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Abstract—Training deep neural networks on unaligned se-
quence data is fundamental to tasks such as automatic speech
recognition, lyrics alignment, and music transcription. Strongly
aligned annotations, which provide frame-level correspondences
between input and target sequences, are often costly, impractical,
or unreliable. In contrast, weakly aligned annotations, which
specify only segment-level alignment, are more scalable and easier
to obtain, but present challenges for training and supervision.
A widely used technique for handling weakly aligned data is
Connectionist Temporal Classification (CTC). While CTC enables
end-to-end training without explicit alignments, it is difficult
to interpret, structurally rigid, and relies on a special blank
symbol to handle label repetitions. The main contribution of this
work is to explore the relationship between CTC and the less
commonly used but conceptually simpler Soft Dynamic Time
Warping (SDTW), which offers a more intuitive and flexible
approach to weak alignment. We introduce a generalization of
SDTW that incorporates cell-wise step weights, variable step
sizes, and flexible boundary conditions. We refer to this extended
framework as Differentiable Dynamic Time Warping (dDTW),
which naturally subsumes CTC and SDTW as special cases
and provides a unified perspective on these alignment-based
losses. We systematically compare SDTW, CTC, and related
variants in two controlled and illustrative tasks from music
information retrieval, analyzing prediction accuracy, training
stability, alignment behavior, and the implications of the blank
symbol, in both single- and multi-label problems.

Index Terms—CTC, DTW, SDTW, dDTW, differentiable align-
ment, music synchronization.

I. INTRODUCTION AND RELATED WORK

Training deep neural networks (DNNs) on large amounts
of sequential data is a core strategy in various domains,
including automatic speech recognition (ASR) [1], motion
alignment [2], and music transcription [3]. Ideally, such tasks
rely on training data comprising precisely aligned input-target
pairs with frame-wise correspondence.

While strongly aligned data are often difficult to obtain,
weakly aligned input—target segments, where only the start
and end points of regions are known, can be more readily
obtained. In ASR, weak targets often consist of the corre-
sponding text or phoneme sequences without explicit timing.
In music information retrieval (MIR), such weak targets can
be derived for a given music recording from a corresponding
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Fig. 1. Schematic illustration of alignment-based loss functions. The dDTW
framework generalizes the CTC and SDTW algorithms.

score that includes unaligned note content. One approach for
training DNNs on weakly aligned pairs of input data and
labels is an iterative alignment and prediction refinement in an
expectation-maximization (EM)-like fashion [4], [5]. Other ex-
amples of model architectures and training paradigms handling
weakly aligned data are the attention mechanism [6], optimal
transport [7], and the utilization of sequential models like
RNNs [8] (see Fig. 1 for a schematic overview of alignment
paradigms).

A widely adopted method for end-to-end DNN training with
weak supervision is the Connectionist Temporal Classification
(CTC) loss [9], which provides a differentiable mechanism
to align prediction and label sequences during loss computa-
tion. Originally introduced for sequence labeling tasks, CTC
has since become a standard loss function in areas such as
image-based sequence recognition [10] and speech recogni-
tion [11]. In MIR, CTC has been successfully applied to tasks
such as score—audio retrieval [12] and lyrics alignment [13].
To address multi-label scenarios, the classical CTC algorithm
has been extended to multi-label CTC (MCTC) [14], and
successfully applied to multi-pitch and pitch class estimation
tasks [15], [16]. While CTC is known for its algorithmic sta-
bility and the potential to train large models from scratch using
unaligned data, it also presents several limitations. Specifically,
the formulation can be unintuitive, especially in the multi-
label setting, structurally inflexible, and reliant on a special
blank symbol. This blank symbol is designed to model target
repetitions and implicitly stabilize the alignment process, but
introduces architectural constraints and often leads to spiky,
blank-dominated predictions during inference [9], [12], [17].
Furthermore, CTC is inherently limited to feature-to-label
tasks with targets from a finite alphabet.

Similarly, Soft Dynamic Time Warping (SDTW) [18],
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[19] offers a differentiable generalization of classical Dy-
namic Time Warping (DTW) [20]. By replacing the hard
minimum operator with a smooth approximation, SDTW
remains conceptually simple and interpretable. Applications
of SDTW in MIR include performance—score synchroniza-
tion [21] and multi-pitch estimation (MPE) [22]. Several
extensions have been proposed to improve SDTW, including
alternative smoothing strategies [23], improvements regard-
ing mathematical properties [24], training stabilization tech-
niques [25], and customizable step weights [26]. Unlike CTC,
SDTW operates on arbitrary cost matrices and is applicable to
diverse problem settings, including feature-to-label tasks via
one-hot and multi-hot encodings, as well as feature-to-feature
alignment tasks using continuous-valued feature representa-
tions [27], [28].

In this paper, we establish a formal connection between
CTC and SDTW by reformulating the CTC objective to match
a generalized SDTW formulation. To reveal a mathematical
connection between the two losses, we extend SDTW with
three building blocks: parameterizable cell-wise step weights,
individualized step sizes, and flexible boundary conditions
(see Fig. 1). We refer to this generalized alignment algorithm
as Differentiable Dynamic Time Warping (dDTW) and de-
rive efficient dynamic programming (DP) recursions for both
the forward and backward passes. The proposed framework
explicitly relates CTC and SDTW, with both being special
cases of dDTW. It offers a more interpretable alternative to
CTC while removing several of its limitations, most notably,
the need for a special blank symbol. In an illustrative and
controlled experiment—specifically, pitch class estimation from
music recordings—we compare CTC and SDTW within the
common dDTW framework, evaluating prediction accuracy,
training stability, alignment behavior, and discussing the im-
pact of and alternatives to the blank symbol. Our results show
that a well-parameterized dDTW loss retains the stability of
CTC, eliminates the need for a blank symbol, and achieves
even higher prediction accuracy. These findings offer a basis
for differentiable alignment techniques beyond the classical
CTC loss.

The remainder of this paper is structured as follows. In
Sections II and III, we briefly review the objectives of CTC
and SDTW, respectively, focusing on their global formulations
rather than algorithmic specifics. In Section IV, we present our
first main contribution: a formal transformation between the
CTC and SDTW objectives, along with the modifications to
SDTW required to achieve equivalence. As our second main
contribution, we introduce in Section V the dDTW algorithm,
which incorporates these extensions to SDTW. We detail its
building blocks and provide efficient DP recursions for the
loss and gradient computation. We specify label probabilities
and cost functions in Section VI and experimentally evaluate
in Section VII performance of CTC, SDTW, and combina-
tions thereof in the unified dDTW framework. Finally, we
summarize our findings and outline future research directions
in Section VIII.

II. CTC REVISITED

In this section, we describe the CTC objective function
as proposed by Graves et al. [9]. Our aim is to gain a
conceptual understanding of CTC, rather than focusing on
algorithmic details. Therefore, we limit the description to the
global loss objective of CTC and refer the reader to the original
publication [9] for implementation details regarding, e.g., the
forward and backward passes using DP.

Notation

Throughout this paper, we adopt the following nota-
tion: sets are denoted by curly braces, e.g., {a,b,c};
sequences by parentheses (a,a,b,c,a); continuous ranges
by [, 5] = {z € Rla < & < §}; discrete integer ranges by
[1:N] :=={1,2,...,N}. Vectors are represented by lowercase
letters (e.g., ), and matrices are denoted by uppercase letters
(e.g., X), with coefficients given by X(n,m).

A. Alphabet, Labels, and Predictions

Following the original CTC paper [9], we define an alpha-
bet A = {ay,...,as} of available symbols, and extended
alphabet A" = A U {e} including a special blank symbol e.
Let Y = (y1,...,yn) denote a label sequence with labels
ym € A. The label sequence represents the symbols in their
correct order but does not encode any information about the
duration of individual symbols. For example, in ASR, a label
sequence may correspond to a phoneme sequence, while in
music transcription it may represent a sequence of note events
derived from a musical score. As the CTC requires a special
blank symbol, we follow [9] by adding the blank symbol
before and after every element in Y, resulting in the extended
label sequence Y° = (e,y1,¢,...,6,yn,€) = (U5, -, YSse)
with M¢ = 2M + 1 and y¢, € A’. Furthermore, we
define output features, also called prediction sequence
X = (x1,...,xy) with z, € Fx, where Fx denotes an
abstract feature space, e.g., symbol probabilities.

B. Label Paths

Our goal is to align the label sequence to the prediction
sequence. Following [9], we establish notation for alignments
in terms of label paths 7 = (7y,...,mx), which model the
alignment as a sequence of label symbols from the extended
alphabet with m, € A’. To define a validity condition for
a label path, a projection operator xy : AN — ASN g
defined that takes a label path 7 of length N and first collapses
repeated symbols and then removes all blank symbols, yielding
a label sequence of length < N. A valid label path must, by
definition, satisfy ky(7) = Y and can be constructed from
the extended label sequence Y °, with the following rules:

« Start condition: 7; is either the blank symbol € or the
first label y;; in other words, m1 € {y5,95}.

