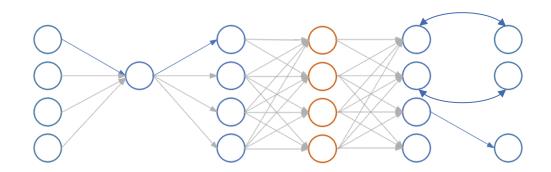
INTERNATIONAL AUDIO LABORATORIES ERLANGEN A joint institution of Fraunhofer IIS and Universität Erlangen-Nürnberg

# Literature Overview Deep Neural Networks in MIR



Stefan Balke and Meinard Müller International Audio Laboratories Erlangen





LABS

# Introduction Stefan Balke

- 2008-2013: Electrical Engineering Leibniz Universität Hannover
- Since 2014: Working towards my PhD
- Research Interests:
  - Content-based audio retrieval
  - Deep learning and MIR
  - Web and multimedia
  - Jazz music
- Hobby: Trumpet playing!
- Further infos: <u>https://www.audiolabs-erlangen.de/fau/assistant/balke</u>





# **Motivation**

- DNNs become a general method (almost easy to use).
- Lots of decisions involved in designing a DNN
  - Input representation, input preprocessing
  - #layers, #neurons, layer type, dropout, regularizers, cost function
  - Initialization, mini-batch size, #epochs, early stopping (patience)
  - Optimizer, learning rate...
- Provide a starting point for beginners.



# **Considered MIR Tasks**

- 7 Categories
  - Feature Learning (FL)
  - F0-Estimation (F0)
  - Automatic Music Transcription (AMT)
  - Beat and Rhythm Analysis (BAR)
  - Music Structure Analysis (MSA)
  - Chord Recognition (CR)
  - Audio Source Separation (ASP)
  - Various (e.g., Singing Voice Detection, Tagging, ...) (VAR)

## 76 publications, 149 authors



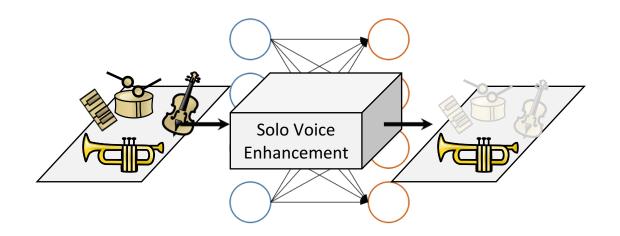
## **Overview**



- 1. Feature Learning
- 2. Beat and Rhythm Analysis
- 3. Music Structure Analysis
- 4. Literature Overview



Philippe Halsman, "Louis Armstrong"



# **Feature Learning**

© AudioLabs, 2017 Balke and Müller



# Feature Learning ....where it all began

- Core task for DNNs: Learn a representation from the data to solve a problem.
- Task is very hard to define!
   Often evaluated in tagging, chord recognition, or retrieval application.

| Task                | Year | Authors                 | Ref.            | Type | Input                    | Pre-proc. |
|---------------------|------|-------------------------|-----------------|------|--------------------------|-----------|
| $\mathrm{FL}$       | 2013 | Schmidt and Kim         | [67]            | DBN  | HC                       |           |
| $\operatorname{FL}$ | 2010 | Hamel and Eck           | [30]            | DBN  | $\operatorname{LinS}$    |           |
| $\operatorname{FL}$ | 2017 | Dai et al.              | [15]            | CNN  | Raw                      |           |
| $\operatorname{FL}$ | 2012 | Hamel et al.            | [33]            | FNN  | $\operatorname{LogMelS}$ | PCA       |
| $\mathrm{FL}$       | 2016 | Korzeniowski and Widmer | [43]            | FNN  | LogLogS                  |           |
| $\mathrm{FL}$       | 2017 | Balke et al.            | $\left[2 ight]$ | FNN  | $\operatorname{LogS}$    | —         |
| $\mathrm{FL}$       | 2011 | Hamel et al.            | [32]            | FNN  | $\operatorname{MelS}$    | PCA       |
| $_{\rm FL}$         | 2014 | Dieleman and Schrauwen  | [17]            | CNN  | Raw                      |           |

© AudioLabs, 2017



# Application: Query-by-Example/Solo

### **Retrieval Scenario**

Given a monophonic transcription of a jazz solo as query, find the corresponding document in a collection of polyphonic music recordings.

