations from that �ideal� goal is then a good way of establishing a quanti�ableperformane measure. Figure 4.1 outlines the proess that realizes this idea: Basially, wereate a number of arti�ial interpretations for whih an �ideal� ground truth14 tempo urveis known, ompute a regular tempo urve for eah of these interpretations, and ompare theseomputed urves against the ground truth. The detailed steps are as follows:Step 1. Generate a number of referene MIDIs from a representative set of sores overingseveral di�erent musi genres. Synthesize one or more tempo urves for eah of thesereferenes aording to a ertain parameter set, and use the syntheti urves to warp (ordistort) the referene MIDIs. Create an audio representation from these warped MIDIsusing a high-quality synthesizer. This results in a number of arti�ial interpretationsthat have the tempo harateristis of the syntheti urves, i.e. the syntheti tempourves at as ground truth tempo urves for the respetive arti�ial interpretations.These arti�ial interpretations are stored as wave �les.14The term �ground truth� is derived from remote sensing appliations suh as artography and satelliteimagery and desribes data of a known good quality that an be used for measurement/alibration purposes.43
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Figure 4.1: Shemati outline of the ground truth evaluation proessStep 2. Using the referene/arti�ial interpretation pairings from the �rst step, omputetempo urves for these interpretations with all three tehniques presented in this work(for numerous settings of w and wioi). The only di�erene between a regular use ase ofour algorithms and this run is that the input data used here is syntheti.Step 3. Compare the tempo urves omputed in the seond step with the syntheti tempourves generated in the �rst step. Ideally, these would be idential, but in reality therewill of ourse be di�erenes. Using some kind of distane metri, measure the respetivedeviations of the omputed urve from the desired ground truth.From this proess, a set of measurements is obtained that desribe the performane of thethree algorithms over a range of several possible parameter settings. We will now show thesettings used for the generation of the evaluation data presented in this work, then proeedto introdue a suitable distane metri and present the atual obtained results.4.1.1 Evaluation SenariosFor our evaluation, we produed data on a seletion of 15 piees from the RWC databaseby Goto et. al [GHNO02℄. These piees were hosen with the intention of representing threedi�erent major musial �elds: Five piees were taken from the lass of Western lassial pianomusi, �ve piees ontained lassial musi not foused on the piano (mainly orhestral), and�ve piees served as exemplary pop/jazz works. The individual hoies are listed in Table 4.1,along with their respetive RWC ID for ease of referene. Sine the synhronization algorithmat the foundation of our approah depends on the availability of reliable onset information forpreise alignments, we expeted the auray of omputed tempo urves to be higher for thedata where this was the ase, whih onerns the piano piees in partiular.To get a broad spetrum of analysis data, we formulated �ve di�erent senarios that presentedhallenges of varying degree of di�ulty to our tehniques. We deliberately inluded senariosthat inorporated somewhat realisti assumptions about the tempo attributes of a given pieeas well as senarios representing unrealisti stress tests designed to expose the limits of ourapproah.44



4.1 Evaluating Against Ground Truth DataRWC ID Comp./Interp. Piee InstrumentationC025 Bah Fuge, C-Major, BWV 846 PianoC028 Beethoven Op. 57, 1st Mov. (Appassionata) PianoC031 Chopin Etude Op. 10, No. 3 (Tristesse) PianoC032 Chopin Etude Op. 25, No. 2 (The Bees) PianoC029 Shumann Reverie (Träumerei) PianoC003 Beethoven Op. 67, 1st Mov. (Fifth Symphony) OrhestraC015 Borodin String Quartett No. 2, 3rd Mov. StringsC022 Brahms Hungarian Dane No. 5 OrhestraC044 Rimski-Korsakov Flight of the Bumblebee Flute/PianoC044 Shubert Op. 89, No. 5 (Der Lindenbaum) Voie/PianoJ001 Nakamura Jive PianoJ038 HH Band The Entertainer Big BandJ041 Umitsuki Quartet Frition Sax/Bass/Per.P031 Nagayama Moving Round and Round EletroniP093 Burke Sweet Dreams Voie/GuitarTable 4.1: Piees used for quantitative tehnique evaluationsIn a general sense, a senario was haraterized by three attributes whih desribed strengthand frequeny of the tempo variations allowed in that senario. In a more spei� sense, eahsenario onsisted of a number of arti�ial interpretations whih were produed aording tothese attributes. The syntheti tempo urves neessary for the prodution of these interpre-tations were generated in the following way: Aording to the range of allowed variation, arandom number generator piked several tempo indiators that presribed a piee's tempo atdistint points in time. The tempo was then interpolated between these points to arrive ata relatively smooth tempo urve. To aount for the inherent variation of the randomizedproess, three di�erent syntheti tempo urves were produed for eah piee in this way�thesubsequent evaluation then omputed data points for eah of the urves individually, andreturned an averaged result. Eah senario inluded all 15 �les, making the total number ofarti�ial interpretations and assoiated tempo urves of a single senario 45, respetively.The three parameters that guided synthesis of a senario's tempo urve were as follows:Interpolation method. Two di�erent interpolation models were used. Linear interpolationperformed a gradual hange between two tempi to mimi ritardandi and aelerandi,while the step-funtion interpolation method maintained onstant tempo over a ertainamount of time, but then performed a sudden jump to another region of onstant tempo.This situation arises in regular sores e.g. in the ase of fermatas that register as suddenslow-downs in the span of a single note in the tempo urve.Interpolation interval length. This interval desribes the duration of one segment of the ref-erene that would be warped aording to a onstant tempo in the ase of step-funtioninterpolation, or to a onstant aeleration/deeleration in the ase of linear interpola-tion. Two di�erent durations were used for this, one of 5 s and one of 10 s.Interpolation range. The range of aeptable tempi onerns the output boundaries of therandomization algorithm, whih were given in terms of the original tempo. Again, two45
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Figure 4.2: Linearly interpolated ground truth tempo urve (blak) approximated by FW(green), AW (blue) and FWC (red) tehniques, time in seonds (w = 3 s, wioi = 10)possible spei�ations were used: half to double the original tempo, and quarter to fourtimes the original tempo (allowing tempo hanges of up to a fator of 16).The �ve senarios used for the atual evaluation were generated aording to the followingparameter settings:Senario Interpolation method Interpolation interval Interpolation range1 Linear 10 s 1/2 to 22 Linear 5 s 1/2 to 23 Linear 10 s 1/4 to 44 Step-funtion 10 s 1/2 to 25 Step-funtion 10 s 1/4 to 4The senarios were ordered aording to expeted quality of performane, with Senario 1 beingthe easiest and Senario 5 the hardest for the algorithms to proess. Figure 4.2 illustrates howa spei� ground truth tempo urve (plotted in blak) might look like for the �rst senario.15To give a feeling for the relative performane that an be expeted for suh a senario, theoutput of all tehniques is plotted against this ground truth tempo urve as well. In thisrather benevolent example, the approximation of all three algorithms stays mostly true to theexpeted output. In omparison, output for the �fth senario (Fig. 4.3) seems less aurate,even though this partiular example is still essentially well-behaved. Note the di�erent temposaling for the two �gures.4.1.2 Evaluation MetriThe metri used to measure the �distane� of omputed urve deviations from the groundtruth tempo is motivated by the idea of relating suh a distane to the referene tempo15The urve displays a small distortion ompared to a fully linear urve. This is due to the spei� proess usedto generate the image and has no bearing on the fat that the performed interpolation was indeed linear.46
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Figure 4.3: Step-funtion interpolated ground truth urve (blak) approximated by FW(green), AW (blue) and FWC (red) tehniques, time in seonds (w = 4 s, wioi = 10)laid down by the ground truth. The goal is to group deviations by sale rather than byabsolute value. For example, assume that the ground truth tempo urve was a simple onstantdistortion of the original tempo by the fator two, i.e. the arti�ial interpretation has double thetempo of the referene. Further assume that di�erently omputed tempo urves yield di�erentapproximations of the ground truth: In one ase, the tempo is estimated to be onstantly 1,in the other ase the result omes out as a onstant 4. This means that the two omputationsestimate the tempo of the arti�ial interpretation to be equivalent to the original tempo or fourtimes the original tempo, respetively. However, in relation to the atual (ground truth tempo)of 2, both approximations have the same error ratio: The �rst omputation underestimatesthis atual tempo by a fator of two, the seond one overestimates it by the same fator. Sineneither of these estimations has a qualitative di�erene over the other, the distane measureshould assign the same error value to both of these �awed approximations.To ful�ll this requirement, we de�ne a distane measure δ as follows: Let N ∈ N be the lengthof a feature sequene desribing a given musial piee, n ∈ [1 : N ] an arbitrary but �xedindex into this sequene, g : [1 : N ] → R≥0 a ground truth tempo urve of an (arti�ial)interpretation of this piee and τ : [1 : N ] → R≥0 a tempo urve omputed for the sameinterpretation of the piee. Then, the distane measure δ : [1 : N ]→ R≥0 between g and τ isa funtion de�ned by
δτ
g (n) :=

∣

∣

∣

∣

log2

(

τ(n)

g(n)

)∣

∣

∣

∣

· 100Here, dividing the omputed tempo urve value by the ground truth value ahieves the desirede�et of measuring error sale rather than error value. Taking the logarithm of the resultingvalue has two di�erent purposes: The �rst is to emphasize small-sale deviations from theground truth tempo and lessen the impat of outliers, the seond is to adjust the omputedvalues to the graphial plots of the tempo urves that use a logarithmi tempo sale as well.Sine deviations of the omputed urve from the ground truth tempo urve turn out to beseldom larger than by a fator of two (i.e. half or double the ground truth tempo), and thebinary logarithm takes on an almost linear shape in the interval [0.5, 2], this does not a�et47



Chapter 4 Evaluationthe omputed values too muh. The sign of the omputed value is disarded sine we arenot interested in the respetive nature of the deviation. Lastly, the omputed value is saledup slightly sine most measurements fell into the range between 0.01 and 0.20. This beameinonvenient to display, so the values were translated to 1 and 20, respetively. The resultapproximates a measure of deviation in perent of the original tempo,16 so a value of δτ
g (n) = 2an be taken to mean that τ deviates from g in the order of 2% at point n�for a sample tempoof 120BPM, a deviation in the order of 2.4BPM.The result of evaluating δτ

g at all points n ∈ [1 : N ] is a data sequene desribing pointwisedeviations of the omputed tempo urve from the given ground truth tempo. Three har-ateristis of this result sequene are of partiular interest: The mean value, the maximumvalue and the standard deviation of the omplete data set. Of these, the mean represents�overall performane quality� of the evaluated tehnique, the maximum indiates outlier val-ues that may be the result of synhronization errors resulting in a faulty warping path, andthe standard deviation an be taken as a reliability measure of the tehnique�the higherthe standard deviation, the less on�dene an be plaed in the tehnique's tempo estimatefor a given point in time. Result tables are given in terms of these three indiators. Here,results for individual �les are reprodued in full in the appendix (Tables A.1�A.16), but willbe shown in an abridged version for the disussion of this hapter. In partiular, the abridgedtable ontains only average values for the di�erent instrumental lasses and an overall average.Maximum values are left out in the abridged table, sine they are indiative of exeptionaloutliers rather than the more interesting regular behavior of the tehniques.4.1.3 Evaluation ResultsIn the following, we present and disuss the evaluation results for eah of the �ve senariosindividually. For eah senario, abridged result tables will show typial evaluation data, withthe full tables reprodued in the appendix. In all tables, the quoted value for the parameter wdesignates the input for both the FW and the FWC tehnique, so that their individual resultsare diretly omparable (i.e., improvements from FW to FWC tehnique inside the ontext ofone table are always due to IOI orretion of the warping path).Senario 1The �rst senario uses a onservative on�guration for tempo variations and an thus be saidto be somewhat benevolent. This does not mean that it's not representative of �real-world�settings�in fat, the assumption that tempo hanges our every ten seonds and may rangewithin a fator of up to 4 in relation to a previous tempo is valid for a large number of ases.The only thing that is exluded here are sudden hanges of the tempo, as in the ase of e.g.fermatas.Tables A.1�A.4 show the omplete evaluation results of this senario for ever larger settings of
w and wioi. While the settings of Table A.1 represent a very moderate smoothing on�guration,16The result would be preisely equivalent to suh a perentage if we set δτ

g (n) :=
∣

∣

∣

τ(n)
g(n)

− 1
∣

∣

∣
·100 for τ (n) ≥ g(n)and δτ

g (n) :=
∣

∣

∣

g(n)
τ(n)

− 1
∣

∣

∣
· 100 otherwise. This is obviously not as elegant as the logarithmi solution.48



