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Abstract. The general goal of music synchronization is to align multi-
ple information sources related to a given piece of music. This becomes
a hard problem when the various representations to be aligned reveal
significant differences not only in tempo, instrumentation, or dynam-
ics but also in structure or polyphony. Because of the complexity and
diversity of music data, one can not expect to find a universal synchro-
nization algorithm that yields reasonable solutions in all situations. In
this paper, we present a novel method that allows for automatically iden-
tifying the reliable parts of alignment results. Instead of relying on one
single strategy, our idea is to combine several types of conceptually dif-
ferent synchronization strategies within an extensible framework, thus
accounting for various musical aspects. Looking for consistencies and
inconsistencies across the synchronization results, our method automat-
ically classifies the alignments locally as reliable or critical. Considering
only the reliable parts yields a high-precision partial alignment. More-
over, the identification of critical parts is also useful, as they often reveal
musically interesting deviations between the versions to be aligned.

1 Introduction

As a result of massive digitization efforts, there is an increasing number of rel-
evant digital documents for a single musical work comprising audio recordings,
MIDI files, digitized sheet music, music videos, and various symbolic representa-
tions. In order to coordinate the multiple information sources related to a given
musical work, various alignment and synchronization procedures have been pro-
posed with the common goal to automatically link several types of music rep-
resentations, [1–6, 8–10, 13–15, 18–24]. In a retrieval context, this linking infor-
mation allows for an easy and intuitive formulation of a query. For example, in
[13] the query is created by selecting multiple bars in a score representation. As
the score is linked to an audio recording the query in the score domain can be



translated into a query in the audio domain, which can be used in an underly-
ing audio retrieval system. This way, the user can make use of a semantically
oriented high-level representation while the low-level representation needed only
for technical reasons is hidden from the user.

In general terms, music synchronization denotes a procedure which, for a
given position in one representation of a piece of music, determines the corre-
sponding position within another representation. Even though recent synchro-
nization algorithms can handle significant variations in tempo, dynamics, and
instrumentation, most of them rely on the assumption that the two versions to
be aligned correspond to each other with respect to their overall global temporal
and polyphonic structure. In real-world scenarios, however, this assumption is
often violated [11]. For example, for a popular song there often exists various
structurally different album, radio, or extended versions. Live or cover versions
may contain improvisations, additional solos, and other deviations from the orig-
inal song [21]. Poor recording conditions, interfering screams and applause, or
distorted instruments may introduce additional serious degradations in the au-
dio recordings. On the other side, MIDI and other symbolic descriptions often
convey only a simplistic view of a musical work, where, e. g., certain voices or
drum patterns are missing. Furthermore, symbolic data as obtained from opti-
cal music recognition is often corrupted by recognition errors. In general, the
synchronization of two strongly deviating representations of a piece of music
constitutes an ill-posed problem. Here, without further model assumptions on
the type of similarity, the synchronization task becomes infeasible.

In this paper, we address the problem of reliable partial music synchroniza-
tion with the goal to automatically identify those passages within the given
music representations that allow for a reliable alignment. Given two different
representations of the same piece, the idea is to use several types of conceptu-
ally different synchronization strategies to obtain an entire family of temporal
alignments. Now, consistencies over the various alignments indicate a high relia-
bility in the encoded correspondences, whereas inconsistencies reveal problematic
passages in the music representations to be aligned. Based on this automated
local classification of the synchronization results, we segment the music repre-
sentations into passages, which are then further classified as reliable and critical.
Here, the reliable passages have a high confidence of being correctly aligned with
a counterpart, whereas the critical passages are likely to contain variations and
artifacts. The reliable passages can then be used as anchors for subsequent im-
provements and refinements of the overall synchronization result. Conversely, our
automated validation is also useful in revealing the critical passages, which often
contain the semantically interesting and surprising parts of a representation.

