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Chapter 1Introdu
tionWe do not wish any so-
alled interpretations of our musi
; just play the notes; add nothing,and take nothing away. �Aaron Copland paraphrasing �modern� 
ompositional attitude,What to Listen for in Musi
 (1939)The history of Western 
lassi
al musi
 is ri
h with examples that do
ument the importan
eof a performer's skill and artistry for 
onveying musi
al visions: Johann Sebastian Ba
h wasfamous for his feats of improvisation, not for his re
on
iliation of harmoni
 and 
ontrapuntal
on
erns. Clara S
humann enjoyed greater 
ontemporary su

ess than her husband Robert,as she was the better performer of the two. Ni

olò Paganini was able to build a whole
areer on virtuosity alone. Even the sporadi
 extreme 
ounter-rea
tion to this fa
t (su
has in the above quote) only serves to underline the relevan
e of the subje
t.1 Yet, in the�eld of musi
 information retrieval, the topi
 fo
using on this parti
ular aspe
t�performan
eanalysis�has only re
ently begun to re
eive the attention it therefore deserves [Gab03, Wid02,WDG+03, LG03, Wid05, Sap07, Sap08℄. Part of the problem is the inadequa
y of 
urrentmethods for the determination of su
h elementary performan
e attributes as tempo or dynami
shaping: Automated pro
esses are too unreliable and error-prone for widespread usage, andmost 
urrent performan
e analysis studies fall ba
k on manual feature annotation. In 
aseswhere manual annotation is not an option, another 
ommon approa
h is to use spe
ial-purposehardware su
h as player pianos to trans
ribe symboli
 information about the musi
 at the timeit is played. Of 
ourse, neither of these pro
edures generalize to settings where su
h data isnot available or manual annotation is 
onsidered too labor-intensive.In this thesis, we present an alternative approa
h to the extra
tion and pro
essing of attributesof musi
 data whi
h relate to its agogi
al aspe
ts, in parti
ular the tempo. This approa
hdoes not rely on manually generated data or symboli
 trans
riptions of spe
i�
 performan
es,but instead employs a general alignment te
hnique known as dynami
 time warping (DTW).The main 
ontribution of this thesis lies in the development of methods to exploit the impli
ittempo information 
ontained in the so-
alled warping path produ
ed by the DTW te
hniqueto generate data suitable for subsequent musi
al analysis. For this, we mostly stay 
on�nedto the domain of piano musi
 produ
ed in the Western 
lassi
al period. This is due to severalreasons: It provides a large pool of available performan
e data (e.g. CD re
ordings) that lendsitself reasonably well to automati
 pro
essing with DTW; it is not restri
ted to musi
ally1In the 
ontext of the quote, Copland disagrees with the expressed sentiment (
alling it a �nonrealisti
 attitudeon the part of the 
omposers�) and qui
kly goes on to dispel the notion that an interpretation-less performan
eis at all possible, or even desirable. 1



Chapter 1 Introdu
tiontrivial �a
ademi
� examples but makes use of real-world data; and by employing a playerpiano, we were able to generate 
ustom data pairs of a
ousti
 and symboli
 representations ofthe same pie
e of musi
 that fa
ilitate a proper evaluation of our te
hniques.The thesis is stru
tured deliberately in su
h a way that it follows the 
omplete pro
ess ofperforman
e analysis 
hronologi
ally: Beginning at feature design and extra
tion, going overthe pro
essing steps ne
essary to 
ompute more 
omplex data, and �nally 
losing with themusi
al analysis and evaluation of this data. The main fo
us and 
ontribution of the work liesin the middle part of this pro
ess. Spe
i�
ally, we explore several te
hniques for the automati

omputation of tempo parameters from a pie
e of musi
. These 
an be visualized in the formof a tempo 
urve that plots the tempo of the pie
e for ea
h point in time, as e.g. in Figure 1.1.The depi
ted 
urve shows the tempo for an ex
erpt from S
hubert's �Winterreise� as 
omputedby the approa
h presented in this work; one 
an 
learly see the artisti
 shaping of the twophrases, in parti
ular a slow-down at ea
h phrase ending. Note that tempo here refers to ahighly lo
alized view of the pie
e where we may even 
ompute the tempo of individual notes,unlike e.g. with beat tra
kers that only estimate an average overall tempo of a pie
e.
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Figure 1.1: Franz S
hubert: Winterreise D911, �Der Lindenbaum� (Ex
erpt)The detailed organization of the thesis is as follows:Chapter 2 introdu
es basi
 terminology and a set of features and methods to extra
t thesefeatures from di�erent musi
 representations. It also presents the DTW alignment pro
e-dure and explains how the features form the basis of the alignment that is gained by thispro
edure.Chapter 3 
ontains some thoughts on tempo and tempo measurement prin
iples and showshow the warping path 
omputed by the DTW te
hnique may serve as the de�ning 
hara
-teristi
 of su
h attributes of a musi
al pie
e. Three te
hniques are dis
ussed that attempt to
ompute tempo data on the basis of the warping path using di�erent approa
hes.2



Chapter 4 gives two evaluations of the te
hniques presented in the third 
hapter: The �rstfo
uses on a quantitative data analysis for an obje
tive performan
e measure, the se
ondillustrates the kind of results that 
an be obtained from applying these te
hniques by dis
ussingsome tempo 
urves generated for sele
ted musi
al examples.Chapter 5 has an overview of several related works that use tempo 
urve information (orsimilar data) for further analysis steps. These works 
an be 
lassi�ed roughly a

ording totwo main goals: One group fo
uses on 
ommonalities of di�erent performan
es, the other is
on
erned with their respe
tive di�eren
es.Chapter 6 
on
ludes the thesis by giving a summary of what has been a
hieved, and identi�essome opportunities for further resear
h based on the results obtained in this work.

3





Chapter 2Musi
 Syn
hronizationIn fa
t the kind of musi
 [Havelo
k Vetinari℄ really liked was the kind that never got played.It ruined musi
, in his opinion, to torment it by involving it on dried skins [...℄ and lumpsof metal hammered into wires and tubes. It ought to stay written down, on the page, inrows of little dots and 
rot
hets, all neatly 
aught between lines. Only there was it pure.�Terry Prat
hett, Soul Musi
 (1994)This 
hapter lays the foundation for the subsequent dis
ussion 
on
erning the main 
ontribu-tion of this thesis. Following a short overview of the possible forms of musi
 representationrelevant for this work, we introdu
e a number of des
riptors of su
h musi
 representations
alled features whi
h 
apture essential attributes of the data while dis
arding irrelevant (orrepresentation-spe
i�
) information. We also demonstrate how these features are generatedfrom the data available, and how they are pro
essed afterwards. The presentation order of thefeatures is 
hronologi
al in that the feature produ
ed from a parti
ular pro
essing step formsthe input for the next step (see Fig. 2.5 for an overview of the 
omplete pro
essing pipeline).After the feature pro
essing pipeline has been shown in full, we explain how to make use ofthe 
omputed features by in
luding them in an alignment pro
edure known as dynami
 timewarping. This pro
edure is presented in a general fashion �rst, then an examination of howit is a

ommodated for the spe
i�
 needs of musi
 syn
hronization follows in a se
ond step.Musi
 syn
hronization here refers to the pro
ess of �nding the semanti
 
orrelations betweentwo di�erent interpretations of the same musi
al pie
e.The most important 
on
ept introdu
ed in this 
hapter is the warping path, whi
h appears inthe dis
ussion of dynami
 time warping. It will be used as the basis for all 
omputations inthe following 
hapters, in parti
ular with regard to the tempo 
urves introdu
ed in Chapter 3.The warping path stores all 
orrelation information gained in the syn
hronization pro
ess.2.1 Musi
 RepresentationsThe �rst step in understanding how to pro
ess musi
 in an automated manner is to get a
lear view on the di�erent formats in whi
h musi
 may be represented.2 In this work, we willfo
us on three di�erent representations. Ea
h of these has its individual strong points, whi
hin turn ne
essitate individual pro
essing approa
hes. They 
an be 
lassi�ed a

ording to therelative degree of abstra
tness by whi
h the musi
 they embody is represented:2This 
hapter mostly follows [Mül07℄ in the presentation of the di�erent formats, features and algorithms. 5



Chapter 2 Musi
 Syn
hronization
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ore representation. The most �purely� symboli
 representation among the three 
an beregarded as a sort of referen
e or ground truth against whi
h more 
on
rete realizationsof the same pie
e may be measured in order to gain information about spe
i�
s of aparti
ular performan
e.MIDI representation. A kind of hybrid that (more or less su

essfully) attempts to in
orpo-rate both abstra
t information about a pie
e and 
on
rete information about a spe
i�
realization of the pie
e, while still remaining on a symboli
 level.Audio representation. The audio representation favors 
on
rete information over symboli
data, opting to 
apture a data set that allows nearly perfe
t re
onstru
tion of a spe-
i�
 interpretation of a pie
e while 
ompletely ignoring semanti
 
orrelations of thatinterpretation to symboli
 representations of the same pie
e. This enables extra
tionof very nuan
ed interpretational features, but makes it di�
ult to give a semanti
allymeaningful analysis of the data.While the MIDI representation of musi
 data exists by its nature only in a digital format,both of the other representations have analog origins. Sin
e we are mainly interested inautomated musi
 pro
essing, we will brie�y dis
uss how to 
onvert �real-world� s
ore sheetsand physi
al audio data into their digital 
ounterparts. Following this, we will assume thatour representations o

ur as digital versions only (unless expli
itly stated otherwise). Thisdis
ussion will take pla
e as we look at the details and idiosyn
rasies of ea
h representationin turn.2.1.1 S
ore RepresentationA musi
al s
ore (in analog 
ontexts also referred to as sheet musi
) 
ontains a formalizeddes
ription of a parti
ular pie
e of musi
. In its typi
al non-digitized form, it 
onsists ofgraphi
al and textual information on note pit
hes and lengths as well as meta-informationabout loudness, tempo and other musi
al attributes of individual notes or se
tions of thepie
e. This information is organized a

ording to periodi
 stru
tural divisions, so that ea
hgroup of notes of a 
ertain overall length is 
ontained in a bar (or measure). As an example,Figure 2.1 depi
ts the �rst bar of the �rst movement of Beethoven's Sonata Pathétique. Thesame ex
erpt will be used to illustrate the other 
on
epts introdu
ed in this 
hapter whereverpossible. It will be referred to as PathBeg, for �Pathétique beginning�. We also introdu
ePathExp as a shorthand for the 
omplete exposition of this pie
e (measures 1�132).6



2.1 Musi
 RepresentationsThe s
ore may pres
ribe the overall tempo of a pie
e in an absolute measure of beats per minute,but is not required to do so. In fa
t, 
omposers 
ommonly resort to relative tempo markingslike Andante, Presto or Lento instead, sin
e this allows them to a

ount for the performer'sartisti
 freedom in the interpretation of the pie
e. Terms like those mentioned denote looselyde�ned tempo ranges that depend on a performer's musi
al intuition and experien
e to 
hoosea spe
i�
 tempo for an a
tual realization of the pie
e. This dependen
y is true for othermusi
al attributes as well, e.g. lo
al tempo, dynami
s, arti
ulation and all agogi
al aspe
ts(like use of Rubato). Hen
e, most of these attributes must either be notated in relative termsor even left impli
it. Dynami
s (instru
tions pertaining to loudness) are always notated inrelative terms su
h as mezzoforte or pianissimo, and even expli
it arti
ulation instru
tionslike sta

ato will require artisti
 interpretation for a 
on
rete performan
e.The high abstra
tness degree of s
ore data as 
ompared to the other two representationsa

ounts for both the main advantage and the main disadvantage of this representation. Ex-tra
ting musi
ally meaningful information from a digitized s
ore sheet may be nearly trivial(su
h as with pit
h and onset information for spe
i�
 notes), or at least feasible (e.g. sear
hingfor and lo
ating re
urring motivi
 ideas inside a parti
ular s
ore), whi
h is typi
ally not the
ase for the other representations. On the other hand, the s
ore was never meant to be ableto represent interpretation-spe
i�
 information, but rather to indi
ate to the performer howan interpretation should �sound�. While this is of 
ourse perfe
tly legitimate, not being ableto a

ount for 
on
rete performan
e data nevertheless disquali�es this representation frombeing used as a basis for performan
e analysis tasks like the 
omputation of 
omplex timinginformation of an interpretation.Converting an analog representation of a s
ore into its digital version is not a trivial feat. Wewill refrain from dealing with this issue here (see e.g. [Mül07℄ for a more 
omplete dis
ussion),but simply explain how the digital version might be represented. The underlying assumptionis that the s
ore may always be digitized manually, if everything else fails.The most trivial digital representation of a s
ore sheet is the graphi
al equivalent of theanalog version in the form of some bitmap image format�in this 
ase, nothing is gained bythe digitization pro
ess, sin
e the graphi
al representation is not well-suited for automati
pro
essing. What is needed instead is a semanti
ally meaningful symboli
 representationof the s
ore. One su
h representation format is de�ned by the Musi
XML standard [Re
09℄whi
h (as the name suggests) is a Do
ument Type De�nition for XML do
uments that 
ontainmusi
al data. XML do
uments prepared a

ording to this de�nition 
an easily be 
onvertedto a plethora of other formats and representations, in
luding a graphi
al s
ore sheet rendition,MIDI output and proprietary formats for 
ommer
ial s
orewriters su
h as Sibelius or Finale�even more esoteri
 output targets like e.g. Braille Musi
 are easily a
hieved. While widespreadadoption of this standard has been relatively slow, a 
learly superior or more popular formatde�nition has not yet emerged.Note that even the minimal example given in Figure 2.2 (whi
h produ
es a sta� 
ontainingone whole note, an a′) is quite verbose. The reason for this is that Musi
XML aims to storesemanti
 information about the musi
 as well as the layout information ne
essary to produ
ean æstheti
ally pleasing graphi
al output. Other formats fo
us on more spe
i�
 goals, e.g.LilyPond [Lil09℄ o�ers good s
ore layouting 
apabilities, while Humdrum [Hum09℄ seems more
on
erned with providing a data format that is well-suited for musi
al post-pro
essing. 7



Chapter 2 Musi
 Syn
hronization<?xml version="1.0" en
oding="UTF-8"?><!DOCTYPE s
ore-partwise PUBLIC "-//Re
ordare//DTD Musi
XML 2.0 Partwise//EN""http://www.musi
xml.org/dtds/partwise.dtd"><s
ore-partwise><part-list><s
ore-part id="P1"><part-name>Musi
XML Example</part-name></s
ore-part></part-list><part id="P1"><measure number="1"><attributes><divisions>1</divisions><key><fifths>0</fifths></key><time><beats>4</beats><beat-type>4</beat-type></time><
lef><sign>G</sign><line>2</line></
lef></attributes><note><pit
h><step>A</step><o
tave>4</o
tave></pit
h><duration>4</duration><type>whole</type></note></measure></part></s
ore-partwise> Figure 2.2: Musi
XML example 
ode2.1.2 MIDI RepresentationMusi
al Instrument Digital Interfa
e, MIDI for short, was 
reated as a proto
ol for the ex-
hange of musi
al information between ele
troni
 instruments. It de�nes a large variety ofmessages, starting with basi
s su
h as des
ribing notes in terms of their pit
h and onset/releasetimes with regard to a global time stream, and going further to in
lude meta information and
ontrol messages su
h as �Distort pit
h by a spe
i�
 fa
tor�. Sin
e its 
on
eption in 1981,it has be
ome the de fa
to standard used (or at least supported) by almost any appli
ation(in
luding hardware) that deals with the transmission or pro
essing of symboli
 musi
 data.For automated musi
 pro
essing, it is useful to gather the proto
ol messages whi
h make up8



2.1 Musi
 Representationsa single pie
e of musi
 into one �le, whi
h 
an then be distributed or modi�ed. The MIDIstandard provides for this with the SMF (Standard MIDI File) �le format. In the following,when we refer to the MIDI representation of a pie
e, we will usually mean the respe
tiveSMF.One major short
oming of MIDI in 
omparison to an audio stream is its la
k of supportfor the representation of timbral attributes of a sound. On the other hand, the kind ofinformation whi
h is supported is highly useful for a large variety of performan
e analysistasks. Of parti
ular importan
e for this 
ontext are two 
ommands: note-on and note-o�,whi
h together serve to de�ne the relative length of a note, as well as its position in the globaltime stream. This time stream is de�ned in terms of ti
ks or 
lo
k pulses, whi
h are sent outperiodi
ally during the duration of the pie
e. The MIDI proto
ol is designed in su
h a waythat these ti
ks measure musi
al time units instead of absolute time units su
h as se
onds:Note lengths are de�ned in terms of the number of 
lo
k ti
ks passed. The respe
tive unit ofmeasurement is 
alled pulses per quarter note (PPQN), and the PPQN for a single pie
e isspe
i�ed by the user in the MIDI �le header. Tempo of a pie
e is then 
ontrolled by 
hangingthe 
lo
k pulse frequen
y. Hen
e, the absolute length of a time interval 
an be determinedby examining PPQN and ti
k frequen
y for that segment. Typi
al PPQN values are 480 and960; in general, is is given by 24 · 2n and 30 · 2n for n ∈ {2, ..., 6}.

Figure 2.3: PathBeg, MIDI piano roll representation. Referen
e data generated from the s
ore isshown in red, a spe
i�
 interpretation of the pie
e is overlayed in blue.As we have just seen, the onset/o�set times of a note in MIDI representation is expli
it and veryspe
i�
 in its nature. This allows a very nuan
ed en
oding of tempo 
hanges in the performan
eof a pie
e, as opposed to sheet musi
 representations where su
h subtleties are mostly lost inthe notation. The di�eren
e 
an be seen in the so-
alled piano roll representation, whi
his often employed for the visualization of MIDI data (Fig. 2.3): Ea
h 
olumn representsa dis
rete musi
al time interval, usually divided at least on the beat level.3 Pit
hes aredistributed verti
ally, su
h that ea
h row 
orresponds to a semitone step on the twelve-toneequal tempered s
ale. Notes are displayed as horizontal bars in this stru
ture. The exampleshows two di�erent versions of the beginning of Beethoven's Pathétique�in red, a �ground-truth� version generated as a straightforward translation of the s
ore representation of thesame segment into MIDI data, and superimposed in blue, a real-life interpretation of thesame segment. We 
an plainly see the dis
repan
y between the di�erent versions, and it isin fa
t exa
tly this di�eren
e whi
h will be used in later 
hapters of this thesis to work out3Intuitively, the beat of a pie
e of musi
 
orresponds to the points in time where a listener might tap his footto keep in rhythm with the musi
. For details, see Se
tion 3.1.1. 9



Chapter 2 Musi
 Syn
hronizationthe artisti
 idiosyn
rasies of a spe
i�
 interpretation with regard to tempo/timing attributes.From the example it is also apparent that the heightened spe
i�
ity of MIDI 
omes with aloss in semanti
 expressiveness: Note timings no longer have musi
al 
onnotations (e.g. ��rstnote of a new measure�), but �oat �freely� in the global time stream.4The other main attribute dimension (besides timing) we may be interested in 
on
erns thedynami
s of the pie
e. MIDI does not have a dire
t way of en
oding loudness, in the sameway it does not feature a method of representing the timbre of a sound. Instead, it provides a
ommand for spe
ifying the velo
ity of a note, whi
h 
orresponds to the intensity with whi
hthe note should be �played� (i.e., synthesized) by the output devi
e. MIDI reserves seven bitsfor this information, so 128 di�erent velo
ity values 
an be represented. This information isnot displayed in the piano roll representation of MIDI data.2.1.3 Audio RepresentationThe audio (or waveform) representation of musi
 data is the most 
on
rete of the three formatspresented here, it 
ontains no abstra
t musi
al information at all. The name �waveform� isderived from the graphi
al representation of su
h a signal, where pressure 
hanges in a 
arriermedium (usually air) are plotted over time (Fig. 2.4 shows an interpretation of the beginningof the Sonata Pathétique). For a pure tone, this plot will yield a sinusoidal os
illation aroundthe zero referen
e (whi
h is just the pressure of the 
arrier medium in an unex
ited state).The maximum distan
e between referen
e and waveform in this 
ontext is 
alled the amplitudea of the signal, while the time di�eren
e between two 
onse
utive repetitions of an os
illationis 
alled the period T. The frequen
y f of the signal is de�ned as the inverse of the period,
f = 1

T
. When we talk about the pit
h of a sound, we usually refer to the a
ousti
 property ofthis sound that 
orresponds to this frequen
y.
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Figure 2.4: PathBeg, waveform representation, time in se
onds4Pit
hes 
ease to 
arry musi
al information about the key in whi
h the pie
e is notated as well: G♭ and F♯ forexample are both represented as MIDI pit
h 42. This is legitimated by the 
on
ept of enharmoni
 equivalen
ein the equal tempered s
ale (see e.g. [Mi
08℄, p. 85).10



2.2 Pit
h- and Chroma-Based Audio FeaturesIn the analog 
ase, all of these parameters are measured 
ontinuously. However, for a dig-ital 
ontext one must de�ne a suitable quantization s
heme when dis
retizing the data. Inthis work, we follow the Pulse Code Modulation (PCM) s
heme laid out in the �Red Book�standard de�ned for CDDA (Compa
t Dis
 Digital Audio), the most popular format in usetoday. CDDA uses a sampling rate of 44.1 kHz (i.e. 44,100 samples per se
ond are taken) ata resolution of 16 bit�hen
e, it is possible to distinguish 65,536 di�erent �pressure points�
orresponding to the relative os
illation of the waveform. This is su�
iently detailed for theaverage human listener not to noti
e any di�eren
es to an a
tual performan
e of the dis-
retized data (although several alternative s
hemes with di�erent sample and bit rates havebeen proposed, e.g. Dire
t Stream Digital for the Super Audio CD or PCM at 96 kHz/24 bitfor DVD-Audio).For the purposes of performan
e analysis, the audio representation o�ers an interesting mixof properties: On one hand, the sheer quantity of interpretations only available in a waveformrepresentation (e.g. as a CD re
ording) is a 
onvin
ing argument already to make this aprimary analysis target. On the other hand, the 
omplete la
k of symboli
 information in thisformat poses serious problems when trying to extra
t musi
ally meaningful data. Unsolvedproblems in the domain of musi
 information retrieval from audio data (MIR) in
lude thedetermination of the fundamental frequen
y of a sound,5 automati
 separation of di�erentinstruments or voi
es in a polyphoni
 
ontext (the so-
alled sour
e separation problem) andalignment of the re
ording to a s
ore sheet, although progress has been made to varyingdegrees in either of these topi
s. The alignment or syn
hronization problem is of parti
ularinterest, sin
e its solution o�ers a way out of this 
onundrum: Aligning waveform and s
oresheet would 
ombine 
on
rete and symboli
 information about the data in one meta-formatthat would lend itself to a great variety of analysis tasks. Se
tion 2.4 introdu
es one possibleapproa
h for ta
kling this problem.2.2 Pit
h- and Chroma-Based Audio FeaturesAs we have learned in the pre
eding se
tion, the representations of musi
 data we are interestedin have vastly di�erent attributes, making dire
t 
omparisons between them impossible. Yeteven if the representation is the same for two interpretations of a pie
e, dire
t 
omparisons willoften yield unsatisfa
tory results if they operate on a purely �synta
ti
al� level (e.g., bit-level
omparison of the waveforms). Instead, it would be desirable to have an overar
hing 
on
eptof similarity (i.e., a similarity metri
) that has a semanti
 meaning. Su
h a 
on
ept shouldabstra
t from the format of the data, su
h that it 
an be used to 
ompare two pie
es of musi
regardless of how they are represented.In trying to de�ne a similarity metri
, one has to keep in mind several aspe
ts that needto be re
on
iled with ea
h other in order for the metri
 to be useful. For example, melodi
similarity would be a musi
ally meaningful metri
, but in a polyphoni
 
ontext requires strongassumptions in order to solve the prerequisite sour
e separation problem (
f. [Bur08℄). Hen
e,the metri
 should be 
omputationally feasible. It is also important to keep in mind robustness5A sound is typi
ally made up by a series of overtones (or harmoni
s) that grant it a unique texture or tone
olor. By de�nition, the fundamental frequen
y 
orresponds to the �rst of these overtones. 11



Chapter 2 Musi
 Syn
hronizationof the metri
, so that it does not break even in the fa
e of di�erently or
hestrated interpre-tations of the same pie
e (e.g. Liszt's piano arrangement of Beethoven's Fifth Symphony vs.the original setting), or when the two performan
es use di�erent instrument tunings (whi
h isusually the 
ase for so-
alled histori
ally informed or authenti
 performan
es6). One metri
that ful�lls the requirements of robustness, 
omputability and, above all, has a straightforwardmusi
al interpretation has been proposed by Müller in [Mül07℄. The idea is to determine theharmoni
 similarity of two pie
es, but sin
e this is not an expli
it attribute of a pie
e in anyrepresentation, it introdu
es a number of features that approximate said measurement. Wewill brie�y present these features in the 
ontext of waveform analysis before dis
ussing howthey are used to provide a musi
ally meaningful metri
 to a musi
 syn
hronization algorithmin Se
tion 2.4. Figure 2.5 provides a rough overview of the audio feature extra
tion pro
esswe will traverse in the 
ourse of this dis
ussion.
Figure 2.5: An overview of the feature extra
tion pipeline2.2.1 Pit
h FeaturesThe �rst step in the feature extra
tion pipeline deals with the de
omposition of the audio signalinto groups of frequen
y 
omponents, whi
h are determined a

ording to their asso
iation topit
hes of the standardized equal tempered s
ale. Sin
e this s
ale is designed primarily withregard to human per
eption of sound, it takes into a

ount the well-known logarithmi
 natureof this per
eption. This nature is revealed in the fa
t that for any pit
h s with frequen
y f ,the pit
h with frequen
y 2n−1 · f will be per
eived as being n times higher than s (e.g. A6at 1760Hz is per
eived as being three times higher than A4 at 440Hz). The interval betweentwo 
onse
utive su
h pit
hes is 
alled an o
tave,7 and it is 
lear that o
taves (and indeedany musi
al interval between two notes) span di�erent frequen
y ranges, depending on therespe
tive base frequen
y. Any �musi
al� frequen
y grouping must ne
essarily take this intoa

ount. In our 
ase, this is handled by an adaptive window size in the grouping of frequen
yranges to spe
i�
 pit
hes�as the absolute frequen
y de
reases, so does the size of the respe
tivewindow that determines if a spe
i�
 frequen
y still belongs to an individual pit
h.8 On thete
hni
al side, this is implemented by an array of bandpass �lters of varying size and sample6Also 
alled period performan
es, these use a standard pit
h of a′ = 415Hz for early musi
 instead of themodern standard of a′ = 440Hz, 
orresponding to a lowering by one semitone.7The name �o
tave� is derived from the range of eight notes whi
h are 
ontained in this musi
al interval onthe diatoni
 s
ale (
ounting both ends). There is another interesting phenomenon 
on
erning the per
eptionof sound 
alled o
tave equivalen
e whi
h we will en
ounter in Se
tion 2.2.3.8In other words: Low pit
hes have smaller windows than high pit
hes, sin
e there is less spa
e between twolow pit
hes than there is between two high pit
hes.12