¢ End condition: 7, is either the blank symbol ¢ or the
last label yys; in other words, Tn € {y$/e_ 1, Y5se } -

« Step sizes: 7 is a (weakly) monotonic unfolding of Y.
Leaving out blank symbols is allowed if the preceding
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Fig. 2. Overview of CTC loss computation. (a) Prediction sequence X. (b) Extended alphabet .A’. (c) Probabilities of alphabet symbols p(a;|zr ). (d) Label
sequence Y. (e) Extended label sequence Y°. (f) Probabilities of extended labels p(yS, |xr). (g) Possible label path 7 corresponding to circles in (f).

and succeeding labels are different. In other words, let
Tp = Yy, then

if vy, # yfn+2 )
else.

Tp+1 € {yfmyfnﬂayfnﬂ}v
Tnt1 € {Un i1 } 5 ey

The set of all valid label paths of length NV that collapse to a
label sequence Y is denoted by x ' (Y).

C. CTC Objective

Following [9] and assuming conditional independence of
predictions and labels over time, we define the probability of
a label path 7 given a prediction sequence X as

H p 7Tn|xn )

where p(7,|z,) denotes the probability of label 7, given the
feature vector x,. We will give a concrete example of this
probability in Section VI. The probability of the label sequence
Y is obtained by summing the probabilities of all valid label
paths 7 € x'(Y) that project to Y

b

7r€n;,1 (V)

p(r|X) = @)

p(Y[X) = p(m|X). 3)

While the direct evaluation of (3) has computational complex-
ity O(|ky'(Y)| - N), in practice the CTC loss is computed
efficiently using a dynamic programming (DP) recursion with
complexity O(Me® - N) [9].

D. Practical Implementation

In standard CTC implementations, the process starts by
computing probabilities for all symbols in the extended alpha-
bet A’ conditioned on the network predictions X (Fig. 2a-c).
The label sequence (Fig. 2d) is then expanded by insert-
ing blanks before and after each label (Fig. 2e), and rows
from the alphabet probability matrix are arranged accordingly
(Fig. 2f). The loss is computed on this re-arranged matrix
by accumulating the probabilities of all valid label paths 7
(Fig. 2g). For large alphabets (e.g., in multi-pitch estimation),

computing probabilities for all symbols becomes computation-
ally expensive (Fig. 2c¢). This can be mitigated by restricting
the alphabet to only active labels at each step, reducing
complexity, however, at the cost of additional preprocessing.

III. SDTW REVISITED

In this section, we briefly describe the SDTW loss function
as proposed by Cuturi et al. [18] by defining the cost matrix
as an input to the algorithm, specifying alignment paths, and
outlining the global objective of SDTW.

A. Labels, Predictions, and Cost Matrix

The computation of the SDTW loss is based on a cost
matrix C € RV*M (Fig. 3c) that is computed from two

sequences X = (z1,...,zy) (Fig. 3a) and Y = (y1,...,ynm)
(Fig. 3b) [18] with =, € Fx and y,, € Fy (e.g., Fy = A').
The elements of the cost matrix are defined as

C (n) m) = C(Xm Ym) s “4)

where ¢ : Fx X Fy — R is a local cost function, e.g., binary
cross-entropy (BCE). In the next section, we define alignment
paths over the cost matrix.

B. Alignment Paths

While the label path introduced for CTC is defined w.r.t.
the elements in the alphabet A’, we can alternatively define
an equivalent alignment path P = (p;,...,pr) that indexes
a sequence of cost matrix cells p, = (ng,my) € Z for
¢ e [1: L], where

Z:=[1:N]x][l:M] 5)

denotes the set of all cells in the cost matrix. Analogously, the
index pairs (ng, my) provide a mapping between the two fea-
ture sequences X and Y, as known from classical DTW [20].
Valid alignment paths follow a set of constraints, in particular
boundary and step size conditions. We specify boundary
conditions Bgiart and Beng that define the allowed start and
end points for the alignment path. The boundary conditions are
given by a set of integer pairs, i.e., Bstart, Bena € Z. For any
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Fig. 3. Overview of SDTW loss computation. (a) Prediction sequence X. (b)
Label sequence Y. (c) Cost matrix C. A possible alignment path is illustrated
with circles.

alignment path P, it must hold that p; € Bgiart and pr, € Beng
such that the boundary conditions are fulfilled. We define the
allowed step sizes S = {(is,7s) |s € [1 : S]} as a set of integer
tuples with monotonicity constraint ¢ > 0,75 > 0,754+ 75 > 1
for all (is,js) € S. For all cells in the alignment path, it must
hold that py — py—1 € S. For SDTW, a valid alignment path
satisfies the following constraints [18]:

« Start condition: The first element of the alignment path
aligns the first elements of the prediction and target
sequences, i.e., Bstart = {(1,1)}.

o End condition: The last element of the alignment path
aligns the last elements of the prediction and target
sequences, i.e., Benda = {(N, M)}.

o Step sizes: The possible steps
8 ={(1,0),(0,1), (1, )}.

Let P denote the set of all valid alignment paths for two
sequences of length N and M, satisfying boundary and step
size conditions. The cardinality of P is given by the Delannoy
number [20].

are restricted to

C. SDTW Objective

The SDTW objective is to find the alignment path of
minimum total cost over the matrix C, restricted to valid paths
P € P. In its global formulation, the SDTW cost is defined
as the soft minimum of the total costs over all valid alignment
paths [18], [19]:

SDTW(C) =u({ > C(n,m) | PeP}) ©)
(n,m)epP
:*vlog(z exp( Y *C(n,m)/v)),
pPeP (n,m)epP

where o is a differentiable approximation of the minimum
function [18], [29]. In particular, we use the softmin function
defined as

#(Q) = —log( > exp (~a/7))., )
q€Q
for a finite set Q C R, where ~ is a temperature parameter
controlling the smoothness of the approximation. It can be
shown that the SDTW cost can be computed efficiently by a
DP recursion as long as y is defined as in (7) [19].

IV. RELATING CTC AND SDTW

In this section, we establish a formal connection between the
objectives of CTC and SDTW. First, in Section IV-A, we refor-
mulate the CTC and SDTW losses to an identical expression.
Next, in Section IV-B, we define necessary requirements on the
SDTW alignment paths to achieve mathematical equivalence.

A. Reformulation of CTC and SDTW

To view CTC and SDTW from a unified perspective,
we first define the CTC loss Lere(X,Y) as the negative
log-likelihood of the CTC objective, which is the standard
formulation in DNN training practice [9]. Starting from (2)
and (3), we obtain Lcrc, which we then bring to a log-sum-
exp formulation by introducing redundant exponential and log
terms:

Lore (X,Y) = —logp (Y]X) ®)

~log( Y ﬁpwzn))

7T€K,;1 (v)n=1

—log( > ﬁeXp(logp(Wnlmn)))

‘ﬂ'Efi;l(Y) n=1

—log( Z exp(zN:logp(wnmn))).

WEI{El(Y) n=1

In a next step, we first define the SDTW cost matrix
C € RVXM" over the prediction sequence X and the extended
label sequence Y° as

C(n,m) = —log p(ys,|xxs) - 9)

Last, we replace label paths m € ry'(Y) with suitably
designed alignment paths P € P that index elements in the
prediction sequence X and extended label sequence Y °:

Lore (X,Y)=—log > exp | > logp(ys,lem)

PeP (n,m)epP
= —vlog Z exp Z —C(n,m) /vy
PeP (n,m)epP
=SDTW (C) , (10)

where equality holds for v = 1. Note that this reformulation
introduces new requirements for the set of alignment paths P,
as they need to exactly replicate the properties of label paths
m used in CTC. We give an overview of these requirements
in the following section.

B. Necessary Properties for Equivalence of CTC and SDTW

To ensure mathematical equivalence in (10), all alignment
paths P must fulfill certain properties, as illustrated in Fig. 4.
In particular, the CTC algorithm aligns to the first predicted
element either the first element of the label sequence or the
first blank symbol. This modifies the start boundary condi-
tion to Bgstart = {(1,1),(1,2)}. Likewise, the last element
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of the prediction sequence is aligned to the last element in
the label sequence or the last blank symbol, resulting in
Bena = {(N,M° —1),(N, M¢)}. Considering the step sizes,
the CTC algorithm is strictly monotonic over the prediction
sequence (step sizes (1,0) and (1,1)), and permits the skip-
ping of blank symbols (step size (1,2)) when the adjacent
labels are different. This results in a set of allowed alignment
step sizes S = {(1,0),(1,1),(1,2)}, where the (1,2) step is
only permitted when skipping the blank label in the case of
non-repeating adjacent labels.