4.1 Evaluating Against Ground Truth DataFW AW FWCResults by instrumental lass mean std mean std mean stdAverage over piano 5.66 10.42 5.50 9.07 3.25 6.24Average over non-piano 4.17 5.20 5.91 8.48 3.22 4.17Average over jazz/pop 3.67 5.10 6.80 10.78 3.20 4.70Average over all 4.50 6.90 6.07 9.44 3.22 5.04Table 4.2: Results for Senario 1, w = 3 s, wioi = 10FW AW FWCResults by instrumental lass mean std mean std mean stdAverage over piano 4.90 8.33 6.19 9.11 3.19 5.98Average over non-piano 3.55 4.39 4.65 5.70 2.89 3.78Average over jazz/pop 3.15 4.31 4.53 6.29 2.81 4.10Average over all 3.87 5.68 5.12 7.03 2.96 4.62Table 4.3: Results for Senario 1, w = 4 s, wioi = 20Table A.4 shows the e�ets of employing muh stronger adjustments. Here and in the othersenarios, the values of w and wioi are hosen in suh a way that one table shows optimalresults for the senario, and the other tables show results resulting from suboptimal settingsof w and wioi. This is done in order to give a feeling for the dimension of hange that anbe expeted when experimenting with di�erent parameter settings in di�erent senarios. Forthe suboptimal results, the parameters were hosen by modifying the �optimal� parametersuntil a lear trend ould be identi�ed in the new result table. In general, this meant largervariations in the ase of wioi than for w.Optimal settings for the �rst senario are found in Tables A.2 and A.3. Abridged versionsof these are given in Tables 4.2 and 4.3. Overall, the FW/FWC tehniques produe theirbest results for w = 4, with single �les (like the seond Chopin Etude C032) performingbetter for w = 3. The AW tehnique pro�ts from the high settings of wioi in Table 4.3, but isgenerally outperformed by the other two tehniques. Of the three tehniques, FWC does best,whih was to be expeted sine it is the most sophistiated. The somewhat disappointingperformane of the AW tehnique is most probably due to the fat that in regions of high notedensity, the smoothing is not strong enough; however, setting the wioi parameter to a highervalue introdues too muh blur in other regions. Here, the evaluation shows that the urrentapproah of using a �xed parameter for wioi is not �exible enough.One surprising �nding is that this senario does not exhibit the expeted advantage of pianomusi over other styles. This seems to be due to two fators: On one hand, there is a verygood alignment quality for the non-piano and jazz/pop piees that keeps tempo urve errorsquite low. For suh �harmless� distortions as used in this senario, the harmoni progressionsin these piees seem to be su�ient for the alignment algorithm to produe very aurateresults. On the other hand, the C-Major Fugue from the Well-Tempered Clavier (C025)su�ers from a omparatively bad performane over all tehniques. This raises the suspiionthat the fault lies with the synhronization, whih is on�rmed by the tempo urve generated49
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Figure 4.4: A synhronization error a�eting tempo urve omputation, time in seondsfor the �rst of the three syntheti distortions used for this piee in this senario (Fig. 4.4):Here, a synhronization error beomes learly visible in the region from t = 88 s to t = 97 s.The probable ause of this negative e�et seems to be the rapid tempo hange in this regionthat swithes from a nearly maximal tempo to the lowest possible value.The good performane of single �les for a window size of w = 3 for the FWC ase is likely dueto an inverse e�et: Here, exeptionally good alignments allow the obtaining of high-qualityresults (e.g. Rimski-Korsakov, C044, mean error 1.39 for w = 3 and 1.66 for w = 4), forwhih a smaller window size is better suited as it preserves the auray of the synhronizationwithout blurring the regions of tempo hanges.Overall, the results seem very good in this senario, with Table 4.3 representing a kind of idealase. The e�et of broader window size in the FW/FWC ases seems to be advantageous up toa size of about w = 4, after whih the detrimental e�ets of slower adaptability to new tempiseem to dominate the result. A window size of w = 3 produes better results only for speialases. The AW tehnique exhibits an overall poorer performane, while still maintaining aomparatively high quality level. Outliers are most pronouned in the AW ase, indiating aertain brittleness of the design that is also re�eted in a slightly higher standard deviation.The FWC tehnique seems most robust in the fae of the omparatively easy hallenges posedby this senario, and learly bene�ts from the IOI interpolation as an be seen by the di�ereneto the �plain-vanilla� FW tehnique.The tempo variations ontained in this setting are representative of many real-world senarios,hene the good performane of the tehniques serve as validation that usage of the FWCtehnique is appropriate to derive tempo estimations of fair auray in these ases.Senario 2The seond senario introdues more frequent tempo hanges into an otherwise still benevolentsetting: The distane between regions of di�erent aeleration is now 5 s instead of 10 s. Theresult data (Tables A.5�A.7) on�rms the expeted e�ets of this: Overall quality is stillvery high, with a slightly lower baseline due to a greater number of tempo hange loations.50



4.1 Evaluating Against Ground Truth DataFW AW FWCResults by instrumental lass mean std mean std mean stdAverage over piano 6.85 10.24 7.36 9.99 4.55 6.84Average over non-piano 5.81 7.72 7.22 9.25 4.95 6.91Average over jazz/pop 4.98 6.96 6.98 9.96 4.48 6.36Average over all 5.88 8.31 7.19 9.73 4.66 6.70Table 4.4: Results for Senario 2, w = 3 s, wioi = 12Best results are obtained by smaller window sizes than in the previous example, with optimalperformane at w = 3 and wioi = 12 (Table 4.4). This is an obvious and expeted result ofshortening the interpolation interval length, sine the new setting demands higher adaptabilityof the algorithms to a new tempo that an only be gained by smaller window sizes. For theFWC tehnique, results for the piano piees are omparatively better than in the �rst senario,as the Bah Fugue C025 is now proessed orretly�this is espeially pronouned for w = 2,where the algorithm an pro�t from the high quality of available onset information. Still,synhronization results are good enough for the other styles (jazz/pop in partiular) thatthere is no lear advantage for any of the three lasses in the general ase.Senario 3The third senario poses the �rst great hallenge to the three tehniques. Even though theinterpolation interval is saled bak to 10 s, the interpolation range of 1/4 to 4 allows foraelerations/deelerations of up to fator 16. This proves too muh for a proper alignment:The results of Tables A.8�A.11 show that most piees are a�eted by more or less serioussynhronization errors. Only three piees are exempt, with the piano piees �nally pro�tingfrom better availability of onset information�two of the three piees are of this lass (BahC025 and Chopin C032), with the third piee (Rimski-Korsakov C044) also being partlyarranged for the piano. This last piee also had onsistently exellent performane in Senarios1 and 2, whih implies that it is espeially well suited for the employed alignment proedure.Performane improves in all instrumental lasses for relatively strong smoothing on�gurations(Table 4.5). However, this improvement is relative: Synhronization errors dominate theoverall result, whih has a low baseline that annot be muh polished, even using extremeaveraging parameters (Table A.11).Figure 4.5 illustrates how these numbers translate into �real-life� performane. Aside fromsynhronization errors ranging from negligible to atastrophi (e.g. for the FW tehnique,whih shows a maximum deviation of 721.95 at t = 120 s), there are a number of otherinteresting phenomena to be observed. We an identify two loations of high aelerationfollowed by abrupt deeleration (t = 74 s and t = 103 s), whih the AW tehnique averagesout in both ases to produe results signi�antly below the tempo peak. The same happens tothe FW/FWC tehniques in the seond ase, but in the �rst one, the tempo hange provokesa greater onfusion. In this instane, the hange seems to be registered at a slightly earlierplae in time than when it atually happens. 51
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Figure 4.5: Sample result for Senario 3, Shumann C029, w = 3, wioi = 12, time in seondsFW AW FWCResults by instrumental lass mean std mean std mean stdAverage over piano 19.12 32.14 21.94 31.73 16.44 28.38Average over non-piano 21.92 35.03 23.93 35.84 20.88 34.58Average over jazz/pop 27.45 40.26 29.57 42.48 26.95 40.25Average over all 22.83 35.81 25.15 36.68 21.42 34.40Table 4.5: Results for Senario 3, w = 4 s, wioi = 20Another �strange� ourrene takes plae at t = 30 s: Here, it seems that the FW/FWC tempourves overshoot the atual tempo, but then orret this error by underestimating the tempo ofthe following two seonds until the approximations onverge at the atual ground truth urveagain. Suh a pattern ours when an important synhronization event (e.g. a note onset ora harmoni hange) is aligned to an earlier plae in time than when it atually ours, whilethe information in the surrounding ontext is proessed aurately. For example, in a settingwhere a note onset ours every three beats, the region [1 : 9] might be evaluated in suh a waythat onsets are not plaed at times 1, 4 and 7 (as would be aurate), but at times 1, 3 and
7 instead. The distane between �rst and seond onset is then shortened (with respet to theatual distane), and the distane between seond and third onset is lengthened. This wouldause the tempo in the �rst region to be overestimated by a fator of 1/3, and the tempo inthe seond region to be underestimated by the same fator. The resulting tempo urve wouldthen resemble the tempo urve gained for the Shumann piee at t = 30 s. Similar senariosare of ourse possible for the reverse ase as well.A relatively onsistent phenomenon is the mangling of beginning and end of a piee by allthree algorithms. This is due to three fators: First of all, lak of data in these regions,17seondly the inadequay of the assumption that tempo is onstantly 1 at regions not de�ned by17Whih is a problem sine tempo is always dependent on ontext�after all, what is the tempo of a singlenote? At the beginning and the end, this ontext information is simply absent.52



4.1 Evaluating Against Ground Truth Datathe warping path (indeed, results seem to be more onvining for ground truth tempo urveswhere beginning and end happen to oinide with a tempo of 1), and thirdly the behavior ofthe DTW synhronization algorithm in these boundary ases, whih sometimes leaves a littleroom for improvement.Senario 4The fourth senario again limits the maximal fator of tempo hange to 4, but instead allowsvery rapid periods of hange followed by regions of onstant tempo. Contrary to our expeta-tions, this senario atually produed better results than the previous setting sine it did notprovoke suh a great number of synhronization errors. The limiting fator here was again thesize of the averaging window, with the algorithms needing to adapt to hanges quiker thanin the otherwise omparable �rst senario. The nature of these hanges in this senario leadsto an overestimation of the overall error: Figure 4.6 shows the error urve for a spei� �le ofthe senario together with the orresponding mean error. Tempo urve results for this �le areshown in �gure 4.7. It an be seen that even though the error baseline is muh smaller thanthe mean error, the great deviations aused by the rapid tempo hanges inhibit better resultsin this ase.Tables A.12�A.15 show results that lie somewhere between Senarios 2 and 3 in terms of overallquality. Window sizes of w = 2 and w = 3 prove optimal for the FW/FWC algorithms, and
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Figure 4.7: Ground truth tempo urve (blak) and FWC tempo urve (red) for Senario 4, BahC025, w = 3, time in seonds 53



Chapter 4 Evaluation FW AW FWCResults by instrumental lass mean std mean std mean stdAverage over piano 13.55 22.57 10.17 18.46 9.26 17.13Average over non-piano 10.29 15.16 9.31 14.59 8.95 14.37Average over jazz/pop 10.39 16.24 11.42 18.99 9.67 15.99Average over all 11.41 17.99 10.30 17.35 9.29 15.83Table 4.6: Results for Senario 4, w = 3 s, wioi = 12FW AW FWCResults by instrumental lass mean std mean std mean stdAverage over piano 54.49 71.30 51.70 62.05 46.60 62.39Average over non-piano 49.97 62.91 50.31 62.37 47.85 61.37Average over jazz/pop 55.72 64.93 55.71 66.00 54.69 64.91Average over all 53.39 66.38 52.57 63.47 49.71 62.89Table 4.7: Results for Senario 5, w = 3 s, wioi = 20the AW tehnique produes best results for wioi = 12 (Table 4.6). The other visible trendsare repetitions of phenomena reported in earlier senarios: The FWC tehnique ontinues tooutperform the other tehniques, larger window sizes improve performane in ases of badsynhronization and impair performane in ases of good synhronization, and performaneon piano piees is (non-signi�antly) better than for other styles.Senario 5In the �nal senario, the performane �nally breaks down in full. No piee an be synhronizedwithout errors; Figure 4.8 illustrates why this is the ase. As an be seen there, the extremetempo variations on a very small time range do not permit satisfatory synhronization results.We only reprodue one result table (Table 4.7) to demonstrate the output range that is tobe expeted in suh a senario. Not muh an be said here, other than that any amountof smoothing is of ourse wasted on a faulty synhronization�results of the tempo urveestimation will be better one these errors an be removed.4.1.4 Evaluation SummaryThe �ve senarios that were evaluated demonstrate that in general, the presented tehniques(and the FWC approah in partiular) work well for the extration of tempo harateristisof a piee of musi. The three most realisti Senarios 1, 2 and 4 feature mean error ratesaveraging between 2�10, whih is aurate enough for MIR appliations onerned with phrase-level tempo attributes. Using the FWC tehnique with a window size of w = 3 seems to be thebest ompromise between result preision and robustness against synhronization artifats�ifthe alignment is known to be unreliable, a hoie of w = 4 may be better suited, and if highalignment qualities an be expeted, w = 2 enables obtaining of higher-preision results.54
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Figure 4.8: Sample result for Senario 5, Bah C025, w = 3, wioi = 20, time in seondsIn ase of signi�ant synhronization errors, the tehniques do not estimate the tempo reliably.In our settings, suh errors were provoked mostly by drasti tempo distortions that do notour in pratie, but even for simple ases suh as in the �rst senario, the DTW proedureoasionally omputed faulty warping paths that resulted in a deteriorated performane. Forthe pratial usage of the presented approah, it will be neessary to ompute estimations ofthe alignment quality at the time of musi synhronization in order to be able to judge duringwhih passages of a piee the tempo estimations might beome unreliable.Of the three tehniques, the FWC tehnique is an easy hoie as the best andidate for pratialemployment: In all �ve senarios, it produed the best results both in terms of preision androbustness. The AW tehnique may have merit as a basis for further developments thatoperate on note-level strutures; the FW tehnique is primarily useful as a didati devie forthe subsequent introdution of the FWC approah.4.2 Evaluating Seleted Musial ExamplesAlthough the quantitative evaluation of the presented tehniques indiated that they werewell suited to be used for performane analysis purposes, their pratial bene�t has not yetbeen demonstrated. This setion showases several di�erent examples whih illustrate thatthe approah an indeed be used to derive musially interesting statements about spei�performanes. For this, we ompute performane urves for various interpretations of Westernlassial piano piees that were either taken from o�-the-shelf reordings or produed for ourinternal database, and disuss how they relate to musial properties of the respetive piees.Sine the FWC tehnique has been shown to yield the best results during the quantitativeevaluation phase, all qualitative evaluations will be done using this tehnique.Performane analysis tehniques an often be lassi�ed as either being onerned with simi-larities or ommonalities of playing style in the interpretations of di�erent artists (or even in55



