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ABSTRACT

In this paper, we focus on transcribing walking bass lines, which provide clues for revealing the actual played chords
in jazz recordings. Our transcription method is based on a deep neural network (DNN) that learns a mapping from
a mixture spectrogram to a salience representation that emphasizes the bass line. Furthermore, using beat positions,
we apply a late-fusion approach to obtain beat-wise pitch estimates of the bass line. First, our results show that this
DNN-based transcription approach outperforms state-of-the-art transcription methods for the given task. Second,
we found that an augmentation of the training set using pitch shifting improves the model performance. Finally,
we present a semi-supervised learning approach where additional training data is generated from predictions on
unlabeled datasets.

1 Introduction

In many jazz styles, bass players commonly play walk-
ing bass lines, which consist mostly of quarter notes
and few rhythmic variations. Since these notes coin-
cide with beat positions, the bass supports the drums in
creating a rhythmic pulse. At the same time, walking
bass lines contribute to the harmonic fundament by em-
phazising important chord tones (root, third, fifth) on
metrically accented beats. Thus, they provide a rhyth-
mic and harmonic backbone for many jazz tunes and
are of genuine interest to jazz researchers.

Since jazz improvisers often relate to the chords of a
composition, knowing the correct harmonic structure
is of crucial interest for analyzing solo improvisations.
However, while taking the composition as a founda-
tion for their playing, jazz musicians often modify the

original chord progressions. In order to determine the
actually played chords from a jazz recording, automatic
music transcription methods could be applied. But a
reliable polyphonic transcription of the piano or guitar
from ensemble recordings can still be considered an
unsolved problem [1]. To mitigate this problem, walk-
ing bass lines could be used to provide initial cues for
a full harmonic analysis and also to validate external
chord annotations such as currently used in the Weimar
Jazz Database [2].

In this paper, we propose to transcribe the underly-
ing (monophonic) walking bass line to obtain initial
cues for a subsequent harmonic analysis in jazz record-
ings. Instead of performing a full transcription, we
aim to extract a bass salience representation. The bass
salience measures a kind of likelihood that the bass in-
strument plays certain pitches over time. We represent
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Fig. 1: Visualization of the proposed system. (a) The labelled dataset D1 is used for training the DNN to derive
model M1. (b) M1 is used to create labels for the unlabelled music recordings in dataset D2. (c) D1 and D2
are used as a combined training set to derive the DNN model M2.

the walking bass line as a sequence of beat-wise pitch

values, which we obtain by frame-wise aggregation of
extracted bass saliences between annotated beat times.

Our proposed system is based on training a deep neural
(DNN) on jazz music recordings equipped with walk-
ing bass line transcriptions, as shown in Figure 1(a).
Currently, we only have a small number of 41 jazz
music recordings (D1) with ground truth transcriptions.
In addition, we aim to exploit another 237 jazz music
recordings (D2) of similar music style without bass
transcriptions in order to implement a semi-supervised
learning procedure.

In this paper, our first contribution is the adaptation of
a previously proposed deep neural network architecture
[3, 4] to the task of walking bass line transcription. This
technique allows for an automated learning of a map-
ping from a given spectrogram representation of the
music recording to a pitch salience representation of the
bass instrument. Furthermore, we investigate two data
augmentation techniques to further improve our trained
DNN. First, we increase the labelled data by simply
shifting the input features to make the DNN more ro-
bust to key changes. Second, we apply a bootstrapping
approach inspired by [5] to examine the benefit of using
unlabelled data to further generalize our trained DNN.
At the same time, we evaluate the performance of state-
of-the-art bass transcription methods for the given task.
Note that this paper has an accompanying website at [6]
where one can find further audio examples and details
about the annotations used in this paper.

2 Related Work

Several bass transcription algorithms were proposed in
the MIR literature so far which approach the bass part
as the lowest dominant melody line with fundamen-
tal frequency ( f0) values between around 40 Hz and
400 Hz. Considering the low frequency range, low-pass
filtering in combination with downsampling is often
the first processing stage [7, 8, 9], which accelerates
the transcription by filtering out harmonic components
from instruments in higher frequency ranges. Instead
of fixing an upper f0 limit, Ryynänen and Klapuri [10]
adapt the frequency band of interest by dynamically
estimating the f0 range of the bass line. Some authors
apply source separation techniques to filter out interfer-
ing instruments prior to the bass transcription. For in-
stance, Tsunoo et al. [11] use the harmonic-percussive
sound separation (HPSS) algorithm to attenuate spec-
tral components of percussive instruments.