The remainder of this paper is organized as follows. In Sect. 2, we describe
three conceptually different synchronization strategies. Then, in Sect. 3, we intro-
duce our novel concept that allows for locally classifying the computed alignment
results as reliable or critical. Finally, we report on our experiments in Sect. 4
and sketch some future work in Sect. 5. Further related work is discussed in the
respective sections.
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Fig. 1. Chroma based cost matrices for an audio recording (vertical axis) and a MIDI
version (horizontal axis) of the song ‘And I love her’ by the Beatles. Times are given
in seconds. (a) Cost Matrix (b) Smoothed Cost Matrix.

2 Music Synchronization Strategies

Most synchronization methods can be summarized in three simple steps. In a
first step, the data streams to be aligned are converted to a suitable feature
representation. Next, a local cost measure is used to compare features from the
two streams. Based on this comparison, the actual alignment is then computed
using an alignment strategy in a final step. In the following, we describe three
conceptually different approaches for synchronizing a given MIDI-audio pair of
a piece of music. Here, exemplarily using chroma features, we fix the parame-
ters of the first two steps as described in Sect. 2.1 and focus on the third step,
the alignment strategy (Sect. 2.2). As a first approach, we consider classical
dynamic time warping (DTW), which allows for computing a global alignment
path. We then introduce a recursive variant of the Smith-Waterman algorithm,
which yields families of local path alignments. As a third approach, we use a
partial matching strategy, which yields the least constrained alignment. While
these three approaches share similar algorithmic roots (dynamic programming)
they produce fundamentally different types of alignments. Intuitively, one may
think of two extremes. On the one hand, DTW relies on strong model assump-
tions, but works reliably in the case that these assumptions are fulfilled. On the
other hand, partial matching offers a high degree of flexibility, but may lead to
alignments being locally misguided or split into many fragments. The Smith-
Waterman approach can be thought of being in between these two extremes. As
a complete description of the three alignment strategies would go beyond the
scope of this paper, we summarize their properties while highlighting the con-
ceptual differences among the approaches in Sect. 2.2. References to literature
with exact implementation details are given as necessary.

2.1 Local Cost Measure

For comparing a MIDI file and an audio recording of the same song, we convert
both representations into a common mid-level representation. Depending on the
type of this representation the comparison can be based on musical properties



like harmony, rhythm or timbre. Since our focus is on alignment strategies, we
exemplarily fix one type of representation and revert to chroma-based music
features, which have turned out to be a powerful tool for relating harmony-
based music, see [8, 10]. For details on how to derive chroma features from audio
and MIDI files, we refer to the cited literature. In the subsequent discussion, we
employ normalized 12-dimensional chroma features with a temporal resolution
of 2 Hz (2 features per second).

Let V := (v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ) be two chroma feature
sequences. To relate two chroma vectors we use the cosine distance defined by
c(vn, wm) = 1 − ⟨vn, wm⟩ for normalized vectors. By comparing the features of
the two sequences in a pairwise fashion, one obtains an (N ×M)-cost matrix C

defined by C(n,m) := c(vn, wm), see Fig. 1a. Each tuple (n,m) is called a cell

of the matrix. To increase the robustness of the overall alignment procedure, we
further enhance the structure of C by using a contextual similarity measure as
described in [12]. The enhancement procedure can be thought of as a multiple
filtering of C along various directions given by gradients in a neighborhood of
the gradient (1, 1). We denote the smoothed cost matrix again by C. For an
example see Fig. 1b.

2.2 Alignment Methods

In the following, an alignment between the feature sequences V := (v1, v2, . . . , vN )
and W := (w1, w2, . . . , wM ) is regarded as a set A ⊆ [1 : N ]× [1 : M ]. Here, each
cell 
 = (n,m) ∈ A encodes a correspondence between the feature vectors vn and
wm. Furthermore, by ordering its elements lexicographically A takes the form
of a sequence, i. e., A = (
1, . . . , 
L) with 
ℓ = (nℓ,mℓ), ℓ ∈ [1 : L]. Additional
constraints on the set ensure that only semantically meaningful alignments are
permitted. We say that the set A is monotonic if

n1 ≤ n2 ≤ . . . ≤ nL and m1 ≤ m2 ≤ . . . ≤ mL.

