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ABSTRACT

Appropriate sound effects are an important aspect of immersive virtual experiences. Particularly in mixed
reality scenarios it may be desirable to change the acoustic properties of a naturally occurring interaction
sound (e.g., the sound of a metal spoon scraping a wooden bowl) to a sound matching the characteristics
of the corresponding interaction in the virtual environment (e.g., using wooden tools in a porcelain bowl).
In this paper, we adapt the concept of a Y-Autoencoder (YAE) to the domain of sound effect analysis
and synthesis. The YAE model makes it possible to disentangle the gesture and material properties of
sound effects with a weakly supervised training strategy where only an identifier label for the material
in each training example is given. We show that such a model makes it possible to resynthesize sound
effects after exchanging the material label of an encoded example and obtain perceptually meaningful
synthesis results with relatively low computational effort. By introducing a variational regularization
for the encoded gesture, as well as an adversarial loss, we can further use the model to generate new
and varying sound effects with the material characteristics of the training data, while the analyzed audio
signal can originate from interactions with unknown materials.

1 Introduction

One goal of audio analysis and synthesis tasks is
to identify and allow control of interpretable un-
derlying factors of variation in the analyzed sound
before it is resynthesized. A prominent example
of this disentanglement task is timbre transfer,
where some factors of variation (the instrument)
are modified, while others (pitch, expression, etc.)
should remain constant. In this paper, we combine
methods for learning a disentangled representation
and adapt them to a particular use case similar to

timbre transfer: modifying the acoustic properties
of an object (the material) while the interaction it-
self, i.e., the strength, duration, etc. of the impacts
that produced the sound (the gesture) remains con-
stant. This can be particularly useful in mixed
reality scenarios, where an interaction may be per-
formed with a real object that is replaced by a
virtual representation of the object with different
characteristics.

As an example, Figure 1 shows how a user may
use a metal spoon to interact with a wooden bowl.
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Fig. 1: Overview of the proposed system: An audio signal is recorded and analyzed by the encoder E .
The disentangled latent representation consisting of an estimate for gesture and material can be
modified (e.g. by changing the material). A signal is resynthesized using the decoder D and
played back over headphones.

The sound of this real interaction is analyzed, split
up into a part that represents the material char-
acteristics and a part that represents the gesture
(i.e., how the bowl was struck or scraped). Before
resynthesizing, the material representation is re-
placed to better match the characteristics of the
virtual object – for example, chopsticks in a porce-
lain bowl. The resynthesized sound is then played
back to the user, contributing to the immersive
experience that the interaction actually took place
with the virtual bowl.

To achieve this disentangling analysis and synthe-
sis, we adapt the Y-Autoencoder [1] neural network
training strategy to learn a representation of short
audio clips where gesture and material are sepa-
rated and can be individually modified. Using a
single class label for each material (e.g., different
combinations of spoons and bowls), we can train
a model with weakly labeled training data. As
opposed to other generative methods that achieve
a similar disentanglement, like conditional genera-
tive adversarial networks (GANs) [2], an autoen-
coder (AE) can learn to analyze the disentangled
representation as well. By adding a variational
constraint on the learned gesture representation,
we show that the gesture can also be encoded from
recordings of interactions with objects that have
not been part of the training set of materials. Fur-
thermore, we add an adversarial loss to improve
the resynthesis after changing the material class of
an encoded example. With this, we combine ad-
vantages of generative methods and a conditional
autoencoder in a single model, while achieving

reasonable audio quality with small models whose
computational complexity allows real-time execu-
tion.

This paper is organized as follows. In Section 2,
we introduce our notation, review the concept of
the Y-Autoencoder and discuss related work in
the field of sound effect synthesis with neural net-
works. Section 3 gives an overview of our model
and training strategy. In Section 4, we introduce
our datasets and the experimental setups. Results
are presented and discussed in Section 5. We pro-
vide audio examples and code on a supplemental
website1.