In terms of suitable spectral representations for bass
transcription, the short-time Fourier transform (STFT)
is often applied [7, 12, 10]. However, due to the limited
temporal-spectral resolution in lower frequency ranges,
different methods such as the instantaneous frequency
(IF) spectrogram [7, 8] or the constant-Q spectrogram
[13] are also common. For details on different spectral
representations used in MIR, see e. g., [14]. A subse-
quent note detection stage is performed either in the
time domain [7, 12] using envelope extraction methods
or in the frequency domain by grouping frame-wise f0
estimates to note events [10, 8].

AES Conference on Semantic Audio, Erlangen, Germany, 2017 June 22 – 24

Page 2 of 8



Abeßer et al. Deep Learning for Jazz Walking Bass Transcription

Dataset Usage Ann. # Files # Notes Duration [h]

D1 Training X 31 3899 0.43
D

+
1 Training X 93 11697 1.30

D2 Training - 237 - 7.16
D

+
2 Training - 711 - 21.49

D3 Test X 10 1101 0.12

Table 1: Summary of the datasets. In the forelast two
columns, the number of audio files and num-
ber of notes are given before and after data
augmentation, respectively.

Our approach is inspired by previously proposed algo-
rithms based on a harmonic salience function, which
provides a likelihood measure for different pitch can-
didates. Klapuri and Ryynänen compute an f0 candi-
date’s harmonic salience by summing up the spectral
energies at corresponding harmonic frequencies [10].
In contrast, Salamon et al. use a logarithmic frequency
representation in combination with instantaneous fre-
quency estimation methods and harmonic summation
[9, 15].

Recent advances in DNNs stimulated new progress
in automatic music processing algorithms. Böck and
Schedl [16] used a recurrent neural network (RNN)
based on Long Short-Term Memory (LSTM) units to
obtain a pitch salience representation from polyphonic
piano recordings. Recently, Kelz et al. [17] systemati-
cally evaluated different network hyperparameters on
the performance of DNNs for frame-wise polyphonic
piano transcription. The authors compared three differ-
ent network configurations based on feed-forward and
convolutive DNNs, which outperformed an alternative
piano transcription algorithm proposed by Sigtia et al.
in [18], which uses an RNN to model the combination
of an acoustic and a musical language model.

3 Proposed Method

3.1 Datasets

Our dataset is a subset of 41 jazz solo recordings
taken from the Weimar Jazz Database (WJD)1, which
contains 456 high-quality solo melody transcriptions
and covers numerous jazz performers and styles. For
this work, musicology students transcribed excerpts of
walking bass lines of 41 recordings using the Sonic

1
http://jazzomat.hfm-weimar.de/dbformat/

dboverview.html

Hyperparameter Values

# Hidden layers 3, 4, 5
# Context frames 1, 3, 5

Dropout (%) 0, 25, 50
L2 weight regularization disabled, 10�3

Table 2: Variations over model hyperparameters. Opti-
mal parameter values are given in bold print.

Visualiser software [19]. As shown in Table 1, we put
aside 10 files as final test set D3. The remaining 31
files are used as labeled training set D1. Furthermore,
we add another 237 recordings from the WJD database
as unlabeled training set D2 without any bass anno-
tation available for semi-supervised learning as will
be explained in Section 3.4 and Section 3.6. These
recordings have the same music style (swing feeling
with walking bass lines) as the annotated files.

3.2 Data Augmentation

In order to enlarge the datasets D1 and D2, we perform
data augmentation and created two additional versions
of each audio recording by applying pitch shifting us-
ing the sox audio library2 one semitone upwards and
downwards, respectively. As a side effect, this pro-
cedure balances the overall pitch distribution in the
training set. The enlarged datasets are denoted as D

+
1

and D

+
2 and summarized in Table 1.

3.3 Input Features & Targets

We resample each audio signal to a sampling rate of
22.05 kHz and compute the constant-Q magnitude spec-
trogram using the librosa python library [20] with a
hopsize of 1024 (46.4 ms) and a frequency resolution
of 12 bins per octave as input features. We consider the
pitch range of a double bass ranging from MIDI pitch
28 and 67 ( f0 values from 41.2 Hz to 392 Hz). Pitch
annotations are converted to binary pitch saliency vec-
tors, which serve as target representation for multilabel
classification. Both the input features and target values
have the same dimensionality of N = 40.