Chapter 4 Evaluationdi�erent performanes by the same artist), or fousing on systemati di�erenes between var-ious interpretations of the same piee (usually done by di�erent artists). In the �rst ase, themain researh goal is to disover universal rules that govern playing style and musial inter-pretation of a omposer's intentions; in the seond ase, the goal lies in identifying the uniquetraits of an artist's playing style that distinguish his performanes from those by di�erentartists. Examples of both kinds of researh will be disussed in Chapter 5.Our qualitative evaluation is divided in a similar manner. We begin by showing similaritiesaross di�erent interpretations of the same piee that have straightforward musial explana-tions, in order to demonstrate that our approah yields the expeted results in suh a ase.4.2.1 Evaluation Fousing on Common Interpretational TraitsAlthough eah artist has his own idiosynrati playing style that an be instantly reognizablein the ase of an established performer who has had the time and experiene to develop a uniqueartisti identity, they all speak the same musial language. Any sore written in a spei�style alls for an interpretation that does justie to the musial demands and expetations ofthat style, and this will be re�eted in the respetive performer's playing style. The rangeof this musial expetations extends from fundamentals like phrasing and shaping of musialdevelopments to agogial aspets like the interpretation of indiators suh as �staato�. Inthis setion, we will fous on the more basi aspets that have lear groundings in the musialsore whih will be reprodued alongside the respetive tempo urve.Robert Shumann: Kinderszenen op. 15 no. 7, �Träumerei�In the �rst example, we will disuss the �rst eight measures of the popular �Träumerei� fromShumann's �Kinderszenen�. Here, three di�erent interpretations were analyzed with respetto their relation to the sore (Fig. 4.9). Two of the interpretations were taken from regularCD reordings, while a third one was produed by a member of our workgroup with a strongmusial grounding (Verena Konz). First of all, notie that the basi shapes of the tempo urvehave a surprisingly high degree of orrelation. Even though their tempo baseline di�ers, thedi�erent artists have hosen similar ways of illustrating the struture of the sore. The �rstmusial point of rest reahed by the performers is the subdominant B hord of the seond mea-sure, whih oinides with a temporary melodi limax (the soprano voie's f′′). Aordingly,the tempo urve shows a deeleration in the seond measure for all three interpretations.To underline the stronger sense of ation onveyed by the eighth movements of measure three,all pianists hoose a faster pae that reahes or exeeds their previous maximum tempo. Thisheightened sense of movement omes to a rest on the dominant C hord of measure 4, whih isin turn resolved in the next measure by the toni F. Two of the three interpretations emphasizethis striving towards the resolution by giving the bass movement leading to the toni root notea distint aelerando/ritardando shape.The harmoni and melodi limax of this exerpt of the piee is reahed in measure 6, whereall three performers take some time to let the listener appreiate the suspense reated by theA7 hord that leads into the d hord of measure 7. To reate an adequate feeling of losureat the end of the ompleted musial thought, all interpretations follow the given phrasing56
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Figure 4.9: Three interpretations of Robert Shumann: Kinderszenen op. 15, �Träumerei�, time inmeasures, tempo in BPM, w = 2diretion that implies a somewhat uniform tempo from the middle of measure 6 until the �naltarget of the toni F in measure 8 is reahed. The ritardando of measure 8 is approahed byall performers a bit earlier than indiated, beginning at the end of measure 7. This may bea result of prolonging the sense of unresolved tension on the diminished seventh hord thatpreedes the �nal measure.The last measure shows one di�erene between the two CD reordings and our �ustom-made�reording: Both regular reordings gather speed again to launh into a new rendition of therepeat setion, while the third interpretation did not perform the repetition and so omes toa full stop on measure 8.Overall, this example demonstrates that the shape of the tempo urves results from the per-former's interpretation of the musial meaning of the sore, as should be expeted. The57



Chapter 4 Evaluationphenomena visible in all three interpretations have lear explanations that in the majorityof all ases an be dedued from the sore, and do not appear to be the result of arbitraryproesses of hane. Moreover, the three tempo urves bear a strong resemblane to eahother, giving redene to the laim that the harmoni and strutural demands of this pieedominate individual artisti playing style in this example.Ludwig van Beethoven: Sonata No. 8 op. 13 �Pathétique�An example whih illustrates that our approah is apable of unovering unexpeted similar-ities between di�erent performanes of a piee is given in Figure 4.10. Here, the interpre-tations were performed by two students of a ommon piano lass at the Saar Aademy ofMusi. Their atual tempo shaping is not relevant in this ontext, hene the aompanyingsore is not shown here (it is, however, reprodued in Figure 4.17). Striking about the twointerpretations is their hoie of nearly idential absolute tempo for measures 5�10. We anonly speulate about the reason for this�they may have pratied together, or they may havereeived similar instrutions by a ommon teaher. However, their tempo phrasing seems toomuh alike to dismiss this result as a mere oinidene.18 Disovering suh similarities ouldpotentially be automated by using the distane measure δ on pairwise ombinations of suhinterpretations and searhing for regions where the results fall below a ertain threshold.
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Figure 4.10: Idential phrasing by two pianists: PathBeg, time in measures, tempo in BPM, w = 3A seond example from the same sore illustrates how performers handle the transition fromone region of themati material to the next. Suh a hange ours in the Beethoven sonatae.g. in measures 49/50 (Fig. 4.11). Here, the seond theme of the sonata's �rst movementis introdued for the �rst time. Beethoven modulates from the �rst theme in  minor to theseond theme in e♭ minor by moving from A♭ major (measure 39) to B♭ major (measure 42),18Another ase that turned up during our analysis seemed too perfet to be true: Here, the two tempo urveswhere almost exatly idential over the whole ourse of the piee. Exploration of this quikly revealed thatthe same reording had found its way into our database twie by aident, the two only di�ering by samplerate. Of ourse, this explanation an be ruled out for the interpretations of Figure 4.10.58
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Figure 4.11: Themati hange in PathExp (M. 42�55) re�eted in tempo urves of various interpre-tations (M. 25�75), time in measures, tempo in BPMthe dominant of the new key of the seond theme. In measure 51, the dominant resolves intothe temporary new toni for the �rst time, and the seond theme is stated.The tempo urves whih were omputed from several interpretations performed by studentsof the piano lass mentioned earlier on learly show that all performers reognized this as animportant strutural event. Depending on their initial tempo, they approahed the passagedi�erently: Those who had performed the preeding setion in a fast tempo had a generaltendeny to slow down, in three ases even resting for a short while on the �rst beat of measure49 before ontinuing in a slightly slower tempo than before. On the other hand, performerswho displayed a slow initial tempo used this transition to speed up their interpretation, insome ases even arriving at a higher tempo rate than reahed by their fellow students whohad a faster initial tempo.The ommonality aross the di�erent interpretations here does not lie in a similar tempostruture that was hosen by all, but rather in the fat that this strutural event was takenby all performers as a reason to hange their initial tempo. This indiates a similar musialunderstanding of the struture of the sore, even if the individual interpretation of how thisstruture ould best be onveyed to the listener di�ered from artist to artist. 59



Chapter 4 EvaluationFranz Shubert: Winterreise D911 No. 5, �Der Lindenbaum�A rih soure of examples both for similarities and systemati di�erenes among interpretationsan be found in the large variety of reordings available of Shubert's Winterreise (for voieand piano), e.g. in the Lied �Der Lindenbaum�. One ase in point an be made for theending of this piee that shows nearly uniform shaping among many ommerially availableinterpretations (Fig. 4.12). Here, the emotional a�et of the song seems to all for a spei�musial interpretation that is universally understood and answered. The almness suggestedby the lyris of measures 72�76 is re�eted by a ritardando that omes to a resting point at theend of the phrase in measure 76. After the sung part of the piee has ended, the pianist plays
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Figure 4.12: Consistent ending forms for Franz Shubert: Winterreise D911, �Der Lindenbaum�(M. 72�82), time in measures, tempo in BPM60



4.2 Evaluating Seleted Musial Examplesa few measures of what ould be alled musial afterthoughts that reall the agitation felt bythe song's protagonist as he is thinking of the lime tree's rustling branhes, symbolized bythe harateristi triplet �gures. In aordane with this interpretation, all pianists aeleratethe tempo until they ome to a temporary rest on measure 78, then draw a wider phrase thatlimaxes at an even higher tempo till the �nal fermata is reahed.4.2.2 Evaluation Fousing on Systemati Di�erenes in InterpretationAs was already partly illustrated by the �Pathétique� example of the preeding setion, theindividual understanding of a piee's musial layout or a spei� musial notion an di�ervastly between di�erent artists. However, the most interesting ases are not found in thelone exeption to an otherwise unquestioned rule of performane (although these are of ourserelevant in their own right), but rather in systemati di�erenes between two or more lassesof interpretational thought. Simply put, in suh a ase there is one group of artists who deideon one ourse of ation, and another group of artists that hooses a di�erent approah. Bothof these hoies may be valid interpretations of the musial soure material, but they highlightthe personal preferenes and sensibilities of the performer.Franz Shubert: Winterreise D911 No. 5, �Der Lindenbaum�The same reordings that were already used to demonstrate ommonalities among multipleinterpretations of Shubert's �Lindenbaum� of ourse also exhibit setions where di�erentinterpretations make use of di�erent approahes. One suh setion an be found diretlyat the beginning of the piee: Figure 4.13 shows how the phrase shaping of the �rst sevenmeasures is performed in these reordings. Beginning in measure 4, two lasses of performersan be distinguished: The �rst lass paints measures 4�6 as a big phrase with a roughlyuniform tempo that ends with a adential move to f♯ minor in measures 6�7.19 In ontrast,performers of the seond lass introdue a relatively early tempo relaxation in measures 4�5and maintain the slower tempo throughout measures 6 and 7. There is no learly diserniblemusial reason for this pattern, other than that the four artists who implement it obviouslyfeel di�erently about the impliations of this part of the omposition than the �rst lass ofperformers.Another setion of this song that exhibits a similar pattern of di�ering phrase shapings an beexplained more diretly by the lyris and musial images used in the sore. Figure 4.14 showsthe relevant tempo urve, as well as the sore providing ontext information. The lyris of thispassage hange from a melanholy �Hier �nd'st du deine Ruh� (M. 42-44) to an aggressive �Diekalten Winde bliesen mir grad ins Angesiht� (M. 45�49).20 Shubert has painted the �oldwinds� of this image by using triplets that move up and down in a hromati fashion. Mostperformers emphasize the protagonist's anguish and bitterness by hoosing a faster tempo forthe whole passage that omes to an end in measures 57�58. However, two artists instead seemto fous on the swelling and subsiding of the blowing wind, whih they realize by playing ina similarly �utuating manner. Sine this gives the passage a omparatively quieter feel, the19A harmonially rather unusual ending. For E major, f♯ is the supertoni hord, i.e. the subdominant parallel.20Translations: �Here you'll �nd your rest� and �The old winds were blowing straight into my fae.� 61
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Figure 4.13: Systemati interpretation di�erenes for Franz Shubert: Winterreise D911, �Der Lin-denbaum� (M. 1�7), time in measures, tempo in BPMneed for a grand gesture of returning alm is obviated for these interpretations. Instead ofresting on the fermata of measure 58 as the other performers do, they ontinue in their regulartempo, only to be joined by the other artists again in measure 60.Ludwig van Beethoven: Sonata No. 8 op. 13 �Pathétique�A di�erent kind of deviation from the expeted paths of phrase shaping emerged from thereordings taken of Beethoven's �Pathétique� sonata, performed by art students from the loalSaar Aademy of Musi. Here, we found some tempo hanges in performanes by singlestudents that did not �t into their general tempo forms. Exploration of these deviationsquikly showed that these were involuntary: Perhaps due to a lak of preparation time, singlestudents did not produe �ideal� reordings, but made mistakes during their play that werere�eted in the tempo urve.Figure 4.15 shows two examples of this for the omplete PathExp. In one interpretation,62
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Figure 4.14: Two performanes deviating from ommon interpretatori onsensus for Franz Shubert:Winterreise D911, �Der Lindenbaum� (M. 44�60), time in measures, tempo in BPMerrors our at measures 40, 50, 70 and 90; the other performane displays one suh error nearmeasure 80. These errors show in the tempo urve as sudden drops in tempo that last for ashort period of time before the performane returns to its initial tempo.Indeed, the typial error episode audible in the atual reordings on�rms this pattern: Theperformer plays a wrong note or hord, halts for a short time, then plays a orret versionof the passage and ontinues as normal. While this example of ourse does not fall into theusual realm of performane analysis onerns, the ability to quikly loate suh aidents maynevertheless be very useful in a didati ontext, e.g. in a piano lesson performed on a player63
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Figure 4.15: Identifying problemati passages in student interpretations of PathExp, time in mea-sures, tempo in BPMpiano that automatially monitors the student's playing.Of ourse, other examples from the Sonata Pathétique may display more �onventional� devi-ations. Figure 4.17 shows the tempo of four interpretations of the �rst ten measures of thiswork (seleted from the performanes of art students mentioned in the previous example), and
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Figure 4.16: Tempo urve (top) and dynamis urve (bottom) for performanes of PathExp(M. 1�10), time in measures, tempo in BPM, dynamis as in Setion 3.364
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Figure 4.17: Sore for PathExp, measures 1�10)also gives dynamis for two of these interpretations (red and blue, olors are onsistent arosstempo and dynamis urves). Here, the dynamis urves are omputed as log2(energyt + 1)and then saled to the referene time axis as desribed in Setion 3.3.The orresponding sore of the segment is shown in Figure 4.17. As an be expeted, thedynami diretives given by the sore are implemented by both artists, albeit in slightlydi�erent shapes. Both performanes exhibit a gradual resendo that limaxes in the multiplesubito forte diretives of measure 4. This measure marks the end of the introdution of the�rst theme of this movement, whih is re�eted in the sore by the textural hange in theleft-hand aompaniment starting in measure 5 as well as the adential move to E♭ major(the �rst appearane of a �pure� major hord in the piee). Appropriately enough, the tempourves of almost all performanes exhibit a slow-down at this junture.The next goal for the artists seems to be the subito forte piano of measure 9, whih is preededby a resendo in the eighth measure that is learly visible in the two dynamis urves. Again,the tempo urves on�rm the strutural importane of this measure (whih, not oinidentally,ontains the highest note of the whole segment as well as a deeptive adene) for the artists, allof whom rest on the �rst beat of the measure for a short time before ontinuing. The performers65