#### **Solo Voice Enhancement**

- 1. Model-based Approach [Salamon13]
- 2. Data-Driven Approach [Rigaud16, Bittner15]

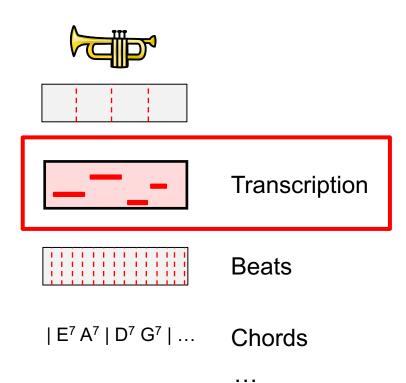
#### **Our Data-Driven Approach**

Use a **DNN** to learn the mapping from a "polyphonic" TF representation to a "monophonic" TF representation.



# Weimar Jazz Database (WJD)





- [Pfleiderer17]
- 456 transcribed jazz solos of monophonic instruments.
- Transcriptions specify a musical pitch for physical time instances.
- 810 min. of audio recordings.

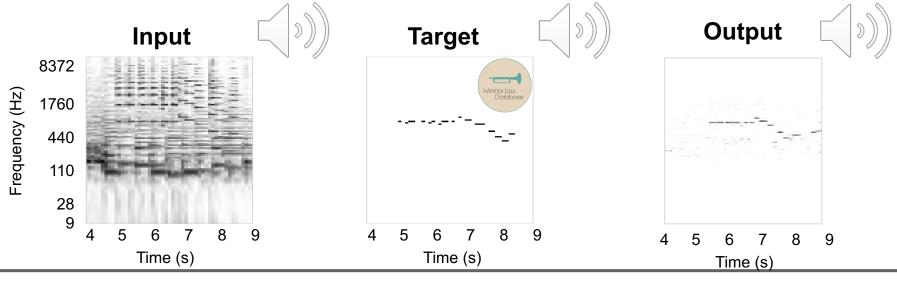
Thanks to the Jazzomat research team: M. Pfleiderer, K. Frieler, J. Abeßer, W.-G. Zaddach



# **DNN** Training

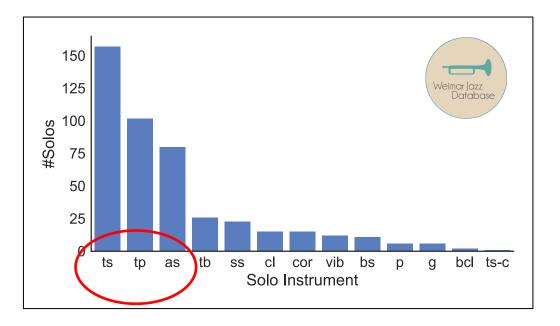
Stefan Balke, Christian Dittmar, Jakob Abeßer, Meinard Müller, ICASSP 17

- Input: Log-freq. Spectrogram (120 semitones, 10 Hz feature rate)
- **Target:** Solo instrument's pitch activations
- Output: Pitch activations (120 semitones, 10 Hz feature rate)
- Architecture: FNN, 5 hidden layers, ReLU, Loss: MSE, layer-wise training

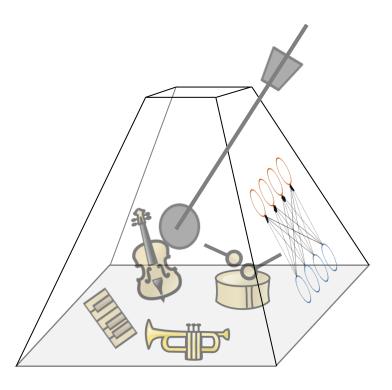


# **Feature Learning**

- Less domain knowledge needed to learn working features.
- Know your task/data.
   Accuracy is not everything!