Similarly, we say that A is strictly monotonic if

n1 < n2 < . . . < nL and m1 < m2 < . . . < mL.

Note that the monotonicity condition reflects the requirement of faithful timing:
if an event in V precedes a second one this also should hold for the aligned events
inW . A strictly monotonic set A will also be referred to asmatch, denoted by the
symbol ℳ = A. To ensure certain continuity conditions, we introduce step-size
constraints by requiring


ℓ+1 − 
ℓ ∈ �

for ℓ ∈ [1 : L − 1], in which � denotes a set of admissible step sizes. A typi-
cal choice is � = �1 := {(1, 1), (1, 0), (0, 1)} or � = �2 := {(1, 1), (2, 1), (1, 2)}.
Note that when using �1 (�2) the set A also becomes monotonic (strictly mono-
tonic). A set A that fulfills the step-size condition is also referred to as path

denoted by the symbol P = A. As final constraint, the boundary condition


1 = (1, 1) and 
L = (N,M),
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Fig. 2. Several techniques for the alignment of an audio recording (vertical axis) and
a MIDI version (horizontal axis) of the song ‘And I love her’ by the Beatles. (a) Cost
Matrix C. (b) Score Matrix S. (c) Thresholded Score Matrix S≥0. (d) Optimal global
path obtained via DTW based on matrix C. (e) Family of paths obtained via Smith-
Waterman based on matrix S. (f) Optimal match obtained via partial matching based
on matrix S≥0.

ensures in combination with a step-size condition the alignment of V and W as
a whole. If both the step-size as well as the boundary condition hold for a set A,
then A will be referred to as global path (or warping path) denoted by G. Finally,
a monotonic set A is referred to as family of paths, denoted by ℱ , if there exist
paths P1,P2, . . . ,PK with ℱ = A =

∪
k∈[1:K] Pk.

If it is known a-priori that the two sequences to be aligned correspond to
each other globally then a global path is the correct alignment model. Here,
dynamic time warping (DTW) is a standard technique for aligning two given
sequences and can be used to compute a global path [17, 10]. In this context, the

cost of an alignment A is defined as
∑L

ℓ=1 C(nℓ,mℓ). Then, after fixing a set of
admissible step-sizes �, DTW yields an optimal global path having minimal cost
among all possible global paths. In our experiments � = �1 and � = �2 yielded
alignments of similar quality. However, here we choose � = �1, since it leads to
more reasonable results in cases where the assumption of global correspondence
between the sequences is violated. For the subsequent discussion we use A(s, t) to
refer to the segment in the audio recording starting at s seconds and terminating
at t seconds. Similarly, M(s, t) refers to a MIDI segment. So listening to M(55, 65)
of the song ‘And I love her’ (used as example in Fig. 2) reveals a short bridge
in the song. However in the audio recording (taken from the Anthology release)
the bridge is skipped by the Beatles. Since DTW always aligns the sequences
as a whole we find a semantically meaningless alignment between A(40, 42) and
M(48, 65). A similar observation can be made at the beginning and the end of
the optimal global path. Here, the intro and outro in the audio recording deviate
strongly from those in the MIDI version.



(a) (b) (c)

Fig. 3. First steps of our recursive Smith-Waterman variant. (a) Optimal path P

derived via classical Smith-Waterman. (b) Submatrices defined via P. (c) Result after
the first recursion. Optimal paths have been derived from the submatrices and new
submatrices (red) for the next recursive step are defined.

In general, using DTW in the case that elements in one sequence do not have
suitable counterparts in the other sequence is problematic. Particularly, in the
presence of structural differences between the two sequences, this typically leads
to misguided alignments. Hence, if it is known a-priori that the two sequences to
be aligned only partially correspond to each other, a path or a family of paths
allows for a more flexible alignment than a global path.