2.2 Pit
h- and Chroma-Based Audio Featuresrate. Figure 2.6 shows a graphi
al representation of this where the varying interval sizes for a�xed sample rate are parti
ularly well visible.
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Figure 2.6: A sample array of �lters with their respe
tive magnitude responses in dB (reprodu
edfrom [Mül07℄ by permission)Dealing with the te
hni
al details involved with the 
on
rete realization of this design wouldstret
h the s
ope of this work too mu
h, so the interested reader is referred to the originalmonograph instead. Intuitively, after the frequen
y de
omposition, one ends up with an arrayof 88 di�erent signals 
orresponding to the 
ontributions of ea
h of the 88 pit
hes produ
edby a typi
al modern piano.2.2.2 Lo
al Energy (STMSP) FeaturesDe
omposing an input signal into frequen
y groups 
orresponding to spe
i�
 pit
hes enablesus to measure the individual 
ontributions ea
h of the pit
hes makes to the overall signal.What is not yet 
lear is the unit of measurement for these 
ontributions. Sin
e we are lookingfor a measure 
losely 
orrelated to the loudness of a 
ertain signal, we 
hoose lo
al energy asmeasured by the short-time mean-square power (STMSP) of this signal. For a signal xn of onespe
i�
 subband n and some sampling points k taken from a time window of a (small) �xed
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ted STMSP features for PathBeg, time in se
onds 13
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Figure 2.8: Chroma features for two di�erent PathBeg versions, time in se
ondssize, this is de�ned as ∑

k |xn(k)|2. The size of the time window is typi
ally 
hosen somewherein the order of a few millise
onds, the sampling rate in the order of about 88Hz. The 
hoi
eof both parameters depends on the original sample rate of the respe
tive subband. Theyare de�ned in su
h a way that individual subbands yield 
omparable results in the STMSP
omputation. This step is performed multiple times while the time window is shifted a
rossthe whole of the input signal. The result is a sequen
e of individual STMSP features.The example (Fig. 2.7) shows a time-pit
h plot for the beginning of Beethoven's Sonata Pathé-tique, our running example. Note that only the most prominent pit
hes show up at all�thisis due to the fa
t that individual pit
h 
ontributions are usually not signi�
ant with regard tothe overall pi
ture, and one has to do some more work to extra
t musi
ally meaningful datafrom this basi
 feature.2.2.3 Chroma FeaturesThe next step in the extra
tion pipeline is 
on
erned with a redu
tion of the feature spa
egenerated by pit
h energy extra
tion to a 12-dimensional spa
e that is suitable for harmoni
post-pro
essing. To understand pre
isely how this is done (and why it is a valid pro
essingstep), one has to 
onsider the per
eptual phenomenon known as o
tave equivalen
e: In humanhearing, any two tones separated by a distan
e of one (or more) o
tave(s) are 
onsidered to�sound� alike, i.e. they are per
eived as the same tone played in di�erent pit
h registers (fordetails see [Mi
08℄, p. 21). This enables the 
lassi�
ation of pit
hes along two dimensions, the�rst being the respe
tive �note 
olor� of the pit
h as per
eived by the human listener (whi
h isthe attribute of the sound that does not 
hange a
ross di�erent o
taves), and the se
ond beingan indi
ation of the register in whi
h the note is sounded. Usually, the �rst aspe
t is referredto as 
hroma (Greek for �
olor�) and the se
ond as tone height. As an example, 
onsider thepit
h A4: its 
hroma is designated by the �A�, and the respe
tive register or tone height isde�ned by the number 4. The entirety of pit
hes of a single 
hroma is sometimes also 
alleda pit
h 
lass.14



2.2 Pit
h- and Chroma-Based Audio FeaturesAs we learn that ea
h o
tave of the equal tempered s
ale 
onsists of twelve notes 
orrespond-ing to twelve di�erent 
hroma, it be
omes 
lear how the feature spa
e redu
tion works: Theinformation on single pit
hes is simply 
ollapsed a
ross o
taves, su
h that one ends up withan indi
ator of the 
ontribution all notes of a spe
i�
 
hroma make to the original signal,irrespe
tive of the o
tave in whi
h they are played. This is in a

ordan
e with the traditionaltheory of harmony whi
h states that pit
h register is largely irrelevant for the harmoni
 
lassi-�
ation of a single 
hord. The 
ollapsing step simply 
onsists of adding up all individual note
ontributions (i.e., their STMSP) of the same 
hroma for ea
h element of the STMSP featuresequen
e, so the 
omputational e�ort required for this transformation is linear in the number ofthese elements. The transformation result, a ve
tor 
ontaining a sequen
e of 12-dimensionalfeatures, is 
alled 
hroma representation of the audio signal. Figure 2.8 depi
ts a sampleoutput of this step, where the names of the 
hroma ve
tors have already been annotated.92.2.4 CENS FeaturesCon
eptually, the 
hroma feature already gives a good approximation of the goal we weretrying to a
hieve with our feature design, namely extra
ting the harmoni
 
hara
teristi
s ofa pie
e. Te
hni
ally however, there is still some work left to do in order to make the featuremore robust and invariant with regard to 
ertain data attributes that should be dis
ardedwhen fo
using on harmoni
 similarity. This is done in the �nal phase of the feature extra
tionpipeline with the 
omputation of 
hroma energy normalized statisti
s (CENS) features.The 
omputation of CENS features is done in multiple stages and is thus best understood interms of being a pipeline itself, 
ontained in the larger and more general feature extra
tionpipeline. The CENS pro
essing steps are as follows:1. Normalization. Ea
h feature ve
tor of the 
hroma representation is normalized to arange in the interval [0, 1]. In 
ases of near-silen
e, the uniform distribution is substitutedfor the a
tual ve
tor to avoid introdu
ing statisti
al noise.2. Quantization. The normalized se
tors are quantized a

ording to a logarithmi
 binningfun
tion b : [0, 1] → {0, 1, 2, 3, 4}. This 
oarsens the resolution to make the measureinsensitive to lo
al variations.3. Convolution. The quantized ve
tors are 
onvolved with a Hann window of a spe
i�
size to lessen the impa
t of lo
al errors in the extra
ted features.4. Downsampling. The resulting feature sequen
e is downsampled by a spe
i�
 fa
tor tofurther 
oarsen the resolution.5. Normalization. Finally, the single ve
tors are again normalized with respe
t to theEu
lidean norm.The resulting CENS features are robust enough to ignore lo
al variations in timbre, arti
ulationand other performan
e-spe
i�
 attributes, while 
orrelating very strongly to the harmoni
progression of a pie
e (Fig. 2.9). They form the basis of a �globally-oriented� alignmentpro
edure whi
h will be introdu
ed in Se
tion 2.4�in this 
ontext, globally-oriented should9Note the enharmoni
 spelling of E♭ as D♯. 15
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Figure 2.9: CENS features for the two PathBeg versions shown in Figure 2.8, time in se
ondsbe taken to mean that this feature is not suitable for the alignment of very subtle note-to-note
orresponden
es, sin
e it is designed to suppress this level of detail. We will see a potentialsour
e of �lo
ally-oriented� alignment information in the next se
tion.2.2.5 Onset FeaturesCENS features are one example for the extra
tion of useful information from STMSP data ona parti
ular audio stream. Another interesting feature that the STMSP representation givesrise to is 
on
erned with the dete
tion of note onsets. This information is espe
ially usefulfor the syn
hronization (or alignment) of two audio streams on a very high resolution level,whi
h of 
ourse is essential for the purposes of performan
e analysis. Onset information 
an beextra
ted from STMSP features of an audio stream by applying the following observation: Formany instruments, sound generation is 
hara
terized by a sudden in
rease in energy, followedby a gradual de
line (also 
alled atta
k and de
ay phases of the sound). This sudden energyin
rease is espe
ially pronoun
ed in the pit
h band 
orresponding to the fundamental frequen
yof the sound (and, to a lesser extent, in its �rst few harmoni
s). Hen
e, measuring in
reases inenergy in a spe
i�
 pit
h band may give pointers to lo
ations where a note 
orresponding tothis pit
h is played. This measurement 
an be performed 
omparatively easily by 
omputingthe �rst-order di�eren
e of 
onse
utive entries of the STMSP 
urve x de�ned by x′(n) :=
x(n) − x(n − 1), n ∈ Z. This di�eren
e is then half wave re
ti�ed, a pro
ess that essentially�
uts away� negative values of the 
urve and sets them to zero, leaving only positive valuesfor further pro
essing. Finding peaks (lo
al maxima) in this so-
alled onset signal then givesgood indi
ators to lo
ations of potential note onsets.In the 
ase of MIDI data, note onsets 
an be extra
ted trivially by dire
t examination of thedata stream, without needing to resort to STMSP features. We will exploit this fa
t later onto arrive at very pre
ise onset measurements that 
an be used to fa
ilitate analysis of a singlespe
i�
 performan
e of a pie
e.
16



2.3 Dynami
 Time Warping (DTW)2.3 Dynami
 Time Warping (DTW)In the pre
eding se
tion, we en
ountered some features whi
h allow us to make musi
ally mean-ingful assertions about a pie
e after their extra
tion. Comparing two feature sets extra
tedfrom di�erent interpretations of the same pie
e allows us to make an additional observation:We 
an see how the di�erent performan
es are interrelated and try to �nd out the main sim-ilarities and di�eren
es between them. When fo
using the 
omparison on a spe
i�
 se
tionof the pie
e, however, one needs to be 
areful: There is no absolute timing referen
e that
an be used to lo
ate su
h a se
tion in a performan
e, hen
e it is possible that one artistarrives at a spe
i�
 se
tion at e.g. 240 se
onds into the interpretation, while another artistmay need 270 se
onds to get to the same se
tion. The pro
ess of 
omputing an asso
iationtime frame that 
an be used to lo
ate semanti
ally equivalent se
tions of two pie
es is referredto as alignment of the pie
es. This 
an be done a

urately and e�
iently using a te
hnique
alled Dynami
 Time Warping (DTW), whi
h is well-known and widely used. This se
tionpresents this te
hnique; in the next se
tion, a dis
ussion follows on its relation to performan
eanalysis.Stated in general terms, the obje
tive of DTW is to align two time-dependent sequen
es
X := (x1, x2, ..., xN ) of length N ∈ N and Y := (y1, y2, ..., yM ) of length M ∈ N. The 
ontentof these sequen
es 
onsists of equidistantly sampled features taken from some �xed featurespa
e F . To measure the similarity of two features, a lo
al 
ost measure (or lo
al distan
emeasure) c is employed, with c : F × F → R≥0. This distan
e measure should be small(indi
ating a low 
ost) when 
omparing two similar features, and high in the opposite 
ase.To obtain an optimal alignment, one has to 
ompare all feature pairs. Storing the results ofthese 
omparisons in a 
ost matrix C ∈ R

N×M with C(n,m) := c(xn, ym), one 
an imaginethe optimal alignment as a path running from lower left to upper right of the matrix along
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 Syn
hronizationVe
tor Stored Features
X a b c1 c2 d1 d2 e f g h

Y a1 a2 b c d e f g1 g2 h1 h2 h3Table 2.1: Two feature ve
tors with semanti
ally asso
iated frames grouped togetherReferen
e Ve
tor Warping Path Assignments
X 1 1 2 3 4 5 6 7 8 9 9 10 10 10
Y 1 2 3 4 4 5 5 6 7 8 9 10 11 12Table 2.2: An optimal warping path for table 2.1the �valley� of minimal 
ost (see Figure 2.10).A formalization of the 
on
ept of an alignment yields the following de�nition: A warpingpath of length L ∈ N between two sequen
es X and Y of length N and M , respe
tively, is asequen
e p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L] whi
h satis�esthe following 
onditions:10i) Boundary 
ondition: p1 = (1, 1) and pL = (N,M).ii) Step size 
ondition: ∀ l ∈ [1 : L− 1] : pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}.Intuitively, the warping path de�nes a mapping between the two feature sequen
es su
h thatfeatures xnl

and yml

orrespond to the same semanti
 unit. Table 2.2 illustrates how su
h amapping might look like for two sequen
es X and Y as de�ned in table 2.1. In this sample
ase, F = {a, b, c, d, e, f, g, h}, N = 10 and M = 12. It is easy to see from the table that the�rst element of X 
orresponds to the �rst two elements of Y , and so on. We will sometimesrefer to the entries of the warping path by their asso
iation to a spe
i�
 sequen
e, for instan
ethe elements nl, l ∈ [1 : L] might be referred to as �X entries� of the warping path. Likewise,the row 
ontaining su
h entries may be referred to as �X row� of the warping path.The 
onditions ensure that the mapping is 
omplete in the sense that no element of either

X or Y is negle
ted. Note that the step size 
ondition implies monotoni
ity of the sequen
es
n1, n2, ..., nL and m1,m2, ...,mL, a fa
t sometimes made expli
it in a separately stated mono-toni
ity 
ondition.The total 
ost cp(X,Y ) of a warping path p between X and Y using 
ost measure c is de�nedas cp(X,Y ) :=

∑L
l=1 c(xnl

, yml
). The path having minimal total 
ost over all possible warpingpaths is 
alled optimal warping path p*. The DTW distan
e between X and Y is then de�nedby DTW (X,Y ) := cp∗(X,Y ).Computation of the Warping PathA naïve implementation of a DTW 
omputation algorithm might simply 
ompute all possiblewarping paths between X and Y and then pi
k the one with minimal total 
ost. However, this10We de�ne the shorthand [a : b] := {a, ..., b} for a, b ∈ N.18



2.3 Dynami
 Time Warping (DTW)approa
h takes time exponential in N and M , so it is 
omputationally infeasible. One 
an dobetter by observing that DTW exhibits the properties of overlapping subproblems and optimalsubstru
ture (sin
e every globally optimal warping path must ne
essarily be lo
ally optimal),making it well suited for a dynami
 programming approa
h with a time 
omplexity of O(NM).For the implementation of su
h an approa
h, we de�ne an N×M matrix D 
alled a

umulated
ost matrix as follows: D(n,m) := DTW ((x1, ..., xn), (y1, ..., ym)), i.e. every 
ell of this matrix
ontains the 
ost of a �partial� warping path between some pre�xes of X and Y .
D satis�es the following identities:

D(n, 1) =

n
∑

k=1

c(xk, y1) for n ∈ [1 : N ]

D(1,m) =

m
∑

k=1

c(x1, ym) for m ∈ [1 : M ]

D(n,m) = min{D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)}+ c(xm, ym)

for 1 < n ≤ N and 1 < m ≤MHen
e, DTW (X,Y ) = D(N,M).11 This implies that D 
an be 
omputed re
ursively, startingat the upper right of the matrix at lo
ation (N,M) and working downward in a stepwisemanner till one arrives at the lower left (1, 1), the base 
ase. Reversing the pro
ess to workiteratively in a bottom-up fashion from (1, 1) towards (N,M), one 
an 
ut down on memoryspa
e requirements while preserving the 
omputation 
omplexity of O(NM).
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Figure 2.11: A

umulated 
ost matrix for the two PathBeg versions of Figure 2.9, time in se
ondsUsing D, the optimal warping path p∗ = (p1, .., pL) 
an be 
omputed by tra
ing the lowest
ost path between (1, 1) and (N,M). Here we set p1 := (1, 1), pL := (N,M) and in 
ase11See [Mül07℄ for proofs and a detailed dis
ussion. 19



Chapter 2 Musi
 Syn
hronization
pl = (n,m) for l ∈ [2 : L], then

pl−1 :=







(1,m− 1) if n = 1
(n− 1, 1) if m = 1
argmin{D(n− 1,m− 1),D(n − 1,m),D(n,m− 1)} otherwiseSee Figure 2.11 for a visualization of the basi
 idea. There is a large variety of possibleoptimizations for the 
omputation of the warping path, and we have barely begun to s
rat
hthe surfa
e. A more in-depth dis
ussion is given in [Mül07℄.2.4 DTW in Musi
 Syn
hronizationTo make use of the DTW algorithm for the purpose of musi
 syn
hronization, one just needsto de�ne a suitable feature spa
e F and 
ost measure c. Perhaps not surprisingly, we 
hoosethe CENS features introdu
ed in Se
tion 2.2.4, so F = {v ∈ [0, 1]12 | ‖v‖2 = 1}. For the 
ostmeasure, we de�ne cα by cα := 1− 〈x, y〉+ α for some o�set α ∈ R≥0. The o�set is ne
essaryto a

ount for areas of little harmoni
 
hange where the CENS features 
annot a

uratelydistinguish �good� and �bad� paths any longer. Without the o�set, the path's behavior inthese 
ases would be essentially random, sin
e movement inside su
h a region does not in
urhigh 
osts�in
luding it predisposes the warping path towards the geometri
 optimum, whi
his the most reasonable alternative in su
h a 
ase. Sin
e the CENS features are normalizedwith regard to the Eu
lidean norm, 〈x, y〉 is equivalent to the 
osine of the angle between xand y.While the design des
ribed above is su�
ient for a good intuition of a harmony-based align-ment pro
edure, of 
ourse su
h a method would not yield very 
onvin
ing results for our goalof extra
ting detailed timing information from the warping path. In pra
ti
e, the harmony-based alignment is used as a basis for further re�nements, for example using onset featuresas introdu
ed in 2.2.5. Re
ently, this has been done by Ewert, Müller and Gros
he [EMG09℄.Their approa
h integrates 
hroma-based and onset features on the 
ost matrix level and a�ordsgood alignment a

ura
y while preserving the robustness gained by the use of 
hroma-basedfeatures. In the remainder of this work, we will suppose syn
hronization data generated bysu
h an algorithm, without going into the spe
i�
s of warping path re�nement ne
essary toobtain higher-quality alignments.In the pre
eding se
tions, the presentation has fo
used on the alignment of audio/audio pairs,sin
e this is perhaps the most 
hallenging problem. Alignment of MIDI/MIDI or MIDI/audiopairs 
an be performed by using the same pro
edure as des
ribed before, ex
ept that STMSPand onset features 
an be extra
ted from the MIDI dire
tly sin
e they are represented ina symboli
 manner. For the �rst, one only has to read the relevant parameters from therespe
tive note onset/o�set messages and 
onvert them to a suitable STMSP representation.Onset features are even easier to extra
t, sin
e they 
orrespond exa
tly to the note onsettimings already present in said messages. Finally, the alignment of s
ore/MIDI or s
ore/audiopairs 
an be redu
ed to MIDI/MIDI or MIDI/audio alignments by generating a standard MIDI�le from the s
ore. This fun
tionality is provided by default for all the toolkits that deal withthe pro
essing of digital s
ore data, so this does not pose any te
hni
al problems.1212Even though some notational ambiguities have to be resolved, see Se
tion 2.1.1.20



Chapter 3Tempo CurvesThe notes I handle no better than many pianists. But the pauses between the notes�ah,that is where the art resides. �Arthur S
hnabel, 1958The previous 
hapter introdu
ed the te
hni
al infrastru
ture ne
essary for the syn
hroniza-tion of two interpretations of a pie
e of musi
. This 
hapter builds on that material buydemonstrating how to use alignment information for the 
omputation of tempo information.However, it will �rst be ne
essary to dis
uss what exa
tly is meant by �tempo information�.The 
hapter begins with the introdu
tion of some of the di�erent hierar
hies (or levels) thatdetermine the stru
tural layout of a pie
e. We then show how these levels form the basis ofa formal de�nition of the tempo and asso
iated tempo 
urve of a pie
e, and dis
uss threealgorithms for its 
omputation using alignment data as input. This forms the presentation ofthe prin
ipal 
on
eptual 
ontribution of the work. Finally, we brie�y tou
h on related topi
ssu
h as dynami
s 
urves.3.1 Measuring TempoListening to a pie
e of musi
 is always a subje
tive experien
e, and no two persons havepre
isely the same thoughts or emotions when witnessing a spe
i�
 performan
e of a pie
e.Even so, there are 
ertain 
hara
teristi
s of a musi
al pie
e that trans
end subje
tivity and
an be 
laimed to be universal, and among the most important of those is its tempo. Thefeeling of pulse and rhythm is one of the 
entral de�ning 
hara
teristi
s of nearly all Westernmusi
 up to (and mostly in
luding) the 20th 
entury, and thus measuring the tempo of a pie
eas a

urately as possible is an obvious goal of (automated) musi
 pro
essing.Con
eptually, a tempo 
urve is the natural result of su
h a measurement pro
ess; it plots thetempo of a pie
e over the time span in whi
h it is played (Fig. 3.1). Implementing this idea,however, is harder than it �rst appears. Sin
e �tempo� is hard to de�ne in absolute terms,one has to �nd a proper referen
e against whi
h to measure deviations (e.g. to determine apie
e's tempo in BPM, one 
ould use the beat indi
ated by the pie
e's time signature as areferen
e). Even the very pro
ess of measurement is not as well-de�ned as one would wish:Whi
h musi
al properties 
hara
terize the tempo, and exa
tly how pre
isely 
an they bemeasured before getting drowned in statisti
al noise? In the following, we will explore someof the possibilities in an attempt to answer these questions. 21



Chapter 3 Tempo Curves
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Figure 3.1: A sample tempo 
urve for the �rst seven measures of PathExp, time in mea-sures and tempo in BPM. Phrase stru
turing and a temporary slow-down at aparti
ularly 
hallenging passage in measure four are 
learly visible.3.1.1 Metri
al Hierar
hies in TempoUnlike visual media su
h as paintings, musi
 is an inherently sequential art form. It 
an-not exist outside a temporal referen
e frame, hen
e the relation between the development ofmusi
al 
on
epts on the one hand and the passage of time on the other hand is one of themain expressive parameters whi
h 
omposer and performer manipulate for artisti
 purposes.However, sin
e it is quite easy to �get lost� in a 
ompletely free stream of time, Western 
las-si
al musi
 regularly employs rigid stru
tures for the organization and se
tioning of musi
alepisodes in time, whi
h are observed and typi
ally emphasized by the artist in a musi
al per-forman
e [Cla87℄. We have already seen the basi
 organizational stru
ture 
alled a measure(or bar) in Se
tion 2.1.1. There are other divisions possible on several levels that highlightdi�erent musi
al entities, as 
an be seen in Fig. 3.2. A

ordingly, di�erent division levels mayserve as the foundation of di�erent tempo levels that 
an 
on
eivably be measured.Beat level. The beat forms the most basi
 building blo
k of larger periodi
 stru
tures su
h asindividual measures (inversely, it 
an also be regarded as a re�nement of the se
tioningimposed on the pie
e by the bar stru
ture). The beat provides a steady and regularpulse as indi
ated by the time signature of the pie
e, e.g. for a pie
e in 3/4 time, therewill always be three beats (of quarter note length) per bar. Finer subdivisions based onthe beat are referred to as beat level (or mensural level) stru
tures as well, e.g. divisionson the level of eighth or sixteenth notes in a quarter beat 
ontext. If the tempo of apie
e does not 
hange over time, se
tioning on this level 
an be done by determiningthe length of one beat and sli
ing the pie
e into time segments of that length. Here, themain advantage of a beat level division is periodi
ity�ea
h time segment 
an be reliedon to have the same length. This is also its main disadvantage: If the time segment is22



3.1 Measuring Tempotoo large, valuable information may be lost in the tempo measurement.Note level. The note level division separates single 
onse
utive notes from ea
h other, regard-less of their respe
tive length. A division on this level has the advantage of automati
adaptability to the �best� resolution available to 
apture a musi
al segment, althoughthis 
omes at the 
ost of lost periodi
ity�while the beat is guaranteed to o

ur at well-known intervals throughout a pie
e (barring time signature 
hanges), for the note leveldivision there is no su
h assuran
e. Due to the adaptive resolution, tempo measurementsdone on the note level are usually more sensitive than measurements done on the beatlevel. This means that they are better at spotting subtle tempo nuan
es while at thesame time being more sus
eptible to measurement errors or pro
essing artifa
ts.Motif level. A division on the motif level makes great musi
al sense, although it relies on theassumption that motives exist in the pie
e and 
an be readily obtained either by analysisor prior knowledge (whi
h is not the 
ase in general).13 However, if su
h a division ispossible, timing information based on it may reveal a great deal of information abouteither the pie
e or the performing artist.Phrase level. The same 
onsiderations as for the motif level hold for the phrase level, theymerely di�er in their respe
tive stru
tural level�phrases obviously belong to a moreglobal stru
tural 
ontext than simple motives.
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hubert: Winterreise D911, �Frühlingstraum� (Ex
erpt)The di�eren
es between the stru
tural hierar
hies already point to a related issue, whi
h
on
erns the 
ontrast between global tempo, lo
al tempo and lo
al timing. Figure 3.3 illustrateshow these are laid out with respe
t to ea
h other: The global tempo refers to the 
omplexlayout of a pie
e as envisioned by the 
omposer and typi
ally spans a wide number of bars(though it still very mu
h depends on the performer to realize the 
omposer's ideas). In
ontrast, the term �lo
al timing� is used to des
ribe tempo variations on a very small s
ale(in the order of at most a few hundred millise
onds). We are mainly interested in the lo
altempo, whi
h 
on
erns small-s
ale tempo variations whose range typi
ally en
ompasses asmall number of individual notes at the most. These variations 
an be due to various fa
tors,in
luding artisti
 phrase shaping and realization of 
omposer instru
tions su
h as fermatas[FGW08℄.13As an additional di�
ulty, de�nitions of motives and phrases are always subje
tive and thus open for debate.23



