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Abstract

In music signal processing, it is often necessary to transform an audio signal into a rep-
resentation that closely correlates to a certain musical property while being invariant to
other musical aspects. The property that is captured by such a representation, which is
typically referred to as feature representation, depends on the problem one wants to solve.
For instance, in order to recognize chords that occur within a piece of music, a feature
modeling the pitch of played notes is beneficial. The transformation of a music signal into
a suitable feature representation, called feature extraction, is very common in the field of
Music Information Retrieval (MIR).

Besides the issue of which musical characteristic to model, a second fundamental question
inevitably arises when designing such a feature: How should an audio signal be segmented
to capture the selected property? Current approaches use predefined windows of fixed
length, that is usually empirically determined and optimized for the specific application.
In this thesis, we present an adaptive method for identifying musically significant seg-
ment boundaries that are suitable for the computation of various audio features. More
specifically, we incorporate rhythmic information into the feature extraction process in a
modularized fashion, allowing for general applicability of the method. Extensive experi-
ments on Western music show improvements over traditional approaches for several MIR
problems.
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1
Introduction

1.1 Context

In the wake of the increasing availability of music in digital formats, huge collections of
musical works have come into existence. The scientific field of Music Information Retrieval
(MIR) is devoted to facilitating access to these collections by automatically extracting
information from music signals. Many applications have emerged from research in this
area including automated music transcription, song identification, chord recognition, genre
classification, automatic accompaniment and many more.

Music is a very complex phenomenon. The characteristics of a musical piece are not
only determined by what is written in the score, namely notes and their arrangement in
time, but are also greatly influenced by many other parameters such as instrumentation,
dynamics, articulation and tempo. For the sake of simplicity, we will restrict ourselves
in this thesis to two main dimensions of music: The vertical dimension, to which we
will refer to as spectral dimension, comprises all aspects related to the frequencies of
sounds that make up the audio signal. This includes pitches and harmonics, loudness and
dynamics as well as timbral properties. The horizontal or temporal dimension is composed
of relationships among the temporal succession of notes and silent pauses, inducing the
rhythm of a musical piece. Parameters such as tempo and articulation are represented in
this dimension.

To cope with the multitude of musical parameters in the context of automatic music pro-
cessing, it is necessary to transform an audio signal into a representation that captures
relevant key aspects while suppressing irrelevant details and variations. Deriving these
representations or features from the music signal is crucial to making music data algorith-
mically accessible. It is therefore the first step in all music processing tasks. For example,
the task of retrieving similar recordings from an audio database benefits from a feature
representation that is invariant to details concerning the instrumentation or interpreta-
tion. Conversely, features relating to a musician’s individual articulation and emotional
expressiveness can be useful for the problem of artist identification.
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Figure 1.1: Illustration of the segmentation problem for feature extraction. (a) shows the score
of a short cadence that was played on a piano and recorded. The recording was first segmented
using fixed-length segmentation with a window length of 0.5 seconds, as shown in (b), where the
segment boundaries are indicated by vertical red lines. The segmented signal then served as the
basis for obtaining a chroma feature representation, which is depicted in (c). One can see, that
the resulting feature sequence is blurred because most of the segments are influenced by more
than one chord. Using onset information extracted from the audio signal, we performed adaptive
segmentation on the same recording, as visible in (d). The chroma representation derived from
the adaptively segmented audio stream, shown in (e), exhibits significantly sharper differences
between the feature frames and better reflects the underlying music signal.

1.2 Problem Setting

Given the existence of a temporal dimension in music, it is clear that many musical prop-
erties vary over time. In order to capture these variations in a feature representation, it is
necessary to temporally partition the audio signal into small segments, also referred to as
frames. One central property we expect from these segments is that they are homogeneous,
i.e. the measured musical aspect remains approximately the same within the segment. A
feature representation can then be obtained by performing the required computations on
each individual segment, yielding a sequence of feature frames.

A simple approach to segmenting the audio signal, which is also frequently used in speech
processing [20], is fixed-length segmentation. In this method, the signal is partitioned
into segments of fixed length, which is usually empirically determined and optimized for
a specific application. The feature extraction process using fixed-length segmentation is
sketched in Figure 1.2(a). In practice, this method is currently the one most commonly
used.
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Figure 1.2: (a) Schematic view of the process of generating a feature sequence from an audio file
using fixed length segmentation. The window length used in the segmentation step is given as a
predefined parameter. (b) Diagram of the feature extraction process using adaptive segmentation.
Here, the audio signal is segmented according to the boundaries obtained by rhythmic analysis of
the audio file instead of using a predefined parameter.

However, this approach suffers from a major drawback: The boundaries of the resulting
segments generally do not coincide with the changes of the captured property. This re-
sults from the fact that musical events, such as notes or percussive sounds, are usually
not evenly spaced in time. Therefore, it is likely that two or more successive musical
events are captured in one segment, which violates the homogeneity requirement stated
above. To illustrate this problem, we applied fixed length segmentation to the waveform
of the Cadence example, using a window length of 0.5s, as shown in Figure 1.1(b). A
feature representation, called chroma representation, that models the pitches of played
notes assuming octave equivalence, was then computed for each segment. As we can see in
Figure 1.1(c), frames 2, 3 and 4 of the chroma representation are influenced by two chords
rendering them inexpressive. This problem is typically mitigated by decreasing the win-
dow size. However, doing so introduces redundancy in the feature sequence and increases
the computational cost of subsequent processing. In general, it is difficult to determine an
adequate window size for fixed-length segmentation, hence this approach seems not to be
well-suited for music signals.