Here, the Smith-Waterman algorithm is a well known technique from biolog-
ical sequence analysis [16] to align two sequences that only locally correspond to
each other. Instead of using the concept of a cost matrix with the goal to find a
cost-minimizing alignment, we now use the concept of a score matrix with the
goal to find a score-maximizing alignment. To this end, we fix a threshold � > 0.
Then, a score matrix S is derived from C by setting S = � −C. Fig. 2b shows a
score matrix derived from the cost matrix shown in Fig. 2a using the threshold
� = 0.25. The score of an alignment A is defined as

∑L

ℓ=1 S(nℓ,mℓ). Then, after
fixing a set of admissible step-sizes �, the Smith-Waterman algorithm computes
an optimal path having maximal score among all possible paths using dynamic
programming similar to DTW (see [16, 21]). Here, we found � = �2 to deliver
good alignment results.

We now introduce a recursive variant of the Smith-Waterman algorithm. In
a first step, we derive an optimal path P as described above (see Fig. 3a). Then
in a second step, we define two submatrices in the underlying score matrix S

(see Fig. 3b). The first matrix is defined by the cell (1, 1) and the starting cell
of P, and the second matrix by the ending cell of P and the cell (N,M). For
these submatrices, we call the Smith-Waterman algorithm recursively to derive
another optimal path for each submatrix (see Fig. 3c). These new paths define
new submatrices on which Smith-Waterman is called again. This procedure is
repeated until either the score of an optimal path or the size of a submatrix is
below a given threshold. This results in a monotonic alignment set in form of a
family of paths ℱ . Fig. 2e shows a family of two paths derived from the score
matrix in Fig. 2b using our recursive Smith-Waterman variant. Here, the missing
bridge in the audio as well as the different intros and outros in the audio and
MIDI version are detected and, in this example, the recursive Smith-Waterman
approach avoids a misalignment as in the DTW case (Fig. 2d).



This example illustrates another interesting property of the Smith-Waterman
algorithm. Listening to A(75, 83) and M(99, 107) reveals a solo improvisation
which is different in the audio and MIDI version, so they should not be aligned.
Also, the corresponding area in the score matrix shows negative values. However,
the Smith-Waterman algorithm aligns these two segments as part of the second
path. The reason is that Smith-Waterman always tries to find the path with
maximum score, and in this example the score for a longer path containing a few
negative entries was higher than for a shorter path without negative entries. This
property of the Smith-Waterman algorithm can be configured using gap-penalty

parameters, see [21]. Essentially, these are used to define an additional weight for
negative score entries. If the weight is high, then negative entries are emphasized
and paths tend to be shorter and contain fewer entries with negative score. If
the weight is low, paths tend to be longer and may contain longer sequences
with negative score. We chose to use gap-penalty parameters being equivalent
to a subtraction of 0.5 from all negative entries in the score matrix S. This is an
empirically found value which worked best in our experiments.

However, even using gap-penalty parameters there is no control over the
absolute length of sequences with negative score in an optimal path. If there
is enough score to gain before and after a sequence with negative score, then
this sequence will be bridged using Smith-Waterman and can become arbitrarily
long in the resulting optimal path. So for the example depicted in Fig. 2e one
could find a set of parameters to circumvent this misalignment, but in general
these parameters would have to be set for each song individually. Here, a method
referred to as partial matching allows for an even more flexible local alignment
than Smith-Waterman (see [1, 10, 16]). The goal is to find a score-maximizing
alignment, similar to the Smith-Waterman approach. But instead of using the
Smith-Waterman score matrix S a thresholded version S≥0 is used where every
negative entry in S is replaced by zero (see Fig. 2c). The idea of this thresholding
is to disallow the alignment of a pair of feature vectors if there is no score to gain
from this alignment. Therefore, negative score can be ignored completely. In a
sense, this concept is similar to finding the longest common subsequence (LCS)
in string matching tasks. Based on this idea partial matching computes a score-
maximizing optimal match. Again, this can be achieved efficiently using dynamic
programming. See Fig. 2f for an example of an optimal match computed via
partial matching based on the matrix shown in Fig. 2c. Here, the misalignment
of the solo segments A(75, 83) and M(99, 107) as found in the Smith-Waterman
case is not present. So partial matching, not enforcing any step-size or continuity
conditions on the alignment, yields a more flexible alignment than the Smith-
Waterman approach.