Chapter 3 Tempo Curves
Figure 3.3: Di�erent resolution levels of tempo measurementFrom a performan
e analysis viewpoint, tempo and timing measures serve di�erent purposes:Information about the global tempo of a pie
e is mu
h more useful for assertions about thepie
e itself (i.e., the 
omposition) than the timing measurement, although it may also be usedto analyze a spe
i�
 performan
e. On the other hand, a performer's artisti
 timing is stri
tlytied to a spe
i�
 interpretation and thus best suited for analysis tasks that aim to 
ompareand relate a number of di�erent performan
es (possibly of the same pie
e). Here, the fo
us ismainly on gaining information about the performers' idiosyn
rati
 playing styles. The lo
altempo lies somewhere in the middle ground and 
an thus be used for both of these purposes.In the following, any unquali�ed use of the term �tempo� should be taken to refer to the lo
altempo, whi
h is the main fo
us of this work. When ne
essary, the term �global tempo� willbe used expli
itly to distinguish the two.3.1.2 A Referen
e Frame for TempoAs has been already mentioned, the tempo of a pie
e does not exist in an �absolute� spa
e,it always needs a referen
e frame to be meaningful (i.e., the pie
e must always get slower,faster or stay the same in relation to something else). The impli
it frame of referen
e for ahuman listener is usually an idealized beat produ
ed by his imagination�he pi
ks up on thepulse of a pie
e, and then (based on his musi
al intuition) extrapolates from it to estimatethe onset times of the next 
ouple of notes. If these notes arrive at an earlier or later point intime than expe
ted, the listener noti
es a 
hange in tempo. While we may take this frame ofreferen
e for granted sin
e it 
orresponds so 
losely to our subje
tive experien
e, it is in fa
tsomewhat arbitrary: What if the 
omposer indi
ated in the s
ore that he wanted the pie
eto slow down, yet the performer maintained a steady tempo? An unsuspe
ting listener wouldnot noti
e anything unusual (unless he was familiar with a faithful re
ording of the pie
e),but if one 
hose the 
omposer's given tempo as a basis for judging a performan
e, the steadilyheld tempo would register as a speed-up.One might argue that the BPM measure o�ers absolute information about a pie
e's tempo,but even this is not 
ompletely true: There are a multitude of di�erent possible ways to notatea pie
e of musi
 that 
an be argued to be essentially equivalent (e.g. using 6/8 time instead of3/4 time), but would produ
e di�erent BPM results�after all, the 6/8 time signature impliesdouble the number of beats as 3/4 time, even though the duration of a single su
h beat isthen only half as long. This means that BPM information be
omes meaningful only in the
ontext of a known time signature that 
an a
t as a referen
e frame.Given this understanding, the �rst thing one needs to do in measuring the tempo of a pie
e isto pi
k a sensible frame of referen
e. A natural 
hoi
e for this is a �xed number of BPM tiedto a spe
i�
 time signature as des
ribed above, sin
e this 
orresponds 
losely to the regular24



3.1 Measuring Tempolistening experien
e. To avoid problems where di�erent referen
e frames (e.g. 
omposer'stempo indi
ation vs. listener's expe
tation) would yield di�erent results for the tempo 
urve,we assume that the only tempo 
hanges in our input data are of a lo
al nature; that is, we donot permit that time signature 
hanges or novel tempo markings o

ur in the passage we areanalyzing. This assumption is not overly restri
ting sin
e su
h markings normally indi
atestru
tural 
hanges as well, e.g. the beginning of a whole new se
tion. In su
h a 
ase, it isreasonable from a musi
al standpoint to analyze that segment separately.The 
on
rete data used as a referen
e is a Standard MIDI File that is produ
ed dire
tly fromthe s
ore. Its tempo is �xed by obtaining the 
omposer's tempo marking of the relevantpassage, whi
h is 
onverted to a spe
i�
 BPM value. As dis
ussed in Se
tion 2.1.1, thisis an inexa
t s
ien
e: Tempo is usually indi
ated with a deliberately loosely de�ned termthat is open for interpretation. This ambiguity must be resolved at the time the MIDI isprodu
ed. For this, we simply pi
k a likely tempo from the possible range of options. Sin
ewe are interested in relative values rather than absolute ones, we a

ept that this may slightlyskew the 
on
rete 
omputed values upwards or downwards�the only relevant 
on
ern is thatthe shape of the tempo 
urve be preserved, whi
h is the 
ase here. Note that even thoughthis is not a primary goal of our work, we may still 
ompute a

urate absolute BPM valuesif the MIDI is set to a pre
ise referen
e tempo. We refer to the generated MIDI �le as thereferen
e; the musi
al interpretation we want to analyze is 
alled either performan
e or simplyinterpretation.3.1.3 Extra
tion Methods of Tempo FeaturesAfter the referen
e has been established, we still have to measure the tempo of the a
tualperforman
e. This pro
ess 
an be split into two steps: The extra
tion of 
ertain featuresfrom referen
e and interpretation, and the 
omparison of these features. The features used forthis 
losely relate to the various levels dis
ussed in the pre
eding se
tion�in fa
t, for tempo
urves it is su�
ient to use onset features that 
apture the point in time when an event onsu
h a level happens. As an example, features on the note level 
onsist of note onset times aspresented in Se
tion 2.2.5. There are several di�erent ways of obtaining these features:Automati
 annotation. Trying to automate the pro
ess of feature extra
tion is an obvious(but 
hallenging) idea in performan
e analysis. To date, no algorithm is known toprodu
e results whi
h are as a

urate as 
an be a
hieved by manual annotation, althougherror margins may be small enough for 
ertain appli
ations [Dix01, Dix07℄. This worktries to slightly improve this state.Manual annotation. Human intervention is the most labor-intensive way of 
olle
ting fea-tures, but also among the most a

urate. It is usually done on the beat level, oftenusing a spe
ial-purpose tool (e.g. the Soni
 Visualiser [Son09℄) that displays and playsthe waveform and lets the user graphi
ally pla
e the onsets in this representation. Oneuseful 
ourse of a
tion is to take the output of an automated analysis and adjust itmanually to the desired degree of a

ura
y, thereby minimizing required human e�ortwhile maintaining high data quality. In previous work, this method has enjoyed height-ened attention be
ause results produ
ed by other approa
hes were often not satisfa
tory[Wid02, WDG+03, Sap07, Sap08℄. 25



Chapter 3 Tempo Curves�Dire
t� annotation. By use of spe
ialized equipment, one 
an 
apture onset times during thea
tual re
ording of a pie
e of musi
. One example of this is the so-
alled player piano,a 
omputer-monitored piano that generates symboli
 (MIDI) data when it is played.Su
h data 
an be used as a basis for manual annotations, e.g. [Wid02, WDG+03℄. Theadvantage of this approa
h is that it produ
es the best data that 
an be gained (sin
esymboli
 onsets 
orrelate perfe
tly to physi
al onset times), the obvious disadvantage isthat spe
ial-purpose hardware needs to be used during the re
ording of the pie
e. Inparti
ular, there is no way of adapting this approa
h to work on existing re
ordings, sothe huge amount of data available e.g. on CD re
ordings 
annot be analyzed using thisapproa
h.It is worth pointing out that the method used for obtaining tempo features is essentiallyirrelevant with regard to the performan
e analysis steps that follow feature extra
tion. Thismeans that an approa
h that operates on beat-level tempo features will take as input anysu
h feature set, regardless of whether it was produ
ed manually or automati
ally. Hen
e,one 
an 
hoose the best feature extra
tion method available for the development of su
h analgorithm�even if obtaining su
h a feature set is not feasible for regular usage, the algorithmwill work just �ne with di�erently generated features (provided that they meet reasonablyhigh quality standards).The alignment pro
ess des
ribed in Se
tion 2.4 
an be regarded as an automated annotationof the interpretation by the data given in the referen
e �le. This in
ludes note onsets, o�setand possibly dynami
s information�even song lyri
s may be in
orporated in the referen
eMIDI.3.1.4 Tempo Feature ComparisonThe last step in tempo measurement is a
tually the easiest. After the required features havebeen extra
ted, measuring the tempo of the pie
e amounts to a straightforward 
orrelationof these features and measurement of the di�eren
e in onset time between interpretation andreferen
e. For example, 
onsider a short pie
e of musi
 where only four note onsets o

ur(Table 3.1). Ea
h onset is designated by an individual letter 
orresponding to a musi
al note,length of the notes is indi
ated by splitting single letters into multiple versions of the sameletter, distinguished by their indi
es.In the referen
e, the onsets o

ur at times 1, 2, 3 and 4 (given by their respe
tive index intothe data sequen
e) while in the interpretation, the onsets o

ur at times 1, 3, 5 and 7. We
an observe that the time di�eren
e between two 
onse
utive onsets is 
onstant in the twoversions, and that it is 1 in the referen
e and 2 in the interpretation. Thus, the translationfa
tor between referen
e and interpretation is 1
2 , and we 
an 
on
lude that the interpretationis played half as fast as the referen
e. This forms the basis of our understanding of the termtempo: It is the progression fa
tor of time units in the referen
e vs. the progression fa
torof time unit in the interpretation. By using a known BPM value for the progression of timeunits in the referen
e (where a time unit is de�ned as the duration of one beat), we are thenable to 
ompute absolute BPM values for the tempo of the performan
e as well.26



3.2 Warping Path Based Tempo Curves3.2 Warping Path Based Tempo CurvesWe are now ready to introdu
e the approa
h taken in this thesis. Its basi
 idea is to makeuse of the fa
t that an alignment between referen
e and a
tual performan
e�i.e., a warpingpath�
an be regarded as a des
ription of the performan
e's tempo stru
ture. This fa
ilitatesanalysis of the warping path to build a tempo 
urve from the information it 
ontains. Tosee how this is done, 
onsider again Table 3.1. An optimal warping path for this example isdepi
ted in Table 3.2.Intuitively, one 
an �read o�� the ratio of time progression in the referen
e vs. time progressionin the interpretation by looking at the respe
tive length of semanti
ally 
orresponding musi
segments in the two data streams: In this example, ea
h progress by one time unit in thereferen
e 
orresponds to a progression by two time units in the interpretation. This is re�e
tedin the warping path by the fa
t that ea
h individual index into the referen
e must o

ur twi
eto �t its tempo to the tempo of the interpretation. Hen
e, we 
an again 
on
lude that thetranslation fa
tor between referen
e and interpretation is 1
2 , i.e. half-tempo.Noti
e that in the plot of this warping path (Fig. 3.4), the gradient of the idealized warpingpath (whi
h is gained by averaging over the values of the a
tual warping path) is pre
iselytwo�the inverse of the translation fa
tor. We will now formalize this intuitive understand-ing.3.2.1 Sliding Window Computation of Tempo CurvesLet p = (p1, ..., pL) be a warping path of length L between two sequen
es X and Y of length

N and M as de�ned in Se
tion 2.3, where X is the referen
e of a given pie
e of musi
 and Yits respe
tive interpretation. We de�ne the extended warping path pext for all l ∈ Z by paddingthe regular warping path p at the lo
ations where it was not expli
itly 
omputed, using theassumption that referen
e and interpretation have equivalent tempo there:
pext

l :=







pl = (nl,ml) if l ∈ [1 : L]
(l, l) if l < 1
(N + l − L,M + l − L) if l > LFor the following de�nitions, we will assume that the warping path is always padded like thisto avoid spe
ial treatment of �boundary 
ases�.The 
omputation of the tempo 
urve basi
ally works by looking at ea
h element of the referen
esequen
e, determining the length of the entries of the warping path semanti
ally 
orrespond-ing to this element both in the referen
e row and the interpretation row, and 
omputing thequotient between both of these lengths. However, su
h an element-wise 
omputation is ex-tremely unstable in terms of robustness against alignment errors and artifa
ts. Therefore, wealso introdu
e an averaging window of size w that de�nes a broader range of elements of thereferen
e that are in
luded in this examination. The tempo 
urve is then determined not by�nding semanti
ally 
orresponding entries to a spe
i�
 element x ∈ X, but rather to a rangeof w su
h elements 
entered around x. We formalize this by looking at the 
omputation ofone parti
ular entry of the tempo 
urve in detail. 27



Chapter 3 Tempo Curves Referen
e e 
 d gInterpretation e1 e2 c1 c2 d1 d2 g1 g2Table 3.1: Two s
hemati
 pie
es of musi
, note onsets marked redAsso
iated Ve
tor Warping Path AssignmentsReferen
e 1 1 2 2 3 3 4 4Interpretation 1 2 3 4 5 6 7 8Table 3.2: An optimal warping path for Table 3.1
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Figure 3.4: Visualization of the warping path of Table 3.2 (noti
e di�erent s
aling for horizon-tal referen
e and verti
al interpretation, time given in indi
es into Table 3.1)Let n ∈ [1 : N ] be an arbitrary but �xed index into the referen
e data sequen
e X and
w ∈ N>0 the size of an averaging window. The tempo 
urve indu
ed by the warping path pwith respe
t to w is a fun
tion τ : [1 : N ]→ R≥0 that is de�ned by

τw(n) :=
(b + 1)− a

(mlb + 1)−mlaHere, la and lb are 
omputed a

ording to the following de�nitions:
a := n−

⌊

w − 1

2

⌋

b := n +

⌈

w − 1

2

⌉

la := max{l ∈ Z | nl = a}

lb := max{l ∈ Z | nl = b}28



3.2 Warping Path Based Tempo CurvesThis means that a and b de�ne the indi
es of the outer limits of the window w in the referen
esequen
e, i.e. the elements of the referen
e sequen
e in
luded in this examination step aregiven by the range [xa : xb]. The middle element of this range is always xn. Although some ofthe elements of this range may be non-existent (for a < 1 or b > N), their respe
tive indi
esare still in
luded in the extended warping path. Hen
e, τ is well-de�ned on the full domain
[1 : N ] for arbitrary window sizes. Just as a and b de�ne the indi
es of window limits in thereferen
e sequen
e X, la and lb represent the indi
es of window limits in the extended warpingpath pext

l . In the 
ase of ambiguities (when a or b o

ur multiple times in the referen
e rowof the warping path), their de�nition is designed to always pi
k the largest possible index stilldenoting an o

urren
e of a or b, respe
tively. Other possible 
hoi
es would have in
ludedthe smallest su
h index, or the index of the middle element of the respe
tive range. Sin
e theimpa
t of this 
hoi
e is negligible with respe
t to overall a

ura
y, the only important pointhere is that for any ambiguous 
ase, exa
tly one index is pi
ked that always remains the samewhenever that 
ase is evaluated. This is the 
ase with the maximum used in this de�nition.Note that the tempo 
urve is de�ned in terms of the referen
e sequen
e, so the �resolution� ofthis sequen
e (i.e. the length of the features that make up its individual elements) determinesthe resolution (or pre
ision) of the tempo 
urve as well. Sin
e w = (b + 1) − a, we 
an alsoformulate the de�nition of τ as follows:
τw(n) :=

w

(mlb + 1)−mlaIn b + 1 and mlb + 1, the addition of �one� is ne
essary to a

ount for the last element ofthe sequen
e we are inspe
ting whi
h would not be 
ounted otherwise�e.g., even if a = band mla = mlb , we are still examining exa
tly one element of referen
e sequen
e and warpingpath.Consider an example: We will evaluate the warping path depi
ted in Fig. 3.4 at n = 3 witha window size w = 3. In this 
ase, a = 2 and b = 4. As {l ∈ [1 : L] | nl = 2} = {3, 4} and
{l ∈ [1 : L] | nl = 4} = {7, 8}, la = 4 and lb = 8, a

ording to the de�nition. Noti
e howthe ambiguous borders are resolved in both 
ases. Next, we evaluate τ3(3) = (4+1)−2

(8+1)−4 = 3
5 .The di�eren
e of this result to the �ideal� tempo of 1

2 is due to a general drawba
k of thisapproa
h: Operating on the a
tual warping path is in general not equivalent to working onan ideal warping path, and an important point of our 
ontribution is to alleviate this problemby smoothing (averaging) over various values to still arrive at adequate tempo 
urves.In the algorithmi
 
omputation of the tempo 
urve, we will iteratively �slide� the window wover all indi
es n ∈ [1 : N ] into the referen
e sequen
e to 
ompute all entries of the tempo
urve. Consequentially, we refer to the 
lass of algorithms presented here as sliding windowalgorithms. The di�erent evaluation te
hniques that distinguish these algorithms from ea
hother are based on some of the di�erent feature levels from Se
tion 3.1.1: The �rst te
hniquese
tions the warping path into equal-length snippets of a �xed time, 
orrelating to the beatlevel. The se
ond te
hnique introdu
es uneven se
tioning based on a note-level division of themusi
 data, and the third te
hnique tries to unify time based and note based approa
h.A major advantage of the warping path based sliding window approa
h is that it 
an beused in 
onjun
tion with the DTW method presented in Se
tion 2.3. This allows us to exploitadvan
ed musi
 alignment te
hniques to automati
ally generate tempo 
urves without the need29



Chapter 3 Tempo Curvesfor manual intervention. Sin
e DTW is designed to work with a wide variety of features, we arenot limited to any parti
ular feature resolution level but 
an use whatever features ne
essaryto build an a

urate warping path. On the other hand, we 
an still de
ide to evaluate thewarping path on any pre
ision level ne
essary for a spe
i�
 performan
e analysis purpose�one 
ould even perform an analysis of the symboli
 referen
e data stream to determine whi
htimings fall on heavy beat times, melodi
 highlights, de
eptive 
aden
es and so on, and 
anuse this knowledge to sele
tively evaluate the tempo at su
h points in time.3.2.2 Fixed Window Size Warping Path EvaluationThe most straightforward approa
h to tempo 
urve 
omputation 
onsists of a literal algorith-mi
 implementation of the formal des
ription given in Se
tion 3.2.1. The 
orresponding 
odeis presented in Algorithm 3.1. It expe
ts only the extended warping path and the windowsize w as input. Remember that nl designates elements of the referen
e, while ml is used forelements of the interpretation.The algorithm slides and 
enters the window of size w over every element n of the referen
esequen
e (lines 2�8), positioning the respe
tive borders exa
tly as in the formal de�nition ofthe pro
edure. While the presentation of the algorithm in this work remains faithful to thatde�nition, the a
tual implementation has a slightly di�erent stru
ture that avoids potentially
ostly operations su
h as the set 
omprehension of lines 5�6. The 
all to ExtendWarping-path extends p by the number of entries needed to a

ommodate a window of size w duringthe exe
ution of the algorithm.Sin
e w is �xed as a parameter to the algorithm, we 
all this algorithm the �xed window ap-proa
h to tempo 
urve 
omputation (FW for short). Noti
e that the window size is the onlyparameter that 
an be manipulated in this approa
h. Early experiments showed that a subse-quent additional averaging over multiple entries of the tempo 
urve did not yield signi�
antlybetter results for the FW algorithm. Figures 3.5 and 3.6 may serve as a preliminary exampleof the output produ
ed by the FW algorithm before we 
ome to a more detailed analysis inChapter 4.Changing the window size obviously 
hanges the out
ome of the 
omputation: Plotted are twotempo 
urves generated by di�erent parameter settings (blue) against a synthesized groundAlgorithm 3.1: Tempo 
urve 
omputation based on the �xed window te
hniqueInput: warping path pl = (nl,ml) (l ∈ L), window size w ∈ N>0Output: tempo 
urve τ

p← ExtendWarpingpath(p, w);1 for n← 1 to N do2
a← n−

⌊

w−1
2

⌋;3
b← n +

⌈

w−1
2

⌉;4
la ← max{l ∈ Z | nl = a};5
lb ← max{l ∈ Z | nl = b};6
τ(n) ← w

mlb
−mla+1 ;7 end8 30
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Figure 3.5: Results of the FW algorithm for w = 2 s, time in se
onds
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Figure 3.6: Results of the FW algorithm for w = 5 s, time in se
ondstruth referen
e (whi
h will be dis
ussed in detail in Se
tion 4.1, shown here in red). As per thede�nition of the tempo 
urve, tempo is given here not in BPM but in relation to a referen
etempo: We start a bit slower than the referen
e, slow down to about 3/4 of the original speed,then speed up again until we have rea
hed the original tempo at t = 85 s. Two 
hara
teristi
sof the algorithm are immediately apparent: Flu
tuations in the generated 
urve be
ome lesspronoun
ed as the window size in
reases, but sensitivity to 
hanges lessens in turn (see e.g.adaptation of the 
urve to a new tempo at t = 41 s). Another visible e�e
t is 
aused by the
entering of the smoothing window whi
h results in an anti
ipation of tempo 
hanges evenbefore they have started happening. Although we give the size of the window w in terms ofse
onds in these examples (and will 
ontinue to do so for reasons of intuitiveness), we a
tuallymean by that a size with respe
t to the feature rate used in the warping path 
omputationthat 
orresponds to three se
onds of the referen
e audio data.Viewing the tempo 
urve at a higher resolution, one 
an see a plateau e�e
t where 
ertainvalues have a mu
h higher probability of appearing in the tempo 
urve than other values (Fig.3.7). Furthermore, these seem to 
an
el ea
h other out in their �u
tuation around the groundtruth tempo 
urve. This phenomenon is due to the stepwise, �integer� nature of the warping31
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Figure 3.7: Higher-resolution view of FW algorithm results for w = 2 s, time in se
ondspath that pres
ribes a maximum resolution to the 
omputed value. We will dis
uss all of theseaspe
ts in greater detail in Chapter 4.3.2.3 Adaptive Window Size Warping Path EvaluationAs already mentioned in Se
tion 3.1.1, segmenting and sampling the warping path a

ordingto periodi
 intervals has the disadvantage that it does not adapt optimally to the musi
alattributes of the data. A division that takes the distribution of the notes into a

ount 
ir-
umvents this problem: The adaptive window size algorithm (AW for short, see Algorithm3.2) is one of the possible implementations of this idea. Instead of 
omputing the gradientbetween two points in time that are always w referen
e time units apart, it 
omputes gradients(or slopes) only at the points in time between two distin
t note onsets. If these onsets are
onse
utive, su
h an interval is referred to as interonset interval (IOI).The basi
 idea behind this approa
h is to a
knowledge that note onsets are the main sour
e oftempo data available for performan
e analysis pro
essing. This is espe
ially true for Western
lassi
al piano musi
, but also for pie
es with di�erent or
hestrations (note onsets may besome orders of magnitude harder to extra
t in su
h 
ontexts, but this is an a
tive resear
h�eld [GME09℄). Choosing to negle
t arguably less important aspe
ts su
h as note o�sets orpedaling, we 
an 
laim that measuring note onset information is su�
ient to re
onstru
t thetempo of a pie
e by 
orrelating ea
h measured onset to the respe
tive onset in the referen
eas des
ribed in Se
tion 3.1.4. Consequently, 
omputing the gradient between note onsets triesto use the full amount of tempo information available from these onsets while dis
arding anyalignment artifa
ts that o

ur inside the region of an IOI.For our theoreti
al dis
ussion, we need to update the 
omputation of the borders of theaveraging window. These are aligned to note onsets, whi
h we model as a set of indi
es intothe referen
e sequen
e O ⊆ [1 : N ]. For a number of K onsets, we de�ne O := {o1, ..., oK},with 1 ≤ o1 < o2 < ... < oK−1 < oK ≤ N (that is, we regard this set essentially as an orderedlist). Furthermore, without loss of generality we require that o1 = 1 and oK = N (if this isnot the 
ase, extend O by inserting o0 = 1 and oK+1 = N). This ensures proper window32



3.2 Warping Path Based Tempo Curvesalignment in the boundary 
ases (and also implies that K = L). Similar to the extendedwarping path, we de�ne an extended onset list Oext for all k ∈ Z as follows:
oext
k :=







ok if k ∈ [1 : K]
k if k < 1
N −K + k if k > KSimply put, this pads O with evenly-spa
ed onsets on both sides, whi
h again enables us toextend our averaging window beyond the boundaries of 1 and N , even when it must be alignedto note onsets. We are now ready to de�ne how the window edges are 
omputed in the AW
ase.Let wioi ∈ N>0 be the size of a window indi
ating the number of interonset intervals thatshould be in
luded in an averaging step. We �rst examine the 
ase where wioi = 1, i.e. we areaveraging between two 
onse
utive onsets. Then, for k ∈ [1 : K − 1], we have

τwioi
(ok) :=

(b + 1)− a

(mlb + 1)−mlaIn this 
ase, the following de�nitions are used for the window edges:
a := ok

b := ok+1

la := max{l ∈ Z | nl = a}

lb := max{l ∈ Z | nl = b}Hen
e, this 
ase is analogous to the FW approa
h�the only di�eren
es are in the lo
ationof the window edges, and the �pla
ement� of the 
omputed value in the tempo 
urve. Wherethe 
omputed gradient between two lo
ations a and b was formerly pla
ed in their arithmeti
middle n = a + ⌊ b−a
2 ⌋ due to the 
entered window, it is now pla
ed simply at ok = a, thelo
ation of the �rst onset.This only de�nes the tempo for lo
ations where onsets are present, so we have to interpolatethe tempo at pla
es where this is not the 
ase. To do this, �rst of all set τ(K) := 1. Now we
an perform simple linear interpolation between all known onset lo
ations: Let n ∈ [1 : N ] \ Obe an arbitrary but �xed lo
ation where the tempo 
urve is not yet de�ned, and k ∈ [1 : K−1]the index of the onset whi
h immediately pre
edes it, i.e. ok < n < ok+1. Then,

τwioi
(n) := τ(ok) +

τ(ok+1)− τ(ok)

ok+1 − ok

· (n− ok)Let us now examine the 
ase where wioi > 1. A
tually, we shall see that the de�nition isgeneral enough to a

ommodate wioi = 1 as well, so let wioi ∈ N>0 in the following. Theindi
es of the window edges are then given by this de�nition:
c := k −