# **Beat and Rhythm Analysis**

© AudioLabs, 2017 Balke and Müller



# Beat and Rhythm Analysis

| Task                 | Year | Authors               | Ref.            | $\mathbf{Type}$  | Input                    | Pre-proc.             |
|----------------------|------|-----------------------|-----------------|------------------|--------------------------|-----------------------|
| BRA                  | 2010 | Eyben et al.          | [25]            | RNN-BLSTM        | LogMelS                  | DERIV                 |
| BRA                  | 2011 | Böck and Schedl       | $\left[5 ight]$ | RNN-BLSTM        | $\operatorname{LogMelS}$ | DERIV                 |
| BRA                  | 2012 | Battenberg and Wessel | [3]             | DBN              |                          |                       |
| $\operatorname{BRA}$ | 2014 | Böck et al.           | [7]             | <b>RNN-BLSTM</b> | $\operatorname{LogS}$    |                       |
| BRA                  | 2016 | Böck et al.           | [9]             | <b>RNN-BLSTM</b> | $\operatorname{LogS}$    | DERIV                 |
| BRA                  | 2016 | Elowsson              | [23]            | FNN              | $\mathrm{HC}$            |                       |
| BRA                  | 2016 | Holzapfel and Grill   | [35]            | CNN              | m LogLogS                | $\operatorname{STDF}$ |
| BRA                  | 2016 | Krebs et al.          | [46]            | <b>RNN-BGRU</b>  | $\mathrm{HC}$            |                       |
| $\operatorname{BRA}$ | 2016 | Durand and Essid      | [21]            | CNN              | $\mathbf{HC}$            |                       |
| BRA                  | 2017 | Durand et al.         | [22]            | CNN              | $\mathrm{HC}$            |                       |
| BRA                  | 2015 | Böck et al.           | [8]             | <b>RNN-BLSTM</b> | $\operatorname{LogMelS}$ | DERIV                 |

#### Beat Tracking:

Find the pulse in the music which you would tap/clap to.

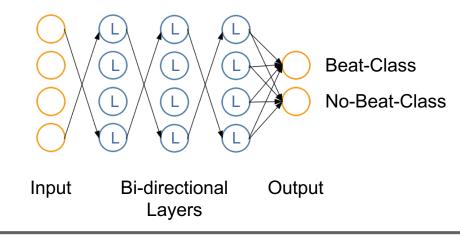




# **Beat and Rhythm Analysis**

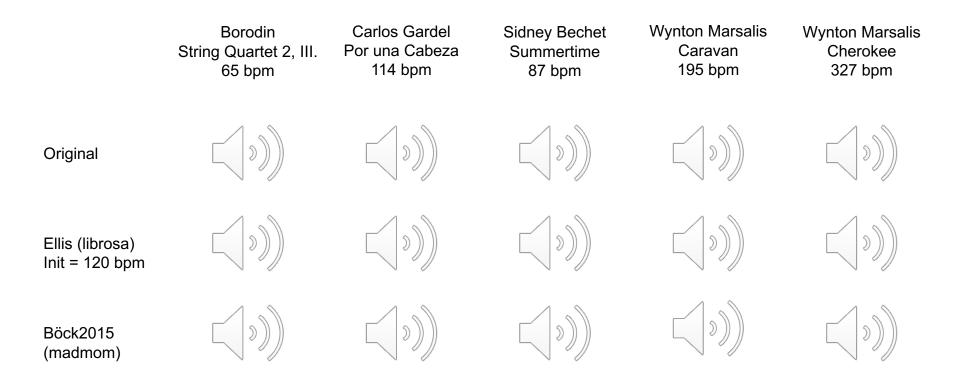
Sebastian Böck, Florian Krebs, and Gerhard Widmer, DAFx 2011

- Input: 3 LogMel spectrograms (varying win-length) + derivatives
- Target: Beat annotations
- **Output:** Beat activation function  $\in$  [0, 1]
- **Post-processing:** Peak picking on beat activation function
- Architecture: RNN, 3 bidirectional layers, 25 LSTM per layer/direction