Chapter 4 Evaluationhoose di�erent ways of approahing this goal: Beginning from measure 5, one artist displays amarked speed-up with respet to the other performanes. The same performane di�ers fromthe other performanes in its hoie of dynamis as well. In measure 5, it starts out softer thanthe other performane shown, but quikly builds up in energy and reahes a signi�antly louderfortissimo than the other performane in measures 6 and 7, whih is then only intensi�ed inmeasure 8. Here, it is interesting to note that both performanes display a quieter fortissimoin measure 7 than in measure 6, although their reasons for this are not entirely lear.In measure 9, both performanes have reahed their limax and return to the piano dynamisof the beginning of the piee. The tempo is quikened a bit for the last measure, but mustof ourse slow down for the �nal fermata before the beginning of the development setion(measure 10). Even though the �fast� performane again reahes a higher tempo in the middleof measure 9 than all other performanes (trying to math this measure to its former hightempo, in all likelihood), the fermata is performed in the same tempo hosen by the otherartists. This suggests that the artist's divergene from the path hosen by the other performerswas of a temporary nature, and that the following setion may be performed in a mannersimilar to the one hosen by di�erent interpretations.In summary, the analysis of the the dynamis of a performane in onjuntion with its re-spetive tempo urve may yield results that are not readily apparent from either of the urvesalone. In this example, the tempo and dynamis information suggest that the �fast� performerhad a heightened sense of suspense and development towards measure 9 in mind, whih is thenatural a�etive result of a joint inrease in tempo and loudness. Suh a laim an be statedwith a muh higher degree of on�dene when it is substantiated by multiple soures of infor-mation than when only one suh soure is available.4.3 Chapter SummaryThe present hapter has demonstrated the potential and the limit both of theoretial andpratial ability of the proposed tehniques to apture the essene of a piee's temporal stru-ture. The results are indiative of a good overall performane, in partiular when high-qualityalignment information between referene and interpretation is available.The FWC tehnique was put to pragmati use in the exemplary evaluation of several musialinterpretations of piees of Western lassial musi, and produed onvining results that wereanalyzed using standard musiologial riteria. Here, it was shown that the generated tempourves re�eted artisti intentions in the musial shaping of phrases and the highlighting ofstruturally important events of a piee. In one ase, this was substantiated by additionalevaluation of dynamis urves generated by making use of the available alignment informa-tion. This example in partiular demonstrated that the annotation information automatiallyreated as a byprodut of the alignment proess an provide useful assistane in takling tasksinvolving evaluation or analysis of performane data.The following hapter extends the results obtained in this hapter by presenting various teh-niques from related literature dealing with the automated proessing of tempo and dynamisinformation (i.e. data suh as produed by our tehniques).
66



Chapter 5Performane AnalysisI'll play it �rst and tell you what it is later. �Miles Davis, 1963As illustrated by the examples given in Setion 4.2, the tempo urves generated by our teh-niques an be used as a basis for deriving musial statements about spei� performanes.The �eld of study onerned with the automation of suh analysis proesses is appropriatelyalled performane analysis. In this hapter, we present some interesting tehniques of this�eld that rely on tempo urve information for the omputation of a number of related perfor-mane attributes. Aording to the strutural division already mentioned in Setion 4.2, thesetehniques are grouped aording to the main fous of their studies, whih lay either in theommonalities or the di�erenes among a number of interpretations of one or more piees.5.1 Researh Fousing on Common Interpretational TraitsOne interesting approah that falls into the former ategory tries to derive elementary rulesof performane that apture basi priniples every performer adheres to [Wid02℄.21 This isdone without falling bak on domain knowledge; instead, the rules are indued empiriallyfrom a large data set of piano musi using mahine learning methods. The employed data setis reated spei�ally for this undertaking: A reording of 13 omplete Mozart piano sonatas(about four hours of musi overall), performed on a player piano. This enables using diretonset annotation on the note level as input for the learning algorithm.An example for a rule generated by this algorithm might look like this (in fat, this rule wasone of 17 rules produed and aepted for the �nal result set):Context:Two onseutive notesPreondition:Seond note has same pith as first noteAtion:Play the first note 'staato'21Even though this approah uses data by a single pianist only. 67



Chapter 5 Performane Analysis

Figure 5.1: Sample Dynasape for Horowitz: Chopin Mazurka 63/3, 1949 performane (repro-dued from [Sap08℄)The authors all this the �temporal separation� rule, in that two notes of equal pith beomeeasier to separate for the listener after appliation of the rule. An empirial evaluation of thisapproah shows that the rules seem to apture basi performane priniples very well. In fat,they even perform better on some test data than on the training data, although the test dataonsists of Chopin piees, while the training was done on Mozart sonatas.A di�erent approah fousing on the omparative analysis of multiple performanes at oneuses an innovative visualization method enoding similarity aspets of these performanes[Sap07, Sap08℄. This visualization is alled sape plot. The name derives from landsapepaintings, where, aording to the author, �the interesting parts lie somewhere in the middle-ground�.One example plot is depited in Figure 5.1. It shows the orrespondene of loudness featuresof one partiular reording of a piee to other reordings of the same piee (of ourse, di�erentfeatures suh as tempo an be plotted as well). For this so-alled dynasape, the referenereording was done by Horowitz in 1949. The plot shows the losest mathes for Horowitz'sdynami hoies in di�erent segmentations of the original�e.g., the top point orrespondsto the overall best math, while points in the middle of the plot orrespond to mathes ofsegments that have half the length of the omplete piee.While the reader is referred to the original paper for a detailed explanation of the segmentationproedure and results, one an intuitively onlude from Figure 5.1 that the �rst half of thereferene reording is best mathed by a Rahmanino� reording of this piee, while the seondhalf is better mathed by Zak (1951).The information used for sape plot generation is also evaluated to yield a non-visual, ompu-tational similarity metri for di�erent performanes of a given piee. Empirial testing of thismetri shows that it suessfully ranks di�erent interpretations of one piee by the same artistas very similar. In the same work, the author introdues an interesting onept: Residualtempo, the result of subtrating a smoothed tempo urve from a high-resolution tempo urve.68



5.2 Researh Fousing on Systemati Di�erenes Between InterpretationsThus, the residual tempo desribes the loal, small-sale variations of a player without thein�uenes of larger-sale phrasing onerns.5.2 Researh Fousing on Systemati Di�erenes BetweenInterpretationsOne tehnique that onentrates on systemati di�erenes between artists (even aross dif-ferent piees) was developed in an attempt to formally speify the basi musial gesturesindividual artists are prone to use [WDG+03, Wid05℄. Musial gestures here are de�ned in athree-dimensional spae of tempo-loudness variations over time. This movement is visualizedin the so-alled performane worm (Fig. 5.2), where variations along the horizontal axis in-diate tempo hanges and variations on the vertial axis indiate hanges in loudness [LG03℄.Progress along the performane's time dimension is indiated by inluding depth information:Reent information is displayed very learly, while older data points begin to blur and beomesmaller as if fading into the distane. Thus, the �worm� seems to move towards the viewer.In order to get the neessary data for a suessful lassi�ation of salient aspets whih de�nean artist's playing style, a large olletion of over 500 professional CD reordings was annotatedat the beat level using a semi-automati approah. This data was then analyzed to deriveperformane worms for the individual piees, and the worms were divided into small segmentsof about two bars length. After normalization of these segments, they were lustered aordingto their shape, suh that 24 prototype shapes emerged. The onluding stage onsisted of ratingall artists aording to their frequeny of use of eah of these shapes.

Figure 5.2: Performane Worm for Horowitz: Robert Shumann, Kinderszenen op. 15, �Vonfremden Ländern und Menshen�, measures 1�8 (reprodued from [WDG+03℄)The results show that this method is useful for omputing a musially meaningful lusteringof artists by using their respetive rating. Another idea, the derivation of �typial gestures�of individual performers by means of searhing for espeially disriminating ombinations of69



Chapter 5 Performane Analysisprototype shapes,22 does not seem to produe onvining results: The outomes are a�etedheavily by artifats stemming from the hosen proessing approah. Here, single musialshapes are odi�ed as short strings of letters, where eah letter designates a spei� prototypeshape. Frequeny analysis of these strings is performed on a purely lexial basis. However,this neglets similarity relations between single shapes, and so the results do not lead to anydisovery of musially meaningful gestures.

22Meaning shape ombinations that are employed partiularly often by a single artist, but negleted by otherartists.70



Chapter 6SummaryI like talking about ideas. I �nd them terribly interesting. �Brian EnoThis hapter brie�y summarizes the main points of the work, showing what has been ahievedand how it relates to the �eld of performane analysis as a whole. We then disuss someopportunities for future work that might build on the results established here.6.1 ContributionsIn this work, we were onerned with the automati extration of tempo information fromexpressive musi reordings. Our goal in partiular was to explore the potential of automatiperformane annotations gained by an alignment of symboli MIDI data with onrete audioreordings. In the ourse of this investigation, we have introdued three di�erent tehniquesfor the automati omputation of tempo urves whih desribe the tempo struture of suh areording. For this, we have shown how to synhronize two piees of musi using the DTWalgorithm, and explained how the alignment information obtained in this way an be used as abasis for further algorithmi proessing. The algorithms we presented built upon three ideas:The �rst tehnique (FW) uses a �xed window size to ompute average slopes of the warpingpath. The seond tehnique (AW) omputes suh slopes of the warping path between onsetloations. Finally, the third tehnique (FWC) uses onset loations to orret the warpingpath and remove synhronization artifats, and then apply the FW approah on the orretedwarping path to ompute the tempo urve.We have given an evaluation of the di�erent tehniques whih strongly suggested that ofthe presented approahes, the third approah delivers the best results; best in terms bothof auray and robustness. However, all three algorithms are vulnerable to synhronizationerrors that may distort the warping path. We have shown the onditions under whih suherrors are likely to our, and the onditions under whih the tehniques work well. Forthe latter ase, we have given an expliit reommendation for pratial deployment of theapproah: FWC with a setting of w = 3. Using suh a on�guration, we explored somemusial examples and found that the tehnique produed results that were in aordane withour musial intuition.The urrent state of the art in performane analysis researh is to generate tempo and dy-namis data on an interpretation using semi-automati annotation for feature extration. This71



