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ABSTRACT
Retrieving short monophonic queries in music recordings is a chal-
lenging research problem in Music Information Retrieval (MIR). In
jazz music, given a solo transcription, one retrieval task is to find
the corresponding (potentially polyphonic) recording in a music col-
lection. Many conventional systems approach such retrieval tasks
by first extracting the predominant F0-trajectory from the recording,
then quantizing the extracted trajectory to musical pitches and finally
comparing the resulting pitch sequence to the monophonic query. In
this paper, we introduce a data-driven approach that avoids the hard
decisions involved in conventional approaches: Given pairs of time-
frequency (TF) representations of full music recordings and TF rep-
resentations of solo transcriptions, we use a DNN-based approach
to learn a mapping for transforming a “polyphonic” TF representa-
tion into a “monophonic” TF representation. This transform can be
considered as a kind of solo voice enhancement. We evaluate our
approach within a jazz solo retrieval scenario and compare it to a
state-of-the-art method for predominant melody extraction.

Index Terms— Music Information Retrieval, Neural Networks,
Query-by-Example.

1. INTRODUCTION

The internet offers a large amount of digital multimedia content—
including audio recordings, digitized images of scanned sheet mu-
sic, album covers, and an increasing number of video clips. The
huge amount of readily available music requires retrieval strategies
that allow users to explore large music collections in a convenient
and enjoyable way [1]. In this paper, we consider the retrieval sce-
nario of identifying jazz solo transcriptions in a collection of music
recordings, see Figure 1. When presented in a musical theme re-
trieval scenario for classical music [2], this task offers various chal-
lenges, e. g., local and global tempo changes, tuning deviations, or
key transpositions. Jazz solos usually consist of a predominant solo
instrument (e. g., trumpet, saxophone, clarinet, trombone) playing
simultaneously with the accompaniment of the rhythm group (e. g.,
piano, bass, drums). This typical interaction between the musicians
leads to a complex mixture of melodic and percussive sources in
the music recording. Consequently, retrieving monophonic pitch se-
quences of a transcribed solo can be very difficult due to the influ-
ence of the additional instruments in the accompaniment.

In this paper, we propose a data-driven approach for enhancing
the solo voice in jazz recordings with the goal to improve the re-
trieval results. As our main technical contribution, we adapt a DNN
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architecture originally intended for music source separation [3] to
train a model for enhancing the solo voice in jazz music recordings.
Given the time-frequency (TF) representation of an audio recording
as input for the DNN and a jazz solo transcription similar to a pi-
ano roll as the target TF representation, the training goal is to learn
a mapping between both representations which enhances the solo
voice and attenuates the accompaniment.

Throughout this work, we use the jazz solo transcriptions and
music recordings provided by the Weimar Jazz Database (WJD).
The WJD consists of 299 (as of August 2016) transcriptions of in-
strumental solos in jazz recordings performed by a wide range of
renowned jazz musicians. The solos have been manually annotated
and verified by musicology and jazz students at the Liszt School of
Music Weimar as part of the Jazzomat Research Project [4]. Further-
more, the database contains more musical annotations (e. g., beats,
boundaries, etc.) including basic meta-data of the jazz recording it-
self (i. e., artist, record name, etc.). A motivation for improving the
considered retrieval scenario is to connect the WJD with other re-
sources available online, e. g., YouTube. This way, the user could
benefit from the additional annotations provided by the WJD while
exploring jazz music.

The remainder of this paper is structured as follows. In Sec-
tion 2, we discuss related works for cross-modal retrieval and solo
voice enhancement approaches. In Section 3, we introduce our
DNN-based approach for solo voice enhancement. In particular, we
explain the chosen DNN architecture, specify our training strategy,
and report on the DNN’s performance using the WJD. Finally in
Section 4, we evaluate our approach within the aforementioned re-
trieval scenario and compare it against a baseline and a conventional
state-of-the-art system. In our experiments, we show that our DNN-
based approach improves the retrieval quality over the baseline and
performs comparably to the state-of-the-art approach.