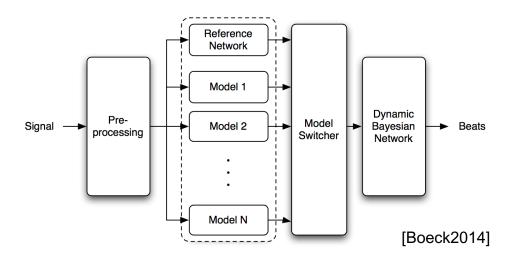
# Beat Tracking Examples



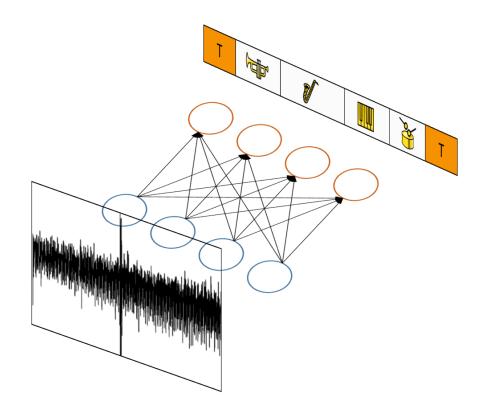


## **Beat Tracking**

- DNN-based methods need less task-specific initialization (e.g., tempo).
- Closer to a "universal" onset detector.
- Task-specific knowledge is introduced as post-processing step:







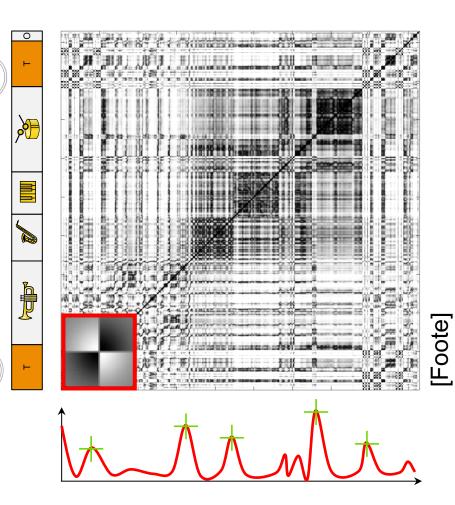
© AudioLabs, 2017 Balke and Müller



| Task | Year | Authors                  | Ref. | Type | Input                    | Pre-proc. |
|------|------|--------------------------|------|------|--------------------------|-----------|
| MSA  | 2017 | Cohen-Hadria and Peeters | [14] | CNN  | LogMelS, SSM             |           |
| MSA  | 2014 | Ullrich et al.           | [75] | CNN  | $\operatorname{LogMelS}$ | —         |
| MSA  | 2015 | Grill and Schlüter       | [28] | CNN  | $\operatorname{LogMelS}$ |           |
| MSA  | 2015 | Grill and Schlüter       | [29] | CNN  | LogMelS                  | HPSS      |

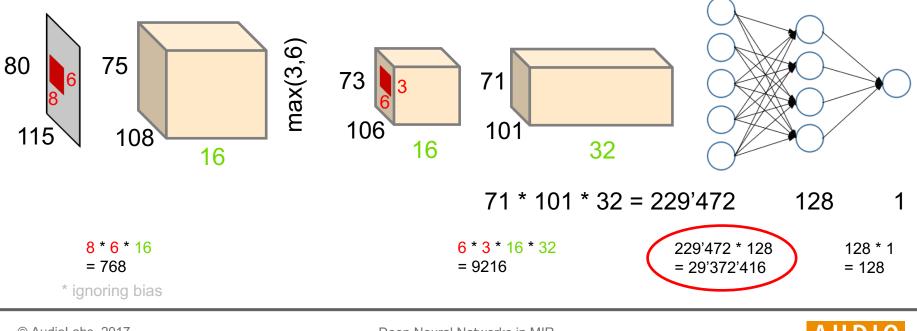
))

- Find boundaries/repetitions in music
- Classic approaches:
  - Repetition-based
  - Homogeneity-based
  - Novelty-based
- Main challenges:
  - What is structure?
  - Model assumptions based on musical rules (e.g., sonata).