⌊wioi

2

⌋

d := k +
⌈wioi

2

⌉

a := oc

b := od 33
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Figure 3.9: High-resolution view of the results of interonset interpolation, legend as aboveHere, c and d index into the list of onsets O. All other de�nitions remain as above; noti
ethat in 
ase wioi = 1, we have in fa
t a = ok and b = ok+1. This de�nition 
an also be usedto des
ribe the FW 
ase by setting O := [1 : N ]. For su
h an O, this de�nition of τ be
omesequivalent to the old de�nition of the FW 
ase for w = wioi.Figure 3.9 depi
ts an example of the 
ombination of warping path (blue), onset information(verti
al red lines) and the idealized warping path (bla
k) that is used by the AW approa
hfor the 
omputation of the tempo 
urve (i.e., an interonset interpolation of the a
tual warpingpath). Figure 3.8 shows how the original warping path was obtained from its respe
tive 
ostmatrix, demonstrating 
learly the 
orresponden
e between artifa
ts in the warping path thatneed to be smoothed out and regions of harmoni
 stagnan
y in the original pie
e.34



3.2 Warping Path Based Tempo CurvesAlgorithm 3.2: Tempo 
urve 
omputation based on the adapting window te
hniqueInput: warping path pl = (nl,ml)(l ∈ L), onsets O = {o1, ..., oK}, window size wioi ∈ N>0Output: tempo 
urve τ

p← ExtendWarpingpath(p, wioi);1
O ← ExtendOnsets(O, wioi);2 for k ← 1 to K do3

c← k −
⌊

wioi
2

⌋;4
d← k +

⌈

wioi
2

⌉;5
a← oc;6
b← od;7
la ← max{l ∈ Z | nl = a};8
lb ← max{l ∈ Z | nl = b};9
τonsets(oc) ← (b+1)−a

(mlb
+1)−mla

;10 end11
τ ← Interpolate(τonsets , O);12 The stru
ture of the algorithmi
 implementation (Alg. 3.2) is not largely di�erent from thetheoreti
 outline. The main work is done in lines 3�11: We iterate over all onsets and 
omputethe gradients between them, paying respe
t to the averaging window de�ned by wioi. Afterthis step, the tempo 
urve τ is de�ned exa
tly at the pla
es where an onset o

urred, hen
ewe 
all the intermediate result τonsets. For a de�nition on the full domain, we still have tointerpolate the values in between onsets. This is done in line 17 by 
alling the auxiliaryfun
tion Interpolate. This fun
tion 
omputes a linear interpolation as des
ribed, but of
ourse other interpolation methods 
ould be used here as well.In the 
ase of the FW algorithm, smoothing of the tempo 
urve was done by 
hoosing awindow of larger size. This is the 
ase here as well, but the window size 
an no longer be
ontrolled dire
tly: it is 
omputed impli
itly from the number of IOIs that are in
luded in theaveraging step (lines 4�5). This has dire
t impli
ations for the impa
t of the averaging: Areasof the pie
e with high onset density are a�e
ted less than areas where only a small numberof note onsets o

ur. As in the 
ase of the FW algorithm, the window for this 
omputationis 
entered around one spe
i�
 lo
ation of the tempo 
urve ok. The 
omputed value is justthe average gradient between the two onsets oc and od. Keep in mind that due to di�erentIOI lengths, the 
entering may be biased to one side: If wioi = 3, the IOI to the left of ok (oflength ok− ok−1) may be signi�
antly shorter or longer than the IOI to the right of ok (whi
hhas length ok+2 − ok+1).As a result of this, the absolute size of the averaging window w depends a lot on the tempo
hara
teristi
s of the musi
al passage en
ompassed by oc and od. Generally speaking, fastand 
omplex passages with small note lengths will 
ause it to shrink, while slow and simplepassages will yield a mu
h larger window. This is the 
ase as e.g. three half-notes will normallytake a longer time to play than three sixteenth-notes, even though the number wioi = 3 stays�xed. The results of this unpredi
tability 
an be observed in Figures 3.10 and 3.11 whi
h showtwo sample outputs of the AW algorithm. Here, in the region from t = 30 to t = 70 there arerelatively few but longer notes (an average of approximately 3.4 onsets/s), while in the regionfrom t = 70 to t = 85, there are relatively more shorter notes (approx. 9.5 onsets/s on average).35
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Figure 3.10: Results of the AW algorithm for wioi = 3, time in se
onds
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Figure 3.11: Results of the AW algorithm for wioi = 9, time in se
ondsAs a result, the smoothing is noti
eably stronger in the �rst region than in the se
ond one.This is espe
ially apparent in the region of tempo 
hange at t = 62�here, only one note onseto

urs in a region over four se
onds long, resulting in an extremely broad averaging window.Noti
e how in 
ontrast, the 
hange-over to a new tempo at t = 41 is pro
essed remarkablyfast.From the di�eren
e between Figures 3.10 and 3.11, one 
an see the importan
e of the smooth-ing step for the AW algorithm. Jitter from alignment artifa
ts dominates the pi
ture from
t = 70 onwards in Figure 3.10. Though still far from perfe
t, the results be
ome mu
h betterfor a larger wioi (Fig. 3.11).3.2.4 Fixed Window Size Evaluation on Corre
ted Warping PathsWe have now seen two di�erent approa
hes: The basi
 FW algorithm just sampled the warpingpath at evenly spa
ed intervals, the AW algorithm introdu
ed sampling at onset lo
ations andIOI smoothing. This se
tion presents a third approa
h that tries to 
ombine the two previouslydis
ussed algorithms. The main idea of this hybrid approa
h (whi
h will be referred to as FWC36



3.2 Warping Path Based Tempo CurvesAlgorithm 3.3: SmoothWarpingpath, smoothing of warping path entries by onsetsInput: warping path pl = (nl,ml)(l ∈ L), onsets O = {o1, ..., oK}Output: smoothed warping path pfor k ← 1 to K do1
a← ok;2
b← ok+1;3
la ← max{l ∈ Z | nl = a};4
lb ← max{l ∈ Z | nl = b};5
x←

mlb
−mla

nlb
−nla

;6 for i← 0 to nlb − nla do7
pla+i ← (nla + i, mla + round(x · i))8 end9 end10

p← FillGaps(p);11 in the following, for �xed window 
orre
ted) is to perform FW sampling on a smoothed (or
orre
ted) warping path, where smoothing is done by 
omputing gradients between 
onse
utiveonset lo
ations, similar to the AW approa
h. The implementation is quite straightforward:The warping path is re-
omputed analogously to the method presented in the AW approa
h(with wioi = 1 �xed sin
e smoothing is only done inside IOI regions), and the results areexported as a new warping path (Alg. 3.3). This 
orre
ted warping path is then used as inputfor the FW algorithm (Alg. 3.1).The FillGaps fun
tion 
alled in line 11 of Algorithm 3.3 merely ensures that the step-size
ondition of the warping path is always met. Up to that line, this may not have been the
ase due to rounding in the 
omputation of the interpolated values (line 8)�e.g., for x = 1.4,in step i = 1 the respe
tive value in the interpolated warping path would be 
omputed as
mla + round(1.4 · 1) = mla + 1, but in the subsequent step i = 2 it would be
ome mla +
round(1.4 · 2) = mla + 3. Hen
e, the value mla + 2 would be skipped, violating the step-size
ondition. FillGaps dete
ts su
h violations and �lls in the missing values.The results produ
ed by this algorithm are a marked improvement over both of the previousapproa
hes: Fig. 3.12 no longer exhibits any se
tions dominated by alignment errors. Due tothe relatively broad time window w = 5, the transition to a new tempo is not as qui
k as e.g.in the AW 
ase. However, su
h sudden and severe transitions are rather unusual in the musi
domain we are interested in, so this e�e
t is in fa
t appropriate.3.2.5 Interpretation-s
aled Tempo CurvesUntil now, the time axis of a plot was always s
aled with regard to the referen
e. This isimportant for the 
on
eptual understanding of tempo 
urves and for the 
omparison of 
urvesgenerated from di�erent performan
es, but in
onvenient when working in a real-world perfor-man
e analysis 
ontext. Here, one would like to determine the tempo of a given interpretationat a spe
i�
 point in time t by 
onsulting this interpretation's tempo 
urve at t and usingthe respe
tive value. A naïve (but working) approa
h would be to re
ompute the desired37



Chapter 3 Tempo Curves
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Figure 3.12: Results of the FWC algorithm for w = 5, time in se
ondstempo 
urve with referen
e and interpretation �ipped, resulting in an �inverted� tempo 
urve.Maintaining the horizontal s
ale, this 
urve 
ould then be inverted again along the verti
alaxis to arrive at the desired interpretation-s
aled tempo 
urve. However, there are 
ertaindisadvantages to this approa
h: Onset information is guaranteed to be available and a

uratefor the referen
e, but this is not ne
essarily the 
ase for the interpretation. Consequently, theAW and FWC approa
hes may not be used for the re
omputation.Furthermore, the 
omputational e�ort required for a fresh 
omputation of the inverted tempo
urve from s
rat
h are not stri
tly speaking ne
essary, sin
e the existing data already 
ontainsall ne
essary information to 
onstru
t res
aled tempo 
urves. The idea with this res
alingapproa
h is simply to �warp� the tempo 
urve using the established warping path.Algorithm 3.4 des
ribes how this is done: Basi
ally, one just has to establish evaluation pointsin the tempo 
urve and then interpolate between the values of these points a

ording to theinterpretation data stream instead of the referen
e data stream. Evaluation points 
an be
hosen a

ording to note onsets, or just be set to [1 : N ] for the 
ase of FW tempo 
urves.In the algorithm, the sear
h for the relevant evaluation points of the original tempo 
urve isperformed in line 3. The values at these points are then entered into a new 
urve (line 4).We keep tra
k of the interpretation-s
aled onsets by updating a set Orescaled that stores thisAlgorithm 3.4: Res
ale, res
aling of tempo 
urves to performan
e tempoInput: tempo 
urve τ , onsets O = {o1, ..., oK}, warping path pl = (nl,ml) (l ∈ L)Output: res
aled tempo 
urve τrescaled

Orescaled ← {};1 for k ← 1 to K do2
lk ← max{l ∈ [1 : L] | nl = ok};3
τrescaled(mlk) ← τ(ok);4
Orescaled ← Orescaled ∪ {mlk};5 end6

τrescaled ← Interpolate(τrescaled , Orescaled);7 38



3.2 Warping Path Based Tempo Curvesinformation (line 5). The algorithm as presented relies on the assumption that interpretation-s
aled onsets are unique; if we de�ne li := max{l ∈ [1 : L] | nl = oi}, we 
an state thisrequirement as ∀i, j ∈ [1 : K] : oi 6= oj ⇒ mli 6= mlj . However, this assumption is notne
essarily met by the warping path. To implement line 4 
orre
tly, one would therefore needto 
ompute τ(mlk) by taking the average over all τ(oi) where (oi,mlk) ∈ p. For dida
ti
purposes, we have 
hosen to retain the simple presentation of the algorithm that is easier todigest.Figure 3.13 shows the result of a res
aling transformation: the time s
ale is 
hanged a

ordingto the length of the pie
e, but the tempo values are maintained. Noti
e that regions of theinterpretation where the tempo is 
omparatively slow take �longer� in the res
aled tempo 
urvethan in the original 
urve (e.g. at t = 35 s in the interpretation-s
aled 
urve), and vi
e versafor faster passages.
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Figure 3.13: Comparing a regular tempo 
urve (top) against a res
aled tempo 
urve (bottom),time in se
onds 39



Chapter 3 Tempo Curves3.3 Dynami
s CurvesAs mentioned before, a useful way of looking at the alignment pro
ess between referen
eand interpretation is to regard it as an automated annotation of the interpretation by thedata provided in the referen
e. Su
h annotations fa
ilitate extra
tion of multiple kinds ofperforman
e 
hara
teristi
s, not just the tempo. In parti
ular, targeting levels other than thebeat level for su
h extra
tions be
omes feasible with the introdu
tion of note-level annotations.Sin
e automated annotations dire
tly bene�t from any improvements to the a

ura
y of theDTW alignment algorithm, algorithms build on this basis are likely to yield better results overtime.One example for how automati
ally generated annotations 
an be exploited in the 
omputationof dynami
s 
urves is shown in Figure 3.14. Here, the dynami
s of two di�erent interpretationsof the same pie
e are plotted a

ording to the time axis of the referen
e instead of the time axisof the performan
es. This is made possible by using the annotations of the performan
es to
ompute a kind of inverse res
aling of a regular dynami
s 
urve: Where the original res
alingpro
edure presented in the previous se
tion translated from a referen
e-s
aled tempo 
urve toan interpretation-s
aled 
urve, the res
aling used in this 
ase translates from interpretationtime to referen
e time instead. The resulting referen
e-s
aled dynami
s 
urves are useful in
omparing multiple performan
es with ea
h other, sin
e their time axes 
an thus be normalizedto the referen
e. The example shown in Figure 3.14 demonstrates that 
lear 
orrelations 
anbe seen in su
h a dire
t 
omparison; Se
tion 4.2.2 gives a 
loser look at how su
h dynami
s
urves relate to the performan
e analysis pro
ess.Information about the dynami
s of a re
ording is 
omputed in the following way: The STMSPfeatures for all pit
h subbands of the input signal at a spe
i�
 point in time t are summedup, with the result energyt being the energy of the whole signal at this point. The dynami
s
urve at point t is then de�ned by log2(energyt + 1).
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Figure 3.14: Dynami
s 
urves for two interpretations of PathExp, time in measures40



3.4 Chapter Summary3.4 Chapter SummaryThe present 
hapter introdu
ed the main 
ontribution of this work: Three algorithmi
 methodsto automati
ally 
ompute the tempo attributes of an expressive musi
al re
ording, under awell-grounded de�nition of �tempo�. The remainder of this work is 
on
erned with establishingdata on the performan
e of these algorithms: How reliable they 
an be expe
ted to be, whi
hte
hnique delivers the best results, how tempo information generated by these algorithms lookslike and how it 
an be used for performan
e analysis.We 
ontinue by presenting an evaluation on the te
hniques that in
orporates both quantitativeand qualitative aspe
ts.

41





Chapter 4EvaluationThe pleasure we obtain from musi
 
omes from 
ounting, but 
ounting un
ons
iously.Musi
 is nothing but un
ons
ious arithmeti
.�Gottfried Wilhelm Leibniz (1712), quoted in Oliver Sa
ks,The Man who Mistook his Wife for a Hat (1985)Any dis
ussion of a new approa
h for the 
omputation of tempo 
urves for expressive musi
re
ordings would of 
ourse be in
omplete without a proper evaluation of its e�e
tiveness. Wedivide this evaluation of our approa
h into two distin
t parts: The �rst part tries to quantifythe performan
e of the three te
hniques using measurements aiming for maximum obje
tivity.The se
ond part is a deliberately subje
tive qualitative analysis that uses individual examplesto illustrate some aspe
ts of the various te
hniques. The two parts of the evaluation are 
om-plementary to ea
h other�taken together, they should 
onvey a fairly 
omplete perspe
tiveof the advantages and short
omings of the approa
h presented in this work.4.1 Evaluating Against Ground Truth DataIn order to be able to de�ne an obje
tive way of measuring the e�e
tiveness of our te
hniques,we �rst need to know exa
tly what output we are trying to a
hieve. Computing the mag-nitude of deviations from that �ideal� goal is then a good way of establishing a quanti�ableperforman
e measure. Figure 4.1 outlines the pro
ess that realizes this idea: Basi
ally, we
reate a number of arti�
ial interpretations for whi
h an �ideal� ground truth14 tempo 
urveis known, 
ompute a regular tempo 
urve for ea
h of these interpretations, and 
ompare these
omputed 
urves against the ground truth. The detailed steps are as follows:Step 1. Generate a number of referen
e MIDIs from a representative set of s
ores 
overingseveral di�erent musi
 genres. Synthesize one or more tempo 
urves for ea
h of thesereferen
es a

ording to a 
ertain parameter set, and use the syntheti
 
urves to warp (ordistort) the referen
e MIDIs. Create an audio representation from these warped MIDIsusing a high-quality synthesizer. This results in a number of arti�
ial interpretationsthat have the tempo 
hara
teristi
s of the syntheti
 
urves, i.e. the syntheti
 tempo
urves a
t as ground truth tempo 
urves for the respe
tive arti�
ial interpretations.These arti�
ial interpretations are stored as wave �les.14The term �ground truth� is derived from remote sensing appli
ations su
h as 
artography and satelliteimagery and des
ribes data of a known good quality that 
an be used for measurement/
alibration purposes.43



Chapter 4 Evaluation

Figure 4.1: S
hemati
 outline of the ground truth evaluation pro
essStep 2. Using the referen
e/arti�
ial interpretation pairings from the �rst step, 
omputetempo 
urves for these interpretations with all three te
hniques presented in this work(for numerous settings of w and wioi). The only di�eren
e between a regular use 
ase ofour algorithms and this run is that the input data used here is syntheti
.Step 3. Compare the tempo 
urves 
omputed in the se
ond step with the syntheti
 tempo
urves generated in the �rst step. Ideally, these would be identi
al, but in reality therewill of 
ourse be di�eren
es. Using some kind of distan
e metri
, measure the respe
tivedeviations of the 
omputed 
urve from the desired ground truth.From this pro
ess, a set of measurements is obtained that des
ribe the performan
e of thethree algorithms over a range of several possible parameter settings. We will now show thesettings used for the generation of the evaluation data presented in this work, then pro
eedto introdu
e a suitable distan
e metri
 and present the a
tual obtained results.4.1.1 Evaluation S
enariosFor our evaluation, we produ
ed data on a sele
tion of 15 pie
es from the RWC databaseby Goto et. al [GHNO02℄. These pie
es were 
hosen with the intention of representing threedi�erent major musi
al �elds: Five pie
es were taken from the 
lass of Western 
lassi
al pianomusi
, �ve pie
es 
ontained 
lassi
al musi
 not fo
used on the piano (mainly or
hestral), and�ve pie
es served as exemplary pop/jazz works. The individual 
hoi
es are listed in Table 4.1,along with their respe
tive RWC ID for ease of referen
e. Sin
e the syn
hronization algorithmat the foundation of our approa
h depends on the availability of reliable onset information forpre
ise alignments, we expe
ted the a

ura
y of 
omputed tempo 
urves to be higher for thedata where this was the 
ase, whi
h 
on
erns the piano pie
es in parti
ular.To get a broad spe
trum of analysis data, we formulated �ve di�erent s
enarios that presented
hallenges of varying degree of di�
ulty to our te
hniques. We deliberately in
luded s
enariosthat in
orporated somewhat realisti
 assumptions about the tempo attributes of a given pie
eas well as s
enarios representing unrealisti
 stress tests designed to expose the limits of ourapproa
h.44



4.1 Evaluating Against Ground Truth DataRWC ID Comp./Interp. Pie
e InstrumentationC025 Ba
h Fuge, C-Major, BWV 846 PianoC028 Beethoven Op. 57, 1st Mov. (Appassionata) PianoC031 Chopin Etude Op. 10, No. 3 (Tristesse) PianoC032 Chopin Etude Op. 25, No. 2 (The Bees) PianoC029 S
humann Reverie (Träumerei) PianoC003 Beethoven Op. 67, 1st Mov. (Fifth Symphony) Or
hestraC015 Borodin String Quartett No. 2, 3rd Mov. StringsC022 Brahms Hungarian Dan
e No. 5 Or
hestraC044 Rimski-Korsakov Flight of the Bumblebee Flute/PianoC044 S
hubert Op. 89, No. 5 (Der Lindenbaum) Voi
e/PianoJ001 Nakamura Jive PianoJ038 HH Band The Entertainer Big BandJ041 Umitsuki Quartet Fri
tion Sax/Bass/Per
.P031 Nagayama Moving Round and Round Ele
troni
P093 Burke Sweet Dreams Voi
e/GuitarTable 4.1: Pie
es used for quantitative te
hnique evaluationsIn a general sense, a s
enario was 
hara
terized by three attributes whi
h des
ribed strengthand frequen
y of the tempo variations allowed in that s
enario. In a more spe
i�
 sense, ea
hs
enario 
onsisted of a number of arti�
ial interpretations whi
h were produ
ed a

ording tothese attributes. The syntheti
 tempo 
urves ne
essary for the produ
tion of these interpre-tations were generated in the following way: A

ording to the range of allowed variation, arandom number generator pi
ked several tempo indi
ators that pres
ribed a pie
e's tempo atdistin
t points in time. The tempo was then interpolated between these points to arrive ata relatively smooth tempo 
urve. To a

ount for the inherent variation of the randomizedpro
ess, three di�erent syntheti
 tempo 
urves were produ
ed for ea
h pie
e in this way�thesubsequent evaluation then 
omputed data points for ea
h of the 
urves individually, andreturned an averaged result. Ea
h s
enario in
luded all 15 �les, making the total number ofarti�
ial interpretations and asso
iated tempo 
urves of a single s
enario 45, respe
tively.The three parameters that guided synthesis of a s
enario's tempo 
urve were as follows:Interpolation method. Two di�erent interpolation models were used. Linear interpolationperformed a gradual 
hange between two tempi to mimi
 ritardandi and a

elerandi,while the step-fun
tion interpolation method maintained 
onstant tempo over a 
ertainamount of time, but then performed a sudden jump to another region of 
onstant tempo.This situation arises in regular s
ores e.g. in the 
ase of fermatas that register as suddenslow-downs in the span of a single note in the tempo 
urve.Interpolation interval length. This interval des
ribes the duration of one segment of the ref-eren
e that would be warped a

ording to a 
onstant tempo in the 
ase of step-fun
tioninterpolation, or to a 
onstant a

eleration/de
eleration in the 
ase of linear interpola-tion. Two di�erent durations were used for this, one of 5 s and one of 10 s.Interpolation range. The range of a

eptable tempi 
on
erns the output boundaries of therandomization algorithm, whi
h were given in terms of the original tempo. Again, two45
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Figure 4.2: Linearly interpolated ground truth tempo 
urve (bla
k) approximated by FW(green), AW (blue) and FWC (red) te
hniques, time in se
onds (w = 3 s, wioi = 10)possible spe
i�
ations were used: half to double the original tempo, and quarter to fourtimes the original tempo (allowing tempo 
hanges of up to a fa
tor of 16).The �ve s
enarios used for the a
tual evaluation were generated a

ording to the followingparameter settings:S
enario Interpolation method Interpolation interval Interpolation range1 Linear 10 s 1/2 to 22 Linear 5 s 1/2 to 23 Linear 10 s 1/4 to 44 Step-fun
tion 10 s 1/2 to 25 Step-fun
tion 10 s 1/4 to 4The s
enarios were ordered a

ording to expe
ted quality of performan
e, with S
enario 1 beingthe easiest and S
enario 5 the hardest for the algorithms to pro
ess. Figure 4.2 illustrates howa spe
i�
 ground truth tempo 
urve (plotted in bla
k) might look like for the �rst s
enario.15To give a feeling for the relative performan
e that 
an be expe
ted for su
h a s
enario, theoutput of all te
hniques is plotted against this ground truth tempo 
urve as well. In thisrather benevolent example, the approximation of all three algorithms stays mostly true to theexpe
ted output. In 
omparison, output for the �fth s
enario (Fig. 4.3) seems less a

urate,even though this parti
ular example is still essentially well-behaved. Note the di�erent tempos
aling for the two �gures.4.1.2 Evaluation Metri
The metri
 used to measure the �distan
e� of 
omputed 
urve deviations from the groundtruth tempo is motivated by the idea of relating su
h a distan
e to the referen
e tempo15The 
urve displays a small distortion 
ompared to a fully linear 
urve. This is due to the spe
i�
 pro
ess usedto generate the image and has no bearing on the fa
t that the performed interpolation was indeed linear.46



4.1 Evaluating Against Ground Truth Data
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Figure 4.3: Step-fun
tion interpolated ground truth 
urve (bla
k) approximated by FW(green), AW (blue) and FWC (red) te
hniques, time in se
onds (w = 4 s, wioi = 10)laid down by the ground truth. The goal is to group deviations by s
ale rather than byabsolute value. For example, assume that the ground truth tempo 
urve was a simple 
onstantdistortion of the original tempo by the fa
tor two, i.e. the arti�
ial interpretation has double thetempo of the referen
e. Further assume that di�erently 
omputed tempo 
urves yield di�erentapproximations of the ground truth: In one 
ase, the tempo is estimated to be 
onstantly 1,in the other 
ase the result 
omes out as a 
onstant 4. This means that the two 
omputationsestimate the tempo of the arti�
ial interpretation to be equivalent to the original tempo or fourtimes the original tempo, respe
tively. However, in relation to the a
tual (ground truth tempo)of 2, both approximations have the same error ratio: The �rst 
omputation underestimatesthis a
tual tempo by a fa
tor of two, the se
ond one overestimates it by the same fa
tor. Sin
eneither of these estimations has a qualitative di�eren
e over the other, the distan
e measureshould assign the same error value to both of these �awed approximations.To ful�ll this requirement, we de�ne a distan
e measure δ as follows: Let N ∈ N be the lengthof a feature sequen
e des
ribing a given musi
al pie
e, n ∈ [1 : N ] an arbitrary but �xedindex into this sequen
e, g : [1 : N ] → R≥0 a ground truth tempo 
urve of an (arti�
ial)interpretation of this pie
e and τ : [1 : N ] → R≥0 a tempo 
urve 
omputed for the sameinterpretation of the pie
e. Then, the distan
e measure δ : [1 : N ]→ R≥0 between g and τ isa fun
tion de�ned by
δτ
g (n) :=

∣

∣

∣

∣

log2

(

τ(n)

g(n)

)∣

∣

∣

∣

· 100Here, dividing the 
omputed tempo 
urve value by the ground truth value a
hieves the desirede�e
t of measuring error s
ale rather than error value. Taking the logarithm of the resultingvalue has two di�erent purposes: The �rst is to emphasize small-s
ale deviations from theground truth tempo and lessen the impa
t of outliers, the se
ond is to adjust the 
omputedvalues to the graphi
al plots of the tempo 
urves that use a logarithmi
 tempo s
ale as well.Sin
e deviations of the 
omputed 
urve from the ground truth tempo 
urve turn out to beseldom larger than by a fa
tor of two (i.e. half or double the ground truth tempo), and thebinary logarithm takes on an almost linear shape in the interval [0.5, 2], this does not a�e
t47