C. Conclusion

While the SDTW formulation from (6) can be evaluated for
arbitrary alignment paths P including the modified boundary
and step size conditions presented in Section IV-B, the ex-
haustive search over all possible alignment paths P is compu-
tationally inefficient. To address this, efficient DP recursions
have been proposed [18], which yield the optimal result of the
global formulation (6) when using the softmin approximation
from (7) [19]. However, the original SDTW formulation from
Cuturi and Blondel [18] enforces fixed start and end boundary
conditions at (1,1) and (N, M), respectively, and restricts
step sizes to the set {(1,0), (0,1),(1,1)}. In contrast, Mensch
and Blondel [19] propose a differentiable DP framework
for general weighted directed acyclic graphs, encompassing
algorithms such as Viterbi [30], SDTW [18], and attention
mechanisms [6]. However, their work does not explicitly detail
an efficient DP algorithm tailored for an SDTW variant with
the extended step sizes and boundary conditions required for
exact equivalence to CTC.

V. DIFFERENTIABLE DYNAMIC TIME WARPING

In the following, we introduce Differentiable Dynamic Time
Warping (dDTW), an extension of SDTW [18] that supports
flexible boundary conditions, arbitrary step sizes [19] and step
weights (extending [26]), and general minimum functions [19].
The formulation adopts standard DTW conventions and em-
ploys a mathematically convenient vector—matrix notation. In
this section, we assume label sequences of length M (or M*®
in the case of CTC) and prediction sequences of length N,
resulting in a cost matrix C € RY*M_ We specify a partial
order < on the set Z of cost matrix cells, indicating precedence
between cells:

it n<n',m<m, (n,m)#n',m).

(1)

(n,m) < (n',m")

A. dDTW Building Blocks

Our proposed dDTW algorithm is based on efficient forward
and backward DP recursions, building upon [18]. We define
the dDTW algorithm with four building blocks, namely the
boundary conditions, the allowed step sizes, the step weights
associated to the step sizes, and the minimum functions.
By choosing these building blocks accordingly, a variety of
alignment algorithms can be generalized. In the following
section, we define these building blocks to generalize CTC
and SDTW. An illustration of the dDTW building blocks
replicating CTC is provided in Fig. 4.

1 n > N
e = e
Ys =€ - M
=}
Q
Yg = Y2
ys =€ (1,0 w0 m
Ys =y || . (1,1)
3
n
yi=e || 9 (1,2) 1
x1 x2 T3 T4 x5 Ze6

Fig. 4. Schematic overview of accumulated cost updates in the dDTW
forward pass, parameterized to replicate CTC. For updating the green cell,
o is computed over prior steps (blue). Boundary conditions Bstart, Bend
are shown in orange. All purple cells must be updated before evaluating p;
yellow cells depend on the green cell; gray cells are unreachable under the
CTC parameterization.

1) Boundary Conditions: We specify boundary conditions
as a set of cells that define the allowed start and end
points for the alignment path. In the SDTW case, the start
boundary condition contains only the first sequence elements,
i.e., Bstart = {(1,1)}, whereas in the CTC parameterization
it contains the first blank symbol and the first label, i.e.,
Bstart = {(1,1), (1,2)}. The end boundary condition contains
in the SDTW case only the last sequence elements, i.e.,
Bena = {(N,M)}, and in the CTC case the last label
of the extended label sequence and the blank symbol, i.e.,
Bena = {(NvM - 1>7(N7M)}'

2) Step Sizes: We define the allowed step sizes as a
set of integer tuples. In the case of SDTW, we have
S ={(1,0),(0,1),(1,1)}, and in the case of CTC we have
S ={(1,0),(1,1),(1,2)}. In the CTC scenario it is necessary
to only allow the step (1, 2) in certain cells. While it is possible
to define individual step sizes for each cell, we choose a
different approach. We define a common set of step sizes S for
all cells and use cell-dependent step weights, where setting a
weight to infinity “blocks” forbidden steps from certain cells.

3) Step Weights: While individual weights associated with
each step size were proposed in prior work [26], we extend this
idea to cell-dependent step weights for all steps. We denote
the step weights for all cells by a tensor W € RY*M*5,
where the element W(n,m) € RY is a vector that contains
for a cell (n,m) the weights associated to the step sizes S.
For instance, in the case of CTC, the weight tensor assigns
a value of one to all permitted steps—specifically, (1,0) and
(1,1) are always allowed, while (1, 2) is permitted only if the
skipped symbol is a blank and the adjacent symbols differ—
and infinity to disallowed steps. In the parameterization for
SDTW, the weight tensor is an all-ones tensor.

4) Minimum Function: We denote by p a differentiable
approximation of the minimum function. In this work, we
exclusively use the softmin function as given in (7), with the
gradient Vi : R® — RS calculated as

exp (—qs/7)
V@), = (12)
g exp (—a/7)
for an ordered set of real numbers Q = {q¢1,...,qs}. Note

that dDTW can be used with arbitrary differentiable mini-
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Algorithm 1 DP forward pass for dDTW

Algorithm 2 DP backward pass for dDTW

1: Inputs:

2: Cost matrix C € RV*M indexed by cells 7
3: Boundary conditions Bggart, Bena © Z

4: Step sizes S = {(is,js) | s € [1: 5]}

5. Step weights W € RfXMXS

6: Minimum function ;. : R® — R

7: for m=1,..., M do
8: forn=1,...,N do
9. fors=1,..,5 do
10: f(n,m) _ if (n—is,m—3s)¢7T,
s D(n—is,m—js) + W(n,m,s)C(n,m), else,
11:  end for
12: f(n,m) _ Joo if (n,m) ¢ Bstart ,
S+1 C(n,m), else.
132 D(n,m) = p (Fn™)
14:  Save B(n,m) = Vyu (£(™™)) for backward
15: end for
16: end for
17: b ={D(n,m) | (n,m) € Bena}
18: ADTW(C) = i (b)

19: Output: dDTW cost IDTW(C) € R

mum functions, such as the “sparsemin” function [19], [31].
Howeyver, in this work, we concentrate on the soft minimum
function. Having defined the building blocks of dDTW, the
following sections define how these building blocks can be
integrated within the DP forward and backward recursions.

B. Forward Recursion

The dDTW algorithm takes as input a cost matrix
C € RV*M | calculated as described in (4). Following [18],
we approach the task of finding the minimum cost path
through the cost matrix C by iteratively computing a matrix
of accumulated costs D € RY*M with a DP algorithm.

To this end, for every cell (n,m) € Z, we define a vector
of accumulated incoming cost f (nm) ¢ RStL, with elements
[1:S] used for the cost of incoming steps (is,js) € S:

if (n—is,m—7js)¢7T,

f(n,m) — o0, (13)
s D(n—is,m—js) + W(n,m, s)C(n,m),

else,

and element S + 1 used for cost from a start boundary
condition:

lf (’fl, m) ¢ Bstart 9
else.

f(n m) — 00,
S C(n,m),

Evaluating the minimum function over cost values from in-
coming steps and potential start cells, we obtain the dDTW
forward recursion as

_y (f<n,m>> .

Note that the iteration requires the computation for cells in
increasing order, i.e., cell (n,m) can only be evaluated if all
cells (n/,m’) with (n’,m’) < (n,m) have been previously
computed. For later use in the backward recursion, we save

(14)

D(n,m) (15)

1: Inputs:

2:  Backtracking tensor B €
3: Boundary conditions Bstart, end C Z

4: End boundary costs b l\ib(" ™ €R | (n,m) € Bena}
5. Step weights W € IRNX

6: Step sizes S = {(zs,ys) | sel:8]}
7

8

9

RNXMXS

:form=DM,...,1 do
., 1 do
S do

for n = N
fors=1,...,

o 8dDTW(C) _J0, if (n+4is,m+js) ¢Z,
’ dD(n+is,m+js) E(n +is,m + js), else.
" dD(ntis,m+js) )0, if (n+is,m+js) ¢ L,

o0D(n,m)
12:  end for

n,m (n’m)
B (Vb)) ™ = {§7u(b)/3b :

B(n +is,m + js,s), else.

if (nvm) € Bendv

else.
. _ 3 8 dDTW(C) dD(n+is,m+js)
14: E(n7m) - ZS 1 8DE'VL+7LS,'NL+J'S) ' dD(n,m) .
+ [Vyu(b)] ")
15 fors=1,...,.5+1do
5 gtnm) W(n,m,s), %f s€el:9],
16: m: 1, if s=S+1 and (TL, m) c Bstarh
0, else.
17:  end for
) G _\yStipg a £l
18: (n,m) =321 B(n,m,s)- 9 C(n,m)
190 H(n,m)=E(n,m)- - G(n,m)
20: end for

21: end for
22: Output: Gradient H € RV*M

the gradient of the minimum function w.r.t. its input in a
backtracking tensor B € RN *Mx(S+1) with entries

B(n,m) = Vu (f<”’m>) € RS+, (16)
where the indices [1 : S| correspond to incoming steps,
and S + 1 corresponds to start boundary conditions. After
updating all cells (n,m) € Z, we collect all accumulated
cost values at cells given by the end boundary condition
in a set b:={b"™ €R | (n,m) € Bepa} with elements
b(™™) = D(n,m). The total cost IDTW (C) € R is given
by evaluating the minimum function p over the cost at the end
boundary cells specified by b:

dADTW(C) == u(b) .