To overcome these difficulties with fixed-length segmentation, a different technique called
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CHAPTER 1. INTRODUCTION

adaptive segmentation, sometimes also referred to as rhythm based segmentation, has been
applied to music signals. This method, outlined in Figure 1.2(b), does not rely on a pre-
defined window length, but uses rhythmical information extracted from the audio signal
to identify musically relevant segment lengths and boundaries. In the following, features
that are obtained using adaptive segmentation will be referred to as time-aware features.
The signal depicted in Figure 1.1(d) has been partitioned using an adaptive segmentation
technique that makes use of note onset information. The feature representation derived
from this segmentation, shown in Figure 1.1(e), is homogeneous within every frame with
respect to the captured chords without introducing redundancy. Thus, there is reason to
believe that adaptive segmentation is an effective method for segmenting musical audio
signals for the purpose of feature extraction. This thesis will therefore focus on the explo-
ration of adaptive segmentation techniques and evaluate its effectiveness in comparison to
fixed-length approaches.

1.3 Applications and Related Work

Adaptive segmentation techniques have already been applied to a wide variety of tasks
in the field of music information retrieval. In particular, segmentations defined by the
occurrences of a metrical pulse, most prominently the beat pulse, have proven to be espe-
cially useful for applications like chord recognition [3, 27, 33] and cover song identification
[9, 11, 41]. Furthermore, adaptive segmentation has been successfully applied to music
structure analysis [1, 5, 23, 25, 34, 35]. Also, applications like performance analysis [38]
and instrumentation analysis [36] have shown to benefit from the adaptive segmentation
approach.

Even though adaptive segmentation is already being employed in numerous applications,
only little work has been done that examines adaptive segmentation techniques in detail.
In [24], Maddage and Kankanhalli compared the effectiveness of adaptive segmentation
with the traditional fixed-length approach for music content representation. To this end,
the authors considered vocal and instrumental parts of musical audio signals as different
music content classes. Each class was modeled by a spectral feature representation that was
derived from both fixed-length segmentation with 30ms frames and adaptive segmentation
based on the beat pulse. Using the inter- and intra-class distance as evaluation measure,
their results indicated the superiority of the adaptive segmentation approach.

In [44], Stark et al. presented a model for beat-synchronous analysis of musical audio
signals. In an informal evaluation, they compared feature sequences obtained from an
adaptive beat segmentation of the signal with the classical fixed-length representations by
means of a chord recognition task. Their results showed higher recognition rates for the
adaptive segmentation technique.
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1.4 Contribution

The main contribution of this thesis lies in the detailed analysis we conducted to eval-
uate the effect of using adaptive segmentation for feature extraction in comparison to
traditional fixed-length approaches. While previous evaluations only considered adaptive
segmentations constructed from the beat pulse, we also systematically analyze segmenta-
tions obtained from other rhythmical structures. In particular, we explore segmentation
strategies that make use of local predominant pulse information. Furthermore, we examine
adaptive segmentations with “gaps” that discard presumably noisy parts from the audio
signal. In addition, we combine the different segmentation techniques with a wide variety
of spectral features.

In view of our evaluation methodology, we introduce a novel entropy-based measure to
assess the quality of the resulting feature sequences in an application-independent fashion.
In order to gain further insights regarding the effect of adaptive segmentation, we also
selected two prominent MIR problems, chord recognition and audio matching, to perform
an application-driven evaluation.

Moreover, we carefully modeled the process of adaptive segmentation itself. As part of
this formalization, we developed a flexible and extensible segmentation algorithm which
can not only handle arbitrary segmentations but can also be used in conjunction with
virtually any feature representation. Due to its modular design, it can easily be integrated
into existing feature extraction procedures.

Last but not least, we implemented an extensible MATLAB audio player with plugin
support as part of this thesis. This software does not only provide a comfortable way to
listen to audio signals within MATLAB but also greatly facilitates the analysis of all kinds
of feature representations. The player is documented in Appendix A.

1.5 Thesis Organization

The first two chapters of this thesis are devoted to the two main dimensions of music
as described in Section 1.1. In Chapter 2, we introduce several types of spectral audio
features that are frequently used in music signal processing and throughout this thesis.
The temporal dimension of music will be explored in Chapter 3, focusing on the extraction
of rhythmic information from the audio signal. This information is then used to construct
adaptive segmentations of the audio signal, which is described in detail in Chapter 4. An
extensive evaluation of the proposed technique is presented in Chapter 5, including various
experiments measuring the effect of this method on two popular music processing tasks.
Finally, we summarize our findings in Chapter 6.
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2
Spectral Audio Features

Looking at the vertical dimension of music, every music signal can be regarded as a mixture
of a set of sounds, each generated by some vibrating object such as the vocal chords of a
singer or the diaphragm of a drum. All of these vibrations occur at different frequencies,
inducing what humans perceive as pitch. The main goal of this chapter is to introduce
audio features that characterize an audio signal by its spectral content and that have
proven to be useful for a variety of music processing tasks. Many of the figures in this
thesis rely on these feature representations for illustration purposes.

We begin by introducing some basic mathematical concepts that formalize the terms
we use to describe the feature extraction process in Section 2.1. Building upon these
definitions, we show how to decompose a music signal into spectral bands in Section 2.2,
where each band corresponds to a pitch of the equal-tempered scale as used in Western
music. This representation serves as a basis for deriving STMSP (short-time mean-square
power) features that measure the local energy content of the subbands and thereby indicate
the presence of certain musical notes. Assuming octave equivalence among the pitch bands,
one can merge the bands that correspond to the same pitch class, obtaining a chroma
representation of the audio signal, as described in Section 2.3. This feature is well-suited
to characterize the harmonic progression of a musical recording. To increase robustness
to variations of properties like dynamics, timbre and articulation, we compute short-time
statistics over the energy distribution in the chroma bands, yielding CENS (chroma energy
normalized statistics) features (Section 2.4). Finally, another approach to making chroma
features more resilient to changes in timbre is presented in Section 2.5. Being particularly
useful in audio matching and retrieval scenarios, the general idea behind CRP (chroma
DCT-reduced log pitch) features is to discard timbre-related information similar to that
expressed by certain mel-frequency cepstral coefficients (MFCCs).