Karen Ullrich, Jan Schlüter, and Thomas Grill, ISMIR 2014

- Input: LogMel spectrogram
- Target: Boundary annotations
- **Output:** Novelty function  $\in$  [0, 1]
- Post-processing: Peak picking on novelty function



© AudioLabs, 2017 Balke and Müller

Results

#### SALAMI 1.3

#### Tolerance

## Ullrich et al. (2014)

| Algorithm          | F-measure | Precision | Recall |
|--------------------|-----------|-----------|--------|
| Upper bound (est.) | 0.68      |           |        |
| 16s_std_1.5s       | 0.4646    | 0.5553    | 0.4583 |
| MP2 (2013)         | 0.3280    | 0.3001    | 0.4108 |
| MP1 (2013)         | 0.3149    | 0.3043    | 0.3605 |
| OYZS1 (2012)       | 0.2899    | 0.4561    | 0.2583 |

## SALAMI 2.0 Grill et al. (2015)

| Algorithm                     | <b>F</b> <sub>1</sub> | <b>F</b> .58 | Rec. | Prec. |
|-------------------------------|-----------------------|--------------|------|-------|
| Upper bound (est.)            | .74                   | .74          |      |       |
| All features, multi+fine ann. | .508                  | .529         | .502 | .572  |
| MLS+SSLM-near, multi+fine     | .496                  | .506         | .509 | .536  |
| MLS+SSLM-near, single ann.    | .469                  | .466         | .504 | .475  |
| SUG1 (2014)                   | .422                  | .442         | .422 | .490  |
| MP2 (2013)                    | .294                  | .280         | .362 | .271  |
| MP1 (2013)                    | .276                  | .270         | .311 | .269  |
| NB1 (2014)                    | .270                  | .246         | .374 | .229  |
| KSP2 (2012)                   | .263                  | .231         | .422 | .209  |
| Baseline (est.)               | .15                   | .21          |      |       |

|        | Algorithm          | F-measure | Precision | Recall |
|--------|--------------------|-----------|-----------|--------|
|        | Upper bound (est.) | 0.76      |           |        |
| 3.0 s: | 32s_low_6s         | 0.6164    | 0.5944    | 0.7059 |
| 0.0 3. | 16s_std_1.5s       | 0.5726    | 0.5648    | 0.6675 |
|        | MP2 (2013)         | 0.5213    | 0.4793    | 0.6443 |
|        | MP1 (2013)         | 0.5188    | 0.5040    | 0.5849 |

- Added features (SSLM)
- Trained on 2 levels of annotations
- SUG1 is similar to [Ullrich2014]





| Task | Year | Authors                  | Ref. | Type | Input        | Pre-proc. |
|------|------|--------------------------|------|------|--------------|-----------|
| MSA  | 2017 | Cohen-Hadria and Peeters | [14] | CNN  | LogMelS, SSM |           |
| MSA  | 2014 | Ullrich et al.           | [75] | CNN  | LogMelS      |           |
| MSA  | 2015 | Grill and Schlüter       | [28] | CNN  | LogMelS      |           |
| MSA  | 2015 | Grill and Schlüter       | [29] | CNN  | LogMelS      | HPSS      |

- Re-implementation by Cohen-Hadria and Peeters did not reach reported results.
- Possible reasons:
  - Data identical?
  - Different kind of convolution? What was the stride?
  - Didn't ask?
  - Availability of pre-trained model would be awesome!