The complete forward algorithm for dDTW is summarized in
Algorithm 1.

a7

C. Backward Recursion

Our goal is to obtain the gradient of the total cost
dDTW (C) with respect to the local cost matrix C, de-
fined as H = VcdDTW (C) € RM*M. We interpret
the partial derivative H(n,m) = 9dDTW(C)/0 C(n,m)
as the “contribution” of cell (n,m) to the total alignment
cost. To calculate these contributions iteratively, we “reverse”
the forward recursion [18]. This concept is similar to the
backtracking of classical DTW [20].
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First, we apply the chain rule to separate the contribution of
cost C(n,m) to the accumulated cost D(n, m) (denoted by
G(n,m)), and the contribution of accumulated cost D(n,m)
to the total cost (denoted by E(n,m)) [18]:

__ 0dDTW (C)
H(n,m) = 9C . m)

_ 0dDTW (C) 0D(n,m)

~ 9D(n,m) 9C(n,m)

=E(n,m) - G(n,m), (18)
where we define E(n,m):=9dDTW(D)/dD(n,m)
and G(n,m)=0D(n,m)/0C(n,m). To compute
E,G € RV*M  we again iterate over all cells (n,m) € Z.
In the backward recursion, the iteration is executed in
reverse order as compared to the forward recursion, i.e.,
cell (n,m) can only be evaluated if all cells (n',m’)
with (n,m) < (n/,m’) have been previously computed. For
calculating the matrix E, we use the chain rule to reformulate:

s

. 8D(n+is,m—|—js)
0D(n,m)

B ddDTW (C)
E(n7m) - g 8D(n+157m+j5)

+ [Va(b) ™™ (19)

with (is,js) € S. The first term in (19) denotes the influence
of a following cell on the total cost and, as in standard
SDTW [18], is given by previously computed entries of the
E-matrix:

0dDTW (C) |0, if (n+is,m+js) ¢7Z,
OD(n+is,m~+js) | B(n+is,m+ js), (20)
The second term in (19), also found in standard SDTW [18],

denotes the influence of the current cell on a following cell
and is given by the previously computed backtracking matrix:

8D(n+i5,m—|—js)_ 0,
dD(n,m) B+ is,m A s, 5),

else.

if (n+is,m+js) ¢7Z,
else. (21)

The third term in (19) denotes potential contributions coming
from the end boundary conditions:

[Vu(b)}(n,m) _ {8M(b)/ab(n,m)7 if (TL, m) € Bend7

0, else.

In other words, (19) describes the influence of a cell’s accu-
mulated cost D(n,m) on the total alignment cost IDTW (C)
by summing up the influence of a cell (n,m) on its children
(n +is,m + js) weighted with the influence of the children
(n+is, m+js) on the final cost IDTW (C), and an additional
term [V(b)]"™™ describing the influence of a path ending
in (n,m) on the overall dDTW cost. This expression can be
thought of as a soft version of the backtracking algorithm
from classical DTW [20]. By again applying the chain rule,
we obtain G(n,m) as

(22)

S+1

G(n,m) = Z 9 £ ' 9 C(n,m)

; (23)

s=1
where the first term in (23) is given by the backtracking matrix
0D(n,m)

af(n’m) = B(n, m, S) ,

(24)

and the second term in (23) is given by either the step weight,
or, in the case (n,m) is in the start boundary conditions, a
factor of one:

8fs(n,m) W(n,m,s), lf S € [1 : S},
aCmm) | " if s=5+1 and (n,m) € Bygar,
) else. (25)

The full backward pass is summarized in Algorithm 2. If
we use unweighted dDTW, where all step weights are one
(W is an all-ones matrix), G also becomes an all-ones matrix
and thus H = E [26]. The matrix E can be interpreted as a
“soft alignment matrix” [18], with entries E(n,m) describing
the probability of sequence elements z,, and y,, being aligned
under the dDTW loss. We visualize the soft alignment matrix
in Fig. 10 and refer to [18], [25], [26] for further explanations.

VI. LABEL PROBABILITIES AND COST FUNCTIONS

In the previous sections, we analyzed CTC and SDTW from
an alignment perspective, neither specifying how predictions
X and targets Y are represented, nor how the probability
p(yS,|xn) and local cost function ¢(z,,, y.,) are defined. We
now clarify these aspects using two concrete examples, one
being a single-label (main-melody pitch class prediction, see
Section VII-B) and the other being a multi-label scenario
(polyphonic pitch class estimation from music recordings,
see Section VII-C). Both tasks, which are well-studied in
previous work [12], [16], [25], [26], serve three purposes:
First, they illustrate how to define suitable label probabilities
p(yS,|zy,) for the single- and multi-label CTC loss. Sec-
ond, they show how SDTW naturally accommodates even
multi-label representations through appropriate cost functions,
without increasing algorithmic complexity. Third, they clarify
the conceptual and computational differences and similarities
between CTC and SDTW.

A. Single-Label Classification

Estimating the activity of the twelve pitch classes
{C,CH{,D,...,B} (as typically used in 12-tone equal-
tempered scale in Western music) of the main melody (i.e.,
the musical theme, see Fig. 5) from an audio recording
presents a single-label classification task. The estimated pitch
classes can be used in applications such as theme-based music
retrieval [12]. The extended alphabet A’ contains the twelve
pitch class symbols plus the blank label. We model these
twelve targets plus the blank symbol as vectors with a one-
hot encoding, i.e., y5, € {0,1}7 (see Fig. 6). D € {12,13} is
chosen depending on the requirement of an additional blank
class. For example, in the score from Fig. 5, we model the
first note of the annotated theme (pitch class “D”) as a one-hot
vector y; = [0,0,1,0,...,0]. Similarly, the network outputs
vectors x,, € AP where AP is the D-dimensional probability
simplex, describing the predicted probabilities for all classes.

1) CTC: For CTC, we set D = 13 to include the blank
label in the feature space. Each predicted vector x,, contains in
its components the probabilities for all labels in the alphabet.
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P = = = = o a pitch class (and the blank label, if required, by choosing
© B S e D € {12,13}). N _
. ‘ =~ 1) Multi-Label CTC: In the original CTC formulation, all
T B == r— possible labels must be drawn from an alphabet .A. For a multi-

Fig. 5. Musical score of the first measures of Beethoven’s piano sonata Op.
14 No. 2, first movement. The main melody (theme) is highlighted in red.
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Label sequence index (m) Ext. label sequence index (m)

Fig. 6. Single-class target representations for the pitch classes corresponding
to the main melody (theme) of the running example in Fig. 5 for the first two
measures. (a) Label sequence Y. (b) Extended label sequence Y°.

Using vector notation, the label probabilities can be obtained
as

where the dot product (-, -) selects from the prediction vector
x,, the probability for the label given by the one-hot encoding
in y,,.

2) SDTW: For SDTW, we do not require the blank
symbol (i.e., D = 12) and directly use the weak labels
Y = (y1,...,ym) as the target sequence. To mirror the CTC
label probability specified in (26) in SDTW, we define the
cost function as the negative log-likelihood for the true class
label

C(xm ym) = - 10g<$n7 ym> 27)

and, while disregarding the blank symbol, fulfill the require-
ment ¢(n,Ym) = —logp(ys,|z,) given by (10). To avoid
changing the network architecture, we model rests as all-zero
vectors.