3.4 Model Training

In the following, we introduce a bass transcription al-
gorithm, which builds upon previous work from Uh-
lich et al. [3], who used a DNN to learn a mapping

2
http://sox.sourceforge.net/
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Fig. 2: Proposed semi-supervised training procedure
for the DNN model. Feature and target matrices
are denoted as F and T, respectively.

from a mixture magnitude spectrogram to the magni-
tude spectrogram of a single instrument in a source
separation context. The DNN architecture has several
fully-connected hidden layers with the same size as the
output layer. Rectified linear units (ReLU) are used as
activation function for the hidden layers and the sig-
moid function is used for the output layer. Uhlich et
al. [3] propose to train the DNN layers in succession.
For each layer training, least-squares estimates based
on the output of the previous layer are used to initialize
the corresponding weight values [21]. This approach
was adapted by Balke et al. [4], who changed the map-
ping objective to obtain a pitch salience representation
of the melody instrument from multi-instrumental jazz
recordings. In this work, we adapt and apply this model
to learn a salience representation for the bass line from
a mixture spectrogram.

Our proposed semi-supervised learning procedure is
illustrated in Figure 1 and Figure 2. First, we use the
labeled dataset D

+
1 to train an initial encoder model

M+
1 based on the architecture proposed in [4]. For the

optimization, we use the ADADELTA [22] algorithm,
a mini-batch size of 500 (samples per gradient update),
500 epochs (gradient updates) for the training of each
layer, and the mean squared error loss function as pro-
vided by the keras python library3. During initial tests
on dataset D1, we found the best training convergence
for a learning rate of 1. Since we focus on frame-wise
pitch saliency modeling, we normalize all feature vec-

3
https://github.com/fchollet/keras

tors by their Euclidean norm before they are input to
the DNN model.

3.5 Hyperparameter Tuning

For the hyperparameter tuning, we compare 54 dif-
ferent model parameterizations as shown in Table 2
inspired by [23, 17]. Each parametrization is evaluated
using a 3-fold cross validation and the final validation
loss is averaged over all folds and minimized to ob-
tain the optimal training configuration. In addition
to different number of layers, we investigate, whether
frame stacking improves the model performance. We
compare different context frame sizes (N

C

2 [1,3,5]).
For example, for N

C

= 5, we concatenate each spec-
tral frame with the two preceding and two succeed-
ing spectral frames to a feature vector of dimension
N

C

·N = 200 (where N = 40, see Section 3.3). Also,
we investigate, whether dropout between the hidden
layers and an L2 weight regularization improves the
model’s robustness.

Our experiments showed that a network with 4 layers,
5 context frames, 25 % dropout, and no weight regular-
ization showed the best performance on the dataset D

+
1 .

The optimal number of layers is close to the 5 layers
used by Balke et al. in [4] for melody pitch salience es-
timation. The incorporation of temporal context (frame
stacking) seems beneficial for our application scenario.
One possible reason could be that most bass notes in
the walking bass style are relatively long (quarter notes)
and have a stable pitch contour.

3.6 Sparseness-Based Selection

Dittmar et al. [5] proposed to include predicted feature
vectors from unlabeled test data using a bootstrapping
approach. Using the augmented training set, the authors
performed a re-training of the model to adapt it to
the targeted test data. We adopt these approaches to
implement a semi-supervised learning procedure as
follows.

We denote a feature vector (model input) as
F 2 RN·N

C and the corresponding target vector (for
model training) or prediction of the model as T 2 RN ,
respectively. Using the model M

+
1 , we first obtain

predictions on the unlabeled dataset D

+
2 . In order to

measure whether a given pitch salience vector shows
only one or multiple salient pitches, we use the fol-
lowing sparseness measure s proposed in [24], which
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Fig. 3: Normalized histogram over sparseness values
s of predictions of model M

+
1 for all files in

dataset D

+
2 . Sparseness thresholds tq are shown

as vertical lines.

is based on the relationship between the L1 norm and
L2 norm of a given (predicted) pitch salience vector
T = (T1,T2, . . . ,TN

)T:

s(T ) =

p
N � (ÂN

i=1 T

i

)/(
q

ÂN

i=1 T

2
i

)
p

N �1
with s 2 [0,1].