2. RELATED WORK

Many systems for content-based audio retrieval that follow the
query-by-example paradigm have been suggested [5–10]. One such
retrieval scenario is known as query-by-humming [11,12], where the
user specifies a query by singing or humming a part of a melody.
Similarly, the user may specify a query by playing a musical phrase
of a piece of music on an instrument [13, 14]. In a related retrieval
scenario, the task is to identify a short symbolic query (e. g., taken
from a musical score) in a music recording [2, 5–7, 15]. Conven-
tional retrieval systems approach this task by first extracting the F0-
trajectory from the recording, quantizing the extracted trajectory to
musical pitches and finally mapping it to a TF representation to per-
form the matching (see [12]).

Many works in the MIR literature are concerned with extracting
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Fig. 1. Illustration of the retrieval scenario. Given a jazz solo transcription used as a query, the task is to identify the music recording
containing the solo. By enhancing the solo voice, we reduce the influence of the accompaniment in order to increase the retrieval results.

the predominant melody in polyphonic music recordings—a widely
used example is Melodia [16]. More recent studies adapted tech-
niques to work better with different musical styles, e. g., in [17], a
combination of estimation methods is used to improve the perfor-
mance on symphonic music. In [18], the authors use a source-filter
model to better incorporate timbral information from the predomi-
nant melody source. A data-driven approach is described in [19],
where a trained classifier is used to select the output for the predom-
inant melody instead of using heuristics.

3. DNN-BASED SOLO VOICE ENHANCEMENT

Our data-driven solo voice enhancement approach is inspired by the
procedure proposed in [3], where the authors use a DNN for source
separation. We will now explain how we adapt this DNN architec-
ture to our jazz music scenario.

3.1. Deep Neural Network

Our DNN architecture closely follows [3], where the authors de-
scribe a DNN architecture and training protocol for source separa-
tion of monophonic instrument melodies from polyphonic mixtures.
In principle, the network is similar to Stacked Denoising Autoen-
coders (SDA) [20], i. e., it consists of a sequence of conventional
neural network layers that map input vectors to target output vectors
by multiplying with a weight matrix, adding a bias term and apply-
ing a non-linearity (rectified linear units). In the setting described
by the authors of the original work, the initial DNN consists of 3591
input units, a hidden layer, and 513 output units. The input vectors
stem from a concatenation of 7 neighboring frames (513 dimensions
each) obtained from a Short Time Fourier Transform (STFT) [21].
The target output vector is a magnitude spectrogram frame (513 di-
mensions) of the desired ground-truth. The training procedure uses
the mean squared error between input and output to adjust the inter-
nal weights and biases via Stochastic Gradient Descent (SGD) until
600 epochs of training are reached. Afterwards, the next layer is
stacked onto the first one and the output of the first is interpreted
as an input vector. This way, the network is gradually built up and
trained to a depth of five hidden layers. The originality of the ap-
proach in [3] lies in the least-squares initialization of the weights
and biases of each layer prior to the SGD training.

In our approach, we do not try to map mixture spectra to solo in-
strument spectra, but rather to activation vectors for musical pitches.
Our input vectors stem from an STFT (frame size = 4096 sam-
ples, hop size = 2048 samples) provided by the librosa Python
package [22]. We then map the spectral coefficients to a logarithmi-
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Fig. 2. Input TF representation obtained from a music recording
(left) and target TF obtained from the related WJD’s solo transcrip-
tion (right).

cally spaced frequency axis with 12 semitones per octave and 10
octaves in total which forms the TF representation for the music
recordings [21]. The TF representations for the solo transcriptions
are directly obtained from the WJD. In these first experiments, we
want a simple DNN architecture and do not consider temporal con-
text to keep the number of DNN parameters low. Therefore, our
initial DNN consists of 120 input units, one hidden layer with 120
units, and 120 output units. Figure 2 shows the input TF representa-
tion of the music recording and the corresponding target output TF
representation from the WJD’s solo transcription.

3.2. Training

To train our DNNs, we consider the solo sections of the tracks pro-
vided by the WJD, i. e., where a solo transcription in a representation
similar to a piano-roll is available. This selection leads to a cor-
pus of around 9.5 hours of annotated music recordings. To perform
our experiments, we sample 10 folds from these music recordings
for training and testing using scikit-learn [23]. By using the
record identifier provided by the WJD, we avoid using solos from
the same record simultaneously in the training and test sets. Fur-
thermore, we randomly split 30 % of the training set to be used as
validation data during the training epochs. Table 1 lists the mean
durations and standard deviations for the different folds and the por-
tion of the recordings that consists of an actively playing soloist. The
low standard deviations in the duration, as well as in the portion of
active frames indicate that we created comparable folds. Note that
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Fig. 3. Training and validation loss during training epochs. For both
losses, we show the mean values and the 95 % confidence intervals.
The red lines indicate when the next layer is added to the DNN.