B. Multi-Label Classification

We now consider the joint estimation of pitch classes from
recordings containing voice and piano, forming a polyphonic
multi-label problem. As a scenario, we use songs for male
voice and piano from Schubert’s “Winterreise”, contained in
the multimodal Schubert Winterreise dataset (SWD) [32]. The
musical score (see Fig. 7 for an example) provides symbolic
labels that are weakly aligned to the audio. The multi-class
prediction of the simultaneously occurring pitch classes in an
audio recording can be used, e.g., for subsequent harmony
analysis [33] or as features for music synchronization [34].
We represent the multi-class labels Y = (y1,...,yn) as
twelve-dimensional multi-hot feature vectors ¥, € {0,1}12,
encoding in each of the twelve dimensions the activity of the
respective pitch class. For instance, the first chord in measure
15 contains the pitch classes {C, E”, G} and is encoded as
a multi-hot vector y; = [1,0,0,1,0,0,0,1,0,0,0,0] (see
Fig. 8a). Predictions are represented similarly as z,, € [0, 1],
where each component indicates the activation probability of

label task with 12 pitch classes, this implies |A| = 2!? = 4096
possible label combinations. Computing probabilities for all
such combinations is infeasible in practice. Therefore, prior
work on the multi-label CTC (MCTC) [14], [16] restricts the
alphabet to only those combinations actually occurring in the
label sequence Y. In our setup, we directly define the condi-
tional probabilities p(yS,|z,,) for the elements of the extended
label sequence y;, (see Fig. 8b), which can be used to compute
the CTC loss as in (10). Two cases must be distinguished based
on the index m: If m is odd, y;, = € (blank symbol), and if m
is even, y;, = Ym/2 (the corresponding multi-hot label from
Y), as defined in Section II-A. Following [14], [16], we define
multi-class probabilities

Py ) = {p(elxn),

(P(E‘»Tn) : p(ym/2|xn)7

if m is odd (blank), (28)
else (not blank) ,

where p(e|x,,) and p(€|x,) are the probabilities of presence
and absence of the blank symbol, respectively, and p(y, /2| 2x)
is the probability of the non-blank multi-hot label y,,, ;2 = yy,,-
The encoding of predictions is identical to single-label CTC
where we set D = 13, to extend each prediction by one
dimension to include a probability for blank. Thus, we have
z, € [0,1]'3, where ,, o corresponds to the blank and x,, ;
(with ¢ > 1) to pitch class activations. For the probabilities of
the blank symbol, we then have:

plelxn) = xno, pPETL) =1— 20 (29)

For a given multi-hot label y,, € {0,1}'? and prediction z,,
the probability of v, given x,, is modeled as the product over
all pitch classes:

12

P(Yml|an) = H(ymxm + (1 —ym,i)(1 — xm)) . (30)

i=1
assuming conditional independence of pitch classes.

2) SDTW: For the SDTW training, we directly use the
weak labels Y = (y1,...,ynm) encoded as multi-hot vec-
tors y,, € {0,1}12 for training. Analogously, the predictions
X = (x1,...,zy) are considered probabilities for the pitch
classes with z,, € [0,1]'2. We use the BCE as local cost
function:

12

CBCE('ITM ym) = - Z (ym,v', IOg z7z,i+(1_y7n,i) log(l—xn,i>> )

i=1
3D
which is a common choice in multi-label classification tasks.

C. Discussion

In both the single- and the multi-label configura-
tions above, we observe equality in the cost values
¢BCE(Zn, Ym) = —10g p(ym |y ), aligning with the require-

ment formulated in (10). Although the CTC and SDTW
objectives appear similar in form, they differ conceptually:
First, CTC requires explicit modeling of a blank symbol,
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Fig. 7. Excerpt from “Gute Nacht” (Schubert’s “Winterreise”),
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Fig. 8. Multi-class target representation for the pitch classes of the running
example in Fig. 7 for measures 15 and 16. (a) Label sequence Y. (b) Extended
label sequence Y°.

which impacts both the network architecture (adding an output
dimension) and the alignment computation. Second, MCTC
increases implementation complexity by constructing the prob-
abilities of multi-class labels from component-wise single-
class probabilities. In contrast, SDTW operates directly on two
feature sequences using a local cost function, without the need
for a blank label or probabilistic interpretation. This makes
SDTW not only more intuitive and didactically accessible but
also more flexible. The cost function ¢ can be freely adapted
(e.g., beyond BCE) without violating the underlying alignment
assumptions, and SDTW naturally supports real-valued target
sequences beyond binary multi-hot representations.

VII. EXPERIMENTS

In this section, we examine the core conceptual similarities
and differences between CTC and SDTW. The proposed
dDTW framework offers a unified view of both losses, al-
lowing us to compare their behavior in a common language.
With suitable parameter choices (Section VII-A), dDTW spans
a continuum from SDTW to CTC, so we can study not only
the two endpoints but also the effects of individual algorithmic
components. Although dDTW enables task-specific tuning of
step sizes and weights, softmin temperature, and even the
minimum operator itself, a comprehensive ablation is beyond
our scope. In the following, we focus on the parameter
settings that recover CTC and SDTW and on representative
configurations between them.

We start with a single-label task, main-melody pitch class
prediction (Section VII-B), and evaluate frame-level accuracy
and downstream database retrieval given a melody query. We
then analyze sequence decoding and symbol-level evaluation:
analogous to ASR, we decode predictions using greedy and
beam search methods and measure symbol-level edit distances.
Next, we consider multi-class settings (Section VII-C) in a
polyphonic pitch-class estimation problem using both MCTC
and SDTW, illustrating how SDTW extends to multi-label

used as a running example for multi-label classification.

scenarios. Finally, in Section VII-D we compare the compu-
tational cost in practice of classical SDTW and CTC imple-
mentations with our proposed dDTW framework. Throughout
all experiments, we remove all temporal information from the
targets (see Figs. 6 and 8), which may lead to substantial
sequence-length mismatches between predictions and labels.
Although up-/downsampling strategies can stabilize DTW and
SDTW alignments in such cases [35], [22], we do not adopt
them here to preserve comparability with CTC and reduce
computational cost.

Across all experiments, our goal is not to rank CTC against
SDTW, but to use the dDTW continuum as an analytic tool.
By moving through this continuum, we isolate specific com-
ponents, most notably the CTC blank symbol, and study their
effects on alignment, learning dynamics, and decoding behav-
ior. For example, we will analyze in detail whether the blank
is essential for successful sequence decoding, the separation of
repeated symbols, and alignment stabilization, or whether the
same effects can instead be achieved through an appropriately
parameterized SDTW variant. Code to reproduce all experi-
ments is available at github.com/groupmm/dDTW_CTC.

A. Training Configurations

We now discuss the parameterization of various loss func-
tions within our proposed dDTW framework. Table I pro-
vides an overview of the dDTW parameterizations leading
to different training configurations. In Table I, we distinguish
alignment steps in a cell corresponding to a target y,, (tgt) or
the blank symbol (¢). In the following section, we detail how
dDTW generalizes both CTC and SDTW through appropriate
parameter choices.

1) CTC: For all CTC configurations, we adopt the pa-
rameterization from Section VI. Specifically, we use the
extended label sequence Y° as targets, predictions X with
z, €10,1]P with D 13, and the local cost function
c(xn,ys,) as defined in (26) and (28). We set dDTW
step sizes to S ={(1,0),(1,1),(1,2)} and prohibit skip-
ping (step (1,2)) of blank symbols by assigning infinite
weight to corresponding entries in the weight matrix. Bound-
ary conditions are set to Bgtart {(1,1),(1,2)} and
Bena = {(N, M° —1),(N,M°)}. We denote the baseline
configuration with uniform step weights as CTC-A. Introducing
a slight penalty for blank transitions by setting the step weights
into and within blank symbols to two yields CTC-B. To obtain
a configuration resembling SDTW, we disable all blank-related
transitions by assigning infinite weights to the respective
entries in the weight matrix, yielding CTC-C. If a transition
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has (1,0) (1,1) (1,2) 0,1)

ID € tgt € tgt € tgt € tgt
CTC-A v 1.0 10|10 10| 10 oo -
CTC-B v 1.0 20|10 20|10 o -
CTC-C v 1.0 o [ [eS) 1.0 oo -
SDTW-D X 1.0 - 1.0 - - - -
SDTW-E X 1.0 - 1.0 - - - 1.0
CTC-A-W v 01 10|10 10| 10 o -
CTC-B-W v 01 20|10 20|10 o© -
CTC-C-W v 0.1 00 00 0o 1.0 oo -
SDTW-D-W X 0.1 - 1.0 - - - -
SDTW-E-W X 0.1 1.0 - - - 1.0

TABLE I
OVERVIEW OF DIFFERENT MCTC AND SDTW CONFIGURATIONS WITHIN
THE DDTW FRAMEWORK. FOR EXPLANATIONS, SEE SECTION VII-A.

through the blank symbol is required to distinguish repeated
target symbols, we assign the weight of the (1, 1)-step to that
particular transition. Note that CTC-C retains blank labels in
both the network and the weak targets, although the blank
target is never aligned during loss computation. An illustration
of the step sizes used for CTC parameterizations of dDTW is
shown in Fig. 4.