However, for other pieces, the lack of step-size constraints might lead to highly
fragmented or even misguided alignments. As an example, we consider the song
‘Lucy in the sky with diamonds’ by the Beatles (see Fig. 4). Here, the optimal
match computed via partial matching is highly fragmented (Fig. 4f). This is
caused by local deviations of the audio recording (taken from the anthology
release) from the MIDI version. For example, A(133, 147) and M(165, 183) are
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Fig. 4. Several techniques for the alignment of an audio recording (vertical axis) and
a MIDI version (horizontal axis) of the Beatles song ‘Lucy in the sky with diamonds’,
cf. Fig. 2.

semantically corresponding sections and should be aligned, but slightly differ in
their arrangement. Here, the MIDI version features a very prominent bass line
while in the audio recording the bass is only in the background. This leads to
chroma representations for the audio and MIDI segment that differ strongly from
each other thus explaining the low score in the corresponding area of the score
matrix S≥0, see Fig. 4c. Similar observations can be made comparing A(40, 47)
and M(52, 62) as well as A(75, 82) and M(100, 110). However, the latter two
pairs are correctly aligned by the recursive Smith-Waterman variant, see Fig. 4e.
Here, a path is allowed to contain a few cells with negative score which helps
to overcome local deviations in the feature representation. Nonetheless, using
Smith-Waterman the segments A(133, 147) and M(165, 183) are still not aligned
to each other. Here, the classical DTW approach, being forced to align the
sequences as a whole, yields the best alignment result.

As illustrated by the examples shown in Figs. 2 and 4 each synchronization
strategy sometimes yields reasonable and sometimes misguided and unsatisfying
results. Therefore, without any definite a-priori knowledge about the input data
none of the presented alignment methods can guarantee in general a reliable and
musically meaningful alignment.

3 Proposed Method

In general, when the two sequences to be aligned correspond to each other in
terms of their global temporal progression, the DTW procedure yields a ro-
bust alignment result. On the other hand, if structural differences are present,
the more flexible Smith-Waterman approach or the even more flexible partial
matching procedure may yield more reasonable alignments than DTW. Now, if
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Fig. 5. Steps in our proposed method continuing the example shown in Fig. 2. (a)-(c)
Augmented binary matrices for the optimal global path (DTW), family of paths (Smith-
Waterman) and the optimal match (partial matching) using a tolerance neighborhood
of 2 seconds. (d) Intersection matrix derived from (a)-(c). (e) Weighted intersection
matrix. (f) Consistency alignment C.

several strategies with different design goals yield similar alignment results, then
there is a high probability of having semantically meaningful correspondences.
Based on this simple idea, we present an automatic method towards finding
passages in the MIDI and audio representations that can be synchronized in a
reliable way. In contrast, this method also can be applied to identify critical
passages, where the alignments disagree.

Given a MIDI-audio pair for a song, we start by computing an optimal global
path using DTW, a family of paths using recursive Smith-Waterman, as well as
an optimal match using partial matching. Next, we convert each alignment into
a binary matrix having the same size as the cost matrix C. Here, a cell in the
matrix is set to one if it is contained in the corresponding alignment and zero
otherwise (see Figs. 2d-f). The next step is essentially a soft intersection of the
three alignments. To this end, we augment the binary matrices by additionally
setting every cell in the binary matrices to one if they are in a neighborhood
of an alignment cell (see Figs. 5a-c). For Fig. 5, we used a large neighborhood
of two seconds for illustrative purposes, while for the experiments in Sect. 4 we
used a neighborhood of only one second. After that we derive an intersection
matrix by setting each matrix cell to one that is one in all three augmented
binary matrices (see Fig. 5d). The intersection matrix can be thought of as a
rough indicator for areas in the cost matrix where the three alignment strategies
agree with each other. However, this matrix does not encode an alignment that is
constrained by any of the conditions described in Sect. 2.2. Therefore, to derive
a final alignment result from this matrix, we first weight the remaining cells in
the intersection matrix according to how often they are contained in one of the
original three alignments (Fig. 5e). Then, interpreting the weighted matrix as a