7



CHAPTER 2. SPECTRAL AUDIO FEATURES

2.1 Remarks on Feature Representations

The starting point of every feature extraction process is the audio signal one wishes to
analyze. From a physical point of view, an audio signal describes the time-varying sound
pressure of a sound wave as perceived by the human ear, progressing continuously in time.
Mathematically, such an audio signal is defined as:

Definition 2.1 An audio signal is a function f : R→ R, where the domain R represents
the time axis and the range R the amplitude of the sound wave. Since all real-world audio
signals are time-limited with a duration D, we define T = [0, D) ⊂ R as the domain of the
time-limited signal and assume f(t) = 0 for t ∈ R \ T . With the domain being R, such an
audio signal is also referred to as continuous-time (CT) signal.

Given an audio signal, the objective of feature extraction methods is to compute feature
representations or, formally, feature sequences.

Definition 2.2 A feature sequence X is a finite ordered sequence X = (x1, x2, ..., xM )
of feature vectors xi from a feature space X . In our case, X can be interpreted as Rd for
some dimension d.

Recall from Chapter 1 that a feature sequence is obtained by first segmenting the audio
signal and then computing one feature vector for each individual segment. Accordingly,
a single feature vector xi carries information extracted from an interval Si ⊂ R, which
we will refer to as segment. An ensemble of segments S = (S1, S2, ..., SM ) is called a
segmentation. Thus, we can say that a feature sequence X is obtained on the basis of an
associated segmentation SX , that defines the mapping of feature vector indices to intervals
over the temporal domain of the underlying signal.

Restricting ourselves to fixed-length segmentation for now, we define w > 0 ∈ R to be the
common segment length, also called the window length, that is constant for all segments. In
general, a fixed-length segmentation is no partition of T as we allow subsequent segments
to share a common interval, the overlap interval Oi = Si ∩ Si+1 of length o ∈ R, which is
again constant for all i. Furthermore, by definition, segments are not necessarily subsets
of T . We also define the hop size h = w − o as the difference between the start-times of
adjacent segments. Using these definitions, we can construct a fixed-length segmentation
of length M with window length w and hop size h by setting

Sn =
[
(n− 1) · h− w

2
: (n− 1) · h+

w

2

)
⊂ R (2.1)

for n ∈ [1 : M ]. To such a fixed-length segmentation, we can assign a feature rate fr = 1
h

which measures the number of feature vectors per second. Furthermore, we define the
overlap ratio as the ratio o

w of the overlap length to the window length. In Chapter 4 we
will extend these definitions to incorporate adaptive segmentation.
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2.1. REMARKS ON FEATURE REPRESENTATIONS

In order to actually process an audio signal with a computer program, it is necessary to
transform it into a digital representation. This transformation requires the continuous
temporal domain of the audio signal to be discretized, thereby obtaining a discrete audio
signal.

Definition 2.3 A discrete audio signal, also called discrete-time (DT) signal, is
function x : Z → R which is defined on a discrete subset of the temporal domain of a
CT signal. Since the discrete signal is time-limited as well, we analogously define the
T ′ = [1 : N ] ⊂ N.

Note that, strictly speaking, the range R of the discrete audio signal is also discretized
when represented in a digital form, however, we will ignore this detail as it plays no major
role in the following.

A typical procedure to transform a CT signal into a DT signal is to sample the CT signal
at equally spaced points in time, known as equidistant sampling. Let f : R→ R be a CT
signal and ps > 0 ∈ R the sampling period, then a DT signal x : N → R can be obtained
by

x(n) = f(ps · (n− 1)) . (2.2)

Given the sampling period ps, or more commonly its inverse fs = 1
ps

called the sampling
rate, one can map time indices of a DT signal x to its continuous counterpart f by
considering the injective mapping dc : N→ R defined as

dc(n) =
n− 1

fs
. (2.3)

Conversely, the inverse mapping cd : R → N from the continuous to the discrete time
domain is defined as

cd(t) = bt · fsc+ 1 . (2.4)

Due to the existence of these mappings, continuous and discrete audio signals are almost
equivalent. Generally speaking, the CT formulation gives the “right” interpretation of the
physical phenomena, while the DT formulation is used to perform the actual computations.

DT signals and feature sequences derived from fixed-length segmentations also bear a
strong resemblance. Firstly, with the DT signal having a discrete domain, it can be
interpreted as a sequence of samples x = (v1, v2, ..., vN ) with vi ∈ R, thus the definition of a
feature sequence subsumes the notion of a DT signal. Furthermore, replacing the sampling
rate fs in the mapping function dc(n) with the feature rate fr of a feature sequence, the
function can be used to map feature vector indices back to points in continuous time.
Note that for a segmentation constructed according to Equation 2.1, the resulting point
in time denotes the center of the segment of the corresponding feature vector. Because of
this property, we call such a segmentation zero-centered.

Finally, note that the segmentation parameters, such as the window or hop size, are given
in continuous terms i.e. in seconds, however, discrete variants of these parameters can be

9



CHAPTER 2. SPECTRAL AUDIO FEATURES

easily obtained using the cd(t) mapping function. In the following, we will use symbols
like w and h for continuous segmentation parameters, their discrete counterparts will be
denoted by w′ and h′. Furthermore, the symbol t will be used for the time parameter in
the CT case and n in the DT case. In most plots, we will use a continuous time domain
as it appears more intuitive.