2 Background

An autoencoder (AE) consists of an encoder E :
X → RL and a decoder D : RL → X , so that
for any x ∈ X , x ≈ D

(
E(x)

)
, where X is the set

of possible inputs (e.g., images or audio frames).
The vector z = E(x) is called an L-dimensional
latent representation of x, where L is typically
much smaller than the dimensionality of X . The
encoding and decoding can be learned when E and
D are neural networks and the reconstruction loss
function

LR(x) =
∥∥x−D(E(x)

)∥∥2
2

(1)

is minimized on a training set XT ⊂ X .
1https://audiolabs-erlangen.de/resources/

2022-AVAR-InteractionSounds
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A variant of this method is the variational au-
toencoder (VAE) [3], where the encoder outputs
parameters µ and σ of a multivariate normal dis-
tribution with independent dimensions from which
z is sampled. The objective is extended to learn a
continuous and compact latent space by regulariz-
ing the encoder output distribution for any input
to be close to N (0, I), with 0 as the all-zero vector
and I as the identity matrix. This is achieved by
minimizing the Kullback-Leibler (KL) divergence
KL
(
· ‖ ·
)
between the distributions, yielding a loss

function with two terms:

LVAE = LR + KL
(
N (µ,diag(σ)) ‖N (0, I)

)
= LR +

1

2

(
1 + log(σ2)− σ2 − µ2

)
.

(2)

With the constraint on the latent space organiza-
tion, the VAE learns a representation where the
distance between two encodings reflects the simi-
larity of the original data points.

Adversarial losses have been used successfully to
improve audio quality of generative models [4] and
autoencoders [5]. The loss involves a separate
discriminator neural network A : X → {0, 1} that
is trained to discriminate a real input x ∈ XT from
an output x̂ = E

(
D(x)

)
. The gradient of the loss

to maximize the chance of correctly identifying x
and x̂ is used to train A, whereas the gradient of
the loss to maximize the chance of misclassifying
x̂ as real is used to train E and D.

2.1 Y-Autoencoder

The Y-Autoencoder (YAE) [1] introduces a partly
supervised method to disentangle a known class
label y ∈ {0, 1}C (a one-hot encoding with C
classes) from the rest of the latent representation.
We denote the class estimate as the explicit part
ze ∈ [0, 1]C and the remaining latent representa-
tion as the implicit part zi ∈ RL. The encoder and
decoder of the YAE process ze and zi separately,
so that EY : X → RC ×RL with (ze, zi) = EY(x),
and DY : RC ×RL → X with x ≈ DY(ze, zi).

To learn the disentanglement, i.e., the indepen-
dence of ze and zi, the latent representation is de-
coded twice with x̂ = DY(y, zi) and x̃ = DY(yr, zi),
where yr ∈ RC is the one-hot label of a random
class. The YAE loss

LYAE = LR + LL + LE + LI (3)

consists of four terms (nomenclature adapted by
us):

1. A reconstruction loss LR as in (1).

2. The label classification loss LL = CE(ze, y),
where the cross-entropy loss CE(a, b) =∑C

j=1 aj log bj between ze and y aids the su-
pervised classification of the inputs while en-
forcing that no other information is encoded
in ze.

3. The random explicit loss LE = CE(ỹr, yr): A
subsequent re-encoding (ỹr, z̃i) = E(x̃) should
correctly predict the class yr. LE forces the
decoder to make use of the information in the
explicit part, as otherwise the encoder would
not be able to infer this information from x̃.

4. The implicit consistency loss LI =
∥∥z̃i − ẑi∥∥22:

Re-encoding x̂ with (ŷr, ẑi) = EY(x̂) should
yield the same implicit part as re-encoding x̃.
This ensures that the information in zi is used
consistently by the decoder.

2.2 Related Work

Interactive media like augmented and virtual re-
ality require to adapt sound effects to the actual
interaction at run-time, which makes the use of
traditional recorded sound effects (“Foley”) more
difficult. Physical [6] and signal [7, 8] models can
be parametrized to produce appropriate sounds in
real-time. However, many models are limited to a
specific sound effect type, and the parametrization
often requires a manual mapping from an inter-
action to the model configuration. Furthermore,
computational cost may prohibit a very detailed
modelling of the effects.