2) SDTW: For all SDTW-based configurations (SDTW),
weak targets are given by the label sequence Y, and predic-
tions X consist of twelve-dimensional vectors z,, € [0,1]”
with D = 12. As detailed in Section VI, the local cost function
is given by (27) and (31). We first parameterize an SDTW
configuration SDTW-D that is similar to CTC in the sense that
vertical alignment steps are not allowed, by choosing step sizes
S ={(1,0),(1,1)} and boundary conditions Bsta,t = {(1,1)}
and Beng = {(N, M)}. To parameterize the standard SDTW
algorithm (SDTW-E) within the dDTW framework, we use
step sizes S = {(1,0),(0,1),(1,1)} with the same boundary
conditions as SDTW-D.

3) Ablation Study for Horizontal Step Weight: Prior work
on SDTW has shown that the weight wy assigned to the
horizontal step (1,0), which encodes the repetition of a target,
critically affects training stability [26]. Specifically, reducing
this weight improves alignment quality. To systematically
investigate this, we run all experiments with either the standard
horizontal step weight of wy = 1.0 or a reduced weight of
wy = 0.1 (suffix -W).

4) Baselines: As a baseline, we use an expectation-
maximization (EM)-like approach inspired by [4], [S], where,
in every training step, we do hard DTW alignment between the
weak target sequence (uniformly stretched to the length of the
predictions), and the predicted sequence. The aligned target
sequence is then used as element-wise targets for training,
and the approach is denoted as EM. Furthermore, we train all
networks on strongly aligned reference annotations (st rong).

B. Single-Label Classification: Main Melody Prediction

As a first scenario, we consider a single-label classification
task: predicting the pitch-class sequence of the main melody
(i.e., the musical theme) in audio recordings [12]. We use
the musical theme dataset (MTD) [36], which offers symbolic
annotations for 2067 themes from 1126 classical pieces (about
5h of annotated excerpts and 120 h of full recordings). Fol-
lowing Zalkow and Miiller [12], we train a small CNN to

Layer Kernel size | Output shape | # Parameters
Input (T, 216,6)
Conv2D | 3 x 3 (T,216,64) 3520
Conv2D | 3 x 3 (T, 216,32) 18464
Conv2D | 3 x 3 (T,216,32) 9248
Conv2D | 3 x 42 (T,216,8) 32264
Conv2D | 1x1 (T,216,1) 9
Pooling (T,12+ Z) | Z-217
Total 72753
+7 217
TABLE II

CNN ARCHITECTURE FOR MAIN-MELODY PITCH CLASS PREDICTION
FROM [12]. Z € {0,1} DENOTES AN OPTIONAL OUTPUT DIMENSION FOR
BLANK.

produce a chromagram-like representation that highlights the
pitch classes of the main melody (the musical theme). Each
training example pairs an audio segment containing a musical
theme with the corresponding pitch-class sequence extracted
from the score (see Figs. 5 and 6).

The setup is closely related to ASR training, where ut-
terances are paired with unaligned label sequences; accord-
ingly, [12] optimizes the network using the CTC loss. How-
ever, unlike ASR, no transcription is decoded but the poste-
rior probabilities are used directly as mid-level features for
matching against prototype themes. We revisit this task as a
compact testbed for our unified dDTW framework, allowing
us to probe the continuum between CTC- and SDTW-like
parameterizations and their effect on learning, both at the
frame level (pitch-class accuracy and downstream retrieval)
and at the symbol level (greedy/beam decoding and normalized
edit distance to the reference theme annotations).

1) Experimental Setup: Throughout all experiments, we
follow the training setup of [12] and vary only the loss
function within our dDTW framework. The convolutional
neural network (CNN) takes as input a harmonic constant-
Q transform (HCQT) [37] computed from audio sampled at
22 050 Hz with a hop size of 896 samples, corresponding to a
frame rate of about 25 Hz. The HCQT spans six octaves with
three bins per semitone (216 pitch bins) and six harmonic
channels (one subharmonic plus five harmonics). Inputs are
HCQT sequences of length T'; for each frame, the network
outputs z,, € [0,1]P, where D € {12,13} indicates whether a
blank symbol is included. The architecture is summarized in
Table II and consists of 2D convolutional layers with leaky
ReLU activations and a partly trainable pooling stage that
reduces the output to D classes (see [12] for details). We
train with mini-batches of eight using Adam [38] at an initial
learning rate of 0.001; the rate is halved if the validation loss
does not improve for five epochs, and training stops if there is
no improvement for ten epochs, restoring the model with the
lowest validation loss.

2) Frame-Level Analysis: We assess monophonic theme
predictions at the frame level using two measures: frame-
wise pitch-class accuracy and retrieval performance based on
the learned features. Frame-wise accuracy is the proportion
of frames for which the most probable pitch class matches
the strongly aligned reference. For retrieval, we process each
database recording with the trained model to obtain an en-
hanced pitch-class representation and match it to a symbolic
query theme via subsequence DTW [20]. Rankings follow
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Fig. 9. Predicted pitch classes for the musical theme visualized in Fig. 5 for
different network configurations. (a) CTC-A. (b) CTC-C. (¢) SDTW-E. (d) EM.
(e) strong. (f) Reference annotations.

the minimum subsequence DTW distance per query—document
pair; we report top-k retrieval rates and mean reciprocal rank
(MRR) [12]. Results are summarized in Table III with example
predictions in Fig. 9.

Starting from standard CTC (CTC-A), we gradually relax
constraints toward standard SDTW (SDTW-E). CTC-A yields
low mean accuracy (0.473), dominated by blank activations
(Fig. 9a), yet achieves strong retrieval (top-1 = 0.870). Penal-
izing blanks (CTC-B) or forbidding blank alignments (CTC-C)
increases accuracy to 0.555 and 0.588 and removes blank pre-
dictions (Fig. 9b), but reduces retrieval, likely due to temporal
blurring. SDTW-based losses substantially improve accuracy
(SDTW-D: 0.657, SDTW-E: 0.648) and produce cleaner theme

ID Accuracy 1 Retrieval rank 1 MRR 1
mean best topl top 10 top 50
CTC-A 0.473 0.574 | 0.870 0.939  0.963 0.895
CTC-B 0.555 0.583 | 0.832 0.923  0.952 0.864
CTC-C 0.588 0.590 | 0.795 0.894  0.941 0.830
SDTW-D 0.657 0.661 | 0.856 0.936  0.957 0.889
SDTW-E 0.648 0.654 | 0.870 0.939  0.960 0.893
CTC-A-W 0.230 0.230 | 0.000 0.000 0.048 0.005
CTC-B-W 0.228 0.230 | 0.000 0.005 0.082 0.007
CTC-C-W 0.311 0.646 | 0.843 0.926  0.963 0.871
SDTW-D-W | 0.650 0.655 | 0.891 0.944  0.957 0.908
SDTW-E-W | 0.643 0.650 | 0.864 0.934 0.963 0.889
EM 0.653 0.657 | 0.888 0.949  0.973 0.907
strong 0.676  0.679 | 0.878  0.947  0.968 0.901
TABLE III

EXPERIMENTAL RESULTS FOR MONOPHONIC PITCH-CLASS
ENHANCEMENT BASED ON MTD [36]. THE TABLE SHOWS RETRIEVAL
RESULTS FOR DIFFERENT LOSS CONFIGURATIONS, REPORTED AS TOP-k
RANK AND MEAN RECIPROCAL RANK (MRR). FOR ACCURACY, WE
PROVIDE THE MEAN VALUE OVER FIVE RUNS AND THE BEST INDIVIDUAL
RUN; FOR RETRIEVAL, WE USE THE MODEL WITH THE LOWEST
VALIDATION LOSS.

representations (Fig. 9c), with top-1 retrieval of 0.856 and
0.870, respectively.

Lowering the horizontal step weight to 0.1 (suffix -W)
severely degrades CTC variants and often prevents conver-
gence, while SDTW variants remain largely stable. Although
not best in accuracy, SDTW-D-W gives the strongest retrieval
overall (top-1 = 0.891). The EM baseline performs consistently
well in accuracy (0.653) and ranks second in retrieval. Training
with strongly aligned targets (strong) yields the highest
frame-wise accuracy (0.676), but shows temporal blurring
(Fig. 9e), which likely explains slightly weaker retrieval than
the best SDTW models.

3) Symbol-Level Decoding: Next, we apply CTC-style de-
coding to the predicted symbol posteriors. Greedy decod-
ing selects the most probable symbol (including blank) per
frame, collapses repeats, and removes blanks. Beam search [8]
propagates the top-k collapsed sequences over time, sums
probabilities of paths that collapse to the same sequence, and
returns the most probable sequence. We evaluate both decoders
using the normalized Levenshtein edit distance [39] between
decoded and reference sequences, reported as label error rate
(LER), analogous to ASR character error rate.