2.2 Pitch Features

The ability of human hearing to distinguish between different pitches is of central im-
portance to the perception of music. This ability is what enables us to identify a melody
within a piece of music, which consists of consecutive notes at different pitch levels. Several
pitches occurring simultaneously induce what we perceive as harmony, constituting one
of the central elements of Western music. Hence, feature representations that capture the
pitches of musical notes play a crucial role in the field of music information retrieval and
are commonly used in a multitude of music processing tasks, such as chord recognition,
melody tracking or audio synchronization.

In the following, we will identify a pitch according to the note numbering scheme defined
in the MIDI standard, see [28] for details. This numbering scheme assigns, in increasing
order, a number p ∈ [1 : 127] to each pitch of the equal-tempered scale as used in Western
music, starting at C0 and ranging up to G]9. For example, the middle C denoted by C4
corresponds to the number p = 60, whereas the concert pitch A4 has the number p = 69.
The associated frequency f(p) of a pitch p, also referred to as center frequency, is given
by the relation

f(p) = 2
p−69
12 · 440 (2.5)

which reveals the logarithmic nature of the pitch sensation.

The first step to obtaining a pitch feature representation is to decompose the audio signal
into spectral bands where each band corresponds to a pitch. To this end, we design
a suitable bandpass filter for each pitch that passes all frequencies around the respective
center frequency while rejecting all other frequencies. Considering only the pitches between
A0 (p = 21) and C8 (p = 108), which correspond to the keys of a standard piano, we
combine 88 of these bandpass filters to an array of filters, obtaining the so-called pitch
filter bank. The magnitude response of the resulting filter bank is plotted in Figure 2.1.

Each bandpass filter is realized using an eighth-order elliptic filter with 1 dB passband
ripple and 50 dB rejection in the stopband. The bandwidth of the filter is specified by
means of the so-called quality factor or Q factor, which denotes the ratio of the center
frequency to the bandwidth. To cleanly separate different pitches, we chose a constant Q
factor of Q = 25 and set the width of the transition band to be half of the width of the
passband. The resulting bandwidth wp for a filter with center frequency f(p) is given by

wp =
f(p)

Q
(2.6)

10



2.2. PITCH FEATURES
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Figure 2.1: Magnitude response in dB of the pitch filter bank. Shown are the filters for the pitches
p ∈ [60 : 95] with respect to the sampling rate 4410 Hz.

thus, the bandwidth increases with for higher pitches, clearly visible in Figure 2.1. From
this we obtain the cutoff frequencies of the filter as

ωp1 = f(p)− wp
2

and ωp2 = f(p) +
wp
2

(2.7)

for left and right, respectively. Note that these filter specifications are given in absolute
terms and are thus only applicable to CT signals. To obtain equivalent specifications in
the DT world, the described entities need to be divided by the sampling rate of the DT
signal. For further details regarding the filter specifications, we refer to [28].

Furthermore, it is important to note that the proposed pitch decomposition relies on a
reasonable tuning of the involved instruments according to the equal-tempered scale. Due
to the passband properties of the pitch filters, deviations of up to ±25 cents from the
respective center frequency of the pitch can be compensated. The logarithmic unit cent is
used to measure musical intervals, with 100 cents corresponding to the interval between
two adjacent notes. For larger deviations, a suitable tuning strategy needs to be employed
that appropriately adjusts the filter bank parameters.

Finally, having obtained pitch subbands using the described pitch filter bank, we introduce
our first spectral audio feature, which indicates the presence of certain musical notes in
the audio signal. For this purpose, we measure the local energy or short-time mean-square
power (STMSP) in each of the pitch subbands by computing the sum of the squared signal
within each segment of some segmentation. More precisely, let xp denote a DT subband
signal and S be a segmentation with N segments Si, then the STMSP of x at n ∈ [1 : N ]
for a pitch p is defined as

STMSP (n, p) =
∑
k∈Sn

|xp(k)|2 . (2.8)

By computing the STMSP for each of the pitch subbands, we obtain a sequence of 88-
dimensional feature vectors where the entries correspond to the MIDI pitches p = 21 to
p = 108. For later usage, we extend each such vector by suitably adding zeros to obtain
a 120-dimensional feature vector that covers the pitch range from p = 1 to p = 120. This
yields the final pitch representation.

As an illustrative example, consider the Second Waltz of the Jazz Suite No. 2 by
Shostakovich, which also serves as a running example in the subsequent sections. Fig-
ure 2.2(a) shows an excerpt (measures 5-12) of the piano reduced score. This excerpt
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CHAPTER 2. SPECTRAL AUDIO FEATURES

corresponds to the beginning of the main theme of this piece, which occurs four times and
is played in four different instrumentations. We will refer to the four occurrences as E1

(clarinet), E2 (strings), E3 (trombone) and E4. Using a recording of an orchestral version
of this piece conducted by Yablonski, we visualize a pitch representation of passage E1 in
Figure 2.2(b).
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Figure 2.2: (a) Piano reduced score of passage E1 (clarinet) of the Second Waltz from the Jazz
Suite No. 2 by Shostakovich. (b) Time-pitch plot this passage computed from a recording of an
orchestral version by Yablonski. The rows correspond to MIDI pitches, the time progresses along
the columns. The pitch representation has been obtained using a fixed-length segmentation with
window length w = 0.2s and an overlap ratio of o = 0.5, resulting in a feature rate fr = 10Hz. The
plot shows significant energy peaks in the pitch bands that corresponds to the melody.