Training Set Validation Set Test Set

Duration (h) 5.575 (0.003) 2.389 (0.001) 0.885 (0.004)
Active Frames (%) 61.9 (0.2) 62.0 (0.3) 61.9 (1.8)
No. of Solos 269.1 (5.2) — 29.9 (5.2)
No. of Full Rec. 204.3 (3.8) — 22.7 (3.8)

Table 1. Mean duration and mean ratio of active frames aggregated
over all folds (standard deviation is enclosed by brackets).

a full recording can contain more than one solo transcription which
explains the higher number of solo transcriptions compared to the
number of full recordings. In order to reproduce the experiments,
we offer the calculated features for all folds, as well as the exact de-
tails of the network architecture, on our accompanying website [24].

We start the training with our initial DNN with one hidden layer.
We use SGD (momentum = 0.9, batch size = 100) with mean
squared error as our loss function. After multiples of 600 epochs,
we add the next layer with 120 units to the network until a depth of
five hidden layers is reached. All the DNNs have been trained using
the Python package keras [25]. The resulting mean training and
mean validation loss considering all 10 folds are shown in Figure 3.
After multiples of 600 epochs, we see that the loss improves as we
introduce the next hidden layer to the network. With more added
layers, we see that the validation loss diverges from the training loss
as a sign that we are slowly getting into overfitting and can thus end
the training.

3.3. Qualitative Evaluation

To get an intuition about the output results of the network, we pro-
cess short passages from solo excerpts with the trained DNNs. Fig-
ure 4a shows the TF representation of an excerpt from a trumpet solo.
Processing this with the DNN yields the output TF representation as
shown in Figure 4b. Note that the magnitudes of the TF representa-
tions are logarithmically compressed for visualization purposes. In
the output, we can notice a clear attenuation of frequencies below
110 Hz and above 1760 Hz. An explanation for this phenomenon
is that no pitch activations in those frequency bands are apparent in
our training data. Thus, the DNN quickly learns to attenuate these
frequency areas since they do not contribute to the target pitch acti-
vations at the output. In the region between these two frequencies, a
clear enhancement of the solo voice can be seen, together with some
additional noise. As seen in the input TF representation, the fun-
damental frequency (around 500 Hz) contains less energy than the
first harmonic (around 1000 Hz), which is typical for the trumpet.
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Fig. 4. Typical example for the polyphony reduction using our DNN
for an excerpt from Clifford Brown’s solo on Jordu. (a) Input TF
representation. (b) Output TF representation after processing with
the DNN.

However, the DNN correctly identifies the fundamental frequency.
Further examples, as well as sonifications of the DNN’s output, can
be found at the accompanying website [24].

4. RETRIEVAL APPLICATION

In this section, we first summarize our retrieval procedure and then
describe our experiments. We intentionally constrain the retrieval
problem to a very controlled scenario where we know that the mono-
phonic queries correspond almost perfectly to the soloist’s melody
in the recording. We can rely on this assumption, since we use the
manual transcriptions of the soloist as provided in the WJD.

4.1. Retrieval Task and Evaluation Measure

In the this section, we formalize our retrieval task following [21].
Let Q be a collection of jazz solo transcriptions, where each element
Q ∈ Q is regarded as a query. Furthermore, let D be a set of music
recordings, which we regard as a database collection consisting of
documents D ∈ D. Given a query Q ∈ Q, the retrieval task is to
identify the semantically corresponding documents D ∈ D. In our
experiments, we use a standard matching approach which is based on
chroma features and a variant of Subsequence Dynamic Time Warp-
ing (SDTW). In particular, we use a chroma variant called CENS
features with a smoothing of 9 time frames and a downsampling fac-
tor of 2 [26]. Comparing a query Q ∈ Q with each of the documents
D ∈ D using SDTW yields a distance value for each pair (Q,D).
We then rank the documents according to the these distance values of
the documents D ∈ D, where (due to the design of our datasets) one
of these documents is considered relevant. In the following, we use
the mean reciprocal rank (MRR) of the relevant document D ∈ D as
our main evaluation measure. For the details of this procedure, we
refer to the literature, e. g., [21, Chapter 7.2.2].