Chapter 6 Summarydata an be proessed in a variety of ways, some of whih we presented in an overview of re-lated work. This work has introdued and disussed an attempt to extrat tempo data froman interpretation in a fully automati fashion, using only the performane and a digital rep-resentation of the sore as a referene. Evaluation results indiate good performane, whihmakes this tehnique a valid and worthwhile target of further studies.6.2 Future WorkWhile the performane of the FWC tehnique was satisfatory for benign ases, synhroniza-tion errors dominated results in the quantitative analysis of senarios that put harder strainson the alignment proedure. The researh opportunities arising from this are twofold: Theobvious approah would be to try to inrease synhronization quality, or barring that, at leastto give an estimation of synhronization auray. This estimate ould be used to regulate thewindow size of the tempo urve omputation tehnique dynamially, inreasing it in regions oflow synhronization auray and dereasing it for results of higher preision. This way, qual-ity of the omputed tempo urve ould be improved due to feedbak from the synhronizationalgorithm.However, feedbak an be given in the inverse diretion as well: Sine we know that extremetempo variations are quite unrealisti and thus improbable, synhronization an likely beimproved by inorporating information about the loations of the tempo urve where suhextreme variations our. This gives the algorithm an opportunity to reonsider the omputedwarping path and possibly orret the synhronization error. On the tehnial side, thisould be implemented in the DTW omputation phase by using a modi�ed ost measure thatpenalized high variability in the tempo urve, or even earlier during feature omputation.Sine extration and proessing of features is omputationally ostly, it would be reasonableto reompute features for single segments only where one suspeted a synhronization failure.For this reomputation step, both higher and lower feature resolutions may produe betterresults, depending on the spei� setting: Higher resolutions may inorporate informationthat was previously blurred out, while lower resolutions may disard artifats that hinderedproper synhronization.A di�erent potentially worthwhile approah might lie in further experimentation with the AWalgorithm. While performane of this algorithm has not been on par with the FWC approah,it too might pro�t from a dynami window size. As in the ase disussed above, the respe-tive window size might be determined by synhronization error estimations�however, if suhinformation should not be available, an interesting possibility would be to design a heuristibased on note frequeny in a spei� time interval. For example, if two notes are playedwithin the time interval of one seond, synhronization for this interval may be better thanif ten notes were played in the same interval. Observation of potential orrelations betweenerror rate and tempo urve auray ould help to on�rm or rejet this hypothesis. Anotherrelated point is the integration of a greater variety of features into the urrent approahes(in partiular note o�sets and pedalling) that ould be used to yield results of even higherpreision.In the urrent approah, linear interpolation has been used exlusively for the omputationof tempo urves. A di�erent venue to explore might lie in the hoie of di�erent interpolation72



6.2 Future Workshemes, suh as with polynomial or spline interpolation. One ould also try to smooth thewarping path using tehniques other than interonset orretion, e.g. Gaussian smoothing orFourier smoothing. However, this would neglet the valuable information gained by deter-mining note onset loations, so a ombination of these approahes might be worth lookinginto.As has already been mentioned, tempo urves are not the only information that an be ex-trated from a performane using a referene sore alignment as a basis. Dynamis urveshave been brie�y mentioned but should be investigated in greater detail. Making use e.g. ofnote o�set features, one ould try to determine the agogis of an interpretation.Chapter 5 already disussed some possible appliations where tempo urves are proessed inanalysis steps of higher musial abstration. Of ourse, there is great potential here, andnot all possible appliations an be listed. One exiting prospet is the ability to automat-ially orrelate tempo data with semanti events of the sore�melodi highlights, harmonisurprises, even phrase strutures. Semantially motivated reommender systems are anotheroption: �People who liked the playing style of artist X may also enjoy artist Y�. This an bea great advantage when the meta-data used for suh appliations today is not available, e.g.in the ase of an artist who is not yet established on the market. Even reognizing individualartists by their playing style may beome feasible in the future, although muh work will haveto be invested to let this vision be implemented in a real-world system.
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Appendix AResult TablesThis hapter presents the full tables of the ground truth evaluation results disussed in Setion4.1. As mentioned there, the quoted value for parameter w in eah table designates the inputfor both the FW and the FWC tehnique, so that one an diretly read o� the respetiveimpat of interonset orretion of the warping path for the respetive senario.

FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 12.11 320.59 23.83 9.04 254.69 18.09 6.80 117.72 13.32C028 (Beethoven, piano) 10.54 308.48 18.53 17.39 320.53 25.23 6.74 234.49 13.46C031 (Chopin, piano) 11.80 400.39 29.22 9.05 210.47 13.86 5.17 104.78 8.19C032 (Chopin, piano) 5.86 132.06 12.85 9.76 134.19 10.73 2.72 28.97 3.34C029 (Shumann, piano) 21.28 512.58 47.80 6.16 72.17 8.50 5.22 54.57 7.88Average over piano 12.32 334.82 26.45 10.28 198.41 15.28 5.33 108.10 9.24C003 (Beethoven, orhestra) 18.67 406.22 24.80 31.40 354.81 38.17 14.19 253.67 18.49C015 (Borodin, strings) 11.95 227.24 15.43 17.91 337.82 26.63 10.00 227.08 13.32C022 (Brahms, orhestra) 6.48 55.75 6.97 12.79 164.61 16.35 4.26 51.15 5.34C044 (Rimski-Korsakov, �ute/piano) 2.66 25.92 2.62 11.78 131.70 12.29 2.43 22.44 2.42C048 (Shubert, voie/piano) 13.58 485.63 26.82 10.70 262.11 16.09 6.00 125.89 9.31Average over non-piano 10.67 240.15 15.33 16.92 250.21 21.91 7.37 136.05 9.77J001 (Nakamura, piano) 5.90 74.73 7.58 6.82 122.30 8.47 3.04 33.42 3.31J038 (HH Band, big band) 8.75 150.97 12.35 15.61 280.38 23.09 6.85 134.11 10.07J041 (Umitsuki Quart., sax/bass/per.) 7.10 124.40 9.73 19.02 268.37 24.15 6.27 110.09 8.77P031 (Nagayama, eletroni) 9.74 197.52 14.13 30.86 340.32 36.15 9.26 190.17 13.70P093 (Burke, voie/guitar) 13.56 465.04 26.72 26.70 398.93 42.19 12.09 353.76 23.37Average over jazz/pop 9.01 202.53 14.10 19.80 282.06 26.81 7.50 164.31 11.84Average over all 10.66 259.17 18.63 15.67 243.56 21.33 6.74 136.15 10.29Table A.1: Results for Senario 1, w = 1 s, wioi = 2 75



Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 7.11 79.98 13.74 6.14 69.69 12.13 4.82 54.07 10.41C028 (Beethoven, piano) 4.32 115.06 8.14 6.98 261.04 13.29 3.28 113.09 7.48C031 (Chopin, piano) 5.07 127.01 10.81 4.24 59.41 7.06 2.84 37.30 4.94C032 (Chopin, piano) 2.84 35.19 5.01 3.92 32.37 5.44 1.83 20.95 2.73C029 (Shumann, piano) 8.97 120.66 14.42 6.20 46.40 7.44 3.49 36.08 5.64Average over piano 5.66 95.58 10.42 5.50 93.78 9.07 3.25 52.30 6.24C003 (Beethoven, orhestra) 7.24 75.18 8.83 11.84 222.06 15.91 5.91 71.31 7.36C015 (Borodin, strings) 4.63 64.59 5.84 6.77 207.45 12.45 4.05 56.03 5.28C022 (Brahms, orhestra) 2.58 19.78 2.69 3.44 39.59 4.10 1.85 16.58 2.15C044 (Rimski-Korsakov, �ute/piano) 1.42 17.38 1.93 3.09 56.64 3.70 1.39 17.12 1.90C048 (Shubert, voie/piano) 4.97 56.53 6.70 4.43 78.37 6.24 2.88 41.87 4.19Average over non-piano 4.17 46.69 5.20 5.91 120.82 8.48 3.22 40.58 4.17J001 (Nakamura, piano) 2.41 28.90 3.15 2.26 43.09 2.67 1.52 18.31 2.01J038 (HH Band, big band) 3.51 35.53 4.36 4.53 74.97 6.80 2.94 30.41 3.98J041 (Umitsuki Quart., sax/bass/per.) 2.99 40.93 4.23 5.33 132.45 8.01 2.70 34.89 4.00P031 (Nagayama, eletroni) 4.29 58.85 6.47 12.89 339.23 20.04 4.12 58.01 6.43P093 (Burke, voie/guitar) 5.15 56.39 7.27 9.01 276.67 16.38 4.71 56.38 7.07Average over jazz/pop 3.67 44.12 5.10 6.80 173.28 10.78 3.20 39.60 4.70Average over all 4.50 62.13 6.90 6.07 129.30 9.44 3.22 44.16 5.04Table A.2: Results for Senario 1, w = 3 s, wioi = 10FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 6.37 69.25 12.43 7.33 70.99 12.76 4.71 54.65 10.02C028 (Beethoven, piano) 3.75 77.14 6.78 5.60 135.54 9.69 3.01 75.89 6.43C031 (Chopin, piano) 4.24 62.80 7.65 5.02 45.98 7.04 2.70 32.77 4.67C032 (Chopin, piano) 2.91 28.97 4.62 3.67 39.63 6.34 2.14 25.01 3.30C029 (Shumann, piano) 7.24 72.14 10.18 9.30 55.69 9.71 3.37 34.30 5.46Average over piano 4.90 62.06 8.33 6.19 69.56 9.11 3.19 44.53 5.98C003 (Beethoven, orhestra) 5.80 67.07 6.96 7.60 84.79 9.36 4.81 64.72 5.86C015 (Borodin, strings) 3.94 38.37 4.69 5.52 106.46 7.24 3.53 37.57 4.31C022 (Brahms, orhestra) 2.35 19.52 2.64 3.07 21.20 3.20 1.86 18.09 2.40C044 (Rimski-Korsakov, �ute/piano) 1.67 20.98 2.62 1.79 20.27 1.89 1.66 20.71 2.61C048 (Shubert, voie/piano) 4.01 39.78 5.04 5.24 46.66 6.80 2.61 31.64 3.73Average over non-piano 3.55 37.14 4.39 4.65 55.88 5.70 2.89 34.55 3.78J001 (Nakamura, piano) 2.25 23.94 2.89 2.65 34.76 3.69 1.60 21.67 2.38J038 (HH Band, big band) 3.16 31.51 3.87 3.46 31.67 4.00 2.73 27.93 3.67J041 (Umitsuki Quart., sax/bass/per.) 2.72 38.06 3.99 3.46 57.82 5.13 2.49 34.32 3.84P031 (Nagayama, eletroni) 3.73 46.75 5.75 7.83 111.68 10.60 3.61 46.15 5.73P093 (Burke, voie/guitar) 3.87 35.88 5.04 5.23 81.89 8.00 3.62 33.62 4.87Average over jazz/pop 3.15 35.23 4.31 4.53 63.56 6.29 2.81 32.74 4.10Average over all 3.87 44.81 5.68 5.12 63.00 7.03 2.96 37.27 4.62Table A.3: Results for Senario 1, w = 4 s, wioi = 20
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 6.22 64.41 11.36 9.21 72.73 13.05 5.17 58.92 10.29C028 (Beethoven, piano) 3.79 53.99 5.99 5.76 114.58 9.55 3.38 54.90 5.94C031 (Chopin, piano) 3.98 48.91 5.89 6.63 56.82 8.72 3.15 32.71 4.98C032 (Chopin, piano) 3.82 34.99 5.38 3.82 41.12 6.75 3.44 34.87 5.13C029 (Shumann, piano) 5.82 36.90 6.72 13.59 72.32 12.59 3.88 39.43 5.92Average over piano 4.73 47.84 7.07 7.80 71.52 10.13 3.80 44.17 6.45C003 (Beethoven, orhestra) 5.02 49.87 5.84 6.77 74.23 8.01 4.29 47.97 5.13C015 (Borodin, strings) 3.83 41.08 4.73 6.53 73.35 7.62 3.62 40.68 4.64C022 (Brahms, orhestra) 2.87 26.65 3.87 3.69 25.61 3.98 2.59 26.35 3.80C044 (Rimski-Korsakov, �ute/piano) 2.73 30.27 4.37 1.50 16.28 1.71 2.74 30.21 4.36C048 (Shubert, voie/piano) 3.81 32.47 4.56 6.62 54.61 8.35 3.13 34.99 4.36Average over non-piano 3.65 36.07 4.67 5.02 48.82 5.93 3.27 36.04 4.46J001 (Nakamura, piano) 2.80 31.03 3.85 3.60 33.52 4.63 2.37 30.86 3.77J038 (HH Band, big band) 3.52 33.68 4.55 3.85 31.92 4.33 3.29 33.64 4.50J041 (Umitsuki Quart., sax/bass/per.) 3.12 39.28 4.76 3.27 45.36 4.67 2.97 38.20 4.69P031 (Nagayama, eletroni) 4.14 44.81 6.18 5.63 76.86 7.53 4.08 45.03 6.17P093 (Burke, voie/guitar) 3.79 35.06 4.79 4.23 36.71 5.12 3.67 35.06 4.73Average over jazz/pop 3.47 36.77 4.83 4.12 44.87 5.26 3.28 36.56 4.77Average over all 3.95 40.23 5.52 5.65 55.07 7.11 3.45 38.92 5.23Table A.4: Results for Senario 1, w = 6 s, wioi = 30FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 7.19 98.00 12.94 5.36 51.19 7.04 3.69 37.85 5.27C028 (Beethoven, piano) 6.10 93.07 8.82 8.44 239.31 14.04 4.47 77.37 7.11C031 (Chopin, piano) 7.84 269.76 18.18 6.05 73.06 8.69 4.37 62.36 7.03C032 (Chopin, piano) 4.83 82.38 9.86 5.40 54.86 7.67 3.73 47.72 7.00C029 (Shumann, piano) 13.10 116.40 18.49 8.24 74.16 9.98 5.38 61.58 8.38Average over piano 7.81 131.92 13.66 6.70 98.52 9.48 4.33 57.38 6.96C003 (Beethoven, orhestra) 11.09 156.97 14.30 14.61 278.33 19.32 9.22 105.67 11.59C015 (Borodin, strings) 7.85 164.92 11.35 10.27 342.02 16.49 7.08 170.75 10.79C022 (Brahms, orhestra) 4.50 41.84 5.42 5.39 83.34 7.14 3.26 39.09 4.31C044 (Rimski-Korsakov, �ute/piano) 2.47 22.01 2.98 4.28 45.60 4.97 2.33 22.42 2.90C048 (Shubert, voie/piano) 8.09 129.00 13.26 6.47 96.21 8.72 4.74 97.01 9.53Average over non-piano 6.80 102.95 9.46 8.20 169.10 11.33 5.33 86.99 7.82J001 (Nakamura, piano) 4.07 56.37 6.51 3.70 73.22 4.83 2.58 25.22 3.48J038 (HH Band, big band) 5.70 65.89 7.36 7.08 107.01 10.65 4.66 54.38 6.60J041 (Umitsuki Quart., sax/bass/per.) 5.80 146.29 11.83 7.97 242.86 13.57 5.19 107.81 10.40P031 (Nagayama, eletroni) 5.16 41.76 5.47 14.89 278.75 20.44 4.86 40.86 5.34P093 (Burke, voie/guitar) 7.05 65.28 9.29 9.87 273.43 16.38 6.58 63.89 8.99Average over jazz/pop 5.56 75.12 8.09 8.70 195.05 13.18 4.77 58.44 6.96Average over all 6.72 103.33 10.40 7.87 154.22 11.33 4.81 67.60 7.25Table A.5: Results for Senario 2, w = 2 s, wioi = 8
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Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 6.52 62.70 10.27 6.60 57.38 8.44 4.08 43.12 5.71C028 (Beethoven, piano) 5.37 66.42 7.16 7.65 181.11 12.39 4.41 58.60 6.41C031 (Chopin, piano) 6.51 101.66 10.77 6.98 76.37 9.86 4.47 55.32 6.82C032 (Chopin, piano) 5.09 65.54 8.50 4.83 54.76 7.76 4.48 46.67 7.41C029 (Shumann, piano) 10.75 81.94 14.51 10.74 77.95 11.49 5.32 58.35 7.86Average over piano 6.85 75.65 10.24 7.36 89.51 9.99 4.55 52.41 6.84C003 (Beethoven, orhestra) 8.64 101.04 10.63 11.42 199.13 13.82 7.57 84.91 9.36C015 (Borodin, strings) 6.49 89.18 8.64 9.47 241.75 13.33 6.16 90.20 8.50C022 (Brahms, orhestra) 4.01 32.45 4.66 4.57 66.58 5.55 3.23 31.71 4.08C044 (Rimski-Korsakov, �ute/piano) 3.11 30.24 4.20 3.20 26.77 3.41 3.04 30.08 4.18C048 (Shubert, voie/piano) 6.78 94.62 10.49 7.45 96.35 10.11 4.76 76.31 8.41Average over non-piano 5.81 69.50 7.72 7.22 126.12 9.25 4.95 62.64 6.91J001 (Nakamura, piano) 4.01 51.63 5.72 4.19 58.96 5.43 3.10 33.90 4.44J038 (HH Band, big band) 4.93 45.60 6.08 5.97 76.97 8.11 4.29 40.38 5.71J041 (Umitsuki Quart., sax/bass/per.) 5.44 113.62 10.72 6.33 164.15 11.71 4.99 89.07 9.56P031 (Nagayama, eletroni) 4.80 43.58 5.35 10.60 189.51 13.78 4.63 43.99 5.31P093 (Burke, voie/guitar) 5.72 54.28 6.91 7.82 94.00 10.79 5.39 51.42 6.77Average over jazz/pop 4.98 61.74 6.96 6.98 116.72 9.96 4.48 51.75 6.36Average over all 5.88 68.97 8.31 7.19 110.78 9.73 4.66 55.60 6.70Table A.6: Results for Senario 2, w = 3 s, wioi = 12FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 6.89 60.35 9.59 8.48 68.25 10.41 5.26 51.85 6.88C028 (Beethoven, piano) 5.91 57.66 7.38 7.47 184.30 11.85 5.25 56.90 7.16C031 (Chopin, piano) 6.71 70.03 9.07 8.14 76.90 10.89 5.35 59.37 7.39C032 (Chopin, piano) 6.12 56.27 8.52 5.10 54.75 8.63 5.81 52.50 8.28C029 (Shumann, piano) 9.75 72.76 12.61 12.99 86.69 13.16 5.94 59.49 8.08Average over piano 7.08 63.41 9.43 8.44 94.18 10.99 5.52 56.02 7.56C003 (Beethoven, orhestra) 8.05 80.52 9.39 10.24 114.43 11.52 7.38 72.09 8.68C015 (Borodin, strings) 6.78 84.94 8.51 9.88 159.13 12.17 6.56 85.69 8.67C022 (Brahms, orhestra) 4.56 35.73 5.35 4.63 52.65 4.89 4.08 35.57 5.12C044 (Rimski-Korsakov, �ute/piano) 4.45 38.49 5.86 2.74 23.21 2.95 4.41 37.94 5.86C048 (Shubert, voie/piano) 6.74 81.17 9.63 8.63 95.47 11.18 5.47 70.99 8.53Average over non-piano 6.11 64.17 7.75 7.23 88.98 8.54 5.58 60.46 7.37J001 (Nakamura, piano) 4.88 47.69 6.44 4.90 57.49 6.22 4.28 43.26 5.92J038 (HH Band, big band) 5.43 47.48 6.41 5.92 59.16 7.28 4.99 47.10 6.33J041 (Umitsuki Quart., sax/bass/per.) 6.08 93.69 10.28 5.82 142.64 10.75 5.74 74.32 9.44P031 (Nagayama, eletroni) 5.38 52.30 6.39 8.68 101.83 9.80 5.27 52.30 6.39P093 (Burke, voie/guitar) 5.86 44.86 6.80 6.86 61.83 8.55 5.64 45.92 6.67Average over jazz/pop 5.53 57.20 7.27 6.44 84.59 8.52 5.19 52.58 6.95Average over all 6.24 61.60 8.15 7.37 89.25 9.35 5.43 56.35 7.29Table A.7: Results for Senario 2, w = 4 s, wioi = 16
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 9.32 129.97 15.17 6.66 80.98 10.09 4.90 74.42 8.26C028 (Beethoven, piano) 17.20 542.30 39.63 21.58 475.24 47.11 13.61 517.29 36.30C031 (Chopin, piano) 24.92 313.20 46.98 20.32 236.52 36.62 20.09 303.86 41.87C032 (Chopin, piano) 7.73 119.86 16.50 10.41 117.44 17.06 5.13 72.36 10.09C029 (Shumann, piano) 62.71 672.71 103.29 47.90 304.08 61.59 46.67 396.93 70.33Average over piano 24.38 355.61 44.32 21.37 242.85 34.49 18.08 272.97 33.37C003 (Beethoven, orhestra) 32.61 455.72 48.42 38.55 478.94 58.05 28.77 435.07 46.11C015 (Borodin, strings) 22.93 533.19 45.46 23.15 388.05 39.26 19.85 334.75 34.88C022 (Brahms, orhestra) 19.30 123.60 27.78 22.14 229.22 35.12 17.67 121.30 27.25C044 (Rimski-Korsakov, �ute/piano) 2.60 31.20 3.20 6.44 63.96 8.24 2.30 30.28 3.01C048 (Shubert, voie/piano) 53.15 640.39 86.62 49.25 431.62 80.49 48.59 603.79 82.80Average over non-piano 26.12 356.82 42.29 27.91 318.36 44.23 23.43 305.04 38.81J001 (Nakamura, piano) 15.09 178.90 31.44 14.66 191.09 30.83 13.07 179.17 30.58J038 (HH Band, big band) 14.89 139.19 22.87 17.31 279.79 28.54 13.45 139.05 22.69J041 (Umitsuki Quart., sax/bass/per.) 44.50 397.81 58.57 48.27 419.48 60.86 43.84 397.71 58.25P031 (Nagayama, eletroni) 52.81 346.64 65.48 61.84 392.52 67.47 52.42 346.10 65.58P093 (Burke, voie/guitar) 23.18 493.03 44.29 28.60 541.15 52.45 22.29 419.56 43.87Average over jazz/pop 30.09 311.11 44.53 34.14 364.80 48.03 29.01 296.32 44.19Average over all 26.86 341.18 43.71 27.81 308.67 42.25 23.51 291.44 38.79Table A.8: Results for Senario 3, w = 2 s, wioi = 8FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 7.82 80.13 12.25 7.24 72.47 10.75 4.47 55.34 7.04C028 (Beethoven, piano) 13.72 402.44 31.13 18.50 477.71 41.88 11.74 374.75 30.38C031 (Chopin, piano) 22.16 308.71 42.68 20.31 163.83 33.77 18.97 248.50 38.68C032 (Chopin, piano) 6.36 105.20 13.23 8.95 111.15 16.35 4.88 63.17 9.88C029 (Shumann, piano) 54.20 721.95 87.02 48.67 305.10 57.92 44.26 401.58 65.67Average over piano 20.85 323.68 37.26 20.73 226.05 32.13 16.87 228.67 30.33C003 (Beethoven, orhestra) 27.29 267.65 42.65 33.83 466.15 53.36 25.14 256.86 42.19C015 (Borodin, strings) 18.30 467.90 35.56 20.39 379.35 34.58 16.44 240.85 29.78C022 (Brahms, orhestra) 17.59 116.29 26.18 19.73 213.11 31.25 16.61 115.08 25.83C044 (Rimski-Korsakov, �ute/piano) 2.36 26.72 3.42 4.64 46.91 5.74 2.25 27.06 3.39C048 (Shubert, voie/piano) 49.53 592.25 78.96 48.16 380.38 75.86 46.78 497.78 77.05Average over non-piano 23.01 294.16 37.35 25.35 297.18 40.16 21.44 227.53 35.65J001 (Nakamura, piano) 14.11 181.14 30.54 14.78 181.85 30.65 12.91 180.27 30.33J038 (HH Band, big band) 12.92 121.70 20.77 14.54 176.81 23.45 11.91 119.02 20.52J041 (Umitsuki Quart., sax/bass/per.) 42.63 351.31 56.64 45.41 377.11 58.89 42.11 351.30 56.50P031 (Nagayama, eletroni) 51.05 353.29 62.75 58.13 384.23 66.27 50.87 352.88 62.72P093 (Burke, voie/guitar) 19.90 259.56 38.82 24.03 333.43 44.00 19.24 258.50 38.80Average over jazz/pop 28.12 253.40 41.90 31.38 290.69 44.65 27.41 252.39 41.77Average over all 24.00 290.41 38.84 25.82 271.31 38.98 21.91 236.19 35.92Table A.9: Results for Senario 3, w = 3 s, wioi = 12
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Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 7.19 63.07 10.95 10.22 100.37 15.47 4.73 53.69 7.44C028 (Beethoven, piano) 12.36 321.83 27.47 16.44 462.16 35.83 10.93 321.04 27.10C031 (Chopin, piano) 21.26 263.44 39.60 22.07 166.24 34.35 18.84 226.94 36.64C032 (Chopin, piano) 6.42 88.68 12.64 8.46 98.99 16.65 5.33 76.60 10.57C029 (Shumann, piano) 48.35 551.74 70.03 52.53 272.87 56.33 42.38 406.05 60.13Average over piano 19.12 257.75 32.14 21.94 220.13 31.73 16.44 216.87 28.38C003 (Beethoven, orhestra) 25.01 246.51 40.66 29.54 443.10 46.46 23.49 245.68 40.53C015 (Borodin, strings) 16.70 250.94 30.76 19.77 249.28 30.76 15.48 198.76 28.53C022 (Brahms, orhestra) 17.37 109.90 25.78 18.32 150.66 26.52 16.61 109.77 25.63C044 (Rimski-Korsakov, �ute/piano) 2.77 37.98 4.80 3.28 29.65 4.05 2.71 38.16 4.82C048 (Shubert, voie/piano) 47.75 379.61 73.14 48.74 329.73 71.38 46.11 376.98 73.38Average over non-piano 21.92 204.99 35.03 23.93 240.48 35.84 20.88 193.87 34.58J001 (Nakamura, piano) 14.28 178.94 30.38 15.67 172.10 30.62 13.46 176.90 30.41J038 (HH Band, big band) 12.27 116.37 20.12 13.49 140.52 21.11 11.51 113.46 19.97J041 (Umitsuki Quart., sax/bass/per.) 42.07 287.70 54.91 43.36 350.61 57.27 41.66 287.26 54.90P031 (Nagayama, eletroni) 50.07 274.93 59.09 54.96 344.35 64.56 49.96 274.65 59.16P093 (Burke, voie/guitar) 18.58 222.80 36.82 20.37 230.90 38.83 18.18 223.66 36.83Average over jazz/pop 27.45 216.15 40.26 29.57 247.69 42.48 26.95 215.19 40.25Average over all 22.83 226.30 35.81 25.15 236.10 36.68 21.42 208.64 34.40Table A.10: Results for Senario 3, w = 4 s, wioi = 20FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 9.13 83.08 13.49 15.03 113.30 19.91 7.96 83.92 13.00C028 (Beethoven, piano) 12.66 167.73 22.85 16.39 346.97 32.98 12.09 167.27 22.78C031 (Chopin, piano) 22.24 175.85 34.90 25.55 177.70 36.34 21.15 171.42 34.78C032 (Chopin, piano) 8.51 114.69 15.23 8.42 97.97 17.10 8.38 113.45 15.16C029 (Shumann, piano) 44.16 297.26 52.33 59.91 293.09 57.41 42.23 285.68 52.40Average over piano 19.34 167.72 27.76 25.06 205.81 32.75 18.36 164.35 27.62C003 (Beethoven, orhestra) 24.68 224.28 39.79 28.47 266.32 42.67 23.88 224.42 39.80C015 (Borodin, strings) 17.36 219.35 29.47 22.63 210.74 32.99 17.00 218.85 29.59C022 (Brahms, orhestra) 19.24 121.15 27.45 19.00 120.04 25.87 18.90 121.09 27.50C044 (Rimski-Korsakov, �ute/piano) 5.92 62.59 9.51 2.82 32.44 3.94 5.90 63.13 9.52C048 (Shubert, voie/piano) 47.31 314.58 67.02 49.74 310.09 67.71 46.77 311.05 67.28Average over non-piano 22.90 188.39 34.65 24.53 187.93 34.64 22.49 187.71 34.74J001 (Nakamura, piano) 17.53 162.76 31.58 18.32 172.02 31.66 17.19 162.67 31.68J038 (HH Band, big band) 14.04 133.04 21.87 14.51 126.23 21.38 13.76 133.73 21.85J041 (Umitsuki Quart., sax/bass/per.) 42.62 249.58 52.73 42.65 298.61 55.28 42.36 249.65 52.79P031 (Nagayama, eletroni) 50.56 196.71 55.17 53.23 334.47 63.49 50.54 196.58 55.21P093 (Burke, voie/guitar) 19.62 206.72 35.75 19.38 214.48 36.36 19.41 206.33 35.78Average over jazz/pop 28.87 189.76 39.42 29.62 229.16 41.63 28.65 189.79 39.46Average over all 23.70 181.96 33.94 26.40 207.63 36.34 23.17 180.62 33.94Table A.11: Results for Senario 3, w = 7 s, wioi = 30
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 26.02 543.55 57.16 13.16 153.34 25.38 13.51 258.37 24.84C028 (Beethoven, piano) 16.38 466.21 30.03 12.83 357.34 25.18 10.64 315.51 21.32C031 (Chopin, piano) 18.32 518.24 43.32 7.66 151.73 14.47 7.70 241.97 14.89C032 (Chopin, piano) 13.76 372.64 43.23 6.14 112.71 9.63 4.80 109.09 9.77C029 (Shumann, piano) 29.36 376.35 53.78 9.78 116.77 18.65 8.01 103.24 14.03Average over piano 20.77 455.40 45.50 9.92 178.38 18.66 8.93 205.63 16.97C003 (Beethoven, orhestra) 25.58 501.63 34.71 22.35 358.00 29.87 19.85 320.51 25.39C015 (Borodin, strings) 17.83 267.29 22.47 15.11 282.92 22.61 15.22 227.21 19.33C022 (Brahms, orhestra) 12.02 371.17 25.49 7.81 108.74 11.58 7.45 103.70 10.86C044 (Rimski-Korsakov, �ute/piano) 5.44 84.05 9.14 6.76 103.51 9.22 4.54 82.74 8.17C048 (Shubert, voie/piano) 21.40 485.06 40.91 7.98 185.51 15.21 8.99 183.20 15.26Average over non-piano 16.46 341.84 26.55 12.00 207.74 17.70 11.21 183.47 15.80J001 (Nakamura, piano) 10.15 488.16 21.54 5.04 192.31 10.82 5.06 103.52 8.80J038 (HH Band, big band) 15.66 464.87 31.79 12.06 171.43 18.49 11.98 151.62 18.12J041 (Umitsuki Quart., sax/bass/per.) 11.63 262.42 20.07 12.34 237.20 19.70 10.42 248.34 17.96P031 (Nagayama, eletroni) 18.85 418.99 28.87 29.40 422.94 40.77 17.96 384.71 28.36P093 (Burke, voie/guitar) 19.94 472.18 35.28 19.12 369.89 32.62 17.04 304.40 28.29Average over jazz/pop 15.24 421.32 27.51 15.59 278.75 24.48 12.49 238.52 20.31Average over all 17.49 406.19 33.19 12.50 221.62 20.28 10.88 209.21 17.69Table A.12: Results for Senario 4, w = 1 s, wioi = 6FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 22.30 472.55 48.88 13.92 137.80 26.47 13.27 155.57 24.88C028 (Beethoven, piano) 11.45 280.50 19.31 10.08 326.10 20.24 8.84 211.44 17.62C031 (Chopin, piano) 13.10 282.97 30.63 8.29 100.82 15.10 6.89 104.48 12.75C032 (Chopin, piano) 11.45 436.25 34.16 5.29 114.77 10.23 5.66 110.45 12.80C029 (Shumann, piano) 18.93 427.97 36.15 11.81 107.82 20.49 7.66 96.86 13.70Average over piano 15.44 380.05 33.83 9.88 157.46 18.51 8.46 135.76 16.35C003 (Beethoven, orhestra) 16.86 178.16 21.12 17.58 312.54 23.62 14.23 150.67 18.85C015 (Borodin, strings) 12.14 126.83 16.39 12.76 282.60 19.61 11.06 121.85 15.47C022 (Brahms, orhestra) 8.16 109.91 13.25 5.95 99.00 10.35 6.13 94.62 10.68C044 (Rimski-Korsakov, �ute/piano) 5.37 82.36 10.78 4.82 85.31 7.92 5.00 82.36 10.65C048 (Shubert, voie/piano) 13.04 153.30 18.35 7.69 120.53 14.34 7.73 106.38 13.67Average over non-piano 11.11 130.11 15.98 9.76 179.99 15.17 8.83 111.18 13.86J001 (Nakamura, piano) 7.17 101.52 12.53 5.13 151.52 11.64 5.21 103.41 10.82J038 (HH Band, big band) 10.87 185.57 17.89 9.61 104.63 15.25 9.38 121.40 15.41J041 (Umitsuki Quart., sax/bass/per.) 8.91 161.37 15.61 9.58 218.77 17.49 8.33 156.80 15.13P031 (Nagayama, eletroni) 14.23 179.13 22.15 22.62 410.39 33.93 13.79 176.53 22.09P093 (Burke, voie/guitar) 12.99 197.43 18.55 13.83 246.75 22.23 11.90 180.85 17.71Average over jazz/pop 10.84 165.00 17.34 12.15 226.41 20.11 9.72 147.80 16.23Average over all 12.46 225.05 22.38 10.60 187.96 17.93 9.01 131.58 15.48Table A.13: Results for Senario 4, w = 2 s, wioi = 10
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Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 19.94 226.24 33.76 14.35 139.46 26.61 14.03 143.65 25.84C028 (Beethoven, piano) 10.61 249.83 17.55 9.66 316.82 19.17 9.16 221.23 16.93C031 (Chopin, piano) 11.27 207.03 20.02 8.69 97.75 15.30 7.51 105.09 13.36C032 (Chopin, piano) 10.78 150.33 20.74 5.36 114.22 10.69 7.36 109.39 15.10C029 (Shumann, piano) 15.17 144.08 20.80 12.77 108.90 20.54 8.24 98.98 14.40Average over piano 13.55 195.50 22.57 10.17 155.43 18.46 9.26 135.67 17.13C003 (Beethoven, orhestra) 14.17 135.33 18.06 16.20 267.96 21.53 12.72 128.70 16.94C015 (Borodin, strings) 11.23 121.94 15.98 12.42 232.36 18.73 10.60 120.05 15.50C022 (Brahms, orhestra) 7.97 94.72 12.92 5.81 95.26 10.35 6.90 93.00 12.37C044 (Rimski-Korsakov, �ute/piano) 6.59 81.93 12.69 4.34 80.79 7.96 6.37 81.47 12.70C048 (Shubert, voie/piano) 11.49 110.14 16.13 7.80 108.49 14.40 8.16 106.58 14.35Average over non-piano 10.29 108.81 15.16 9.31 156.97 14.59 8.95 105.96 14.37J001 (Nakamura, piano) 7.60 101.23 13.17 5.50 122.36 12.25 6.34 104.67 12.71J038 (HH Band, big band) 10.21 109.80 15.55 9.37 106.33 15.18 9.33 107.92 15.04J041 (Umitsuki Quart., sax/bass/per.) 8.88 119.74 15.53 8.99 221.54 16.93 8.48 121.16 15.33P031 (Nagayama, eletroni) 13.87 136.68 21.33 20.35 409.51 31.16 13.60 134.79 21.38P093 (Burke, voie/guitar) 11.37 114.69 15.63 12.89 181.09 19.40 10.61 114.95 15.49Average over jazz/pop 10.39 116.43 16.24 11.42 208.17 18.99 9.67 116.70 15.99Average over all 11.41 140.25 17.99 10.30 173.52 17.35 9.29 119.44 15.83Table A.14: Results for Senario 4, w = 3 s, wioi = 12FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 19.06 135.59 29.72 15.44 127.43 26.93 15.08 135.25 26.71C028 (Beethoven, piano) 11.02 130.43 17.16 9.21 272.77 17.94 10.01 129.60 16.95C031 (Chopin, piano) 11.04 96.26 16.90 9.80 94.30 16.13 8.60 102.22 14.25C032 (Chopin, piano) 11.63 111.69 18.88 6.18 117.03 12.34 9.29 111.08 16.96C029 (Shumann, piano) 14.18 112.33 18.11 15.67 101.49 22.03 9.31 98.53 15.27Average over piano 13.39 117.26 20.16 11.26 142.60 19.08 10.46 115.34 18.03C003 (Beethoven, orhestra) 13.38 124.89 17.52 14.97 149.04 19.33 12.47 124.37 16.73C015 (Borodin, strings) 11.42 122.49 16.51 12.74 150.97 18.03 10.98 122.29 16.18C022 (Brahms, orhestra) 8.78 93.75 14.05 5.94 89.46 10.98 8.08 92.48 13.87C044 (Rimski-Korsakov, �ute/piano) 8.13 81.98 14.14 4.21 81.36 8.56 7.96 81.80 14.17C048 (Shubert, voie/piano) 11.28 108.78 16.30 8.71 108.78 15.31 9.11 106.36 15.48Average over non-piano 10.60 106.38 15.70 9.31 115.92 14.44 9.72 105.46 15.29J001 (Nakamura, piano) 8.69 103.80 14.52 6.43 116.12 13.50 7.76 103.87 14.36J038 (HH Band, big band) 10.88 102.96 15.66 9.46 108.80 15.11 10.23 104.49 15.53J041 (Umitsuki Quart., sax/bass/per.) 9.76 118.61 16.52 8.66 225.72 16.55 9.47 117.05 16.38P031 (Nagayama, eletroni) 14.26 133.20 21.95 18.01 304.43 27.32 14.09 132.81 21.99P093 (Burke, voie/guitar) 11.24 113.43 15.65 11.30 123.25 16.63 10.68 113.48 15.58Average over jazz/pop 10.97 114.40 16.86 10.77 175.66 17.82 10.45 114.34 16.77Average over all 11.65 112.68 17.57 10.45 144.73 17.11 10.21 111.71 16.69Table A.15: Results for Senario 4, w = 4 s, wioi = 16
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Bah, piano) 51.08 348.22 56.59 47.49 211.05 47.02 41.86 213.55 45.03C028 (Beethoven, piano) 37.08 392.19 58.52 37.77 439.19 62.00 35.05 390.64 58.60C031 (Chopin, piano) 60.67 408.90 78.94 55.17 272.65 68.18 53.88 287.83 70.60C032 (Chopin, piano) 35.41 500.49 69.95 29.66 271.07 57.14 27.55 274.42 52.95C029 (Shumann, piano) 88.20 642.16 92.49 88.41 320.59 75.89 74.65 395.91 84.78Average over piano 54.49 458.39 71.30 51.70 302.91 62.05 46.60 312.47 62.39C003 (Beethoven, orhestra) 44.95 386.81 60.31 47.83 374.92 63.63 42.84 389.13 60.06C015 (Borodin, strings) 56.19 515.18 75.43 59.66 473.41 71.78 52.18 392.47 68.08C022 (Brahms, orhestra) 48.80 273.32 52.54 47.57 378.17 55.99 47.64 273.54 52.83C044 (Rimski-Korsakov, �ute/piano) 30.71 173.44 35.65 29.45 192.95 35.00 30.34 172.91 35.74C048 (Shubert, voie/piano) 69.22 601.92 90.64 67.06 375.06 85.44 66.24 492.55 90.14Average over non-piano 49.97 390.13 62.91 50.31 358.90 62.37 47.85 344.12 61.37J001 (Nakamura, piano) 28.10 262.31 49.39 28.92 267.13 50.89 26.30 259.86 49.66J038 (HH Band, big band) 34.84 273.86 50.79 34.66 271.74 51.45 33.60 273.86 50.46J041 (Umitsuki Quart., sax/bass/per.) 67.83 398.69 73.67 66.99 397.32 74.30 66.72 399.84 73.28P031 (Nagayama, eletroni) 91.91 315.15 73.82 92.95 342.43 76.03 91.84 314.18 73.91P093 (Burke, voie/guitar) 55.93 366.57 76.99 55.01 362.56 77.35 55.00 362.89 77.24Average over jazz/pop 55.72 323.32 64.93 55.71 328.24 66.00 54.69 322.12 64.91Average over all 53.39 390.61 66.38 52.57 330.02 63.47 49.71 326.24 62.89Table A.16: Results for Senario 5, w = 3 s, wioi = 20
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Appendix BSoure CodeIn this hapter, the headers of seleted Matlab [Mat09℄ funtions reated during the writingof this thesis are reprodued. The headers ontain information about the name of the de-sribed funtion and its input/output behavior. The organization of the headers is aordingto hronologial usage order of the respetive funtion in the tempo urve omputation pro-ess, starting with feature extration and ontinuing with urve omputation proedures andauxiliary funtions.Feature ExtrationThe file_to_feature funtion is used as a wrapper for several low-level funtions that per-form feature extration or loading of preomputed features. In the ase of MIDI �les, dirnameand filename loate the spei� �le; for wave �les, filename denotes the name of the �le inquestion, but dirname indiates the diretory where preomputed features are stored.Sample usage:[f_pith, f_peaks℄ = file_to_feature('features', 'pathetique.wav');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: file_to_feature% Version: 1.0% Date: 10.10.2008% Programmer: Meinard Mueller, Verena Konz%% Desription:% Load or ompute features for audio and MIDI files%% Input:% - dirname: Diretory where the file or features are loated% - filename: Name of the file for whih to load/ompute features% - parameter% .win_len: Window length used for STMSP feature generation% .win_res: Window resolution%% Output: 85