With horizontal step weight w, = 1.0, CTC and SDTW
variants yield similar greedy LERs; CTC-B is best on average
(0.251), and the best runs are dominated by CTC variants,
with CTC-A achieving the lowest LER (0.212). Lowering wy,
degrades CTC decoding, while SDTW models remain largely
stable. Despite strong frame-level accuracy, EM produces sub-
stantially higher LER, likely because hard alignments intro-
duce local outliers (Fig. 9d) that barely affect frame accuracy
but increase edit distance. The strong model outperforms
all SDTW variants but remains slightly behind the best CTC
settings, as only CTC with an explicit blank can represent
consecutive repetitions (CTC-A, see Fig. 9a), whereas SDTW
and strong targets emphasize frame-wise activations rather
than onsets (Fig. 9c,e). Addressing this would require explicit
onset modeling [40], which is beyond our scope.

To allow a fair comparison between CTC- and SDTW-based
models in the single-label setting, we also apply beam-search
decoding, a common post-processing strategy in sequence
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1D LER (greedy) | | LER (beam search) | Layer Kernel size | Output shape # Parameters
mean best mean best Input (T + 74,216,6)
CTC-A 0.282  0.212 0.256 0.189 Layer norm. (T + 74,216, 6) 2592
CTC-B 0.251 0.220 0.431 0.207 Conv2D, MP | 15 x 15 (T + 74,216, 20) 27020
CTC-C 0.271  0.257 | 0.618 0.594 Conv2D, MP | 3 x 3 (T + 74,72 20) 3620
SDTW-D 0.281 0.275 0.437 0.428 Conv2D 75 x 1 (T,72, 10) 15010
SDTW-E 0.285  0.266 0.415 0.400 Conv2D 1x1 (T,72,1) 11
CTC-A-W 0.500  0.500 1.999 1.997 Conv2D 1 x61 (T,12+ Z) 62+ 737
CTC-B-W | 0.476 0.470 | 1.793 1.288 Total 48315+ 73 - Z
cTc-c-w | 0.433  0.276 | 1.893 0.955 TABLE V
SDTW-D-w | 0.282  0.270 | 0.938 0.925 CNN ARCHITECTURE FOR PITCH CLASS ESTIMATION FROM [16], [33].
SDTW-E-W | 0.278 0.271 | 1.013 0.967 Z € {0,1} DENOTES AN OPTIONAL OUTPUT DIMENSION FOR BLANK.
EM 0.577  0.550 | 0.691 0.663
strong 0.263  0.256 | 0.752 0.724
TABLE IV

EXPERIMENTAL RESULTS FOR SYMBOL-LEVEL DECODING ON MTD [36].
THE TABLE SHOWS SYMBOL-LEVEL LABEL ERROR RATE (LER) FOR
DIFFERENT CONFIGURATIONS OF THE DDTW LOSS. WE REPORT THE

MEAN METRICS OVER ALL FIVE TRAINING RUNS, AS WELL AS THE
METRIC FOR THE RESPECTIVE BEST-SCORING TRAINING RUN.

modeling [8]. As shown in Table IV, the trend is consistent:
for all configurations except CTC-A, beam search increases
LER, sometimes sharply, especially for reduced wy,, where the
LER can approach or exceed 1.0. In contrast, only CTC-A, the
setting for which beam search was introduced [8], benefits
from it, reducing mean LER to 0.256 and achieving the
best-case LER of 0.189. These results suggest that the CTC
blank symbol functions as a robust “time-filler” in uncertain
regions, causing many beam paths to collapse to the same
output sequence and thus stabilizing decoding. In contrast, the
absence of such a mechanism in SDTW leads to spurious
symbol insertions and over-segmentation of the hypothesis
space, resulting in unstable sequence estimates.

C. Multi-Label Classification: Polyphonic Pitch Class Estima-
tion

For our experiments on multi-label classification, we adopt
a simple and well-established scenario: polyphonic pitch class
estimation using CNNs [33]. Unlike larger music transcription
models that require pretraining on strongly aligned data [40],
this setup enables training from scratch using only weakly
aligned data. To ensure comparability with prior work, we use
the SWD dataset [32] and a musically motivated CNN archi-
tecture from [33]. This setup has previously been explored
with strongly aligned targets [33], and with weakly aligned
targets using MCTC [16] or SDTW [25], [26].

1) Experimental Setup: The CNN receives as input a
HCQT [37], computed from audio at a sampling rate of
22 050 Hz with a hop size of 512 samples, resulting in a frame
rate of approximately 43 Hz. The HCQT spans six octaves
with three bins per semitone (resulting in 216 pitch bins)
and includes six harmonic channels (one subharmonic and
five harmonics). The input to the network consists of HCQT
sequences with 7' = 500 frames and 74 additional context
frames, where the segmentation is derived from strongly
aligned reference annotations provided in the SWD. For each
time frame, the network outputs a tensor z,, € [0, 1]P, where
D € {12,13} accounts for the presence of the blank symbol
when required. A brief overview of the architecture, consisting
of convolutional (Conv2D) and max pooling (MP) layers, is

provided in Table V. We refer to [33], [16] for the design
motivation and further details.

The SWD contains approximately 11 h of paired scores and
audio recordings by seven different singers and nine different
pianists, resulting in nine distinct versions. We split the SWD
into a training, validation, and test set with five, two, and
two versions, respectively. Training is performed on single-
element batches. Each epoch comprises approximately 4500
training steps, and we train for 50 epochs. We use the Adam
optimizer [38] with an initial learning rate of 0.001, which is
halved if the validation loss does not improve over 4 epochs.
Training stops if there is no improvement over 12 epochs,
and the model parameters corresponding to the epoch with
the lowest validation loss are restored for testing.

For qualitative illustration, we use a 10s excerpt from the
song “Gute Nacht” performed by Randall Scarlata, with the
corresponding score shown in Fig. 7 and strongly aligned
reference targets shown in Fig. 10f.

2) Analysis: Pitch Class Accuracy: In this section, we
present systematic experiments enabling a detailed comparison
of different CTC and SDTW configurations. Starting from the
standard CTC-A, we progressively modify the parameterization
until reaching the standard SDTW-E. For each configuration,
Fig. 11 reports the minimum, median, and maximum F-
measure over five training runs. For selected, didactically
relevant configurations, Fig. 10 visualizes the predictions X
and soft alignment matrix E of the model with the lowest
validation loss, applied to the running example from Fig. 7.
For the CTC configurations, we color odd rows of the soft
alignment matrix in red (corresponding to alignment of the
blank symbol €), and even rows in black (corresponding to
alignment of target symbols ¥,,). We begin by parameterizing
all algorithms with a horizontal (1, 0) step weight of w;, = 1.0,
corresponding to the standard configurations in both CTC and
SDTW.

Starting with the original CTC algorithm (CTC-2), the test
F-measure shown in Fig. 11 is relatively low at 0.81, and
shows high variance across different runs. The predictions in
Fig. 10a reveal a strong bias toward the blank symbol, along
with large temporal fluctuations in the pitch class activations.
This is reflected in the soft alignment matrix, where the
dominance of red color indicates that the alignment largely
focuses on the blank symbol.

To reduce this blank dependence, we introduce a penalty for
blank alignment by increasing the step weight to 2 for steps
in and to the blank symbol (CTC-B). However, none of the
training runs converged to a stable solution under this setup.
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Fig. 10. Predictions (left) and soft alignments (right) for different network configurations for the running example. (a) CTC-A. (b) SDTW-E. (c) CTC-A-W.
(d) CTC-B-W. (e) SDTW-E-W. (f) Strongly aligned labels and alignment obtained from reference annotations available in the SWD. Red color is used for the

blank symbol e.

We hypothesize that this occurs because the network relies
on the blank symbol to produce stable alignments (as seen
in CTC-A7), but the increased penalty now makes prolonged
blank alignment prohibitively costly, while the blank symbol
still remains dominant enough to distract from learning the
actual targets.

Next, we impose the largest possible penalty by setting an
infinite weight for steps in and to the blank symbol (CTC-C).
According to Fig. 11, this leads to a notable improvement
in F-measure compared to CTC-A, with low variance across
runs. Because blank alignments are effectively forbidden, only
actual target labels are aligned during training. This setup
resembles SDTW in the sense that no blank symbol is aligned,
although the blank dimension remains present in the network
outputs.

We then train with SDTW without vertical step (SDTW-D),
which is identical to CTC-C except that the blank symbol is
completely removed from both the network output and the
target sequence. Test performance in Fig. 11 is very similar
but slightly better on average than CTC-C. This improvement
likely stems from the more efficient training due to the absence
of the blank symbol in the output space.