Several works have addressed the use of deep learn-
ing for sound effects. In a multimodal approach,
fitting sound effects can be selected from a library
by analyzing a silent video sequence of interactions
between a drum stick and the environment [9]. A
similar method can be used to select more general
Foley sound effects [10] or even MIDI events that
represent music a person may be playing in the an-
alyzed video [11]. Direct synthesis of a wide variety
of sounds can be achieved with GANs [12], which
also allow to generate varying footsteps specifically
[13]. However, the models allow limited control
over the produced sound effects.
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Fig. 2: Visualization of the encoding/decoding method and different losses with their respective inputs
at training time. Blue color for losses, grey for inputs, orange for material class labels, green for
gesture representations. Further, Σi = diag(σi), also analogously for σ̃i and σ̂i.

3 The VYAE Model

To learn the analysis and synthesis using a disen-
tangled latent representation, we set up the Varia-
tional Y-Autoencoder (VYAE) model. While the
training strategy roughly follows the YAE, we make
some important modifications to the original YAE
that we highlight in this section.

Our model input x consists of 8192 time-domain
audio samples with a sampling rate of 16 kHz.
The input of the encoder and output of the de-
coder is a log-magnitude spectrogram denoted
by X and X̂, respectively. The spectrogram
X = log |SN,H(x) + ε| is calculated2 using the
short-time Fourier transform SN,H with window
size N = 1024 and hop size H = 256. In the
following, we omit the subscripts N and H when
this window and hop size are used. By discarding
the first Fourier coefficient (the DC component of
the signal) of the time-frequency representation,
we yield 512× 32 values for X.

The encoder outputs are an estimate of the ma-
terial class ze ∈ [0, 1]C for C classes, as well as
parameters µi, σi of a normal distribution repre-
senting the estimated gesture zi ∼ N (µi,diag(σi)).
We use variational regularization for the gesture

2The small constant ε is used to avoid taking a logarithm
of 0. We omit it hereinafter.

space to facilitate a continuous and compact repre-
sentation of different gestures. This allows interpo-
lation between gestures, as well as sampling new
and similar gestures from the latent space while
preserving a perceptually meaningful output of the
decoder. Furthermore, even though this is not gen-
erally the case [14], the variational regularization
can improve generalization (cf. Fig. 6).

We modify the YAE loss function (3) to accom-
modate the variational regularization and the in-
puts/outputs in audio domain. This way, the
VYAE loss LVYAE becomes

LVYAE = LR + LL + LE + LI + LKL + LA. (4)

Fig. 2 gives an overview of the training procedure
and the inputs of the loss terms. The individual
terms are defined as follows:

1. LR: We use a multi-scale spectral (MSS) dis-
tance [15], where time-domain audio is trans-
formed to multiple log-magnitude spectro-
grams with varying hop and window sizes and
the L1 distance between the spectrograms is
accumulated. We first have to reconstruct
time-domain audio from the decoder output
to compare it with the input signal frame
x. To do this, we use the phase of the in-
put audio’s time-frequency representation and
combine it with the spectrogram output of

AES 2022 AVAR Conference, Redmond, WA, USA, 2022 August 15–17
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the decoder to yield

x̂ = S−1
(
X̂ · exp

(
i 6 (S(x))

))
, (5)

where i denotes the imaginary unit and 6 (·) is
the angle of the complex Fourier coefficients.
Note that only the reconstruction with the
correct class label is compared in LR. This
way, at training time, the phase of x is only
used for a signal that contains a reconstruc-
tion with the original material, which should
ultimately be very similar to x anyway.

The MSS distance is then given by

LR =
∑

(N,H)∈M

∥∥∥ log
∣∣SN,H(x)

∣∣− log
∣∣SN,H(x̂)

∣∣∥∥∥
1
,

(6)
where M is a set of window and hop sizes
(M =

{
(2048, 1024), (1024, 256), (512, 128)

}
in our experiments).