(1)
If T has only a small number of non-zero components,

s will be close to 1. In that case, we assume that T

corresponds to a voiced time frame with one bass pitch
being predominant, which can be used as additional
training data. In contrast, if s is close to 0, we assume
that no bass pitch is predominant in this time frame
and T represents either an unvoiced frame or a uncon-
fident model prediction for a voiced frame. We select
all predicted pitch salience vectors T with sparseness
values s(T )> t greater than a given threshold t > 0 as
additional training data to train M

+
2 .

In the experiments discussed in Section 4, we evaluate
six different variants of the DNN model. We compare
the model M

+
1 trained on the dataset D

+
1 and the model

M1 trained on the dataset D1 that excludes the data aug-
mented files. Also, we include four different variants of
model M

+
2 , which we obtain by varying the sparseness

threshold t = tq. We compute tq from the q-th quartile
Q

q

of the distribution of the sparseness values s over all
predictions of the model M

+
1 over the dataset D

+
2 . We

investigate all three quartiles Q1, Q2, and Q3 (denoted
as q 2 [1,2,3]) as well as the special case of using all
frames of D

+
2 as additional data (denoted as q = 0).

Figure 3 shows a histogram over the sparseness values
s over all predictions from model M

+
1 on the unlabeled

Fig. 4: Sketch of the experimental procedure.

dataset D

+
2 as well as the corresponding thresholds tq.

The thresholds obtained from the distribution percentile
values are illustrated as vertical lines. By increasing t ,
we reduce the size of additional training data at the one
hand but focus on more confident annotations on the
other hand.

3.7 Binarization

Before including the additional training data to the
initial training set D

+
1 , we binarize the corresponding

predictions T in such a way that only the largest entry
remains 1 and all others become 0. This leads to an-
notations similar to those in D

+
1 with only one pitch

being marked. After adding these frames to D

+
1 , we use

the trained model M

+
1 as initialization and perform 500

additional training epochs on all layers using the com-
bined training set. Depending on the applied threshold
t

q

(compare Section 3.6), the resulting models are la-
beled as M

q,+
2 .

3.8 Beat-Informed Late Fusion

We aim to represent the walking bass line as sequence
of beat-wise pitch values. Usually, automatic beat-
detection methods need to be applied to estimate the
beat times in a given audio recording. In this paper,
we circumvent this step by using manually annotated
beat times provided by the WJD database. After we
estimate a pitch salience representation for a given au-
dio recording, we average the pitch salience values
between successive beat times and obtain a pitch esti-
mate by taking the most salient pitch as bass pitch for
the current beat.
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Alg. Frame-wise Beat-wise Sparseness
A APC A APC s

SG 0.28 (0.14) 0.39 (0.15) 0.68 (0.22) 0.75 (0.21) -
RK 0.12 (0.13) 0.18 (0.14) 0.60 (0.27) 0.64 (0.26) -
D 0.37 (0.20) 0.41 (0.19) 0.72 (0.16) 0.75 (0.15) -

M1 0.31 (0.09) 0.43 (0.10) 0.71 (0.17) 0.78 (0.14) 0.684 (0.035)
M

+
1 0.57 (0.13) 0.70 (0.11) 0.83 (0.13) 0.89 (0.11) 0.761 (0.018)

M

0,+
2 0.54 (0.12) 0.68 (0.11) 0.81 (0.14) 0.88 (0.12) 0.954 (0.010)

M

1,+
2 0.54 (0.13) 0.70 (0.11) 0.81 (0.14) 0.89 (0.11) 0.935 (0.015)

M

2,+
2 0.55 (0.12) 0.71 (0.11) 0.82 (0.14) 0.89 (0.12) 0.922 (0.019)

M

3,+
2 0.56 (0.12) 0.70 (0.11) 0.82 (0.14) 0.88 (0.12) 0.862 (0.030)

Table 3: Mean pitch detection accuracy values A and APC and mean frame-wise sparseness values s averaged
over all test files (standard deviation values given in brackets). Both accuracy measures are computed
frame-wise and beat-wise. Highest accuracy values A and sparseness values are denoted in bold print.