Finally, we include the vertical step and evaluate the stan-
dard SDTW parameterization (SDTW-E). Here, the median test
F-measure is slightly lower than SDTW-D, but the minimum
and maximum over all runs are comparable. The predictions in
Fig. 10b show temporally stable but slightly blurred outputs.
The soft alignment matrix reveals some alignment instabilities
compared to the reference alignment in Fig. 10f, with certain
targets being aligned over extended durations, while others are
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T = —— T SDTW dDTW CTC
(N, M) Time | Mem. | Time | Mem. | Time | Mem.
CTC-C — = (256, 64) 3.9 73| 83 23 1.2 1
SDTW-D [Tt (256, 128) 6.8 | 146 | 88 45 | 0.8 2
SDTW-E [ T H—— (512, 64) 7.3 146 7.3 46 1.1 3
CTC-A-W —/—————1 { (512,128) 12.4 293 10.1 91 1.1 3
CTC-B-W — (1024, 128) 20.4 586 12.1 182 1.4 7
CTC-C-W - (1024, 512) 61.9 2345 26.6 722 1.4 8
SDTW-D-W (1024,1024) | 1185 4689 43.0 1441 1.4 8
SDTW-E-W | e O TABLE VI
EM | OVERVIEW OF RUNTIME (MILLISECONDS) AND PEAK MEMORY
strong | = CONSUMPTION (MEGABYTES) FOR THE SDTW, DDTW, AND CTC LOSS
. . . . . ‘ FUNCTIONS FOR DIFFERENT SEQUENCE LENGTHS (N, M).
0.8 0.81 0.82 0.83 0.84 0.85

F-measure (min-median-max)

Fig. 11. Test results for the five training runs of each model configuration.
The bar represents the median F-measure for frame activation over the five
training runs, the whiskers represent the minimum and maximum F-measure
of the training runs.

assigned to only short intervals. We address this issue next by
lowering the horizontal step weight to enforce more stable
target repetitions.

3) Ablation: Sensitivity w.r.t. Horizontal Step Weight: Prior
work on SDTW shows that lowering the horizontal step weight
wy, stabilizes training and improves alignments [26]. High
wy, causes alignments to concentrate on a few targets that
minimize total cost, while a low wy, allows the alignment to
remain on a target despite imperfect predictions, e.g., during
sustained notes. We thus again repeat the previous experiments
by setting the weight wy, = 0.1 for the horizontal (1,0) step.

For the original CTC (CTC-A-W), Fig. 11a shows an im-
provement in median and maximum F-measure versus CTC-2,
though some runs do not converge to a good solution.
Predictions in Fig. 10c reveal slightly reduced probabilities
for the blank symbol compared to CTC-A (Fig. 10a), but
only for short time intervals. The soft alignment matrix still
shows a dominant alignment of the blank symbol (red color),
although target symbols (black color) are aligned slightly more
compared to CTC-A.

Similarly, lowering wj, while penalizing the blank symbol
(CTC-B-W) improves median and maximum F-measure con-
siderably (Fig. 11), yet convergence issues remain. This sug-
gests that combining two stabilization strategies (presence of
blank symbol and low horizontal step weight) can destabilize
training. Predictions in Fig. 10d show low probabilities for
the blank symbol, resembling SDTW-E, and the soft alignment
matrix does not show alignment of the blank symbol anymore.

Conversely, excluding the blank symbol entirely (CTC-C-W)
yields almost no F-measure variability across runs, matching
results for SDTW without vertical step (SDTW-D-W).

Including the vertical step gives standard SDTW with low
horizontal step weight (SDTW-E-W). Although the variance of
the F-measure in Fig. 11 is slightly wider than for SDTW-D-W,
peak performance exceeds that of the models trained with
an EM approach (EM), and nearly matches that of models
trained on strongly aligned references (strong), with an F-
measure of over 0.84. Predictions in Fig. 10e show sharp,
temporally stable outputs with minimal fluctuations, and the
soft alignment matrix resembles the reference alignment to a
high degree.

D. Runtime and Memory Consumption

We analyze runtime and memory usage of three alignment-
loss implementations: standard SDTW! [41], our dDTW tool-
box?, and the optimized C++ PyTorch CTC loss® [42]. Our
goal is not to describe implementation internals but to estimate
computational costs in typical DNN training. All experiments
were conducted on an Nvidia RTX A5500 GPU.

For SDTW and dDTW, we initialize predictions and labels
as X € [0,1)B*N*P and Y € {0, 1}B*M*D; for CTC, labels
are Yorc € [1: D]P*M. We choose a batch size of B = 16
and D = 12 feature dimensions. Each iteration randomly
initializes inputs, performs a forward—backward pass, and we
record mean runtime and peak memory consumption over
10 warm-up and 20 measured iterations. Both SDTW and
dDTW have O(N M) recursions but can be parallelized along
anti-diagonals [43], [41], yielding O(N + M) parallel time.
The strictly monotonic CTC dynamic program runs in O(N)
parallel steps. All methods parallelize over the batch, though
only dDTW and CTC support variable-length sequences within
a batch.

Table VI summarizes results. dDTW uses roughly one third
of the memory of SDTW, benefiting from more efficient mem-
ory management and explicitly defined cost functions without
autograd leakage. For short sequences, both perform similarly
in speed; for longer sequences, dDTW becomes substantially
faster than the baseline SDTW implementation, likely due to
more effective caching (including the backtracking tensor B).
PyTorch’s native CTC is by far the fastest and most memory-
efficient: runtimes stay near one millisecond and memory
usage is about 180x lower than dDTW and 580x lower than
SDTW for long sequences. While our research-oriented dDTW
toolbox prioritizes modularity and clarity, future work may
bring dDTW efficiency closer to that of the highly optimized
CTC implementation.

E. Summary

Our experiments show that while both CTC and SDTW
can effectively train neural networks, they differ in several
theoretical and practical aspects. Importantly, the dDTW loss
unifies both alignment paradigms within a single framework,
enabling fine-grained control of loss parameters and provid-
ing a continuous interpolation between the two conceptually

Uhttps://github.com/Maghoumi/pytorch-softdtw-cuda
Zhttps://github.com/groupmm/dDTW_CTC
3https://github.com/pytorch/pytorch
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different losses. In the following, we highlight three key
differences observed in our experiments.

1) Network Architecture: CTC requires an explicit output
unit for the blank label. As a result, models pre-trained on
strongly aligned data cannot be directly fine-tuned with CTC,
since their output space does not include a blank. SDTW
imposes no such architectural requirement and can be applied
to any model without modification.

2) Target Length and Runtime: Because CTC inserts a
blank symbol between all labels, the effective target length
doubles compared to SDTW without blanks. Under a naive
O(N M) implementation, this would double runtime. In prac-
tice, GPU-parallel implementations of SDTW [41] and dDTW
iterate over anti-diagonals of the cost matrix. Since N > M
in typical settings, runtime is dominated by /N, making the
theoretical runtime of CTC comparable to that of SDTW.
However, CTC is the de facto standard for training with un-
aligned sequential data, and highly optimized C++/CUDA im-
plementations exist [42], which outperform research-oriented
SDTW and dDTW implementations by a wide margin.

3) Detecting Repetitions: In CTC, the blank symbol disam-
biguates consecutive identical labels (symbol-blank—symbol).
While irrelevant for frame-wise pitch-class activity estimation,
this mechanism is essential for onset-sensitive tasks such as
sequence estimation in theme enhancement, instrument onset
detection, and ASR. In SDTW, this functionality has to be
explicitly replicated by introducing a dedicated onset class,
enabling joint estimation of onsets and frame activations, as
demonstrated in models using the Onset-and-Frames architec-
ture [40], [44].

VIII. CONCLUSION

In this paper, we established a theoretical connection be-
tween the CTC and SDTW alignment paradigms. By iden-
tifying necessary extensions for SDTW to exactly replicate
CTC in practice, we introduced a Differentiable Dynamic Time
Warping (dDTW) framework, providing a unified perspective
on differentiable alignment methods. We derived efficient DP
recursions for dDTW and demonstrated parameterizations that
recover standard CTC and SDTW. Leveraging this unified
framework, we systematically analyzed the impact of the
blank symbol, step sizes, and step weights in two controlled
experimental scenarios. Our results indicate that a carefully
chosen SDTW parameterization, specifically, with a low hor-
izontal step weight, renders the blank symbol unnecessary
for alignment stability and improves prediction performance
for frame-wise metrics. However, for symbol-level decoding,
especially in the presence of repeated symbols, the CTC yields
predictions with a lower error rate than SDTW without the
blank symbol.

Future work may explore modeling repeated symbols in
dDTW without relying on a blank symbol by, e.g., using
onset models, the usage of dDTW as a subsequence align-
ment method, and task-specific choices of the differentiable
minimum function. Additionally, while this work used dDTW
only to compare CTC and SDTW, we plan to investigate the
generalization of other alignment paradigms via dDTW.
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