2. LL and LE: We use cross-entropy between y
and ze and between yr, and ỹr, respectively,
as in the original YAE.

3. LI: The re-encoding of X̃ and X̂ yields pa-
rameters µ̃i, σ̃i and µ̂i, σ̂i to represent the
estimated gesture (cf. Fig. 2). To fulfil the
purpose of LI in the original YAE, the dis-
tributions N (µ̃i,diag(σ̃i)) and N (µ̂i,diag(σ̂i))
should be as similar as possible. We quan-
tify the similarity using the Bhattacharyya
distance [16]. For two multivariate normal
distributions N (µ1,Σ1) and N (µ2,Σ2), the
loss term is given by

LI =
1

8
(µ1 − µ2)T Σ−1(µ1 − µ2)

+
1

2
log

(
det Σ√

det Σ1 det Σ2

) (7)

where Σ = (Σ1 + Σ2)/2. As the dimensions
of the VAE are assumed to be independent,
Σ1 and Σ2 are diagonal and their inverse and
determinant can be calculated efficiently.

4. LKL: We use the KL divergence
KL
(
N (µi,diag(σi)) ‖N (0, I)

)
as in (2).

It is sufficient to regularize the first encod-
ing, as this ensures a loss for the encoder
that favors the continuous and compact
representation.

Fig. 3: Encoder (a) and decoder (b) architecture.
Blue color for building blocks with learn-
able weights.

5. LA: An adversarial loss between X and X̃
(the decoder output generated with a random
material) improves the decoding of gestures
where the material has changed. To achieve
this, we use a discriminatorAY : X×[0, 1]C →
{0, 1} that in addition toX and X̃ receives the
corresponding material class label as an input.
This way, AY learns to discriminate material-
specific characteristics of the spectrogram.
The loss for AY is separate from LVYAE and
given by

LAY = CE
(
1,AY(X, y)

)
+CE

(
0,AY(X̃, yr)

)
,

(8)
where 1 and 0 are the vectors of all ones and
zeros of appropriate dimension. The loss term
for E and D is

LA = CE
(
1,AY(X̃, yr)

)
. (9)

Figure 3 shows the neural network architectures
used for encoder and decoder. The encoder consists
of a 2D convolutional neural network (CNN) with

AES 2022 AVAR Conference, Redmond, WA, USA, 2022 August 15–17
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four layers with an increasing number of kernels
(16, 32, 48, 64) and a 5×5 kernel size. Each layer is
followed by a LeakyRELU [17] non-linearity and a
max pooling layer to downsample the layer output
on the time- and frequency axes by selecting the
maximum value in each 1×4 block in the first layer
and 2× 2 block in each subsequent layer. The last
convolutional layer outputs 4096 values that are
flattened to one dimension and form the input of
three fully-connected (dense) layers which output
ze, µi ∈ RL and σi ∈ RL with L = 32, respectively.
As ze represents a probability distribution over the
material classes, the softmax nonlinearity ensures
that the values sum to 1. The discriminator AY

uses the same architecture as the encoder, where
the additional class label input is concatenated to
the flattened convolutional layer output and the
final dense layer outputs a single value between 0
and 1.

The decoder concatenates the inputs ze and zi,
resulting in L+ C values that form the input of a
dense layer with 4096 outputs, which are reshaped
to match the output dimensions of the encoding
convolutional layers. Four subsequent upsampling
convolutional layers invert the dimensionality re-
duction of the max pooling to yield the output
log-magnitude spectrogram X̂.

4 Experiments

4.1 Datasets

We compile two datasets to evaluate the proposed
approach of disentangling material and gesture in
recordings of real interaction sounds.