All in all, the decomposition of the audio signal into pitch subbands yields musically
meaningful and temporally accurate information about the spectral components of the
audio signal. It is therefore very often used as a front-end signal processing step for a wide
variety of MIR tasks. All of the spectral features we introduce in the following sections
build upon this pitch representation.
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2.3. CHROMA FEATURES

2.3 Chroma Features

In common musical notation, the pitches of the equal-tempered scale are not identified
by a MIDI note number, but in terms of the tone “color”, also called chroma, and the
tone height, usually written as e.g. A4 or G]6. This notation reflects the fact that the
human perception of pitch is period in the sense that two pitches are perceived as similar
if they share the same chroma. This observation forms the basis of the chroma feature
representation, which is well-suited for the analysis of music that is characterized by
prominent harmonic progression. It is therefore commonly used for a wide range of MIR
tasks, such as chord recognition [17, 18, 32], cover song identification [9, 19, 41] or audio
matching [29, 30].

In order to obtain a chroma feature representation, we first compute a pitch representation
from the audio signal as described in the previous section, and then add up all subbands
that correspond to pitches with the chroma. Note that in twelve-tone equal temperament
the notes C] and D[ are enharmonically equivalent - that is, they are identical in pitch
and thus refer to the same chroma. Technically speaking, we add up pitch subbands xi
and xj if the corresponding pitches i and j are exactly one or several octaves apart, i.e.
the ratio of their center frequencies f(i)/f(j) equals 2n for some n ∈ Z. In this way we
reduce each 120-dimensional pitch feature vector to a 12-dimensional chroma vector, where
each component represents the STMSP for the respective chroma. To increase robustness
against differences in sound intensity or dynamics, we normalize each feature vector v
by replacing it with v/ ‖v‖1, where ‖v‖1 =

∑12
i=1 |v(i)| denotes the `1-norm of v. The

resulting representation, called Chroma-Pitch (CP), expresses the relative distribution of
the signal’s energy within the 12 chroma bands. It is visualized in form of a so-called
chromagram in Figure 2.3(a).

A very common variant of the Chroma-Pitch feature is to apply logarithmic compression
to the pitch representation prior to performing the chroma binning. This additional step
is conducted to account for the fact that the human perception of sound intensity is more
proportional to the logarithm of the intensity than to the intensity itself [49]. Further-
more, the compression step allows for adjusting the dynamic range of the signal to enhance
the clarity of weaker transients, especially in high-frequency regions. The logarithmised
version of the pitch representation is calculated by replacing each entry vi of the feature
vector v = (v1, v2, ..., v120) by the value log(C · vi + 1), where C > 1 ∈ R is a suitable
compression factor. The chroma binning is then performed as previously described, yield-
ing the so-called Chroma-Log-Pitch (CLP) feature representation, which is depicted in
Figure 2.3(b) using a compression factor of C = 10.

2.4 CENS Features

Chroma-Log-Pitch are well suited to characterize the harmonic progression of a piece of
music but are very sensitive to variations in local tempo, articulation and note execution,
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Figure 2.3: (a) Chroma-Pitch feature representation of passage E1 (clarinet) of the Shostakovich
example. (b) Chroma-Log-Pitch feature representation of the same passage using a compression
factor of C = 10.

as well as noise. This is especially problematic for music analysis applications like audio
matching and retrieval or music synchronization. To cope with these kinds of variations,
we further process the chroma features by first applying a quantization function to each
chroma vector and then use a large statistics window to temporally smooth the feature se-
quence. The resulting feature representation is called chroma energy normalized statistics
(CENS).

To obtain a CENS feature representation, we start with a normalized chroma feature
sequence X = (x1, x2, ..., xN ) consisting of chroma vectors xi ∈ [0, 1]12. We then define a
quantization function τ : [0, 1]→ {0, 1, 2, 3, 4} as

τ(a) =



0 if 0 ≤ a < 0.05

1 if 0.05 ≤ a < 0.1

2 if 0.1 ≤ a < 0.2

3 if 0.2 ≤ a < 0.4

4 if 0.4 ≤ a ≤ 1

(2.9)

and apply τ component-wise to each chroma vector. The thresholds used in this quan-
tization step are chosen in a logarithmic fashion to account for the human perception of
sound intensity. By setting chroma components that are below a 5% threshold, to zero,
we introduce some robustness to noise.

To goal of the second step is to smooth out temporal micro-deviations caused by variations
in note execution and articulation. The standard method to accomplish this is to convolve
the feature sequence with a larger window, followed by a downsampling step to decrease
the feature resolution. More precisely, the quantized chroma feature sequence is convolved
component-wise with a Hann window of length w′ ∈ N, resulting in a sequence of 12-
dimensional vectors that represent a kind of weighted statistics of the energy distribution
over w′ consecutive vectors. In the last step, the feature sequence is downsampled by a
factor of d′ and the resulting vectors are normalized with respect to the `2-norm. The
final feature representation is visualized in Figure 2.4.
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Figure 2.4: (a)/(b) Chroma representation of passages E1 (clarinet) and E2 (strings) of an orches-
tral version of our Shostakovich example. Due to variations in instrumentation and articulation,
the two representations exhibit significant differences. (c)/(d) In contrast, the resulting CENS
sequences computed with w′ = 41 and d′ = 11 are very similar.
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It is important to note that the temporal smoothing step can also be expressed in terms
of a segmentation. Consider a chroma feature sequence that was obtained from a fixed-
length segmentation with a window size w = 0.2s and a hop size h = 0.1s, resulting in a
feature rate of 10Hz. A typical realization of the CENS feature representation uses w′ = 41
and d′ = 10 which results in a CENS feature sequence with a feature rate of 1Hz where
each vector carries information about roughly 4.1s of the underlying audio signal. Instead
of employing this two-step process, it is computationally much less expensive to directly
derive the chroma feature sequence from a fixed-length segmentation that uses a window
size w = 4.1s and a hop size h = 1s. In conjunction with a suitable weight vector to account
for the Hann window used in the convolution, one can obtain an equivalent CENS feature
sequence in just one step. Furthermore, the convolution method becomes ill-defined if the
underlying chroma feature sequence is obtained using an adaptive segmentation technique.
Therefore, we will omit the convolution step in our experiments by setting w′ = 1 and
d′ = 1, reducing the CENS feature computation to the quantization step.