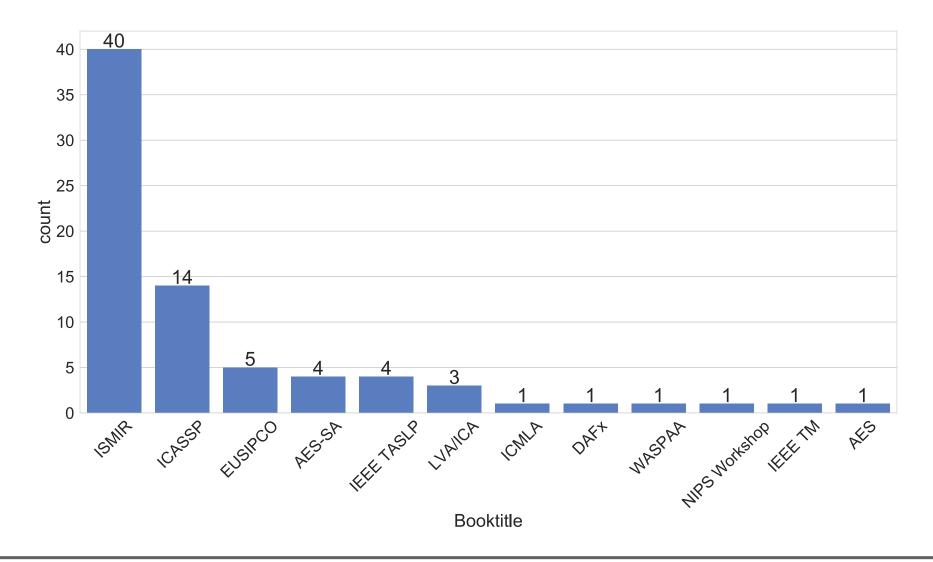


# **Literature Overview**

© AudioLabs, 2017 Balke and Müller

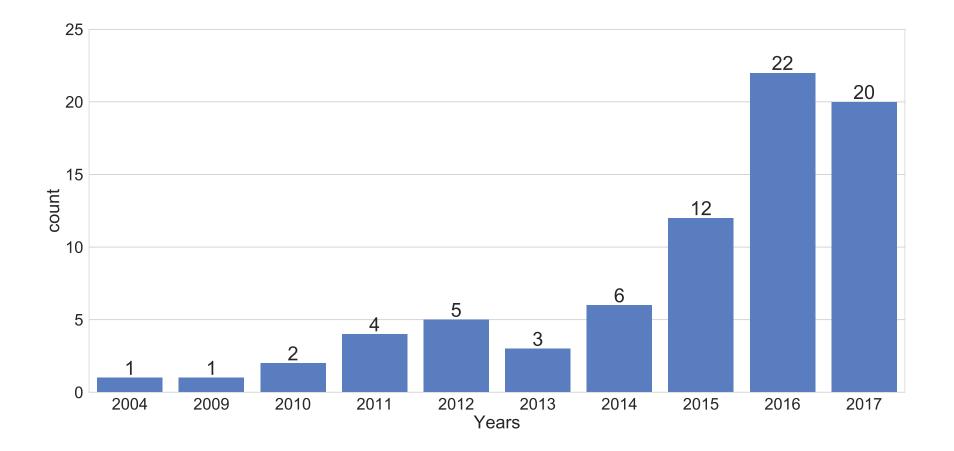


# **Publications by Conference**



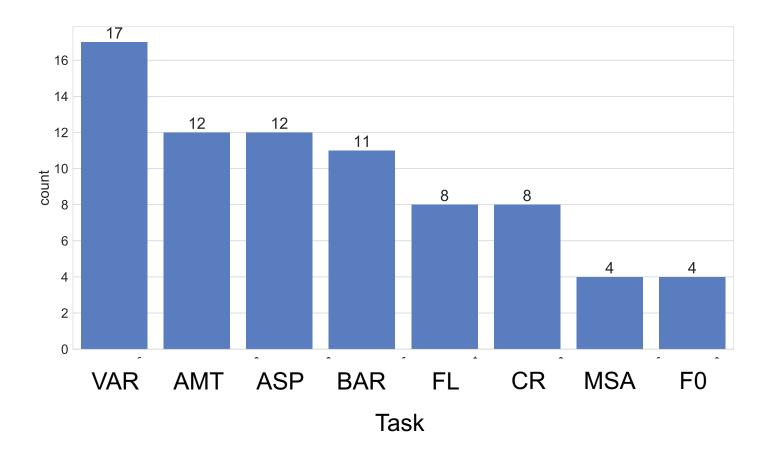


# Publications by Year



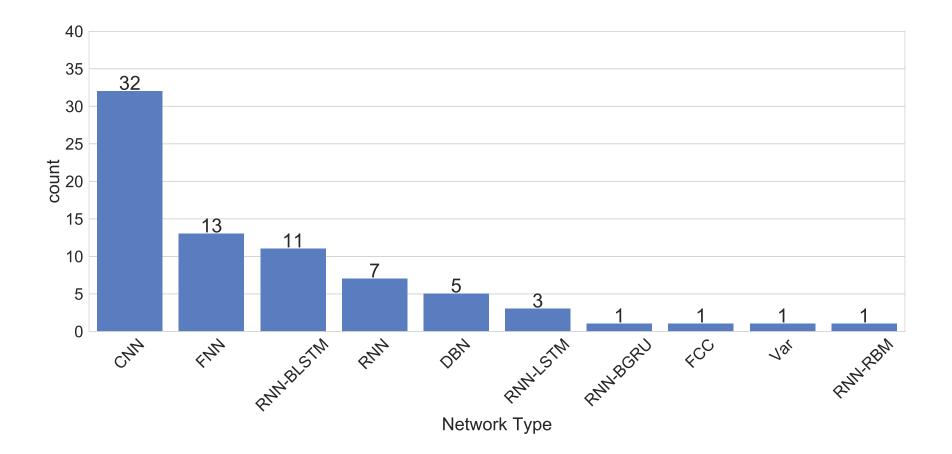


# Publications by Task



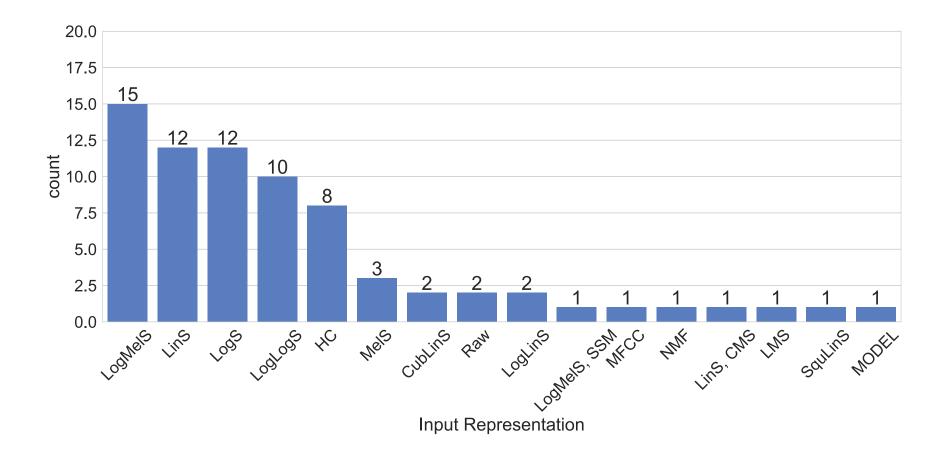


# **Publications by Network**



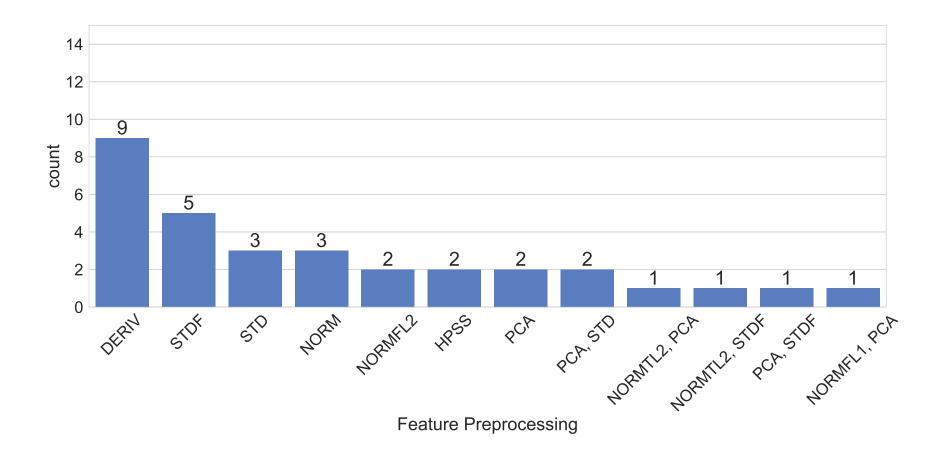


# **Input Representations**





# **Feature Preprocessing**





# **Deep Neural Networks in MIR**

## Other resources:

- Jordi Pons <u>http://jordipons.me/wiki/index.php/MIRDL</u>
- Keunwoo Choi

https://docs.google.com/spreadsheets/d/1cIR7sp-HFDs7UI72CA-98yFc5fimQxMrq13e4fj3iA4

Yann Bayle

https://github.com/ybayle/awesome-deep-learning-music

Work in progress...



# Conclusion

- How can we contribute to the progress of DNN research?
  - Provide well-/ill-defined tasks and labeled data.
  - Much existing experience for sanity-checks (e.g., network inspection, feature sonification).
  - Explore generalization with different genres.
  - Tweak architectures for a given task (e.g., use musical knowledge).
- Interested in the "report"?
- Interested in jazz music? Happy to collaborate!