The Spoon/Bowl (SB) dataset is a collection of two-
minute recordings of interactions using spoons in
a bowl (scraping, tapping, etc.). In each recording,
a different combination of plastic/metal/wooden
spoon and plastic/metal/wooden/glass/porcelain
bowl is used to perform random interactions, yield-
ing C = 15 classes and 30 minutes of audio material
in total. All interactions were recorded in a silent
environment with a close-up large-diaphragm con-
denser microphone. We generate a total of 95000
random excerpts of length 8192 samples (0.512
seconds at 16 kHz sampling rate) from the audio
files to form a training dataset. As a test set, we

recorded additional audio clips of 20 seconds dura-
tion for each class that are not part of the training
set. The test set additionally contains interactions
with different spoons and bowls recorded in varying
acoustic conditions that do not occur in the train-
ing set at all. We use them as an “unseen” class to
evaluate the generalization of gesture estimations.
We denote the classes by “[spoon material] / [bowl
material]” and “unseen” in the following.

The Freesound Footsteps (FF) dataset consists
of 55 recordings of footsteps obtained from the
Freesound [18] database with a total of around 17
minutes of audio material. The recordings were
selected to contain a variety of footstep sounds,
including dry, wet, indoor and outdoor surfaces,
with a total of C = 55 classes. Background noise,
reverb and other degradations are present on some
recordings, and all were converted to a single chan-
nel signal with 16 kHz sampling rate. As opposed
to the SB data, the amount of data for each class
varies, with recording lengths between 2 and 118
seconds. We generate 10 random excerpts of the
same length as the SB excerpts for each second
of audio to form a training set, resulting in a to-
tal of 10018 excerpts (between 22 and 1187 per
class). We reserve longer clips from two classes
(“high heels” and “carpet”) that are not part of the
training set for evaluation purposes.

4.2 VYAE Model

We train the full model as described in Section 3
separately with the SB and FF datasets for 6.5M
and 0.7M steps (70 epochs), respectively, using a
batch size of 8 and a learning rate of 10−4. The
training can be completed in less than 60 minutes
on a single Nvidia Geforce RTX 2080 Ti GPU
using Tensorflow. We multiply LR by a constant
factor of 1

300 to facilitate a comparable magnitude
of all loss terms.

To evaluate the disentanglement in a real-time set-
ting, we use the test sets of SB and FF and process
the audio signals frame-wise with the correspond-
ing trained VYAE model. By using an overlap
of 128 samples between frames, we can cross-fade
between successive frames to avoid potential dis-
continuities in the reconstructed audio and are
able to process a continuous audio stream with our
model. Successful disentanglement should allow to

AES 2022 AVAR Conference, Redmond, WA, USA, 2022 August 15–17
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Fig. 4: Results with Model I trained on the Spoon/Bowl dataset. (a) Original class “metal / metal”.
(b) Original class “unseen” that is not part of the training dataset.

exchange the material while preserving the gesture
in the output signal. We discard the estimated
class ze of each frame and manually specify the
material class y in the input of the decoder.

4.3 Variational regularization and adversarial
loss

To investigate the effectiveness of variational reg-
ularization and adversarial loss, we train three
different versions of the VYAE model (see Table 1)
with the same parameters as above. Model I is
the full model using the LVYAE as in (4), includ-
ing LA and LKL. Models II and III are trained
without adversarial loss LA. The variational reg-
ularization LKL is additionally removed in Model
III, where the encoder outputs the L-dimensional
gesture representation directly.

Model I II III
Variational reg. LKL Yes Yes No
Adversarial loss LA Yes No No

Table 1: Model configurations to investigate the
effects of the loss terms LKL and LA.

To compare the different model outputs to a real
recorded example from the target class, we compile

a set of single short impact interactions from the
SB test set and align them in time to allow a direct
qualitative comparison.