score matrix, we use partial matching to compute an optimal match C referred
to as consistency alignment (Fig. 5f).

In the following, we call a segment in the audio recording (the MIDI ver-
sion) reliable if it is aligned via C to a segment in the MIDI version (in the
audio recording). Similarly, we call a segment critical if it is not aligned. Here,
A(3, 39), A(39, 76) and A(83, 95) as well as M(8, 45), M(63, 99) and M(106, 117)
are examples of reliable segments in the audio recording and in the MIDI ver-
sion, respectively. However, the automatic detection of critical sections can also
be very useful as they often contain musically interesting deviations between two
versions. For example, consider the critical segment M(45, 63). This segment con-
tains the bridge found in the MIDI that was omitted in the audio recording as
discussed in Sect. 2.2. Here, our method automatically revealed the inconsisten-
cies between the MIDI version and the audio recording. Similarly, the differences
between the audio and the MIDI version in the intro, outro and solo segments
have also been detected. Here, not relying on a single alignment strategy leads
to a more robust detection of critical segments than using just a single approach.
The reasons why a segment is classified as critical can be manifold and might
be an interesting subject for a subsequent musical analysis. In this context, our
approach can be thought of as a supporting tool for such an analysis.

4 Experiments

In this section, we report on systematically conducted experiments to illustrate
the potential of our method. To this end, we used twelve representative pieces
from the classical, popular, and jazz collection of the RWC music database [7].
For each piece, RWC supplies high-quality MIDI-audio pairs that globally corre-
spond to each other. Hence, using classical DTW allows us to synchronize each
MIDI-audio pair to obtain an accurate alignment that can be used as ground-
truth. The synchronization results were manually checked for errors. For the
experiment, we strongly distorted and modified the MIDI versions as follows.
Firstly, we temporally distorted each MIDI file by locally speeding up or slowing
down the MIDI up to a random amount between ±50%. In particular, we contin-
uously changed the tempo within segments of 20 seconds of length with abrupt
changes at segment boundaries to simulate ritardandi, accelerandi, fermata, and
so on. Secondly, we structurally modified each MIDI file by replacing several
MIDI segments (each having a length of 30 to 40 seconds) by sets of short 2
second snippets taken from random positions within the same MIDI file. In do-
ing so, the length of each segment remained the same. These modified segments
do not have any corresponding segments in the audio anymore. However, taken
from the same piece, the snippets are likely to be harmonically related to the
replaced content. Here, the idea is to simulate a kind of improvisation that fits
into the harmonic context of the piece but is regarded as different between the
audio and the MIDI version (similar to the differences found in A(75, 83) and
M(99, 107), as discussed in Sect. 2.2). Finally, recall that we computed a ground-
truth alignment via DTW between the original MIDI and the audio. Keeping



P R F

DTW 0.63 0.96 0.76
rSW 0.85 0.85 0.85
PM 0.80 0.92 0.85

Con 0.93 0.85 0.88

P R F

DTW 0.51 0.95 0.66
rSW 0.83 0.84 0.83
PM 0.74 0.92 0.82

Con 0.95 0.84 0.89

Table 1. Precision (P), Recall (R) and F-measure (F) for the alignment strategies
DTW, recursive Smith-Waterman (rSW), Partial Matching (PM) and the consistency
alignment (Con). Left: PR-values for modified MIDI-audio pairs. Right: PR-values
for strongly modified MIDI-audio pairs.

track of the MIDI modifications, we derive a ground-truth alignment between
the modified MIDI and the audio, in the following referred to as A∗.