4.2. Experiments

We now report our retrieval experiments which follow the retrieval
pipeline illustrated in Figure 1. In general, for our retrieval experi-
ments, the queries are TF representations of the solo transcriptions



26 27 28 29 30 26 27 28 29 30 26 27 28 29 30
9

28

110

440

1760

8372

Time (s)

Fr
eq

ue
nc

y
(H

z)

(a) (b) (c)

Fig. 5. Typical example for the effect of both solo voice enhancement techniques. (a) Log-frequency magnitude spectrogram of a short jazz
excerpt from our data. There is a clearly predominant solo melody, but also strong components from the accompaniment, such as bass and
drums. (b) The same excerpt after running through a trained DNN as described in Section 3. We can see strongly attenuated influence of the
accompaniment. (c) The same excerpt after extracting the predominant melody using the salience-based approach [16]. We can see that the
trajectory of the solo melody has been tracked with only very few spurious frequencies.

from the WJD and the database elements are the TF representations
of the corresponding full recordings containing the solos. We per-
form the retrieval for all 10 training folds separately. As listed in
Table 1, the retrieval task consists in average for each fold of 30
solo transcriptions as queries to 23 music recordings in the database.
Assuming we have a system that retrieves the relevant document
randomly following a uniform distribution, for 30 queries and 23
database elements this would lead to a mean reciprocal rank of 0.13.
This value serves as a lower bound of the expected performance of
more intelligent retrieval systems. To further study the retrieval ro-
bustness, we consider query lengths starting from using the first 25
s of the solo transcription and then successively going down to 3 s.

In our baseline approach, we reduce the TF representations
of the query and database documents (without using the DNN) to
chroma sequences and apply the retrieval technique introduced ear-
lier. The results of the baseline approach in terms of MRR for dif-
ferent query lengths are shown in Figure 6, indicated by the blue
line. For a query length of 25 s, the baseline approach yields an
MRR of 0.94. Reducing the query length to 5 s leads to a signifi-
cant drop of the MRR down to 0.63. Now we consider our proposed
DNN-based solo voice enhancement approach. The queries stay the
same as in the baseline approach, but the TF representations of the
database recordings are processed with our DNN before we reduce
them to chroma sequences. For a query length of 25 s, this yields
an MRR of 0.98; for a query length of 5 s, the MRR only slightly
decreases to 0.86 which is much less than in the baseline approach.
A reason for this is that the queries lose their specificity the shorter
they become. This leads to wrong retrieval results especially when
using the unprocessed recordings as in the baseline approach. The
DNN-based approach compensates this by enhancing the solo voice
and therefore makes it easier for the retrieval technique to identify
the relevant recording.

Lastly, we consider a salience-based approach described in [16]
for processing the music recording’s TF representation. In short, this
method extracts the predominant melody’s F0-trajectory from the
full recording, which is then quantized and mapped to a TF represen-
tation. The conceptional difference to our DNN-based approach is
illustrated in Figure 5. For a query length of 25 s, this method yields
a slightly lower MRR than the DNN-based approach of 0.96. Reduc-
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Fig. 6. Mean reciprocal rank (MRR) for all three methods performed
on all folds and with varying the query length. For all methods, we
show the 95 % confidence intervals.

ing the query to a length of 5 s, we achieve an MRR of 0.84. All three
methods perform well when considering query lengths of more than
20 s. When the query length is shortened, all methods show a de-
crease in performance, whereas the DNN-based and salience-based
methods significantly outperform the baseline approach.

5. CONCLUSION

In this paper, we described a data-driven approach for solo voice
enhancement by adapting a DNN-based method originally used for
source separation. As a case study, we used this enhancement strat-
egy to improve the performance of a cross-modal retrieval scenario
and compared it to a baseline and a conventional method for predom-
inant melody estimation. From the experiments we conclude that in
the case of jazz recordings, solo voice enhancement improves the
retrieval results. Furthermore, the DNN-based and salience-based
approaches perform on par in this scenario of jazz music and can be
seen as two alternative approaches. In future work, we would like
to investigate if we can further improve the results by enhancing the
current data-driven approach, e. g., by incorporating temporal con-
text frames or testing different network architectures.
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