Chapter 4 Evaluationthe 
omputed values too mu
h. The sign of the 
omputed value is dis
arded sin
e we arenot interested in the respe
tive nature of the deviation. Lastly, the 
omputed value is s
aledup slightly sin
e most measurements fell into the range between 0.01 and 0.20. This be
amein
onvenient to display, so the values were translated to 1 and 20, respe
tively. The resultapproximates a measure of deviation in per
ent of the original tempo,16 so a value of δτ
g (n) = 2
an be taken to mean that τ deviates from g in the order of 2% at point n�for a sample tempoof 120BPM, a deviation in the order of 2.4BPM.The result of evaluating δτ

g at all points n ∈ [1 : N ] is a data sequen
e des
ribing pointwisedeviations of the 
omputed tempo 
urve from the given ground truth tempo. Three 
har-a
teristi
s of this result sequen
e are of parti
ular interest: The mean value, the maximumvalue and the standard deviation of the 
omplete data set. Of these, the mean represents�overall performan
e quality� of the evaluated te
hnique, the maximum indi
ates outlier val-ues that may be the result of syn
hronization errors resulting in a faulty warping path, andthe standard deviation 
an be taken as a reliability measure of the te
hnique�the higherthe standard deviation, the less 
on�den
e 
an be pla
ed in the te
hnique's tempo estimatefor a given point in time. Result tables are given in terms of these three indi
ators. Here,results for individual �les are reprodu
ed in full in the appendix (Tables A.1�A.16), but willbe shown in an abridged version for the dis
ussion of this 
hapter. In parti
ular, the abridgedtable 
ontains only average values for the di�erent instrumental 
lasses and an overall average.Maximum values are left out in the abridged table, sin
e they are indi
ative of ex
eptionaloutliers rather than the more interesting regular behavior of the te
hniques.4.1.3 Evaluation ResultsIn the following, we present and dis
uss the evaluation results for ea
h of the �ve s
enariosindividually. For ea
h s
enario, abridged result tables will show typi
al evaluation data, withthe full tables reprodu
ed in the appendix. In all tables, the quoted value for the parameter wdesignates the input for both the FW and the FWC te
hnique, so that their individual resultsare dire
tly 
omparable (i.e., improvements from FW to FWC te
hnique inside the 
ontext ofone table are always due to IOI 
orre
tion of the warping path).S
enario 1The �rst s
enario uses a 
onservative 
on�guration for tempo variations and 
an thus be saidto be somewhat benevolent. This does not mean that it's not representative of �real-world�settings�in fa
t, the assumption that tempo 
hanges o

ur every ten se
onds and may rangewithin a fa
tor of up to 4 in relation to a previous tempo is valid for a large number of 
ases.The only thing that is ex
luded here are sudden 
hanges of the tempo, as in the 
ase of e.g.fermatas.Tables A.1�A.4 show the 
omplete evaluation results of this s
enario for ever larger settings of
w and wioi. While the settings of Table A.1 represent a very moderate smoothing 
on�guration,16The result would be pre
isely equivalent to su
h a per
entage if we set δτ

g (n) :=
∣

∣

∣

τ(n)
g(n)

− 1
∣

∣

∣
·100 for τ (n) ≥ g(n)and δτ

g (n) :=
∣

∣

∣

g(n)
τ(n)

− 1
∣

∣

∣
· 100 otherwise. This is obviously not as elegant as the logarithmi
 solution.48



4.1 Evaluating Against Ground Truth DataFW AW FWCResults by instrumental 
lass mean std mean std mean stdAverage over piano 5.66 10.42 5.50 9.07 3.25 6.24Average over non-piano 4.17 5.20 5.91 8.48 3.22 4.17Average over jazz/pop 3.67 5.10 6.80 10.78 3.20 4.70Average over all 4.50 6.90 6.07 9.44 3.22 5.04Table 4.2: Results for S
enario 1, w = 3 s, wioi = 10FW AW FWCResults by instrumental 
lass mean std mean std mean stdAverage over piano 4.90 8.33 6.19 9.11 3.19 5.98Average over non-piano 3.55 4.39 4.65 5.70 2.89 3.78Average over jazz/pop 3.15 4.31 4.53 6.29 2.81 4.10Average over all 3.87 5.68 5.12 7.03 2.96 4.62Table 4.3: Results for S
enario 1, w = 4 s, wioi = 20Table A.4 shows the e�e
ts of employing mu
h stronger adjustments. Here and in the others
enarios, the values of w and wioi are 
hosen in su
h a way that one table shows optimalresults for the s
enario, and the other tables show results resulting from suboptimal settingsof w and wioi. This is done in order to give a feeling for the dimension of 
hange that 
anbe expe
ted when experimenting with di�erent parameter settings in di�erent s
enarios. Forthe suboptimal results, the parameters were 
hosen by modifying the �optimal� parametersuntil a 
lear trend 
ould be identi�ed in the new result table. In general, this meant largervariations in the 
ase of wioi than for w.Optimal settings for the �rst s
enario are found in Tables A.2 and A.3. Abridged versionsof these are given in Tables 4.2 and 4.3. Overall, the FW/FWC te
hniques produ
e theirbest results for w = 4, with single �les (like the se
ond Chopin Etude C032) performingbetter for w = 3. The AW te
hnique pro�ts from the high settings of wioi in Table 4.3, but isgenerally outperformed by the other two te
hniques. Of the three te
hniques, FWC does best,whi
h was to be expe
ted sin
e it is the most sophisti
ated. The somewhat disappointingperforman
e of the AW te
hnique is most probably due to the fa
t that in regions of high notedensity, the smoothing is not strong enough; however, setting the wioi parameter to a highervalue introdu
es too mu
h blur in other regions. Here, the evaluation shows that the 
urrentapproa
h of using a �xed parameter for wioi is not �exible enough.One surprising �nding is that this s
enario does not exhibit the expe
ted advantage of pianomusi
 over other styles. This seems to be due to two fa
tors: On one hand, there is a verygood alignment quality for the non-piano and jazz/pop pie
es that keeps tempo 
urve errorsquite low. For su
h �harmless� distortions as used in this s
enario, the harmoni
 progressionsin these pie
es seem to be su�
ient for the alignment algorithm to produ
e very a

urateresults. On the other hand, the C-Major Fugue from the Well-Tempered Clavier (C025)su�ers from a 
omparatively bad performan
e over all te
hniques. This raises the suspi
ionthat the fault lies with the syn
hronization, whi
h is 
on�rmed by the tempo 
urve generated49
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Figure 4.4: A syn
hronization error a�e
ting tempo 
urve 
omputation, time in se
ondsfor the �rst of the three syntheti
 distortions used for this pie
e in this s
enario (Fig. 4.4):Here, a syn
hronization error be
omes 
learly visible in the region from t = 88 s to t = 97 s.The probable 
ause of this negative e�e
t seems to be the rapid tempo 
hange in this regionthat swit
hes from a nearly maximal tempo to the lowest possible value.The good performan
e of single �les for a window size of w = 3 for the FWC 
ase is likely dueto an inverse e�e
t: Here, ex
eptionally good alignments allow the obtaining of high-qualityresults (e.g. Rimski-Korsakov, C044, mean error 1.39 for w = 3 and 1.66 for w = 4), forwhi
h a smaller window size is better suited as it preserves the a

ura
y of the syn
hronizationwithout blurring the regions of tempo 
hanges.Overall, the results seem very good in this s
enario, with Table 4.3 representing a kind of ideal
ase. The e�e
t of broader window size in the FW/FWC 
ases seems to be advantageous up toa size of about w = 4, after whi
h the detrimental e�e
ts of slower adaptability to new tempiseem to dominate the result. A window size of w = 3 produ
es better results only for spe
ial
ases. The AW te
hnique exhibits an overall poorer performan
e, while still maintaining a
omparatively high quality level. Outliers are most pronoun
ed in the AW 
ase, indi
ating a
ertain brittleness of the design that is also re�e
ted in a slightly higher standard deviation.The FWC te
hnique seems most robust in the fa
e of the 
omparatively easy 
hallenges posedby this s
enario, and 
learly bene�ts from the IOI interpolation as 
an be seen by the di�eren
eto the �plain-vanilla� FW te
hnique.The tempo variations 
ontained in this setting are representative of many real-world s
enarios,hen
e the good performan
e of the te
hniques serve as validation that usage of the FWCte
hnique is appropriate to derive tempo estimations of fair a

ura
y in these 
ases.S
enario 2The se
ond s
enario introdu
es more frequent tempo 
hanges into an otherwise still benevolentsetting: The distan
e between regions of di�erent a

eleration is now 5 s instead of 10 s. Theresult data (Tables A.5�A.7) 
on�rms the expe
ted e�e
ts of this: Overall quality is stillvery high, with a slightly lower baseline due to a greater number of tempo 
hange lo
ations.50



4.1 Evaluating Against Ground Truth DataFW AW FWCResults by instrumental 
lass mean std mean std mean stdAverage over piano 6.85 10.24 7.36 9.99 4.55 6.84Average over non-piano 5.81 7.72 7.22 9.25 4.95 6.91Average over jazz/pop 4.98 6.96 6.98 9.96 4.48 6.36Average over all 5.88 8.31 7.19 9.73 4.66 6.70Table 4.4: Results for S
enario 2, w = 3 s, wioi = 12Best results are obtained by smaller window sizes than in the previous example, with optimalperforman
e at w = 3 and wioi = 12 (Table 4.4). This is an obvious and expe
ted result ofshortening the interpolation interval length, sin
e the new setting demands higher adaptabilityof the algorithms to a new tempo that 
an only be gained by smaller window sizes. For theFWC te
hnique, results for the piano pie
es are 
omparatively better than in the �rst s
enario,as the Ba
h Fugue C025 is now pro
essed 
orre
tly�this is espe
ially pronoun
ed for w = 2,where the algorithm 
an pro�t from the high quality of available onset information. Still,syn
hronization results are good enough for the other styles (jazz/pop in parti
ular) thatthere is no 
lear advantage for any of the three 
lasses in the general 
ase.S
enario 3The third s
enario poses the �rst great 
hallenge to the three te
hniques. Even though theinterpolation interval is s
aled ba
k to 10 s, the interpolation range of 1/4 to 4 allows fora

elerations/de
elerations of up to fa
tor 16. This proves too mu
h for a proper alignment:The results of Tables A.8�A.11 show that most pie
es are a�e
ted by more or less serioussyn
hronization errors. Only three pie
es are exempt, with the piano pie
es �nally pro�tingfrom better availability of onset information�two of the three pie
es are of this 
lass (Ba
hC025 and Chopin C032), with the third pie
e (Rimski-Korsakov C044) also being partlyarranged for the piano. This last pie
e also had 
onsistently ex
ellent performan
e in S
enarios1 and 2, whi
h implies that it is espe
ially well suited for the employed alignment pro
edure.Performan
e improves in all instrumental 
lasses for relatively strong smoothing 
on�gurations(Table 4.5). However, this improvement is relative: Syn
hronization errors dominate theoverall result, whi
h has a low baseline that 
annot be mu
h polished, even using extremeaveraging parameters (Table A.11).Figure 4.5 illustrates how these numbers translate into �real-life� performan
e. Aside fromsyn
hronization errors ranging from negligible to 
atastrophi
 (e.g. for the FW te
hnique,whi
h shows a maximum deviation of 721.95 at t = 120 s), there are a number of otherinteresting phenomena to be observed. We 
an identify two lo
ations of high a

elerationfollowed by abrupt de
eleration (t = 74 s and t = 103 s), whi
h the AW te
hnique averagesout in both 
ases to produ
e results signi�
antly below the tempo peak. The same happens tothe FW/FWC te
hniques in the se
ond 
ase, but in the �rst one, the tempo 
hange provokesa greater 
onfusion. In this instan
e, the 
hange seems to be registered at a slightly earlierpla
e in time than when it a
tually happens. 51
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Figure 4.5: Sample result for S
enario 3, S
humann C029, w = 3, wioi = 12, time in se
ondsFW AW FWCResults by instrumental 
lass mean std mean std mean stdAverage over piano 19.12 32.14 21.94 31.73 16.44 28.38Average over non-piano 21.92 35.03 23.93 35.84 20.88 34.58Average over jazz/pop 27.45 40.26 29.57 42.48 26.95 40.25Average over all 22.83 35.81 25.15 36.68 21.42 34.40Table 4.5: Results for S
enario 3, w = 4 s, wioi = 20Another �strange� o

urren
e takes pla
e at t = 30 s: Here, it seems that the FW/FWC tempo
urves overshoot the a
tual tempo, but then 
orre
t this error by underestimating the tempo ofthe following two se
onds until the approximations 
onverge at the a
tual ground truth 
urveagain. Su
h a pattern o

urs when an important syn
hronization event (e.g. a note onset ora harmoni
 
hange) is aligned to an earlier pla
e in time than when it a
tually o

urs, whilethe information in the surrounding 
ontext is pro
essed a

urately. For example, in a settingwhere a note onset o

urs every three beats, the region [1 : 9] might be evaluated in su
h a waythat onsets are not pla
ed at times 1, 4 and 7 (as would be a

urate), but at times 1, 3 and
7 instead. The distan
e between �rst and se
ond onset is then shortened (with respe
t to thea
tual distan
e), and the distan
e between se
ond and third onset is lengthened. This would
ause the tempo in the �rst region to be overestimated by a fa
tor of 1/3, and the tempo inthe se
ond region to be underestimated by the same fa
tor. The resulting tempo 
urve wouldthen resemble the tempo 
urve gained for the S
humann pie
e at t = 30 s. Similar s
enariosare of 
ourse possible for the reverse 
ase as well.A relatively 
onsistent phenomenon is the mangling of beginning and end of a pie
e by allthree algorithms. This is due to three fa
tors: First of all, la
k of data in these regions,17se
ondly the inadequa
y of the assumption that tempo is 
onstantly 1 at regions not de�ned by17Whi
h is a problem sin
e tempo is always dependent on 
ontext�after all, what is the tempo of a singlenote? At the beginning and the end, this 
ontext information is simply absent.52



4.1 Evaluating Against Ground Truth Datathe warping path (indeed, results seem to be more 
onvin
ing for ground truth tempo 
urveswhere beginning and end happen to 
oin
ide with a tempo of 1), and thirdly the behavior ofthe DTW syn
hronization algorithm in these boundary 
ases, whi
h sometimes leaves a littleroom for improvement.S
enario 4The fourth s
enario again limits the maximal fa
tor of tempo 
hange to 4, but instead allowsvery rapid periods of 
hange followed by regions of 
onstant tempo. Contrary to our expe
ta-tions, this s
enario a
tually produ
ed better results than the previous setting sin
e it did notprovoke su
h a great number of syn
hronization errors. The limiting fa
tor here was again thesize of the averaging window, with the algorithms needing to adapt to 
hanges qui
ker thanin the otherwise 
omparable �rst s
enario. The nature of these 
hanges in this s
enario leadsto an overestimation of the overall error: Figure 4.6 shows the error 
urve for a spe
i�
 �le ofthe s
enario together with the 
orresponding mean error. Tempo 
urve results for this �le areshown in �gure 4.7. It 
an be seen that even though the error baseline is mu
h smaller thanthe mean error, the great deviations 
aused by the rapid tempo 
hanges inhibit better resultsin this 
ase.Tables A.12�A.15 show results that lie somewhere between S
enarios 2 and 3 in terms of overallquality. Window sizes of w = 2 and w = 3 prove optimal for the FW/FWC algorithms, and
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Figure 4.6: Mean error (red) vs. a
tual error 
urve δτ

g
(blue) for S
enario 4, Ba
h C025, τ 
omputedusing the FWC te
hnique (w = 3), time in se
onds
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Figure 4.7: Ground truth tempo 
urve (bla
k) and FWC tempo 
urve (red) for S
enario 4, Ba
hC025, w = 3, time in se
onds 53



Chapter 4 Evaluation FW AW FWCResults by instrumental 
lass mean std mean std mean stdAverage over piano 13.55 22.57 10.17 18.46 9.26 17.13Average over non-piano 10.29 15.16 9.31 14.59 8.95 14.37Average over jazz/pop 10.39 16.24 11.42 18.99 9.67 15.99Average over all 11.41 17.99 10.30 17.35 9.29 15.83Table 4.6: Results for S
enario 4, w = 3 s, wioi = 12FW AW FWCResults by instrumental 
lass mean std mean std mean stdAverage over piano 54.49 71.30 51.70 62.05 46.60 62.39Average over non-piano 49.97 62.91 50.31 62.37 47.85 61.37Average over jazz/pop 55.72 64.93 55.71 66.00 54.69 64.91Average over all 53.39 66.38 52.57 63.47 49.71 62.89Table 4.7: Results for S
enario 5, w = 3 s, wioi = 20the AW te
hnique produ
es best results for wioi = 12 (Table 4.6). The other visible trendsare repetitions of phenomena reported in earlier s
enarios: The FWC te
hnique 
ontinues tooutperform the other te
hniques, larger window sizes improve performan
e in 
ases of badsyn
hronization and impair performan
e in 
ases of good syn
hronization, and performan
eon piano pie
es is (non-signi�
antly) better than for other styles.S
enario 5In the �nal s
enario, the performan
e �nally breaks down in full. No pie
e 
an be syn
hronizedwithout errors; Figure 4.8 illustrates why this is the 
ase. As 
an be seen there, the extremetempo variations on a very small time range do not permit satisfa
tory syn
hronization results.We only reprodu
e one result table (Table 4.7) to demonstrate the output range that is tobe expe
ted in su
h a s
enario. Not mu
h 
an be said here, other than that any amountof smoothing is of 
ourse wasted on a faulty syn
hronization�results of the tempo 
urveestimation will be better on
e these errors 
an be removed.4.1.4 Evaluation SummaryThe �ve s
enarios that were evaluated demonstrate that in general, the presented te
hniques(and the FWC approa
h in parti
ular) work well for the extra
tion of tempo 
hara
teristi
sof a pie
e of musi
. The three most realisti
 S
enarios 1, 2 and 4 feature mean error ratesaveraging between 2�10, whi
h is a

urate enough for MIR appli
ations 
on
erned with phrase-level tempo attributes. Using the FWC te
hnique with a window size of w = 3 seems to be thebest 
ompromise between result pre
ision and robustness against syn
hronization artifa
ts�ifthe alignment is known to be unreliable, a 
hoi
e of w = 4 may be better suited, and if highalignment qualities 
an be expe
ted, w = 2 enables obtaining of higher-pre
ision results.54



4.2 Evaluating Sele
ted Musi
al Examples
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Figure 4.8: Sample result for S
enario 5, Ba
h C025, w = 3, wioi = 20, time in se
ondsIn 
ase of signi�
ant syn
hronization errors, the te
hniques do not estimate the tempo reliably.In our settings, su
h errors were provoked mostly by drasti
 tempo distortions that do noto

ur in pra
ti
e, but even for simple 
ases su
h as in the �rst s
enario, the DTW pro
edureo

asionally 
omputed faulty warping paths that resulted in a deteriorated performan
e. Forthe pra
ti
al usage of the presented approa
h, it will be ne
essary to 
ompute estimations ofthe alignment quality at the time of musi
 syn
hronization in order to be able to judge duringwhi
h passages of a pie
e the tempo estimations might be
ome unreliable.Of the three te
hniques, the FWC te
hnique is an easy 
hoi
e as the best 
andidate for pra
ti
alemployment: In all �ve s
enarios, it produ
ed the best results both in terms of pre
ision androbustness. The AW te
hnique may have merit as a basis for further developments thatoperate on note-level stru
tures; the FW te
hnique is primarily useful as a dida
ti
 devi
e forthe subsequent introdu
tion of the FWC approa
h.4.2 Evaluating Sele
ted Musi
al ExamplesAlthough the quantitative evaluation of the presented te
hniques indi
ated that they werewell suited to be used for performan
e analysis purposes, their pra
ti
al bene�t has not yetbeen demonstrated. This se
tion show
ases several di�erent examples whi
h illustrate thatthe approa
h 
an indeed be used to derive musi
ally interesting statements about spe
i�
performan
es. For this, we 
ompute performan
e 
urves for various interpretations of Western
lassi
al piano pie
es that were either taken from o�-the-shelf re
ordings or produ
ed for ourinternal database, and dis
uss how they relate to musi
al properties of the respe
tive pie
es.Sin
e the FWC te
hnique has been shown to yield the best results during the quantitativeevaluation phase, all qualitative evaluations will be done using this te
hnique.Performan
e analysis te
hniques 
an often be 
lassi�ed as either being 
on
erned with simi-larities or 
ommonalities of playing style in the interpretations of di�erent artists (or even in55



Chapter 4 Evaluationdi�erent performan
es by the same artist), or fo
using on systemati
 di�eren
es between var-ious interpretations of the same pie
e (usually done by di�erent artists). In the �rst 
ase, themain resear
h goal is to dis
over universal rules that govern playing style and musi
al inter-pretation of a 
omposer's intentions; in the se
ond 
ase, the goal lies in identifying the uniquetraits of an artist's playing style that distinguish his performan
es from those by di�erentartists. Examples of both kinds of resear
h will be dis
ussed in Chapter 5.Our qualitative evaluation is divided in a similar manner. We begin by showing similaritiesa
ross di�erent interpretations of the same pie
e that have straightforward musi
al explana-tions, in order to demonstrate that our approa
h yields the expe
ted results in su
h a 
ase.4.2.1 Evaluation Fo
using on Common Interpretational TraitsAlthough ea
h artist has his own idiosyn
rati
 playing style that 
an be instantly re
ognizablein the 
ase of an established performer who has had the time and experien
e to develop a uniqueartisti
 identity, they all speak the same musi
al language. Any s
ore written in a spe
i�
style 
alls for an interpretation that does justi
e to the musi
al demands and expe
tations ofthat style, and this will be re�e
ted in the respe
tive performer's playing style. The rangeof this musi
al expe
tations extends from fundamentals like phrasing and shaping of musi
aldevelopments to agogi
al aspe
ts like the interpretation of indi
ators su
h as �sta

ato�. Inthis se
tion, we will fo
us on the more basi
 aspe
ts that have 
lear groundings in the musi
als
ore whi
h will be reprodu
ed alongside the respe
tive tempo 
urve.Robert S
humann: Kinderszenen op. 15 no. 7, �Träumerei�In the �rst example, we will dis
uss the �rst eight measures of the popular �Träumerei� fromS
humann's �Kinderszenen�. Here, three di�erent interpretations were analyzed with respe
tto their relation to the s
ore (Fig. 4.9). Two of the interpretations were taken from regularCD re
ordings, while a third one was produ
ed by a member of our workgroup with a strongmusi
al grounding (Verena Konz). First of all, noti
e that the basi
 shapes of the tempo 
urvehave a surprisingly high degree of 
orrelation. Even though their tempo baseline di�ers, thedi�erent artists have 
hosen similar ways of illustrating the stru
ture of the s
ore. The �rstmusi
al point of rest rea
hed by the performers is the subdominant B 
hord of the se
ond mea-sure, whi
h 
oin
ides with a temporary melodi
 
limax (the soprano voi
e's f′′). A

ordingly,the tempo 
urve shows a de
eleration in the se
ond measure for all three interpretations.To underline the stronger sense of a
tion 
onveyed by the eighth movements of measure three,all pianists 
hoose a faster pa
e that rea
hes or ex
eeds their previous maximum tempo. Thisheightened sense of movement 
omes to a rest on the dominant C 
hord of measure 4, whi
h isin turn resolved in the next measure by the toni
 F. Two of the three interpretations emphasizethis striving towards the resolution by giving the bass movement leading to the toni
 root notea distin
t a

elerando/ritardando shape.The harmoni
 and melodi
 
limax of this ex
erpt of the pie
e is rea
hed in measure 6, whereall three performers take some time to let the listener appre
iate the suspense 
reated by theA7 
hord that leads into the d 
hord of measure 7. To 
reate an adequate feeling of 
losureat the end of the 
ompleted musi
al thought, all interpretations follow the given phrasing56



4.2 Evaluating Sele
ted Musi
al Examples
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Figure 4.9: Three interpretations of Robert S
humann: Kinderszenen op. 15, �Träumerei�, time inmeasures, tempo in BPM, w = 2dire
tion that implies a somewhat uniform tempo from the middle of measure 6 until the �naltarget of the toni
 F in measure 8 is rea
hed. The ritardando of measure 8 is approa
hed byall performers a bit earlier than indi
ated, beginning at the end of measure 7. This may bea result of prolonging the sense of unresolved tension on the diminished seventh 
hord thatpre
edes the �nal measure.The last measure shows one di�eren
e between the two CD re
ordings and our �
ustom-made�re
ording: Both regular re
ordings gather speed again to laun
h into a new rendition of therepeat se
tion, while the third interpretation did not perform the repetition and so 
omes toa full stop on measure 8.Overall, this example demonstrates that the shape of the tempo 
urves results from the per-former's interpretation of the musi
al meaning of the s
ore, as should be expe
ted. The57