5 Results and Discussion

Figure 4 shows excerpts from the longer sequences
of the SB test set. We encourage the reader to
listen to the examples on the accompanying web-
site3. The resynthesis of the examples with differ-
ent material classes demonstrates that the mate-
rial characteristics (visually best represented by
the strong modes at different frequencies) can be
changed independent of the gesture. This includes
the “unseen” class in Fig. 4 (b), which shows that
the learned gesture representation generalizes to
encode the actual underlying factors of variation
in the spoon/bowl interaction. However, artifacts
of improper disentanglement are sometimes visible
and audible. As an example, Fig. 4 (a) exhibits a
peak below 250 Hz in the spectrum of the “wood /
metal” recording that is preserved to some degree
in the resynthesized versions with the “plastic /
plastic” material class.

In total, we analyze and resynthesize 1785 frames
for the sequential processing of the SB test set

3https://audiolabs-erlangen.de/resources/
2022-AVAR-InteractionSounds
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Fig. 5: Results with Model I trained on the Freesound Footsteps dataset. (a) Original class “high heels”.
(b) Original class “carpet”.

excluding the “unseen” class. The computational
complexity of the model easily allows the real-time
execution on a recent computer. With an Apple
M1 Max CPU, we can analyze and resynthesize a
frame of 0.512 seconds at 16 kHz sampling rate in
0.027 seconds on average. Furthermore, for 96%
of the frames, the material of the input signal is
correctly classified, while most misclassified frames
contain very little activity.

Results with the FF dataset are shown in Figure 5.
With the FF test set, we can find some combina-
tions where the synthesis with changed material
fails. In Fig. 5 (b), the slow steps in the “carpet”
class are resynthesized with the “gravel running”
class label. As the “gravel running” class recording
only contains faster steps, the model produces fast
steps from the “carpet” encoded gesture as well.
This shows how the learned disentanglement also
depends on a balanced training set that contains
all expected kinds of gestures for all classes.

Another limitation of our method manifests in the
conversion from “carpet” to “high heels”. As we
use the phase from the input signal for the output,
the more transient “high heels” steps are not ac-
curately reproduced, even though the magnitude
spectrogram is similar to an original spectrogram
from the class (cf. Fig. 5). As the conversion from

magnitude spectrogram to time domain at runtime
is independent of the training method, a different
phase reconstruction method, for example based
on deep learning [4], could further improve our
results.

Figure 6 shows the effect of variational regulariza-
tion and adversarial loss. We take a frame with a
single impact interaction from the “unseen” class
recording, estimate the gesture with the encoder,
and resynthesize the sound with the classes “plas-
tic / wood”, “plastic / glass”, and “plastic / metal”.
The first column shows a recorded example of the
respective class for comparison, while the other
three columns show spectrograms of the resynthe-
sized signal. Model III (without LKL, column 4)
clearly fails to generalize to the unseen class input
and the resynthesis with different classes exhibits
only small variations in the output signal. Model
II (without LA, column 3) produces some artifacts
related to the more reverberant recording condi-
tions of the “unseen” class example, whereas Model
I performs best in this comparison.

6 Conclusions

In this paper, we showed how a Variational Y-
Autoencoder makes it possible to learn disentan-
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Fig. 6: Results with different models trained on the Spoon/Bowl dataset. The first column shows a
recorded example from the material classes “plastic / wood”, “plastic / glass”, and “plastic /
metal”. Columns 2-4 show a resynthesis using these classes and a gesture estimated from an
“unseen” example.

gling gesture and material in recordings of interac-
tion sound effects. We improved the generalization
and resynthesis quality of the model by adding vari-
ational regularization and an adversarial loss to the
training procedure. The model allows for resynthe-
sis of the sound effect with an exchanged material,
even when the encoder input does not belong to a
class known to the model. To our knowledge, this
is the first application of a timbre transfer method
to interaction sound effects. While more complex
scenarios, e.g. including nonisotropic materials,
may require a multi-modal approach for convincing
resynthesis, this pure audio-to-audio transforma-
tion may be an interesting tool for sound design
in mixed reality applications. In future work, we
would like to explore disentanglement methods that
facilitate a learnable representation of the material

as well. This way, authoring of the desired material
characteristics for a sound effect could be done by
encoding recordings of a few example interactions
and storing the estimated material representation
for later resynthesis.
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