2.5 CRP Features

A delicate issue that is typically encountered in applications like music synchronization,
audio structure analysis, cover song identification or audio matching, is to define a musi-
cally meaningful notion of similarity that can be used to compare different music excerpts.
For the detection of harmony-based similarities, chroma features have proven to be useful,
but suffer from the problem, that they are still sensitive to large variations in instrumen-
tation and timbre. While CENS features primarily absorb temporal micro-deviations and
increase the robustness to noise, the goal of CRP (chroma DCT-reduced log pitch) fea-
tures is to make chroma features invariant to changes in timbre without sacrificing their
discriminative power.

The derivation of CRP features is inspired by a feature representation called mel-frequency
cepstral coefficients (MFCCs), that was originally developed in the context of speech pro-
cessing [8, 37]. After finding its way into the music domain, it has been observed that
MFCCs closely correlate to the aspect of timbre, making them useful for applications like
musical instrument recognition [12] and genre classification [45]. Particularly the lower
coefficients of a MFCC vector encode the timbre information contained in the signal. The
idea behind CRP features is to discard exactly this information and thereby obtain a
representation, that should exhibit a high degree of timbre invariance.

MFCC features are usually obtained in the following way. To account for the properties
of the human auditory system, the signal is first decomposed into 40 nonlinearly-spaced
subbands that are chosen according to the perceptually motivated mel-frequency scale.
The subband signals are squared and logarithmically compressed, similar to the compu-
tation of Chroma-Log-Pitch features. The key step in the derivation is to subsequently
apply a discrete cosine transform (DCT) to the subband vectors which yields the MFCCs.
Finally, the upper coefficients of the DCT-transformed subband vectors are discarded,
keeping only the lower coefficients, which relate to the aspect of timbre.
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2.5. CRP FEATURES

To derive CRP features, we incorporate the DCT transformation step into the chroma
feature computation as follows. First, we compute the pitch STMSP representation as
described in Section 2.2 and take the component-wise logarithm. Next, we apply the
DCT transform to each of the 120-dimensional pitch vectors, resulting in 120 coefficients,
which are referred to as pitch-frequency cepstral coefficients (PFCCs). Now, our goal of
achieving timbre invariance is the exact opposite of that of MFCCs, which try to capture
the timbre information. Therefore, we discard the lower n − 1 coefficients of the PFCC
vectors, given a predefined parameter n ∈ [1 : 120] by setting them to zero. We then
apply the inverse DCT to each of the modified PFCC vectors to obtain an enhanced pitch
representation, that should not be influenced by timbral aspects of the underlying signal
anymore. Finally, this pitch representation is subjected to the usual chroma binning and
normalization as described in Section 2.3 The resulting features are referred to as CRP(n)
(chroma DCT-reduced log pitch) features.

The increase in timbre invariance is illustrated in Figure 2.5. The chroma representations
of the passages E2 (strings) and E3 (trombone) shown in (a) and (b) strongly deviate
from each other due to the different instrumentation of the two passages. Contrary, the
corresponding CRP sequences shown in (c) and (d) coincide to a much larger degree.
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Figure 2.5: (a)/(b) Chroma representation of the passages E2 (strings) and E3 (trombone) in the
Yablonski recording of our Shostakovich excerpt. (c)/(d) CRP(55) sequences of E2/E3.
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3
Rhythmic Analysis

Rhythm is the fundamental element that gives shape to the music in the temporal dimen-
sion. Generally speaking, it denotes the arrangement of sounds and silences in time and
induces a predominant pulse called beat or tactus that serves as the basis for the temporal
structure of music. This chapter is devoted to techniques for the extraction and analysis
of rhythmic structures found within musical audio recordings.

We begin by introducing novelty curves in Section 3.1, a feature representation that allows
for the detection of musical accents. Essentially, this feature is obtained by computing
the discrete temporal derivative of a compressed spectrum of the audio signal. Building
upon the extracted note onsets, we describe a mid-level representation called predominant
local periodicity (PLP) in Section 3.2 that reveals the local periodic nature of the musical
piece. This is accomplished by determining a sinusoidal kernel for each time position that
best captures the peak structure of the novelty feature, yielding an estimate for the local
tatum. By suitably constraining the set of possible kernels, the PLP representation can
also be used to capture the tactus or measure pulse.

3.1 Novelty Curves

The human perception of rhythm is based on inferring a regular pattern of pulses from
moments of musical stress or accents. These accents are caused by various events in the
music signal, in particular the onsets of pitched sounds, sudden changes in loudness or
timbre and harmonic changes [13]. In the automatic analysis of the rhythmical structure
of a musical piece, many methods imitate this process to some extend by first measuring
musical accentuation and then estimating the periods and phases of the underlying pulses.
In this section, we are going to present one approach to the first step of this process, that
is, capturing the musical accents in a feature representation, which we call novelty curve.