Chapter 4 Evaluationphenomena visible in all three interpretations have 
lear explanations that in the majorityof all 
ases 
an be dedu
ed from the s
ore, and do not appear to be the result of arbitrarypro
esses of 
han
e. Moreover, the three tempo 
urves bear a strong resemblan
e to ea
hother, giving 
reden
e to the 
laim that the harmoni
 and stru
tural demands of this pie
edominate individual artisti
 playing style in this example.Ludwig van Beethoven: Sonata No. 8 op. 13 �Pathétique�An example whi
h illustrates that our approa
h is 
apable of un
overing unexpe
ted similar-ities between di�erent performan
es of a pie
e is given in Figure 4.10. Here, the interpre-tations were performed by two students of a 
ommon piano 
lass at the Saar A
ademy ofMusi
. Their a
tual tempo shaping is not relevant in this 
ontext, hen
e the a

ompanyings
ore is not shown here (it is, however, reprodu
ed in Figure 4.17). Striking about the twointerpretations is their 
hoi
e of nearly identi
al absolute tempo for measures 5�10. We 
anonly spe
ulate about the reason for this�they may have pra
ti
ed together, or they may havere
eived similar instru
tions by a 
ommon tea
her. However, their tempo phrasing seems toomu
h alike to dismiss this result as a mere 
oin
iden
e.18 Dis
overing su
h similarities 
ouldpotentially be automated by using the distan
e measure δ on pairwise 
ombinations of su
hinterpretations and sear
hing for regions where the results fall below a 
ertain threshold.
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Figure 4.10: Identi
al phrasing by two pianists: PathBeg, time in measures, tempo in BPM, w = 3A se
ond example from the same s
ore illustrates how performers handle the transition fromone region of themati
 material to the next. Su
h a 
hange o

urs in the Beethoven sonatae.g. in measures 49/50 (Fig. 4.11). Here, the se
ond theme of the sonata's �rst movementis introdu
ed for the �rst time. Beethoven modulates from the �rst theme in 
 minor to these
ond theme in e♭ minor by moving from A♭ major (measure 39) to B♭ major (measure 42),18Another 
ase that turned up during our analysis seemed too perfe
t to be true: Here, the two tempo 
urveswhere almost exa
tly identi
al over the whole 
ourse of the pie
e. Exploration of this qui
kly revealed thatthe same re
ording had found its way into our database twi
e by a

ident, the two only di�ering by samplerate. Of 
ourse, this explanation 
an be ruled out for the interpretations of Figure 4.10.58
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Figure 4.11: Themati
 
hange in PathExp (M. 42�55) re�e
ted in tempo 
urves of various interpre-tations (M. 25�75), time in measures, tempo in BPMthe dominant of the new key of the se
ond theme. In measure 51, the dominant resolves intothe temporary new toni
 for the �rst time, and the se
ond theme is stated.The tempo 
urves whi
h were 
omputed from several interpretations performed by studentsof the piano 
lass mentioned earlier on 
learly show that all performers re
ognized this as animportant stru
tural event. Depending on their initial tempo, they approa
hed the passagedi�erently: Those who had performed the pre
eding se
tion in a fast tempo had a generaltenden
y to slow down, in three 
ases even resting for a short while on the �rst beat of measure49 before 
ontinuing in a slightly slower tempo than before. On the other hand, performerswho displayed a slow initial tempo used this transition to speed up their interpretation, insome 
ases even arriving at a higher tempo rate than rea
hed by their fellow students whohad a faster initial tempo.The 
ommonality a
ross the di�erent interpretations here does not lie in a similar tempostru
ture that was 
hosen by all, but rather in the fa
t that this stru
tural event was takenby all performers as a reason to 
hange their initial tempo. This indi
ates a similar musi
alunderstanding of the stru
ture of the s
ore, even if the individual interpretation of how thisstru
ture 
ould best be 
onveyed to the listener di�ered from artist to artist. 59



Chapter 4 EvaluationFranz S
hubert: Winterreise D911 No. 5, �Der Lindenbaum�A ri
h sour
e of examples both for similarities and systemati
 di�eren
es among interpretations
an be found in the large variety of re
ordings available of S
hubert's Winterreise (for voi
eand piano), e.g. in the Lied �Der Lindenbaum�. One 
ase in point 
an be made for theending of this pie
e that shows nearly uniform shaping among many 
ommer
ially availableinterpretations (Fig. 4.12). Here, the emotional a�e
t of the song seems to 
all for a spe
i�
musi
al interpretation that is universally understood and answered. The 
almness suggestedby the lyri
s of measures 72�76 is re�e
ted by a ritardando that 
omes to a resting point at theend of the phrase in measure 76. After the sung part of the pie
e has ended, the pianist plays
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Figure 4.12: Consistent ending forms for Franz S
hubert: Winterreise D911, �Der Lindenbaum�(M. 72�82), time in measures, tempo in BPM60



4.2 Evaluating Sele
ted Musi
al Examplesa few measures of what 
ould be 
alled musi
al afterthoughts that re
all the agitation felt bythe song's protagonist as he is thinking of the lime tree's rustling bran
hes, symbolized bythe 
hara
teristi
 triplet �gures. In a

ordan
e with this interpretation, all pianists a

eleratethe tempo until they 
ome to a temporary rest on measure 78, then draw a wider phrase that
limaxes at an even higher tempo till the �nal fermata is rea
hed.4.2.2 Evaluation Fo
using on Systemati
 Di�eren
es in InterpretationAs was already partly illustrated by the �Pathétique� example of the pre
eding se
tion, theindividual understanding of a pie
e's musi
al layout or a spe
i�
 musi
al notion 
an di�ervastly between di�erent artists. However, the most interesting 
ases are not found in thelone ex
eption to an otherwise unquestioned rule of performan
e (although these are of 
ourserelevant in their own right), but rather in systemati
 di�eren
es between two or more 
lassesof interpretational thought. Simply put, in su
h a 
ase there is one group of artists who de
ideon one 
ourse of a
tion, and another group of artists that 
hooses a di�erent approa
h. Bothof these 
hoi
es may be valid interpretations of the musi
al sour
e material, but they highlightthe personal preferen
es and sensibilities of the performer.Franz S
hubert: Winterreise D911 No. 5, �Der Lindenbaum�The same re
ordings that were already used to demonstrate 
ommonalities among multipleinterpretations of S
hubert's �Lindenbaum� of 
ourse also exhibit se
tions where di�erentinterpretations make use of di�erent approa
hes. One su
h se
tion 
an be found dire
tlyat the beginning of the pie
e: Figure 4.13 shows how the phrase shaping of the �rst sevenmeasures is performed in these re
ordings. Beginning in measure 4, two 
lasses of performers
an be distinguished: The �rst 
lass paints measures 4�6 as a big phrase with a roughlyuniform tempo that ends with a 
adential move to f♯ minor in measures 6�7.19 In 
ontrast,performers of the se
ond 
lass introdu
e a relatively early tempo relaxation in measures 4�5and maintain the slower tempo throughout measures 6 and 7. There is no 
learly dis
erniblemusi
al reason for this pattern, other than that the four artists who implement it obviouslyfeel di�erently about the impli
ations of this part of the 
omposition than the �rst 
lass ofperformers.Another se
tion of this song that exhibits a similar pattern of di�ering phrase shapings 
an beexplained more dire
tly by the lyri
s and musi
al images used in the s
ore. Figure 4.14 showsthe relevant tempo 
urve, as well as the s
ore providing 
ontext information. The lyri
s of thispassage 
hange from a melan
holy �Hier �nd'st du deine Ruh� (M. 42-44) to an aggressive �Diekalten Winde bliesen mir grad ins Angesi
ht� (M. 45�49).20 S
hubert has painted the �
oldwinds� of this image by using triplets that move up and down in a 
hromati
 fashion. Mostperformers emphasize the protagonist's anguish and bitterness by 
hoosing a faster tempo forthe whole passage that 
omes to an end in measures 57�58. However, two artists instead seemto fo
us on the swelling and subsiding of the blowing wind, whi
h they realize by playing ina similarly �u
tuating manner. Sin
e this gives the passage a 
omparatively quieter feel, the19A harmoni
ally rather unusual ending. For E major, f♯ is the supertoni
 
hord, i.e. the subdominant parallel.20Translations: �Here you'll �nd your rest� and �The 
old winds were blowing straight into my fa
e.� 61
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Figure 4.13: Systemati
 interpretation di�eren
es for Franz S
hubert: Winterreise D911, �Der Lin-denbaum� (M. 1�7), time in measures, tempo in BPMneed for a grand gesture of returning 
alm is obviated for these interpretations. Instead ofresting on the fermata of measure 58 as the other performers do, they 
ontinue in their regulartempo, only to be joined by the other artists again in measure 60.Ludwig van Beethoven: Sonata No. 8 op. 13 �Pathétique�A di�erent kind of deviation from the expe
ted paths of phrase shaping emerged from there
ordings taken of Beethoven's �Pathétique� sonata, performed by art students from the lo
alSaar A
ademy of Musi
. Here, we found some tempo 
hanges in performan
es by singlestudents that did not �t into their general tempo forms. Exploration of these deviationsqui
kly showed that these were involuntary: Perhaps due to a la
k of preparation time, singlestudents did not produ
e �ideal� re
ordings, but made mistakes during their play that werere�e
ted in the tempo 
urve.Figure 4.15 shows two examples of this for the 
omplete PathExp. In one interpretation,62
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Figure 4.14: Two performan
es deviating from 
ommon interpretatori
 
onsensus for Franz S
hubert:Winterreise D911, �Der Lindenbaum� (M. 44�60), time in measures, tempo in BPMerrors o

ur at measures 40, 50, 70 and 90; the other performan
e displays one su
h error nearmeasure 80. These errors show in the tempo 
urve as sudden drops in tempo that last for ashort period of time before the performan
e returns to its initial tempo.Indeed, the typi
al error episode audible in the a
tual re
ordings 
on�rms this pattern: Theperformer plays a wrong note or 
hord, halts for a short time, then plays a 
orre
t versionof the passage and 
ontinues as normal. While this example of 
ourse does not fall into theusual realm of performan
e analysis 
on
erns, the ability to qui
kly lo
ate su
h a

idents maynevertheless be very useful in a dida
ti
 
ontext, e.g. in a piano lesson performed on a player63
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Figure 4.15: Identifying problemati
 passages in student interpretations of PathExp, time in mea-sures, tempo in BPMpiano that automati
ally monitors the student's playing.Of 
ourse, other examples from the Sonata Pathétique may display more �
onventional� devi-ations. Figure 4.17 shows the tempo of four interpretations of the �rst ten measures of thiswork (sele
ted from the performan
es of art students mentioned in the previous example), and
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Figure 4.16: Tempo 
urve (top) and dynami
s 
urve (bottom) for performan
es of PathExp(M. 1�10), time in measures, tempo in BPM, dynami
s as in Se
tion 3.364
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Figure 4.17: S
ore for PathExp, measures 1�10)also gives dynami
s for two of these interpretations (red and blue, 
olors are 
onsistent a
rosstempo and dynami
s 
urves). Here, the dynami
s 
urves are 
omputed as log2(energyt + 1)and then s
aled to the referen
e time axis as des
ribed in Se
tion 3.3.The 
orresponding s
ore of the segment is shown in Figure 4.17. As 
an be expe
ted, thedynami
 dire
tives given by the s
ore are implemented by both artists, albeit in slightlydi�erent shapes. Both performan
es exhibit a gradual 
res
endo that 
limaxes in the multiplesubito forte dire
tives of measure 4. This measure marks the end of the introdu
tion of the�rst theme of this movement, whi
h is re�e
ted in the s
ore by the textural 
hange in theleft-hand a

ompaniment starting in measure 5 as well as the 
adential move to E♭ major(the �rst appearan
e of a �pure� major 
hord in the pie
e). Appropriately enough, the tempo
urves of almost all performan
es exhibit a slow-down at this jun
ture.The next goal for the artists seems to be the subito forte piano of measure 9, whi
h is pre
ededby a 
res
endo in the eighth measure that is 
learly visible in the two dynami
s 
urves. Again,the tempo 
urves 
on�rm the stru
tural importan
e of this measure (whi
h, not 
oin
identally,
ontains the highest note of the whole segment as well as a de
eptive 
aden
e) for the artists, allof whom rest on the �rst beat of the measure for a short time before 
ontinuing. The performers65



Chapter 4 Evaluation
hoose di�erent ways of approa
hing this goal: Beginning from measure 5, one artist displays amarked speed-up with respe
t to the other performan
es. The same performan
e di�ers fromthe other performan
es in its 
hoi
e of dynami
s as well. In measure 5, it starts out softer thanthe other performan
e shown, but qui
kly builds up in energy and rea
hes a signi�
antly louderfortissimo than the other performan
e in measures 6 and 7, whi
h is then only intensi�ed inmeasure 8. Here, it is interesting to note that both performan
es display a quieter fortissimoin measure 7 than in measure 6, although their reasons for this are not entirely 
lear.In measure 9, both performan
es have rea
hed their 
limax and return to the piano dynami
sof the beginning of the pie
e. The tempo is qui
kened a bit for the last measure, but mustof 
ourse slow down for the �nal fermata before the beginning of the development se
tion(measure 10). Even though the �fast� performan
e again rea
hes a higher tempo in the middleof measure 9 than all other performan
es (trying to mat
h this measure to its former hightempo, in all likelihood), the fermata is performed in the same tempo 
hosen by the otherartists. This suggests that the artist's divergen
e from the path 
hosen by the other performerswas of a temporary nature, and that the following se
tion may be performed in a mannersimilar to the one 
hosen by di�erent interpretations.In summary, the analysis of the the dynami
s of a performan
e in 
onjun
tion with its re-spe
tive tempo 
urve may yield results that are not readily apparent from either of the 
urvesalone. In this example, the tempo and dynami
s information suggest that the �fast� performerhad a heightened sense of suspense and development towards measure 9 in mind, whi
h is thenatural a�e
tive result of a joint in
rease in tempo and loudness. Su
h a 
laim 
an be statedwith a mu
h higher degree of 
on�den
e when it is substantiated by multiple sour
es of infor-mation than when only one su
h sour
e is available.4.3 Chapter SummaryThe present 
hapter has demonstrated the potential and the limit both of theoreti
al andpra
ti
al ability of the proposed te
hniques to 
apture the essen
e of a pie
e's temporal stru
-ture. The results are indi
ative of a good overall performan
e, in parti
ular when high-qualityalignment information between referen
e and interpretation is available.The FWC te
hnique was put to pragmati
 use in the exemplary evaluation of several musi
alinterpretations of pie
es of Western 
lassi
al musi
, and produ
ed 
onvin
ing results that wereanalyzed using standard musi
ologi
al 
riteria. Here, it was shown that the generated tempo
urves re�e
ted artisti
 intentions in the musi
al shaping of phrases and the highlighting ofstru
turally important events of a pie
e. In one 
ase, this was substantiated by additionalevaluation of dynami
s 
urves generated by making use of the available alignment informa-tion. This example in parti
ular demonstrated that the annotation information automati
ally
reated as a byprodu
t of the alignment pro
ess 
an provide useful assistan
e in ta
kling tasksinvolving evaluation or analysis of performan
e data.The following 
hapter extends the results obtained in this 
hapter by presenting various te
h-niques from related literature dealing with the automated pro
essing of tempo and dynami
sinformation (i.e. data su
h as produ
ed by our te
hniques).
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Chapter 5Performan
e AnalysisI'll play it �rst and tell you what it is later. �Miles Davis, 1963As illustrated by the examples given in Se
tion 4.2, the tempo 
urves generated by our te
h-niques 
an be used as a basis for deriving musi
al statements about spe
i�
 performan
es.The �eld of study 
on
erned with the automation of su
h analysis pro
esses is appropriately
alled performan
e analysis. In this 
hapter, we present some interesting te
hniques of this�eld that rely on tempo 
urve information for the 
omputation of a number of related perfor-man
e attributes. A

ording to the stru
tural division already mentioned in Se
tion 4.2, thesete
hniques are grouped a

ording to the main fo
us of their studies, whi
h lay either in the
ommonalities or the di�eren
es among a number of interpretations of one or more pie
es.5.1 Resear
h Fo
using on Common Interpretational TraitsOne interesting approa
h that falls into the former 
ategory tries to derive elementary rulesof performan
e that 
apture basi
 prin
iples every performer adheres to [Wid02℄.21 This isdone without falling ba
k on domain knowledge; instead, the rules are indu
ed empiri
allyfrom a large data set of piano musi
 using ma
hine learning methods. The employed data setis 
reated spe
i�
ally for this undertaking: A re
ording of 13 
omplete Mozart piano sonatas(about four hours of musi
 overall), performed on a player piano. This enables using dire
tonset annotation on the note level as input for the learning algorithm.An example for a rule generated by this algorithm might look like this (in fa
t, this rule wasone of 17 rules produ
ed and a

epted for the �nal result set):Context:Two 
onse
utive notesPre
ondition:Se
ond note has same pit
h as first noteA
tion:Play the first note 'sta

ato'21Even though this approa
h uses data by a single pianist only. 67



Chapter 5 Performan
e Analysis

Figure 5.1: Sample Dynas
ape for Horowitz: Chopin Mazurka 63/3, 1949 performan
e (repro-du
ed from [Sap08℄)The authors 
all this the �temporal separation� rule, in that two notes of equal pit
h be
omeeasier to separate for the listener after appli
ation of the rule. An empiri
al evaluation of thisapproa
h shows that the rules seem to 
apture basi
 performan
e prin
iples very well. In fa
t,they even perform better on some test data than on the training data, although the test data
onsists of Chopin pie
es, while the training was done on Mozart sonatas.A di�erent approa
h fo
using on the 
omparative analysis of multiple performan
es at on
euses an innovative visualization method en
oding similarity aspe
ts of these performan
es[Sap07, Sap08℄. This visualization is 
alled s
ape plot. The name derives from lands
apepaintings, where, a

ording to the author, �the interesting parts lie somewhere in the middle-ground�.One example plot is depi
ted in Figure 5.1. It shows the 
orresponden
e of loudness featuresof one parti
ular re
ording of a pie
e to other re
ordings of the same pie
e (of 
ourse, di�erentfeatures su
h as tempo 
an be plotted as well). For this so-
alled dynas
ape, the referen
ere
ording was done by Horowitz in 1949. The plot shows the 
losest mat
hes for Horowitz'sdynami
 
hoi
es in di�erent segmentations of the original�e.g., the top point 
orrespondsto the overall best mat
h, while points in the middle of the plot 
orrespond to mat
hes ofsegments that have half the length of the 
omplete pie
e.While the reader is referred to the original paper for a detailed explanation of the segmentationpro
edure and results, one 
an intuitively 
on
lude from Figure 5.1 that the �rst half of thereferen
e re
ording is best mat
hed by a Ra
hmanino� re
ording of this pie
e, while the se
ondhalf is better mat
hed by Zak (1951).The information used for s
ape plot generation is also evaluated to yield a non-visual, 
ompu-tational similarity metri
 for di�erent performan
es of a given pie
e. Empiri
al testing of thismetri
 shows that it su

essfully ranks di�erent interpretations of one pie
e by the same artistas very similar. In the same work, the author introdu
es an interesting 
on
ept: Residualtempo, the result of subtra
ting a smoothed tempo 
urve from a high-resolution tempo 
urve.68



5.2 Resear
h Fo
using on Systemati
 Di�eren
es Between InterpretationsThus, the residual tempo des
ribes the lo
al, small-s
ale variations of a player without thein�uen
es of larger-s
ale phrasing 
on
erns.5.2 Resear
h Fo
using on Systemati
 Di�eren
es BetweenInterpretationsOne te
hnique that 
on
entrates on systemati
 di�eren
es between artists (even a
ross dif-ferent pie
es) was developed in an attempt to formally spe
ify the basi
 musi
al gesturesindividual artists are prone to use [WDG+03, Wid05℄. Musi
al gestures here are de�ned in athree-dimensional spa
e of tempo-loudness variations over time. This movement is visualizedin the so-
alled performan
e worm (Fig. 5.2), where variations along the horizontal axis in-di
ate tempo 
hanges and variations on the verti
al axis indi
ate 
hanges in loudness [LG03℄.Progress along the performan
e's time dimension is indi
ated by in
luding depth information:Re
ent information is displayed very 
learly, while older data points begin to blur and be
omesmaller as if fading into the distan
e. Thus, the �worm� seems to move towards the viewer.In order to get the ne
essary data for a su

essful 
lassi�
ation of salient aspe
ts whi
h de�nean artist's playing style, a large 
olle
tion of over 500 professional CD re
ordings was annotatedat the beat level using a semi-automati
 approa
h. This data was then analyzed to deriveperforman
e worms for the individual pie
es, and the worms were divided into small segmentsof about two bars length. After normalization of these segments, they were 
lustered a

ordingto their shape, su
h that 24 prototype shapes emerged. The 
on
luding stage 
onsisted of ratingall artists a

ording to their frequen
y of use of ea
h of these shapes.

Figure 5.2: Performan
e Worm for Horowitz: Robert S
humann, Kinderszenen op. 15, �Vonfremden Ländern und Mens
hen�, measures 1�8 (reprodu
ed from [WDG+03℄)The results show that this method is useful for 
omputing a musi
ally meaningful 
lusteringof artists by using their respe
tive rating. Another idea, the derivation of �typi
al gestures�of individual performers by means of sear
hing for espe
ially dis
riminating 
ombinations of69



Chapter 5 Performan
e Analysisprototype shapes,22 does not seem to produ
e 
onvin
ing results: The out
omes are a�e
tedheavily by artifa
ts stemming from the 
hosen pro
essing approa
h. Here, single musi
alshapes are 
odi�ed as short strings of letters, where ea
h letter designates a spe
i�
 prototypeshape. Frequen
y analysis of these strings is performed on a purely lexi
al basis. However,this negle
ts similarity relations between single shapes, and so the results do not lead to anydis
overy of musi
ally meaningful gestures.

22Meaning shape 
ombinations that are employed parti
ularly often by a single artist, but negle
ted by otherartists.70



Chapter 6SummaryI like talking about ideas. I �nd them terribly interesting. �Brian EnoThis 
hapter brie�y summarizes the main points of the work, showing what has been a
hievedand how it relates to the �eld of performan
e analysis as a whole. We then dis
uss someopportunities for future work that might build on the results established here.6.1 ContributionsIn this work, we were 
on
erned with the automati
 extra
tion of tempo information fromexpressive musi
 re
ordings. Our goal in parti
ular was to explore the potential of automati
performan
e annotations gained by an alignment of symboli
 MIDI data with 
on
rete audiore
ordings. In the 
ourse of this investigation, we have introdu
ed three di�erent te
hniquesfor the automati
 
omputation of tempo 
urves whi
h des
ribe the tempo stru
ture of su
h are
ording. For this, we have shown how to syn
hronize two pie
es of musi
 using the DTWalgorithm, and explained how the alignment information obtained in this way 
an be used as abasis for further algorithmi
 pro
essing. The algorithms we presented built upon three ideas:The �rst te
hnique (FW) uses a �xed window size to 
ompute average slopes of the warpingpath. The se
ond te
hnique (AW) 
omputes su
h slopes of the warping path between onsetlo
ations. Finally, the third te
hnique (FWC) uses onset lo
ations to 
orre
t the warpingpath and remove syn
hronization artifa
ts, and then apply the FW approa
h on the 
orre
tedwarping path to 
ompute the tempo 
urve.We have given an evaluation of the di�erent te
hniques whi
h strongly suggested that ofthe presented approa
hes, the third approa
h delivers the best results; best in terms bothof a

ura
y and robustness. However, all three algorithms are vulnerable to syn
hronizationerrors that may distort the warping path. We have shown the 
onditions under whi
h su
herrors are likely to o

ur, and the 
onditions under whi
h the te
hniques work well. Forthe latter 
ase, we have given an expli
it re
ommendation for pra
ti
al deployment of theapproa
h: FWC with a setting of w = 3. Using su
h a 
on�guration, we explored somemusi
al examples and found that the te
hnique produ
ed results that were in a

ordan
e withour musi
al intuition.The 
urrent state of the art in performan
e analysis resear
h is to generate tempo and dy-nami
s data on an interpretation using semi-automati
 annotation for feature extra
tion. This71



Chapter 6 Summarydata 
an be pro
essed in a variety of ways, some of whi
h we presented in an overview of re-lated work. This work has introdu
ed and dis
ussed an attempt to extra
t tempo data froman interpretation in a fully automati
 fashion, using only the performan
e and a digital rep-resentation of the s
ore as a referen
e. Evaluation results indi
ate good performan
e, whi
hmakes this te
hnique a valid and worthwhile target of further studies.6.2 Future WorkWhile the performan
e of the FWC te
hnique was satisfa
tory for benign 
ases, syn
hroniza-tion errors dominated results in the quantitative analysis of s
enarios that put harder strainson the alignment pro
edure. The resear
h opportunities arising from this are twofold: Theobvious approa
h would be to try to in
rease syn
hronization quality, or barring that, at leastto give an estimation of syn
hronization a

ura
y. This estimate 
ould be used to regulate thewindow size of the tempo 
urve 
omputation te
hnique dynami
ally, in
reasing it in regions oflow syn
hronization a

ura
y and de
reasing it for results of higher pre
ision. This way, qual-ity of the 
omputed tempo 
urve 
ould be improved due to feedba
k from the syn
hronizationalgorithm.However, feedba
k 
an be given in the inverse dire
tion as well: Sin
e we know that extremetempo variations are quite unrealisti
 and thus improbable, syn
hronization 
an likely beimproved by in
orporating information about the lo
ations of the tempo 
urve where su
hextreme variations o

ur. This gives the algorithm an opportunity to re
onsider the 
omputedwarping path and possibly 
orre
t the syn
hronization error. On the te
hni
al side, this
ould be implemented in the DTW 
omputation phase by using a modi�ed 
ost measure thatpenalized high variability in the tempo 
urve, or even earlier during feature 
omputation.Sin
e extra
tion and pro
essing of features is 
omputationally 
ostly, it would be reasonableto re
ompute features for single segments only where one suspe
ted a syn
hronization failure.For this re
omputation step, both higher and lower feature resolutions may produ
e betterresults, depending on the spe
i�
 setting: Higher resolutions may in
orporate informationthat was previously blurred out, while lower resolutions may dis
ard artifa
ts that hinderedproper syn
hronization.A di�erent potentially worthwhile approa
h might lie in further experimentation with the AWalgorithm. While performan
e of this algorithm has not been on par with the FWC approa
h,it too might pro�t from a dynami
 window size. As in the 
ase dis
ussed above, the respe
-tive window size might be determined by syn
hronization error estimations�however, if su
hinformation should not be available, an interesting possibility would be to design a heuristi
based on note frequen
y in a spe
i�
 time interval. For example, if two notes are playedwithin the time interval of one se
ond, syn
hronization for this interval may be better thanif ten notes were played in the same interval. Observation of potential 
orrelations betweenerror rate and tempo 
urve a

ura
y 
ould help to 
on�rm or reje
t this hypothesis. Anotherrelated point is the integration of a greater variety of features into the 
urrent approa
hes(in parti
ular note o�sets and pedalling) that 
ould be used to yield results of even higherpre
ision.In the 
urrent approa
h, linear interpolation has been used ex
lusively for the 
omputationof tempo 
urves. A di�erent venue to explore might lie in the 
hoi
e of di�erent interpolation72



6.2 Future Works
hemes, su
h as with polynomial or spline interpolation. One 
ould also try to smooth thewarping path using te
hniques other than interonset 
orre
tion, e.g. Gaussian smoothing orFourier smoothing. However, this would negle
t the valuable information gained by deter-mining note onset lo
ations, so a 
ombination of these approa
hes might be worth lookinginto.As has already been mentioned, tempo 
urves are not the only information that 
an be ex-tra
ted from a performan
e using a referen
e s
ore alignment as a basis. Dynami
s 
urveshave been brie�y mentioned but should be investigated in greater detail. Making use e.g. ofnote o�set features, one 
ould try to determine the agogi
s of an interpretation.Chapter 5 already dis
ussed some possible appli
ations where tempo 
urves are pro
essed inanalysis steps of higher musi
al abstra
tion. Of 
ourse, there is great potential here, andnot all possible appli
ations 
an be listed. One ex
iting prospe
t is the ability to automat-i
ally 
orrelate tempo data with semanti
 events of the s
ore�melodi
 highlights, harmoni
surprises, even phrase stru
tures. Semanti
ally motivated re
ommender systems are anotheroption: �People who liked the playing style of artist X may also enjoy artist Y�. This 
an bea great advantage when the meta-data used for su
h appli
ations today is not available, e.g.in the 
ase of an artist who is not yet established on the market. Even re
ognizing individualartists by their playing style may be
ome feasible in the future, although mu
h work will haveto be invested to let this vision be implemented in a real-world system.
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Appendix AResult TablesThis 
hapter presents the full tables of the ground truth evaluation results dis
ussed in Se
tion4.1. As mentioned there, the quoted value for parameter w in ea
h table designates the inputfor both the FW and the FWC te
hnique, so that one 
an dire
tly read o� the respe
tiveimpa
t of interonset 
orre
tion of the warping path for the respe
tive s
enario.

FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 12.11 320.59 23.83 9.04 254.69 18.09 6.80 117.72 13.32C028 (Beethoven, piano) 10.54 308.48 18.53 17.39 320.53 25.23 6.74 234.49 13.46C031 (Chopin, piano) 11.80 400.39 29.22 9.05 210.47 13.86 5.17 104.78 8.19C032 (Chopin, piano) 5.86 132.06 12.85 9.76 134.19 10.73 2.72 28.97 3.34C029 (S
humann, piano) 21.28 512.58 47.80 6.16 72.17 8.50 5.22 54.57 7.88Average over piano 12.32 334.82 26.45 10.28 198.41 15.28 5.33 108.10 9.24C003 (Beethoven, or
hestra) 18.67 406.22 24.80 31.40 354.81 38.17 14.19 253.67 18.49C015 (Borodin, strings) 11.95 227.24 15.43 17.91 337.82 26.63 10.00 227.08 13.32C022 (Brahms, or
hestra) 6.48 55.75 6.97 12.79 164.61 16.35 4.26 51.15 5.34C044 (Rimski-Korsakov, �ute/piano) 2.66 25.92 2.62 11.78 131.70 12.29 2.43 22.44 2.42C048 (S
hubert, voi
e/piano) 13.58 485.63 26.82 10.70 262.11 16.09 6.00 125.89 9.31Average over non-piano 10.67 240.15 15.33 16.92 250.21 21.91 7.37 136.05 9.77J001 (Nakamura, piano) 5.90 74.73 7.58 6.82 122.30 8.47 3.04 33.42 3.31J038 (HH Band, big band) 8.75 150.97 12.35 15.61 280.38 23.09 6.85 134.11 10.07J041 (Umitsuki Quart., sax/bass/per
.) 7.10 124.40 9.73 19.02 268.37 24.15 6.27 110.09 8.77P031 (Nagayama, ele
troni
) 9.74 197.52 14.13 30.86 340.32 36.15 9.26 190.17 13.70P093 (Burke, voi
e/guitar) 13.56 465.04 26.72 26.70 398.93 42.19 12.09 353.76 23.37Average over jazz/pop 9.01 202.53 14.10 19.80 282.06 26.81 7.50 164.31 11.84Average over all 10.66 259.17 18.63 15.67 243.56 21.33 6.74 136.15 10.29Table A.1: Results for S
enario 1, w = 1 s, wioi = 2 75



Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 7.11 79.98 13.74 6.14 69.69 12.13 4.82 54.07 10.41C028 (Beethoven, piano) 4.32 115.06 8.14 6.98 261.04 13.29 3.28 113.09 7.48C031 (Chopin, piano) 5.07 127.01 10.81 4.24 59.41 7.06 2.84 37.30 4.94C032 (Chopin, piano) 2.84 35.19 5.01 3.92 32.37 5.44 1.83 20.95 2.73C029 (S
humann, piano) 8.97 120.66 14.42 6.20 46.40 7.44 3.49 36.08 5.64Average over piano 5.66 95.58 10.42 5.50 93.78 9.07 3.25 52.30 6.24C003 (Beethoven, or
hestra) 7.24 75.18 8.83 11.84 222.06 15.91 5.91 71.31 7.36C015 (Borodin, strings) 4.63 64.59 5.84 6.77 207.45 12.45 4.05 56.03 5.28C022 (Brahms, or
hestra) 2.58 19.78 2.69 3.44 39.59 4.10 1.85 16.58 2.15C044 (Rimski-Korsakov, �ute/piano) 1.42 17.38 1.93 3.09 56.64 3.70 1.39 17.12 1.90C048 (S
hubert, voi
e/piano) 4.97 56.53 6.70 4.43 78.37 6.24 2.88 41.87 4.19Average over non-piano 4.17 46.69 5.20 5.91 120.82 8.48 3.22 40.58 4.17J001 (Nakamura, piano) 2.41 28.90 3.15 2.26 43.09 2.67 1.52 18.31 2.01J038 (HH Band, big band) 3.51 35.53 4.36 4.53 74.97 6.80 2.94 30.41 3.98J041 (Umitsuki Quart., sax/bass/per
.) 2.99 40.93 4.23 5.33 132.45 8.01 2.70 34.89 4.00P031 (Nagayama, ele
troni
) 4.29 58.85 6.47 12.89 339.23 20.04 4.12 58.01 6.43P093 (Burke, voi
e/guitar) 5.15 56.39 7.27 9.01 276.67 16.38 4.71 56.38 7.07Average over jazz/pop 3.67 44.12 5.10 6.80 173.28 10.78 3.20 39.60 4.70Average over all 4.50 62.13 6.90 6.07 129.30 9.44 3.22 44.16 5.04Table A.2: Results for S
enario 1, w = 3 s, wioi = 10FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 6.37 69.25 12.43 7.33 70.99 12.76 4.71 54.65 10.02C028 (Beethoven, piano) 3.75 77.14 6.78 5.60 135.54 9.69 3.01 75.89 6.43C031 (Chopin, piano) 4.24 62.80 7.65 5.02 45.98 7.04 2.70 32.77 4.67C032 (Chopin, piano) 2.91 28.97 4.62 3.67 39.63 6.34 2.14 25.01 3.30C029 (S
humann, piano) 7.24 72.14 10.18 9.30 55.69 9.71 3.37 34.30 5.46Average over piano 4.90 62.06 8.33 6.19 69.56 9.11 3.19 44.53 5.98C003 (Beethoven, or
hestra) 5.80 67.07 6.96 7.60 84.79 9.36 4.81 64.72 5.86C015 (Borodin, strings) 3.94 38.37 4.69 5.52 106.46 7.24 3.53 37.57 4.31C022 (Brahms, or
hestra) 2.35 19.52 2.64 3.07 21.20 3.20 1.86 18.09 2.40C044 (Rimski-Korsakov, �ute/piano) 1.67 20.98 2.62 1.79 20.27 1.89 1.66 20.71 2.61C048 (S
hubert, voi
e/piano) 4.01 39.78 5.04 5.24 46.66 6.80 2.61 31.64 3.73Average over non-piano 3.55 37.14 4.39 4.65 55.88 5.70 2.89 34.55 3.78J001 (Nakamura, piano) 2.25 23.94 2.89 2.65 34.76 3.69 1.60 21.67 2.38J038 (HH Band, big band) 3.16 31.51 3.87 3.46 31.67 4.00 2.73 27.93 3.67J041 (Umitsuki Quart., sax/bass/per
.) 2.72 38.06 3.99 3.46 57.82 5.13 2.49 34.32 3.84P031 (Nagayama, ele
troni
) 3.73 46.75 5.75 7.83 111.68 10.60 3.61 46.15 5.73P093 (Burke, voi
e/guitar) 3.87 35.88 5.04 5.23 81.89 8.00 3.62 33.62 4.87Average over jazz/pop 3.15 35.23 4.31 4.53 63.56 6.29 2.81 32.74 4.10Average over all 3.87 44.81 5.68 5.12 63.00 7.03 2.96 37.27 4.62Table A.3: Results for S
enario 1, w = 4 s, wioi = 20
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 6.22 64.41 11.36 9.21 72.73 13.05 5.17 58.92 10.29C028 (Beethoven, piano) 3.79 53.99 5.99 5.76 114.58 9.55 3.38 54.90 5.94C031 (Chopin, piano) 3.98 48.91 5.89 6.63 56.82 8.72 3.15 32.71 4.98C032 (Chopin, piano) 3.82 34.99 5.38 3.82 41.12 6.75 3.44 34.87 5.13C029 (S
humann, piano) 5.82 36.90 6.72 13.59 72.32 12.59 3.88 39.43 5.92Average over piano 4.73 47.84 7.07 7.80 71.52 10.13 3.80 44.17 6.45C003 (Beethoven, or
hestra) 5.02 49.87 5.84 6.77 74.23 8.01 4.29 47.97 5.13C015 (Borodin, strings) 3.83 41.08 4.73 6.53 73.35 7.62 3.62 40.68 4.64C022 (Brahms, or
hestra) 2.87 26.65 3.87 3.69 25.61 3.98 2.59 26.35 3.80C044 (Rimski-Korsakov, �ute/piano) 2.73 30.27 4.37 1.50 16.28 1.71 2.74 30.21 4.36C048 (S
hubert, voi
e/piano) 3.81 32.47 4.56 6.62 54.61 8.35 3.13 34.99 4.36Average over non-piano 3.65 36.07 4.67 5.02 48.82 5.93 3.27 36.04 4.46J001 (Nakamura, piano) 2.80 31.03 3.85 3.60 33.52 4.63 2.37 30.86 3.77J038 (HH Band, big band) 3.52 33.68 4.55 3.85 31.92 4.33 3.29 33.64 4.50J041 (Umitsuki Quart., sax/bass/per
.) 3.12 39.28 4.76 3.27 45.36 4.67 2.97 38.20 4.69P031 (Nagayama, ele
troni
) 4.14 44.81 6.18 5.63 76.86 7.53 4.08 45.03 6.17P093 (Burke, voi
e/guitar) 3.79 35.06 4.79 4.23 36.71 5.12 3.67 35.06 4.73Average over jazz/pop 3.47 36.77 4.83 4.12 44.87 5.26 3.28 36.56 4.77Average over all 3.95 40.23 5.52 5.65 55.07 7.11 3.45 38.92 5.23Table A.4: Results for S
enario 1, w = 6 s, wioi = 30FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 7.19 98.00 12.94 5.36 51.19 7.04 3.69 37.85 5.27C028 (Beethoven, piano) 6.10 93.07 8.82 8.44 239.31 14.04 4.47 77.37 7.11C031 (Chopin, piano) 7.84 269.76 18.18 6.05 73.06 8.69 4.37 62.36 7.03C032 (Chopin, piano) 4.83 82.38 9.86 5.40 54.86 7.67 3.73 47.72 7.00C029 (S
humann, piano) 13.10 116.40 18.49 8.24 74.16 9.98 5.38 61.58 8.38Average over piano 7.81 131.92 13.66 6.70 98.52 9.48 4.33 57.38 6.96C003 (Beethoven, or
hestra) 11.09 156.97 14.30 14.61 278.33 19.32 9.22 105.67 11.59C015 (Borodin, strings) 7.85 164.92 11.35 10.27 342.02 16.49 7.08 170.75 10.79C022 (Brahms, or
hestra) 4.50 41.84 5.42 5.39 83.34 7.14 3.26 39.09 4.31C044 (Rimski-Korsakov, �ute/piano) 2.47 22.01 2.98 4.28 45.60 4.97 2.33 22.42 2.90C048 (S
hubert, voi
e/piano) 8.09 129.00 13.26 6.47 96.21 8.72 4.74 97.01 9.53Average over non-piano 6.80 102.95 9.46 8.20 169.10 11.33 5.33 86.99 7.82J001 (Nakamura, piano) 4.07 56.37 6.51 3.70 73.22 4.83 2.58 25.22 3.48J038 (HH Band, big band) 5.70 65.89 7.36 7.08 107.01 10.65 4.66 54.38 6.60J041 (Umitsuki Quart., sax/bass/per
.) 5.80 146.29 11.83 7.97 242.86 13.57 5.19 107.81 10.40P031 (Nagayama, ele
troni
) 5.16 41.76 5.47 14.89 278.75 20.44 4.86 40.86 5.34P093 (Burke, voi
e/guitar) 7.05 65.28 9.29 9.87 273.43 16.38 6.58 63.89 8.99Average over jazz/pop 5.56 75.12 8.09 8.70 195.05 13.18 4.77 58.44 6.96Average over all 6.72 103.33 10.40 7.87 154.22 11.33 4.81 67.60 7.25Table A.5: Results for S
enario 2, w = 2 s, wioi = 8

77



Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 6.52 62.70 10.27 6.60 57.38 8.44 4.08 43.12 5.71C028 (Beethoven, piano) 5.37 66.42 7.16 7.65 181.11 12.39 4.41 58.60 6.41C031 (Chopin, piano) 6.51 101.66 10.77 6.98 76.37 9.86 4.47 55.32 6.82C032 (Chopin, piano) 5.09 65.54 8.50 4.83 54.76 7.76 4.48 46.67 7.41C029 (S
humann, piano) 10.75 81.94 14.51 10.74 77.95 11.49 5.32 58.35 7.86Average over piano 6.85 75.65 10.24 7.36 89.51 9.99 4.55 52.41 6.84C003 (Beethoven, or
hestra) 8.64 101.04 10.63 11.42 199.13 13.82 7.57 84.91 9.36C015 (Borodin, strings) 6.49 89.18 8.64 9.47 241.75 13.33 6.16 90.20 8.50C022 (Brahms, or
hestra) 4.01 32.45 4.66 4.57 66.58 5.55 3.23 31.71 4.08C044 (Rimski-Korsakov, �ute/piano) 3.11 30.24 4.20 3.20 26.77 3.41 3.04 30.08 4.18C048 (S
hubert, voi
e/piano) 6.78 94.62 10.49 7.45 96.35 10.11 4.76 76.31 8.41Average over non-piano 5.81 69.50 7.72 7.22 126.12 9.25 4.95 62.64 6.91J001 (Nakamura, piano) 4.01 51.63 5.72 4.19 58.96 5.43 3.10 33.90 4.44J038 (HH Band, big band) 4.93 45.60 6.08 5.97 76.97 8.11 4.29 40.38 5.71J041 (Umitsuki Quart., sax/bass/per
.) 5.44 113.62 10.72 6.33 164.15 11.71 4.99 89.07 9.56P031 (Nagayama, ele
troni
) 4.80 43.58 5.35 10.60 189.51 13.78 4.63 43.99 5.31P093 (Burke, voi
e/guitar) 5.72 54.28 6.91 7.82 94.00 10.79 5.39 51.42 6.77Average over jazz/pop 4.98 61.74 6.96 6.98 116.72 9.96 4.48 51.75 6.36Average over all 5.88 68.97 8.31 7.19 110.78 9.73 4.66 55.60 6.70Table A.6: Results for S
enario 2, w = 3 s, wioi = 12FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 6.89 60.35 9.59 8.48 68.25 10.41 5.26 51.85 6.88C028 (Beethoven, piano) 5.91 57.66 7.38 7.47 184.30 11.85 5.25 56.90 7.16C031 (Chopin, piano) 6.71 70.03 9.07 8.14 76.90 10.89 5.35 59.37 7.39C032 (Chopin, piano) 6.12 56.27 8.52 5.10 54.75 8.63 5.81 52.50 8.28C029 (S
humann, piano) 9.75 72.76 12.61 12.99 86.69 13.16 5.94 59.49 8.08Average over piano 7.08 63.41 9.43 8.44 94.18 10.99 5.52 56.02 7.56C003 (Beethoven, or
hestra) 8.05 80.52 9.39 10.24 114.43 11.52 7.38 72.09 8.68C015 (Borodin, strings) 6.78 84.94 8.51 9.88 159.13 12.17 6.56 85.69 8.67C022 (Brahms, or
hestra) 4.56 35.73 5.35 4.63 52.65 4.89 4.08 35.57 5.12C044 (Rimski-Korsakov, �ute/piano) 4.45 38.49 5.86 2.74 23.21 2.95 4.41 37.94 5.86C048 (S
hubert, voi
e/piano) 6.74 81.17 9.63 8.63 95.47 11.18 5.47 70.99 8.53Average over non-piano 6.11 64.17 7.75 7.23 88.98 8.54 5.58 60.46 7.37J001 (Nakamura, piano) 4.88 47.69 6.44 4.90 57.49 6.22 4.28 43.26 5.92J038 (HH Band, big band) 5.43 47.48 6.41 5.92 59.16 7.28 4.99 47.10 6.33J041 (Umitsuki Quart., sax/bass/per
.) 6.08 93.69 10.28 5.82 142.64 10.75 5.74 74.32 9.44P031 (Nagayama, ele
troni
) 5.38 52.30 6.39 8.68 101.83 9.80 5.27 52.30 6.39P093 (Burke, voi
e/guitar) 5.86 44.86 6.80 6.86 61.83 8.55 5.64 45.92 6.67Average over jazz/pop 5.53 57.20 7.27 6.44 84.59 8.52 5.19 52.58 6.95Average over all 6.24 61.60 8.15 7.37 89.25 9.35 5.43 56.35 7.29Table A.7: Results for S
enario 2, w = 4 s, wioi = 16
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 9.32 129.97 15.17 6.66 80.98 10.09 4.90 74.42 8.26C028 (Beethoven, piano) 17.20 542.30 39.63 21.58 475.24 47.11 13.61 517.29 36.30C031 (Chopin, piano) 24.92 313.20 46.98 20.32 236.52 36.62 20.09 303.86 41.87C032 (Chopin, piano) 7.73 119.86 16.50 10.41 117.44 17.06 5.13 72.36 10.09C029 (S
humann, piano) 62.71 672.71 103.29 47.90 304.08 61.59 46.67 396.93 70.33Average over piano 24.38 355.61 44.32 21.37 242.85 34.49 18.08 272.97 33.37C003 (Beethoven, or
hestra) 32.61 455.72 48.42 38.55 478.94 58.05 28.77 435.07 46.11C015 (Borodin, strings) 22.93 533.19 45.46 23.15 388.05 39.26 19.85 334.75 34.88C022 (Brahms, or
hestra) 19.30 123.60 27.78 22.14 229.22 35.12 17.67 121.30 27.25C044 (Rimski-Korsakov, �ute/piano) 2.60 31.20 3.20 6.44 63.96 8.24 2.30 30.28 3.01C048 (S
hubert, voi
e/piano) 53.15 640.39 86.62 49.25 431.62 80.49 48.59 603.79 82.80Average over non-piano 26.12 356.82 42.29 27.91 318.36 44.23 23.43 305.04 38.81J001 (Nakamura, piano) 15.09 178.90 31.44 14.66 191.09 30.83 13.07 179.17 30.58J038 (HH Band, big band) 14.89 139.19 22.87 17.31 279.79 28.54 13.45 139.05 22.69J041 (Umitsuki Quart., sax/bass/per
.) 44.50 397.81 58.57 48.27 419.48 60.86 43.84 397.71 58.25P031 (Nagayama, ele
troni
) 52.81 346.64 65.48 61.84 392.52 67.47 52.42 346.10 65.58P093 (Burke, voi
e/guitar) 23.18 493.03 44.29 28.60 541.15 52.45 22.29 419.56 43.87Average over jazz/pop 30.09 311.11 44.53 34.14 364.80 48.03 29.01 296.32 44.19Average over all 26.86 341.18 43.71 27.81 308.67 42.25 23.51 291.44 38.79Table A.8: Results for S
enario 3, w = 2 s, wioi = 8FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 7.82 80.13 12.25 7.24 72.47 10.75 4.47 55.34 7.04C028 (Beethoven, piano) 13.72 402.44 31.13 18.50 477.71 41.88 11.74 374.75 30.38C031 (Chopin, piano) 22.16 308.71 42.68 20.31 163.83 33.77 18.97 248.50 38.68C032 (Chopin, piano) 6.36 105.20 13.23 8.95 111.15 16.35 4.88 63.17 9.88C029 (S
humann, piano) 54.20 721.95 87.02 48.67 305.10 57.92 44.26 401.58 65.67Average over piano 20.85 323.68 37.26 20.73 226.05 32.13 16.87 228.67 30.33C003 (Beethoven, or
hestra) 27.29 267.65 42.65 33.83 466.15 53.36 25.14 256.86 42.19C015 (Borodin, strings) 18.30 467.90 35.56 20.39 379.35 34.58 16.44 240.85 29.78C022 (Brahms, or
hestra) 17.59 116.29 26.18 19.73 213.11 31.25 16.61 115.08 25.83C044 (Rimski-Korsakov, �ute/piano) 2.36 26.72 3.42 4.64 46.91 5.74 2.25 27.06 3.39C048 (S
hubert, voi
e/piano) 49.53 592.25 78.96 48.16 380.38 75.86 46.78 497.78 77.05Average over non-piano 23.01 294.16 37.35 25.35 297.18 40.16 21.44 227.53 35.65J001 (Nakamura, piano) 14.11 181.14 30.54 14.78 181.85 30.65 12.91 180.27 30.33J038 (HH Band, big band) 12.92 121.70 20.77 14.54 176.81 23.45 11.91 119.02 20.52J041 (Umitsuki Quart., sax/bass/per
.) 42.63 351.31 56.64 45.41 377.11 58.89 42.11 351.30 56.50P031 (Nagayama, ele
troni
) 51.05 353.29 62.75 58.13 384.23 66.27 50.87 352.88 62.72P093 (Burke, voi
e/guitar) 19.90 259.56 38.82 24.03 333.43 44.00 19.24 258.50 38.80Average over jazz/pop 28.12 253.40 41.90 31.38 290.69 44.65 27.41 252.39 41.77Average over all 24.00 290.41 38.84 25.82 271.31 38.98 21.91 236.19 35.92Table A.9: Results for S
enario 3, w = 3 s, wioi = 12
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Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 7.19 63.07 10.95 10.22 100.37 15.47 4.73 53.69 7.44C028 (Beethoven, piano) 12.36 321.83 27.47 16.44 462.16 35.83 10.93 321.04 27.10C031 (Chopin, piano) 21.26 263.44 39.60 22.07 166.24 34.35 18.84 226.94 36.64C032 (Chopin, piano) 6.42 88.68 12.64 8.46 98.99 16.65 5.33 76.60 10.57C029 (S
humann, piano) 48.35 551.74 70.03 52.53 272.87 56.33 42.38 406.05 60.13Average over piano 19.12 257.75 32.14 21.94 220.13 31.73 16.44 216.87 28.38C003 (Beethoven, or
hestra) 25.01 246.51 40.66 29.54 443.10 46.46 23.49 245.68 40.53C015 (Borodin, strings) 16.70 250.94 30.76 19.77 249.28 30.76 15.48 198.76 28.53C022 (Brahms, or
hestra) 17.37 109.90 25.78 18.32 150.66 26.52 16.61 109.77 25.63C044 (Rimski-Korsakov, �ute/piano) 2.77 37.98 4.80 3.28 29.65 4.05 2.71 38.16 4.82C048 (S
hubert, voi
e/piano) 47.75 379.61 73.14 48.74 329.73 71.38 46.11 376.98 73.38Average over non-piano 21.92 204.99 35.03 23.93 240.48 35.84 20.88 193.87 34.58J001 (Nakamura, piano) 14.28 178.94 30.38 15.67 172.10 30.62 13.46 176.90 30.41J038 (HH Band, big band) 12.27 116.37 20.12 13.49 140.52 21.11 11.51 113.46 19.97J041 (Umitsuki Quart., sax/bass/per
.) 42.07 287.70 54.91 43.36 350.61 57.27 41.66 287.26 54.90P031 (Nagayama, ele
troni
) 50.07 274.93 59.09 54.96 344.35 64.56 49.96 274.65 59.16P093 (Burke, voi
e/guitar) 18.58 222.80 36.82 20.37 230.90 38.83 18.18 223.66 36.83Average over jazz/pop 27.45 216.15 40.26 29.57 247.69 42.48 26.95 215.19 40.25Average over all 22.83 226.30 35.81 25.15 236.10 36.68 21.42 208.64 34.40Table A.10: Results for S
enario 3, w = 4 s, wioi = 20FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 9.13 83.08 13.49 15.03 113.30 19.91 7.96 83.92 13.00C028 (Beethoven, piano) 12.66 167.73 22.85 16.39 346.97 32.98 12.09 167.27 22.78C031 (Chopin, piano) 22.24 175.85 34.90 25.55 177.70 36.34 21.15 171.42 34.78C032 (Chopin, piano) 8.51 114.69 15.23 8.42 97.97 17.10 8.38 113.45 15.16C029 (S
humann, piano) 44.16 297.26 52.33 59.91 293.09 57.41 42.23 285.68 52.40Average over piano 19.34 167.72 27.76 25.06 205.81 32.75 18.36 164.35 27.62C003 (Beethoven, or
hestra) 24.68 224.28 39.79 28.47 266.32 42.67 23.88 224.42 39.80C015 (Borodin, strings) 17.36 219.35 29.47 22.63 210.74 32.99 17.00 218.85 29.59C022 (Brahms, or
hestra) 19.24 121.15 27.45 19.00 120.04 25.87 18.90 121.09 27.50C044 (Rimski-Korsakov, �ute/piano) 5.92 62.59 9.51 2.82 32.44 3.94 5.90 63.13 9.52C048 (S
hubert, voi
e/piano) 47.31 314.58 67.02 49.74 310.09 67.71 46.77 311.05 67.28Average over non-piano 22.90 188.39 34.65 24.53 187.93 34.64 22.49 187.71 34.74J001 (Nakamura, piano) 17.53 162.76 31.58 18.32 172.02 31.66 17.19 162.67 31.68J038 (HH Band, big band) 14.04 133.04 21.87 14.51 126.23 21.38 13.76 133.73 21.85J041 (Umitsuki Quart., sax/bass/per
.) 42.62 249.58 52.73 42.65 298.61 55.28 42.36 249.65 52.79P031 (Nagayama, ele
troni
) 50.56 196.71 55.17 53.23 334.47 63.49 50.54 196.58 55.21P093 (Burke, voi
e/guitar) 19.62 206.72 35.75 19.38 214.48 36.36 19.41 206.33 35.78Average over jazz/pop 28.87 189.76 39.42 29.62 229.16 41.63 28.65 189.79 39.46Average over all 23.70 181.96 33.94 26.40 207.63 36.34 23.17 180.62 33.94Table A.11: Results for S
enario 3, w = 7 s, wioi = 30
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 26.02 543.55 57.16 13.16 153.34 25.38 13.51 258.37 24.84C028 (Beethoven, piano) 16.38 466.21 30.03 12.83 357.34 25.18 10.64 315.51 21.32C031 (Chopin, piano) 18.32 518.24 43.32 7.66 151.73 14.47 7.70 241.97 14.89C032 (Chopin, piano) 13.76 372.64 43.23 6.14 112.71 9.63 4.80 109.09 9.77C029 (S
humann, piano) 29.36 376.35 53.78 9.78 116.77 18.65 8.01 103.24 14.03Average over piano 20.77 455.40 45.50 9.92 178.38 18.66 8.93 205.63 16.97C003 (Beethoven, or
hestra) 25.58 501.63 34.71 22.35 358.00 29.87 19.85 320.51 25.39C015 (Borodin, strings) 17.83 267.29 22.47 15.11 282.92 22.61 15.22 227.21 19.33C022 (Brahms, or
hestra) 12.02 371.17 25.49 7.81 108.74 11.58 7.45 103.70 10.86C044 (Rimski-Korsakov, �ute/piano) 5.44 84.05 9.14 6.76 103.51 9.22 4.54 82.74 8.17C048 (S
hubert, voi
e/piano) 21.40 485.06 40.91 7.98 185.51 15.21 8.99 183.20 15.26Average over non-piano 16.46 341.84 26.55 12.00 207.74 17.70 11.21 183.47 15.80J001 (Nakamura, piano) 10.15 488.16 21.54 5.04 192.31 10.82 5.06 103.52 8.80J038 (HH Band, big band) 15.66 464.87 31.79 12.06 171.43 18.49 11.98 151.62 18.12J041 (Umitsuki Quart., sax/bass/per
.) 11.63 262.42 20.07 12.34 237.20 19.70 10.42 248.34 17.96P031 (Nagayama, ele
troni
) 18.85 418.99 28.87 29.40 422.94 40.77 17.96 384.71 28.36P093 (Burke, voi
e/guitar) 19.94 472.18 35.28 19.12 369.89 32.62 17.04 304.40 28.29Average over jazz/pop 15.24 421.32 27.51 15.59 278.75 24.48 12.49 238.52 20.31Average over all 17.49 406.19 33.19 12.50 221.62 20.28 10.88 209.21 17.69Table A.12: Results for S
enario 4, w = 1 s, wioi = 6FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 22.30 472.55 48.88 13.92 137.80 26.47 13.27 155.57 24.88C028 (Beethoven, piano) 11.45 280.50 19.31 10.08 326.10 20.24 8.84 211.44 17.62C031 (Chopin, piano) 13.10 282.97 30.63 8.29 100.82 15.10 6.89 104.48 12.75C032 (Chopin, piano) 11.45 436.25 34.16 5.29 114.77 10.23 5.66 110.45 12.80C029 (S
humann, piano) 18.93 427.97 36.15 11.81 107.82 20.49 7.66 96.86 13.70Average over piano 15.44 380.05 33.83 9.88 157.46 18.51 8.46 135.76 16.35C003 (Beethoven, or
hestra) 16.86 178.16 21.12 17.58 312.54 23.62 14.23 150.67 18.85C015 (Borodin, strings) 12.14 126.83 16.39 12.76 282.60 19.61 11.06 121.85 15.47C022 (Brahms, or
hestra) 8.16 109.91 13.25 5.95 99.00 10.35 6.13 94.62 10.68C044 (Rimski-Korsakov, �ute/piano) 5.37 82.36 10.78 4.82 85.31 7.92 5.00 82.36 10.65C048 (S
hubert, voi
e/piano) 13.04 153.30 18.35 7.69 120.53 14.34 7.73 106.38 13.67Average over non-piano 11.11 130.11 15.98 9.76 179.99 15.17 8.83 111.18 13.86J001 (Nakamura, piano) 7.17 101.52 12.53 5.13 151.52 11.64 5.21 103.41 10.82J038 (HH Band, big band) 10.87 185.57 17.89 9.61 104.63 15.25 9.38 121.40 15.41J041 (Umitsuki Quart., sax/bass/per
.) 8.91 161.37 15.61 9.58 218.77 17.49 8.33 156.80 15.13P031 (Nagayama, ele
troni
) 14.23 179.13 22.15 22.62 410.39 33.93 13.79 176.53 22.09P093 (Burke, voi
e/guitar) 12.99 197.43 18.55 13.83 246.75 22.23 11.90 180.85 17.71Average over jazz/pop 10.84 165.00 17.34 12.15 226.41 20.11 9.72 147.80 16.23Average over all 12.46 225.05 22.38 10.60 187.96 17.93 9.01 131.58 15.48Table A.13: Results for S
enario 4, w = 2 s, wioi = 10
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Appendix A Result Tables FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 19.94 226.24 33.76 14.35 139.46 26.61 14.03 143.65 25.84C028 (Beethoven, piano) 10.61 249.83 17.55 9.66 316.82 19.17 9.16 221.23 16.93C031 (Chopin, piano) 11.27 207.03 20.02 8.69 97.75 15.30 7.51 105.09 13.36C032 (Chopin, piano) 10.78 150.33 20.74 5.36 114.22 10.69 7.36 109.39 15.10C029 (S
humann, piano) 15.17 144.08 20.80 12.77 108.90 20.54 8.24 98.98 14.40Average over piano 13.55 195.50 22.57 10.17 155.43 18.46 9.26 135.67 17.13C003 (Beethoven, or
hestra) 14.17 135.33 18.06 16.20 267.96 21.53 12.72 128.70 16.94C015 (Borodin, strings) 11.23 121.94 15.98 12.42 232.36 18.73 10.60 120.05 15.50C022 (Brahms, or
hestra) 7.97 94.72 12.92 5.81 95.26 10.35 6.90 93.00 12.37C044 (Rimski-Korsakov, �ute/piano) 6.59 81.93 12.69 4.34 80.79 7.96 6.37 81.47 12.70C048 (S
hubert, voi
e/piano) 11.49 110.14 16.13 7.80 108.49 14.40 8.16 106.58 14.35Average over non-piano 10.29 108.81 15.16 9.31 156.97 14.59 8.95 105.96 14.37J001 (Nakamura, piano) 7.60 101.23 13.17 5.50 122.36 12.25 6.34 104.67 12.71J038 (HH Band, big band) 10.21 109.80 15.55 9.37 106.33 15.18 9.33 107.92 15.04J041 (Umitsuki Quart., sax/bass/per
.) 8.88 119.74 15.53 8.99 221.54 16.93 8.48 121.16 15.33P031 (Nagayama, ele
troni
) 13.87 136.68 21.33 20.35 409.51 31.16 13.60 134.79 21.38P093 (Burke, voi
e/guitar) 11.37 114.69 15.63 12.89 181.09 19.40 10.61 114.95 15.49Average over jazz/pop 10.39 116.43 16.24 11.42 208.17 18.99 9.67 116.70 15.99Average over all 11.41 140.25 17.99 10.30 173.52 17.35 9.29 119.44 15.83Table A.14: Results for S
enario 4, w = 3 s, wioi = 12FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 19.06 135.59 29.72 15.44 127.43 26.93 15.08 135.25 26.71C028 (Beethoven, piano) 11.02 130.43 17.16 9.21 272.77 17.94 10.01 129.60 16.95C031 (Chopin, piano) 11.04 96.26 16.90 9.80 94.30 16.13 8.60 102.22 14.25C032 (Chopin, piano) 11.63 111.69 18.88 6.18 117.03 12.34 9.29 111.08 16.96C029 (S
humann, piano) 14.18 112.33 18.11 15.67 101.49 22.03 9.31 98.53 15.27Average over piano 13.39 117.26 20.16 11.26 142.60 19.08 10.46 115.34 18.03C003 (Beethoven, or
hestra) 13.38 124.89 17.52 14.97 149.04 19.33 12.47 124.37 16.73C015 (Borodin, strings) 11.42 122.49 16.51 12.74 150.97 18.03 10.98 122.29 16.18C022 (Brahms, or
hestra) 8.78 93.75 14.05 5.94 89.46 10.98 8.08 92.48 13.87C044 (Rimski-Korsakov, �ute/piano) 8.13 81.98 14.14 4.21 81.36 8.56 7.96 81.80 14.17C048 (S
hubert, voi
e/piano) 11.28 108.78 16.30 8.71 108.78 15.31 9.11 106.36 15.48Average over non-piano 10.60 106.38 15.70 9.31 115.92 14.44 9.72 105.46 15.29J001 (Nakamura, piano) 8.69 103.80 14.52 6.43 116.12 13.50 7.76 103.87 14.36J038 (HH Band, big band) 10.88 102.96 15.66 9.46 108.80 15.11 10.23 104.49 15.53J041 (Umitsuki Quart., sax/bass/per
.) 9.76 118.61 16.52 8.66 225.72 16.55 9.47 117.05 16.38P031 (Nagayama, ele
troni
) 14.26 133.20 21.95 18.01 304.43 27.32 14.09 132.81 21.99P093 (Burke, voi
e/guitar) 11.24 113.43 15.65 11.30 123.25 16.63 10.68 113.48 15.58Average over jazz/pop 10.97 114.40 16.86 10.77 175.66 17.82 10.45 114.34 16.77Average over all 11.65 112.68 17.57 10.45 144.73 17.11 10.21 111.71 16.69Table A.15: Results for S
enario 4, w = 4 s, wioi = 16
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FW AW FWCRWC ID (Comp./Interp., Instr.) mean max std mean max std mean max stdC025 (Ba
h, piano) 51.08 348.22 56.59 47.49 211.05 47.02 41.86 213.55 45.03C028 (Beethoven, piano) 37.08 392.19 58.52 37.77 439.19 62.00 35.05 390.64 58.60C031 (Chopin, piano) 60.67 408.90 78.94 55.17 272.65 68.18 53.88 287.83 70.60C032 (Chopin, piano) 35.41 500.49 69.95 29.66 271.07 57.14 27.55 274.42 52.95C029 (S
humann, piano) 88.20 642.16 92.49 88.41 320.59 75.89 74.65 395.91 84.78Average over piano 54.49 458.39 71.30 51.70 302.91 62.05 46.60 312.47 62.39C003 (Beethoven, or
hestra) 44.95 386.81 60.31 47.83 374.92 63.63 42.84 389.13 60.06C015 (Borodin, strings) 56.19 515.18 75.43 59.66 473.41 71.78 52.18 392.47 68.08C022 (Brahms, or
hestra) 48.80 273.32 52.54 47.57 378.17 55.99 47.64 273.54 52.83C044 (Rimski-Korsakov, �ute/piano) 30.71 173.44 35.65 29.45 192.95 35.00 30.34 172.91 35.74C048 (S
hubert, voi
e/piano) 69.22 601.92 90.64 67.06 375.06 85.44 66.24 492.55 90.14Average over non-piano 49.97 390.13 62.91 50.31 358.90 62.37 47.85 344.12 61.37J001 (Nakamura, piano) 28.10 262.31 49.39 28.92 267.13 50.89 26.30 259.86 49.66J038 (HH Band, big band) 34.84 273.86 50.79 34.66 271.74 51.45 33.60 273.86 50.46J041 (Umitsuki Quart., sax/bass/per
.) 67.83 398.69 73.67 66.99 397.32 74.30 66.72 399.84 73.28P031 (Nagayama, ele
troni
) 91.91 315.15 73.82 92.95 342.43 76.03 91.84 314.18 73.91P093 (Burke, voi
e/guitar) 55.93 366.57 76.99 55.01 362.56 77.35 55.00 362.89 77.24Average over jazz/pop 55.72 323.32 64.93 55.71 328.24 66.00 54.69 322.12 64.91Average over all 53.39 390.61 66.38 52.57 330.02 63.47 49.71 326.24 62.89Table A.16: Results for S
enario 5, w = 3 s, wioi = 20
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Appendix BSour
e CodeIn this 
hapter, the headers of sele
ted Matlab [Mat09℄ fun
tions 
reated during the writingof this thesis are reprodu
ed. The headers 
ontain information about the name of the de-s
ribed fun
tion and its input/output behavior. The organization of the headers is a