4 Evaluation

4.1 Experimental Procedure

Figure 4 gives an overview over the experimental de-
sign. The dataset D3 is used as test set. We obtain
bass salience predictions from the six models M1, M

+
1 ,

M

0,+
2 , M

1,+
2 , M

2,+
2 , and M

3,+
2 described in Section 3.6.

The state-of-the-art bass transcription algorithms by
Ryynänen & Klapuri (RK) [10] and Dittmar et al. (D)
[7] output a list of note events (score) whereas the al-
gorithm from Salamon & Gomez (SG) [9] outputs a
frame-wise f0 contour of the bass line.4

We first convert all transcription results into correspond-
ing bass salience representations using a fixed temporal
resolution of 46.4 ms and a pitch resolution of one semi-
tone in order to have a comparable signal representation
across all algorithms. In the next step, we use annotated
beat times taken from the WJD database to aggregate
the bass salience representations over frames between
successive pairs of beats as described in Section 3.8.

From the obtained beat-wise bass pitch estimates, we
compute the accuracy A as the percentage of correctly
estimated pitch values. Similarly, we compute the accu-
racy APC by considering only the correct pitch class and
disregarding the octave information. Both measures are
computed on a frame-level, taking only voiced frames
with available ground truth annotation into account, and
on a beat-level, taking only beats with a ground-truth
annotation into account.

4It must be noted that the algorithm SG is limited to a two-octave
pitch range between the MIDI pitch values 21 and 45 ( f0 values
between 27.5 Hz - 110 Hz).

5 Results

Table 3 summarizes the accuracy values for frame-wise
and beat-wise evaluation across the three state-of-the-
art algorithms and the 6 proposed models. First, it can
be observed that the beat-informed late fusion step dis-
cussed in Section 3.8 significantly improves accuracy
values across all algorithms. Second, the DNN-based
algorithms clearly outperform the state of the art algo-
rithms. One important reason is that the state-of-the-art
algorithms are not at all tailored towards jazz music
while the proposed models are trained on music record-
ings with similar music style as the test data. Third, by
disregarding octave errors, accuracy values consistently
rise by around 5 % to 10 %.

With respect to the proposed data augmentation me-
thods, adding additional training data using the semi-
supervised training procedure described in Section 3.6
does not improve the accuracy values for the given tran-
scription task. However, we found that the predictions
obtained from all variants of model M2, which incor-
porate additional training data, show higher sparseness
values than the predictions obtained from the initial
model M1. The last column of Table 3 shows the aver-
age sparseness values of the pitch salience predictions
from all proposed models for the test set. It can be
observed that the average sparseness increases with
decreasing threshold tq.

This is also apparent in Figure 5, which shows the pre-
dicted pitch salience representations from all compared
algorithms for the bass line excerpt from 0:04 to 0:09
of Chet Baker’s Solo on “Let’s Get Lost”. We interpret
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,+ ,+ ,+ ,+

Fig. 5: Excerpts from bass pitch salience representations for excerpt from 0:04 to 0:09 of Chet Baker’s Solo on
“Let’s Get Lost”. “True” illustrates the ground truth pitch salience. Pitch salience matrices for deep learning
methods are squared for better visibility. The MIDI pitch is shown on the vertical axis.

this as an indicator that these models are more confi-
dent in predicting the pitch salience of monophonic
bass lines and show less confusion to other pitches.
While this is not beneficial in the given transcription
task, we belief that it has potential to improve source
separation algorithms.

6 Conclusions

In this paper, we presented a transcription algorithm
for walking bass lines in jazz recordings based on deep
neural networks. We adapted a method from the liter-
ature to learn a mapping from a mixture spectrogram
to a bass salience representation. By using manually
tapped beat times as additional clues, we applied late-
fusion to extract beat-wise pitch values, which are a
musically meaningful representation of a walking bass
line. We investigated two data augmentation techniques
to increase the training dataset of the model. First, we
added pitch-shifted versions of the initial training set
and second, we applied a semi-supervised learning
scheme, where we selected predictions of the model
on unlabeled data as additional training data. Using
pitch shifting as data augmentation technique clearly
improves the results. The proposed semi-supervised
learning leads to models that generate sparser pitch
salience predictions. While this property does not in-
crease the transcription accuracy, we believe that it can

help to improve the performance of DNN-based source
separation algorithms.
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