The computation of novelty curves is based on the observation that musical accents are
accompanied by sudden changes in the signal’s energy and spectrum. These changes are
especially distinct for instruments like the piano, guitar or percussion as they produce
sounds with very sharp attacks accompanied by a broadband noise burst. The method
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Figure 3.1: (a) Piano reduced score of the passage E1 (clarinet) of the Second Waltz from the
Jazz Suite No. 2 by Shostakovich. (b) Annotated ground truth onsets (for an orchestral recording
conducted by Yablonski). (c) Novelty curve ∆̄.

we present in the following is taken from [16], other approaches exist, see for example
[2, 47, 48]. First, the audio signal is decomposed into K linearly spaced frequency bands by
means of a short-time Fourier transform. The result of this step is similar to the subband
decomposition used to obtain the pitch representation as described in Section 2.2 but
using a fixed-length segmentation to discretize the signal along the temporal domain. For
the novelty curve computation however, the subband frequencies are chosen to put more
emphasis on high-frequency region of the signal to capture the aforementioned noise bursts.
The resulting spectral vectors are logarithmically compressed using a compression factor
of C = 1000 to enhance weak transients in the high-frequency regions of the spectrum. To
obtain the novelty curve, we basically compute the discrete derivative of the compressed
spectrum. More precisely, let Y (k, n) denote the kth Fourier coefficient in frame n ∈ [1 : N ]
of the compressed spectrum Y , then the novelty function ∆ : [1 : N − 1]→ R is defined as

∆(n) =

K∑
k=1

|Y (k, n+ 1)− Y (k, n)|≥0 (3.1)

for n ∈ [1 : N − 1]. Here, |x|≥0 denotes the half-wave rectification function, defined as

|x|≥0 =

{
x if x > 0

0 otherwise
(3.2)
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3.2. PREDOMINANT LOCAL PERIODICITY

for all x ∈ R. By applying the rectification function, we only consider positive changes
in the spectrum, discarding note offsets, which are not relevant for the musical accent
feature. To eliminate spurious peaks caused by noise, we obtain the final novelty function
∆̄ by subtracting the local average and applying the half-wave rectification function again.
An illustrative example of a novelty curve is given in Figure 3.1, showing the passage E1

of the Shostakovich excerpt that we introduced in the previous chapter.

The peaks of a novelty curve indicate candidates for musical accents. Using an appropriate
peak picking strategy, typically based on a combination of fixed and adaptive thresholding
[2], we can extract the positions of significant peaks. This way, we obtain points in time
where musical accents occur. However, this method is unreliable for soft and blurred
onsets, as produced by bowed string instruments or the human voice. In this case, novelty
curves tend to be noisy which makes it hard to distinguish musically meaningful peaks
from spurious ones. For this reason, we further process the novelty curve to take the
underlying periodicities into account, which we describe in the next section.

3.2 Predominant Local Periodicity

Rhythm is a hierarchical structure, that is defined by means of periodic pulses at different
levels (time scales). One typically considers three metrical levels. As previously mentioned,
the most prominent level is the beat, also called tactus. It serves as the basis for defining
the tempo of a musical piece, which is typically measured in beats per minute (BPM).
The measure pulse, which corresponds to the coarsest level of the rhythmical hierarchy,
is induced by regularly recurring patterns of stressed and unstressed beats. In Western
music, this pattern is reflected by grouping subsequent beats into bars or measures. In
common music notation, the number of beats per measure (typically 3 or 4) is indicated
by a time signature and often remains constant throughout the piece. The measure pulse
is then defined by considering only the first beat of each measure. The finest metrical
level is constituted by the tatum pulse. The term tatum stems from ”temporal atom” and
refers to the fastest repetition rate of musically meaningful accents occurring in the signal.
Thus, all note onsets approximately occur at tatum pulse positions. Furthermore, in the
majority of cases, the period of the beat and measure pulse are integer multiples of the
tatum pulse period.

While novelty curves are useful for the detection of musical accents, they do not well
reflect the aforementioned periodic pulses that a human listener would infer from these
accents. Because of their central importance to the perception of rhythm, we need a way
to extract these pulses from the audio signal. To this end, we present a method that aims
at detecting the predominant local periodicity (PLP) of accents in the music signal, which
typically corresponds to the tatum pulse.

Many approaches exist for analyzing musical accent signals with respect to periodic com-
ponents. Prominent examples are autocorrelation methods [10], comb filter techniques
[39] and inter-onset interval analysis [40]. However, these approaches encounter difficul-
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Figure 3.2: (a) Novelty curve ∆̄ for the passage E1 of the Shostakovich Waltz. (b) Magnitude
tempogram of E1 computed with w = 4s and h = 0.05s. (c) Resulting PLP curve.

ties when dealing with accent signals that are noisy or exhibit spikes that are irregularly
spaced over time, which holds for the previously described novelty curves. To cope with
these irregularities, the PLP approach, which was first presented in [16], uses smoothly
spread sinusoids to detect the locally distorted quasiperiodic patterns contained within
the novelty curve. By accumulating the local periodicity information to form a single
function, we obtain a robust mid-level representation called PLP curve that reveals the
local periodic nature of the underlying music signal.