ordingto 
hronologi
al usage order of the respe
tive fun
tion in the tempo 
urve 
omputation pro-
ess, starting with feature extra
tion and 
ontinuing with 
urve 
omputation pro
edures andauxiliary fun
tions.Feature Extra
tionThe file_to_feature fun
tion is used as a wrapper for several low-level fun
tions that per-form feature extra
tion or loading of pre
omputed features. In the 
ase of MIDI �les, dirnameand filename lo
ate the spe
i�
 �le; for wave �les, filename denotes the name of the �le inquestion, but dirname indi
ates the dire
tory where pre
omputed features are stored.Sample usage:[f_pit
h, f_peaks℄ = file_to_feature('features', 'pathetique.wav');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: file_to_feature% Version: 1.0% Date: 10.10.2008% Programmer: Meinard Mueller, Verena Konz%% Des
ription:% Load or 
ompute features for audio and MIDI files%% Input:% - dirname: Dire
tory where the file or features are lo
ated% - filename: Name of the file for whi
h to load/
ompute features% - parameter% .win_len: Window length used for STMSP feature generation% .win_res: Window resolution%% Output: 85



Appendix B Sour
e Code% - f_pit
h: Pit
h features (STMSP)% - f_peaks: Energy peaks for onset 
omputation% - f_onsets: Pre
ise onsets (only generated in 
ase of MIDI input data)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Warping Path ComputationThe feature_to_warpingpath fun
tion uses methods su
h as des
ribed in [Mül07℄ and [GME09℄to 
ompute warping paths from pit
h and onset features extra
ted in a previous step.Sample usage:warpingpath = feature_to_warpingpath(f_pit
h_referen
e, f_peaks_referen
e,f_pit
h_interpretation, f_peaks_interpretation);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: feature_to_warpingpath% Version: 1.0% Date: 20.03.2009% Programmer: Meinard Mueller, Sebastian Ewert%% Des
ription:% Compute a warping path from pit
h and onset features using multis
ale% DTW with DLNCO features%% Input:% - f_pit
h_1: Pit
h features (STMSP) of the referen
e audio stream% - f_peaks_1: Onset features of the referen
e audio stream% - f_pit
h_2: Pit
h features (STMSP) of the performan
e audio stream% - f_peaks_2: Onset features of the performan
e audio stream%% Output:% - warpingpath: A regular warping path between referen
e and% interpretation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve Computation (FW Approa
h)As the name suggests, warpingpath_to_tempo
urve_SlidingWindow 
omputes a tempo
urve from a warping path using a sliding window of �xed size. This size is determined byparameter.windowSize_se
. The resulting tempo 
urve is s
aled to the referen
e time axis(i.e. it has length equal to warpingpath(end, 1)).Sample usage:parameter.windowSize_se
 = 3;86



tempo
urveFW = warpingpath_to_tempo
urve_SlidingWindow(warpingpath,parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: warpingpath_to_tempo
urve_SlidingWindow% Version: 1.0% Date: 6.4.2009% Programmer: Meinard Mueller, Verena Konz%% Des
ription:% Compute tempo 
urve from warping path using a fixed-width sliding% window approa
h%% Input:% - warpingpath: A regular warping path between referen
e and% interpretation of some pie
e of musi
% - parameter% .vis_warpingpath: If true, visualize warping path together% with generated tempo 
urve% .vis_tempo
urve: If true, plot the generated tempo 
urve% .windowSize_se
: Determines the window size of the averaging% window for 
urve 
omputation%% Output:% - tempo
urve: A regular, referen
e-s
aled tempo 
urve%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve Computation (AW Approa
h)Similar to the previous fun
tion, the warpingpath_to_tempo
urve_onsets fun
tion 
omputesa tempo 
urve from a warping path, this time using onset information to adapt the windowsize. Hen
e, the window size is here determined by parameter.windowSizeIOI. Again, theresulting tempo 
urve is s
aled to the referen
e time axis.Sample usage:[f_pit
h, f_peaks, f_onsets℄ = file_to_feature('midi', 'pathetique.mid');parameter.windowSizeIOI = 12;tempo
urveAW = warpingpath_to_tempo
urve_onsets(warpingpath, f_onsets,parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: warpingpath_to_tempo
urve_onsets% Version: 1.0% Date: 6.5.2009% Programmer: Andi S
harfstein, Verena Konz 87
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e Code%% Des
ription:% Compute tempo 
urve from warping path using an adaptive window aligned% to note onset timings%% Input:% - warpingpath: A regular warping path between referen
e and% interpretation of some pie
e of musi
% - onsets: A ve
tor of all unique frames of the warping path whi
h 
ontain% at least one note onset event.% - parameter% .vis_warpingpath: If true, visualize warping path together% with generated tempo 
urve% .vis_tempo
urve: If true, plot the generated tempo 
urve% .windowSizeIOI: Determines how many interonset intervals% should be in
luded in the 
urve averaging% Output:% - tempo
urve: A regular, referen
e-s
aled tempo 
urve%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve Computation (FWC Approa
h)As des
ribed in Se
tion 3.2.4, the FWC approa
h relies on performing the FW te
hnique ona smoothed warping path. The fun
tion smooth_warpingpath performs this smoothing on aninteronset level.Sample usage:smoothedWarpingpath = smooth_warpingpath(warpingpath, f_onsets);tempo
urveFWC = warpingpath_to_tempo
urve_SlidingWindow(smoothedWarpingpath,parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: smooth_warpingpath% Version: 1.0% Date: 16.01.2009% Programmer: Andi S
harfstein, Verena Konz%% Des
ription:% Perform IOI smoothing of a given warping path by re-
omputing the path% between onset lo
ations as a straight line.%% Input:% - warpingpath: A regular warping path between two pie
es of musi
% - onsets: A ve
tor of all times (referen
e time axis) whi
h 
ontain at% least one note onset event in the referen
e88



%% Output:% - smoothedWarpingpath: A warping path of the same dimension as the input% warping path, but with linear slopes between onset lo
ations%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Onset Index TransformationThe 
onversion between onset times that are given relative to the referen
e time axis andindi
es into the warping path that lo
ate the o

urren
es of these onsets if performed by theauxiliary fun
tion 
ompute_warped_onsets. The fun
tion 
an be 
hara
terized by the equiv-alen
e onsets == warpingpath(
ompute_warped_onsets(onsets, warpingpath), 1). Theparameter invertWarping may be set to true to indi
ate that the onsets relate to the inter-pretation instead of the referen
e. In this 
ase, the onsets will o

ur at warpingpath(n, 2)instead of at warpingpath(n, 1).Sample usage:dtwOnsets = 
ompute_warped_onsets(f_onsets, warpingpath);dtwOnsetsInterpretation = 
ompute_warped_onsets(f_onsets, warpingpath, 1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: 
ompute_warped_onsets% Version: 1.0% Date: 16.01.2009% Programmer: Andi S
harfstein%% Des
ription:% Convert absolute onset information into a representation relative to a% given warping path (i.e., determine indi
es of the onsets in this path)%% Input:% - onsets: Onset information for the referen
e audio stream% - warpingpath: The warping path of referen
e audio and 
omparison% - invertWarping: If true, 
ompute indi
es of onsets with respe
t to the% interpretation 
olumn of the warping path instead of the referen
e% 
olumn%% Output:% - dtwOnsets: The indi
es of warping path entries where the referen
e% 
olumn (or the interpretation 
olumn if invertWarping is true)% 
orresponds to a note onset event%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 89
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e CodeCurve InterpolationThe interpolation fun
tion simply 
onne
ts the points de�ned by the pairs (onsets(i),values(i)). The length of the resulting 
urve is equivalent to onsets(end). In 
ase the�rst onset is not lo
ated at position 1, the ve
tors are extended by in
luding (1, 1) beforeinterpolation.Sample usage:interpolation = interpolate_between_onsets(values, f_onsets);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: interpolate_between_onsets% Version: 1.0% Date: 16.01.2009% Programmer: Andi S
harfstein, Verena Konz%% Des
ription:% Simple linear interpolation between onsets using a set of given values.%% Input:% - values: Ve
tor of values used to interpolate between 
onse
utive onsets% - onsets: Onset times between whi
h to interpolate (length of values and% onsets ve
tors should be exa
tly equal)%% Output:% - tempo
urve: A tempo
urve where intermediate values between onsets have% been filled out a

ording to 'values' parameter. Here, values(i) will% be used as the value for onsets(i)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Curve Res
alingThe res
aling pro
edure translates from a referen
e-s
aled tempo 
urve to an interpretation-s
aled tempo 
urve. For this, it �warps� the original tempo 
urve a

ording to warpingpath.Sample usage:tempo
urveInterpretation = res
ale_tempo
urve(tempo
urve, f_onsets,warpingpath);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: res
ale_tempo
urve% Version: 1.0% Date: 20.03.2009% Programmer: Andi S
harfstein%90



% Des
ription:% Res
ales standard tempo 
urves on the time axis to fit the interpretation% they are des
ribing, i.e. res
aled_tempo
urve(x) is the tempo of% interpretation at interpretation time point x instead of referen
e time% point x.%% Input:% - tempo
urve: A regular (referen
e-s
aled) tempo 
urve% - referen
e_onsets: The onsets of the referen
e. If these are unknown,% just use (1:warpingpath(end,1))' to set onsets at every frame% - warpingpath: A regular warping path%% Output:% - res
aled_tempo
urve: The res
aled tempo 
urve%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Tempo Curve VisualizationPlotting of tempo 
urves 
an be done 
omfortably using the visualize_tempo
urve fun
tion.It is highly �exible: Calls of the form visualize_tempo
urve(tempo
urve) as well as 
allsof the form visualize_tempo
urve({tempo
urve1 tempo
urve2}) are supported, and thereis a great variety of parameter settings available. S
aling of the temporal axis is 
ontrolledby the settings of parameter.plotInMeasures together with parameter.startMeasure andparameter.endMeasure, while s
aling of the tempo value axis depends on the settings ofparameter.plotInBPM and parameter.referen
eBPM. If the tempo is plotted in BPM, theverti
al axis is s
aled linearly; otherwise, it is s
aled logarithmi
ally.Sample usage:% Linear 
urve plotparameter.plotInBPM = 1;parameter.referen
eBPM = 33;visualize_tempo
urve(tempo
urve, parameter);% Multiple 
urves plot, time axis in measuresparameter.plotInMeasures = 1;parameter.endMeasure = 55;% parameter.startMeasure = 1; (this is the impli
it default value)visualize_tempo
urve({tempo
urve1 tempo
urve2 tempo
urve3}, parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: visualize_tempo
urve% Version: 1.0% Date: 04.02.2009% Programmer: Andi S
harfstein, Verena Konz% 91
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e Code% Des
ription:% A fun
tion for visualizing one or more tempo 
urves. If you want to% display more than one 
urve, wrap them in a 
ell array.%% Input:% - tempo
urve: One or more ve
tors 
ontaining tempo information% (wrap in 
ell array to show multiple 
urves at on
e).% - parameter% .plotInBPM: If true, plot the 
urve in BPM instead of fa
tors% .referen
eBPM: Needed to 
ompute the 
urve (fa
tor 1 be
omes% parameter.referen
eBPM) if plotInBPM is true% .plotInMeasures: If true, use measures for the time axis% instead of se
onds or frames% .startMeasure: Optional, denotes the first measure if% plotInMeasures is true% .endMeasure: Needed to 
ompute the measures if plotInMeasures% is true% .holdFigure: If true, use g
f instead of 
reating a new figure% .s
aleToSe
onds: If true, plot time axis in se
onds instead of% frames% .lineStyle: Sets the line style of the plot% .lineWidth: Sets the line width of the plot% .win_res: Used to s
ale the plot to se
onds if s
aleToSe
onds% is true%% Output:% - figureHandle: The handle of the figure that was 
reated for% visualization of the tempo 
urve(s).%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Warping Path VisualizationAs for tempo 
urves, there also exists a spe
ialized fun
tion for plotting warping paths. Unsur-prisingly, this is the visualize_warpingpath fun
tion. It supports 
alls similar in stru
tureto visualize_tempo
urve, in parti
ular both visualize_warpingpath(warpingpath) andvisualize_warpingpath({warpingpath1 warpingpath2}) are possible. Optional parame-ters in
lude parameter.dtwOnsets and parameter.tempo
urve that 
an be used to in
ludeverti
al onset lines or a tempo 
urve in the plot, respe
tively. Onsets must be given in their�warped� version as indi
es to the respe
tive warping path. If one of those parameters is set,the warpingpath argument must be a single path and may not 
ontain a 
ell array.Sample usage:visualize_warpingpath({warpingpath1 warpingpath2});tempo
urve = warpingpath_to_tempo
urve_onsets(warpingpath, f_onsets,parameter);92



parameter.tempo
urve = tempo
urve;parameter.dtwOnsets = 
ompute_warped_onsets(f_onsets, warpingpath);visualize_warpingpath(warpingpath, parameter);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Name: visualize_warpingpath% Version: 1.0% Date: 15.01.2009% Programmer: Andi S
harfstein, Verena Konz%% Des
ription:% A fun
tion for visualizing one or more warping paths. If you want to% display more than one warping path, wrap your paths in a 
ell array.%% Input:% - warpingpath: One or more regular warping paths (wrap in 
ell array to% plot multiple warping paths).% - parameter% .dtwOnsets: Optional, plots verti
al lines at onset positions.% Must be given in terms of warping path indi
es,% not in terms of a referen
e time axis as usual% .tempo
urve: Optional, but must be given if dtwOnsets is set.% A regular tempo 
urve 
omputed from the given% warping path is plotted against this path% .s
aleToSe
onds: If true, plot time axis in se
onds instead of% frames% .win_res: Used to s
ale the plot to se
onds if s
aleToSe
onds% is true%% Output:% - figureHandle: The handle of the figure that was 
reated for% visualization of the warping path(s).%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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