Appendix B Soure Code% - f_pith: Pith features (STMSP)% - f_peaks: Energy peaks for onset omputation% - f_onsets: Preise onsets (only generated in ase of MIDI input data)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Warping Path ComputationThe feature_to_warpingpath funtion uses methods suh as desribed in [Mül07℄ and [GME09℄to ompute warping paths from pith and onset features extrated in a previous step.Sample usage:warpingpath = feature_to_warpingpath(f_pith_referene, f_peaks_referene,f_pith_interpretation, f_peaks_interpretation);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: feature_to_warpingpath% Version: 1.0% Date: 20.03.2009% Programmer: Meinard Mueller, Sebastian Ewert%% Desription:% Compute a warping path from pith and onset features using multisale% DTW with DLNCO features%% Input:% - f_pith_1: Pith features (STMSP) of the referene audio stream% - f_peaks_1: Onset features of the referene audio stream% - f_pith_2: Pith features (STMSP) of the performane audio stream% - f_peaks_2: Onset features of the performane audio stream%% Output:% - warpingpath: A regular warping path between referene and% interpretation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve Computation (FW Approah)As the name suggests, warpingpath_to_tempourve_SlidingWindow omputes a tempourve from a warping path using a sliding window of �xed size. This size is determined byparameter.windowSize_se. The resulting tempo urve is saled to the referene time axis(i.e. it has length equal to warpingpath(end, 1)).Sample usage:parameter.windowSize_se = 3;86