For each modified MIDI-audio pair, we compute the three alignments ob-
tained by the three strategies described in Sect. 2.2 as well as the consistency
alignment as described in Sect. 3. Let A be one of the computed alignments. To
compare A with the ground-truth alignment A∗, we introduce a quality mea-
sure that is based on precision and recall values, while allowing some deviation
tolerance controlled by a given tolerance parameter " > 0. The precision of A
with respect to A∗ is defined by

P(A) =
∣{
 ∈ A∣∃
∗ ∈ A∗ : ∣∣
 − 
∗∣∣2 ≤ "}∣

∣A∣

and the recall of A with respect to A∗ is defined by

R(A) =
∣{
∗ ∈ A∗∣∃
 ∈ A : ∣∣
 − 
∗∣∣2 ≤ "}∣

∣A∗∣
.

Here, ∣∣
 − 
∗∣∣2 denotes the Euclidean norm between the elements 
, 
∗ ∈ [1 :
N ]× [1 : M ], see Sect. 2.2. Finally, the F-measure is defined by

F(A) :=
2P(A)R(A)

P(A) + R(A)
.

In our experiments, we used a threshold parameter " corresponding to one
second. The left part of Table 1 shows the PR-values averaged over all pieces
for the four different alignment results. For example, when using DTW, the
precision amounts to only P = 0.63. The reason for this low value is that all time
positions of the MIDI are to be aligned in the global DTW strategy, even if there
is no semantically meaningful correspondence in the audio. When using Smith-
Waterman or partial matching, the precision values become better. Note that
the three alignments based on the three different strategies typically produce
different (often random-like) correspondences in regions where the MIDI and
audio differ. As a result, these correspondences are discarded in the consistency
alignment yielding a high precision of P = 0.93. This is exactly what we wanted
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Fig. 6. Various alignments for two Beatles songs using conceptually different synchro-
nization approaches. Left: ‘While My Guitar Gently Weeps’ Right: ‘Norwegian Wood’

to achieve by our proposed method, where we only want to keep the reliable
information, possibly at the cost of a lower recall.

In a second experiment, we modified the MIDI version even further by not
only distorting and replacing randomly chosen MIDI segments as described
above, but by inserting additional MIDI snippet segments. These additional
structural modifications make the synchronization task even harder. The cor-
responding PR-values averaged over all pieces are shown in the right part of
Table 1. As the task is harder now, the quality measures for all three align-
ment strategies drop except for our consistency alignment, where the precision
(P = 0.95) essentially remains the same as in the first experiment.

5 Conclusions and Future Work

In this paper, we introduced a novel method for locally classifying alignments as
reliable or critical. Here, our idea was to look for consistencies and inconsistencies
across various alignments obtained from conceptually different synchronization
strategies. Such a classification constitutes an essential step not only for im-
proving current synchronization approaches but also for detecting artifacts and
structural differences in the underlying music material. In the latter sense, our
approach may be regarded as a supporting tool for musical analysis.

To cope with the richness and variety of music, we plan to incorporate many
more competing strategies by not only using different alignment strategies but
also by considering different feature representations, various feature resolutions,
several local cost (similarity) measures, and different enhancement strategies for
cost (score) matrices. Here, additional alignment strategies can be based on ap-
proaches algorithmically different from the ones presented here, like HMM-based
methods as known from online score following and computer accompaniment [2,
18, 20], but also on approaches describes in Sect. 2 in combination with varying
values for important parameters like � or �. Fig. 6 shows first illustrating results
for two Beatles songs, where we computed a large number of alignments using
many different synchronization approaches. Despite of significant differences in
structure, timbre, and polyphony, the consistencies of the various alignments



reveal the reliable passages that can then serve as anchor for subsequent im-
provements and refinements of the overall synchronization result.
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