tempourveFW = warpingpath_to_tempourve_SlidingWindow(warpingpath,parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: warpingpath_to_tempourve_SlidingWindow% Version: 1.0% Date: 6.4.2009% Programmer: Meinard Mueller, Verena Konz%% Desription:% Compute tempo urve from warping path using a fixed-width sliding% window approah%% Input:% - warpingpath: A regular warping path between referene and% interpretation of some piee of musi% - parameter% .vis_warpingpath: If true, visualize warping path together% with generated tempo urve% .vis_tempourve: If true, plot the generated tempo urve% .windowSize_se: Determines the window size of the averaging% window for urve omputation%% Output:% - tempourve: A regular, referene-saled tempo urve%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve Computation (AW Approah)Similar to the previous funtion, the warpingpath_to_tempourve_onsets funtion omputesa tempo urve from a warping path, this time using onset information to adapt the windowsize. Hene, the window size is here determined by parameter.windowSizeIOI. Again, theresulting tempo urve is saled to the referene time axis.Sample usage:[f_pith, f_peaks, f_onsets℄ = file_to_feature('midi', 'pathetique.mid');parameter.windowSizeIOI = 12;tempourveAW = warpingpath_to_tempourve_onsets(warpingpath, f_onsets,parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: warpingpath_to_tempourve_onsets% Version: 1.0% Date: 6.5.2009% Programmer: Andi Sharfstein, Verena Konz 87



Appendix B Soure Code%% Desription:% Compute tempo urve from warping path using an adaptive window aligned% to note onset timings%% Input:% - warpingpath: A regular warping path between referene and% interpretation of some piee of musi% - onsets: A vetor of all unique frames of the warping path whih ontain% at least one note onset event.% - parameter% .vis_warpingpath: If true, visualize warping path together% with generated tempo urve% .vis_tempourve: If true, plot the generated tempo urve% .windowSizeIOI: Determines how many interonset intervals% should be inluded in the urve averaging% Output:% - tempourve: A regular, referene-saled tempo urve%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve Computation (FWC Approah)As desribed in Setion 3.2.4, the FWC approah relies on performing the FW tehnique ona smoothed warping path. The funtion smooth_warpingpath performs this smoothing on aninteronset level.Sample usage:smoothedWarpingpath = smooth_warpingpath(warpingpath, f_onsets);tempourveFWC = warpingpath_to_tempourve_SlidingWindow(smoothedWarpingpath,parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: smooth_warpingpath% Version: 1.0% Date: 16.01.2009% Programmer: Andi Sharfstein, Verena Konz%% Desription:% Perform IOI smoothing of a given warping path by re-omputing the path% between onset loations as a straight line.%% Input:% - warpingpath: A regular warping path between two piees of musi% - onsets: A vetor of all times (referene time axis) whih ontain at% least one note onset event in the referene88



%% Output:% - smoothedWarpingpath: A warping path of the same dimension as the input% warping path, but with linear slopes between onset loations%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Onset Index TransformationThe onversion between onset times that are given relative to the referene time axis andindies into the warping path that loate the ourrenes of these onsets if performed by theauxiliary funtion ompute_warped_onsets. The funtion an be haraterized by the equiv-alene onsets == warpingpath(ompute_warped_onsets(onsets, warpingpath), 1). Theparameter invertWarping may be set to true to indiate that the onsets relate to the inter-pretation instead of the referene. In this ase, the onsets will our at warpingpath(n, 2)instead of at warpingpath(n, 1).Sample usage:dtwOnsets = ompute_warped_onsets(f_onsets, warpingpath);dtwOnsetsInterpretation = ompute_warped_onsets(f_onsets, warpingpath, 1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: ompute_warped_onsets% Version: 1.0% Date: 16.01.2009% Programmer: Andi Sharfstein%% Desription:% Convert absolute onset information into a representation relative to a% given warping path (i.e., determine indies of the onsets in this path)%% Input:% - onsets: Onset information for the referene audio stream% - warpingpath: The warping path of referene audio and omparison% - invertWarping: If true, ompute indies of onsets with respet to the% interpretation olumn of the warping path instead of the referene% olumn%% Output:% - dtwOnsets: The indies of warping path entries where the referene% olumn (or the interpretation olumn if invertWarping is true)% orresponds to a note onset event%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 89



Appendix B Soure CodeCurve InterpolationThe interpolation funtion simply onnets the points de�ned by the pairs (onsets(i),values(i)). The length of the resulting urve is equivalent to onsets(end). In ase the�rst onset is not loated at position 1, the vetors are extended by inluding (1, 1) beforeinterpolation.Sample usage:interpolation = interpolate_between_onsets(values, f_onsets);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: interpolate_between_onsets% Version: 1.0% Date: 16.01.2009% Programmer: Andi Sharfstein, Verena Konz%% Desription:% Simple linear interpolation between onsets using a set of given values.%% Input:% - values: Vetor of values used to interpolate between onseutive onsets% - onsets: Onset times between whih to interpolate (length of values and% onsets vetors should be exatly equal)%% Output:% - tempourve: A tempourve where intermediate values between onsets have% been filled out aording to 'values' parameter. Here, values(i) will% be used as the value for onsets(i)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Curve ResalingThe resaling proedure translates from a referene-saled tempo urve to an interpretation-saled tempo urve. For this, it �warps� the original tempo urve aording to warpingpath.Sample usage:tempourveInterpretation = resale_tempourve(tempourve, f_onsets,warpingpath);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: resale_tempourve% Version: 1.0% Date: 20.03.2009% Programmer: Andi Sharfstein%90



% Desription:% Resales standard tempo urves on the time axis to fit the interpretation% they are desribing, i.e. resaled_tempourve(x) is the tempo of% interpretation at interpretation time point x instead of referene time% point x.%% Input:% - tempourve: A regular (referene-saled) tempo urve% - referene_onsets: The onsets of the referene. If these are unknown,% just use (1:warpingpath(end,1))' to set onsets at every frame% - warpingpath: A regular warping path%% Output:% - resaled_tempourve: The resaled tempo urve%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve VisualizationPlotting of tempo urves an be done omfortably using the visualize_tempourve funtion.It is highly �exible: Calls of the form visualize_tempourve(tempourve) as well as allsof the form visualize_tempourve({tempourve1 tempourve2}) are supported, and thereis a great variety of parameter settings available. Saling of the temporal axis is ontrolledby the settings of parameter.plotInMeasures together with parameter.startMeasure andparameter.endMeasure, while saling of the tempo value axis depends on the settings ofparameter.plotInBPM and parameter.refereneBPM. If the tempo is plotted in BPM, thevertial axis is saled linearly; otherwise, it is saled logarithmially.Sample usage:% Linear urve plotparameter.plotInBPM = 1;parameter.refereneBPM = 33;visualize_tempourve(tempourve, parameter);% Multiple urves plot, time axis in measuresparameter.plotInMeasures = 1;parameter.endMeasure = 55;% parameter.startMeasure = 1; (this is the impliit default value)visualize_tempourve({tempourve1 tempourve2 tempourve3}, parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: visualize_tempourve% Version: 1.0% Date: 04.02.2009% Programmer: Andi Sharfstein, Verena Konz% 91



Appendix B Soure Code% Desription:% A funtion for visualizing one or more tempo urves. If you want to% display more than one urve, wrap them in a ell array.%% Input:% - tempourve: One or more vetors ontaining tempo information% (wrap in ell array to show multiple urves at one).% - parameter% .plotInBPM: If true, plot the urve in BPM instead of fators% .refereneBPM: Needed to ompute the urve (fator 1 beomes% parameter.refereneBPM) if plotInBPM is true% .plotInMeasures: If true, use measures for the time axis% instead of seonds or frames% .startMeasure: Optional, denotes the first measure if% plotInMeasures is true% .endMeasure: Needed to ompute the measures if plotInMeasures% is true% .holdFigure: If true, use gf instead of reating a new figure% .saleToSeonds: If true, plot time axis in seonds instead of% frames% .lineStyle: Sets the line style of the plot% .lineWidth: Sets the line width of the plot% .win_res: Used to sale the plot to seonds if saleToSeonds% is true%% Output:% - figureHandle: The handle of the figure that was reated for% visualization of the tempo urve(s).%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Warping Path VisualizationAs for tempo urves, there also exists a speialized funtion for plotting warping paths. Unsur-prisingly, this is the visualize_warpingpath funtion. It supports alls similar in strutureto visualize_tempourve, in partiular both visualize_warpingpath(warpingpath) andvisualize_warpingpath({warpingpath1 warpingpath2}) are possible. Optional parame-ters inlude parameter.dtwOnsets and parameter.tempourve that an be used to inludevertial onset lines or a tempo urve in the plot, respetively. Onsets must be given in their�warped� version as indies to the respetive warping path. If one of those parameters is set,the warpingpath argument must be a single path and may not ontain a ell array.Sample usage:visualize_warpingpath({warpingpath1 warpingpath2});tempourve = warpingpath_to_tempourve_onsets(warpingpath, f_onsets,parameter);92



parameter.tempourve = tempourve;parameter.dtwOnsets = ompute_warped_onsets(f_onsets, warpingpath);visualize_warpingpath(warpingpath, parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: visualize_warpingpath% Version: 1.0% Date: 15.01.2009% Programmer: Andi Sharfstein, Verena Konz%% Desription:% A funtion for visualizing one or more warping paths. If you want to% display more than one warping path, wrap your paths in a ell array.%% Input:% - warpingpath: One or more regular warping paths (wrap in ell array to% plot multiple warping paths).% - parameter% .dtwOnsets: Optional, plots vertial lines at onset positions.% Must be given in terms of warping path indies,% not in terms of a referene time axis as usual% .tempourve: Optional, but must be given if dtwOnsets is set.% A regular tempo urve omputed from the given% warping path is plotted against this path% .saleToSeonds: If true, plot time axis in seonds instead of% frames% .win_res: Used to sale the plot to seonds if saleToSeonds% is true%% Output:% - figureHandle: The handle of the figure that was reated for% visualization of the warping path(s).%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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