Given a possibly noisy novelty function, the PLP curve is computed as follows. First, we
investigate the local periodicity of the novelty curve ∆̄ of length N using a short-time
Fourier transform with a suitable set of frequency parameters. In our experiments, we
mostly use the set that corresponds to the musical tempi between 30 and 500 BPM. These
bounds are motivated by the observation, that only events with a temporal separation
between 120 milliseconds and 2 seconds contribute to the perception of rhythm [4]. For
the temporal segmentation of the novelty curve, we use a fixed-length analysis window
with a large overlap ratio whose size is chosen to capture local tempo changes. In our
experiments, we use a Hann window of length w = 4s and a hop size h = 0.05s. This way,
we obtain a time-pulse representation called tempogram that indicates the strength of a
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3.2. PREDOMINANT LOCAL PERIODICITY

local pulse over time. Note that a tempogram is complex-valued and contains information
about both the magnitude as well as the phase of a pulse. Figure 3.2(b) shows the
magnitude part of such a tempogram, which was obtained by analyzing the novelty curve
computed from the Shostakovich example in the previous section. All note onsets in this
example are evenly spaced, inducing a constant pulse corresponding to roughly 200 BPM.
This pulse is clearly visible in the tempogram, which exhibits a significant peak at 200
BPM throughout the piece.
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Figure 3.3: (a) Optimal sinusoidal kernels (red) for various time positions for two parts of a
novelty curve (black) obtained from the first 12 measures of Beethoven’s Symphony No. 5. (b)
Accumulation of the kernels shown in (a). Applying half-wave rectification yields the PLP curve.
Figure reproduced from [16].

While the tempogram reveals the strength and phase of a local pulse, we are more inter-
ested in a representation that allows for the determination of the exact time positions at
which the individual pulses occur. To this end, we first identify for each time position
the pulse frequency that maximizes the magnitude of the tempogram. Taking the phase
information given by the tempogram into account, we can construct a sinusiodal kernel
for each time position that best explains the local periodic nature of the novelty curve, as
visualized in Figure 3.3. To increase the robustness of the kernel estimation for novelty
curves with strongly corrupted pulse structures, we finally accumulate the kernels over
all time positions to form a single function. This function, that denotes the final PLP
curve, is obtained by summing up all kernels for each time position followed by half-wave
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rectification. The resulting curve is depicted in Figure 3.2(c). As it turns out, the PLP
curve is robust to outliers and yields musically meaningful pulse information even when
given poor onset information. For further details, we refer to [16].

The peaks of the PLP curve indicate the time positions of the individual musical events
that make up the local predominant pulse. In most cases, the predominant pulse cor-
responds to the tatum, however, the semantic level may change over time. Thus the
predominant pulse can also refer to the tactus or measure pulse. We illustrate this behav-
ior with the help of a different excerpt (measures 25-35) from the Shostakovich Waltz, see
Figure 3.4(a) for a piano reduced score. Here, in the first four measures, the predominant
pulse corresponds to the tactus, as musical accents occur only at quarter note positions.
The eighth notes in subsequent measures cause the predominant pulse to change to the
tatum level, which is captured by the PLP curve shown in Figure 3.4(e). However, in some
cases, it is desirable to prohibit the PLP curve from switching between different semantic
levels. To this end, we constrain the set of tempo parameters used in the computation of
the tempogram, incorporating prior knowledge about the tempo of the piece. For example,
to extract only the tactus pulse (roughly 200 BPM) from the Shostakovich excerpt shown
in Figure 3.4(a), we use a constrained set of tempo parameters that covers the tempo
range between 141 BPM and 283 BPM. This range corresponds to a tempo octave around
the annotated ground truth tempo of 200 BPM. The resulting tempogram and PLP curve
are shown in Figure 3.4(f) and (g) respectively.
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Figure 3.4: (a) Piano reduced score of the measure 25-35 of the Shostakovich Waltz. (b) Annotated
ground truth onsets. (c) Novelty curve. (d) Magnitude tempogram with tempo range 30 to 500
BPM. (e) PLP curve derived from tempogram (d). (f) Constrained magnitude tempogram with
tempo range 142 to 283 BPM. (g) PLP curve derived from tempogram (f).
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4
Adaptive Segmentation

Having analyzed the rhythmical structure of the musical piece, we can now use this infor-
mation for adaptively segmenting the audio stream. Our goal is to perform segmentation
in a way that any subsequent feature extraction steps yield sequences of frames that corre-
spond to musical events instead of generating a feature representation consisting of frames
with no musically meaningful interpretation. In this chapter, we will focus on the actual
segmentation algorithm and give details of its implementation.

In Section 4.1 we show how to construct adaptive segmentations of the audio signal using
the information gathered in the rhythmic analysis step. We present a practical approach to
adaptive segmentation in Section 4.2, where we introduce a novel segmentation algorithm
that can not only be used in conjunction with virtually any spectral feature extractors
but can also handle audio streams that have already been arbitrarily segmented. We aim
at further improving the final feature representations by describing an extensions to our
algorithm in Section 4.3 that permits the removal of presumably noisy parts from the
audio stream.

4.1 Adaptive Segmentation

In Chapter 2, we have seen how to obtain feature sequences that characterize an audio
signal by its spectral content. Methods that extract information about the temporal and
rhythmical structure of the signal, have been presented in Chapter 3. So far, these tech-
niques have been applied individually. We will now show how to combine these approaches
in the feature extraction process to obtain an improved feature representation. More pre-
cisely, we will use the rhythmical information to construct an adaptive segmentation of
the audio stream that is then used to obtain the spectral feature representation.

In general, the rhythmical information we have gained about the signal, is given by a series
R = (r1, r2, ...rL) of length L, that consists of the time positions ri of relevant rhythmical
events. In our experiments, such a series of time positions is obtained by performing
peak picking on various PLP curves as well as using human reference annotations for beat
positions.
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CHAPTER 4. ADAPTIVE SEGMENTATION

Recall from Section 2.1 that a segment S was defined as an interval S = [s, t) ⊂ R and
a segmentation S = (S1, S2, ..., SN ) denotes as series of segments Si. Given a series of
time positions R, we can construct an adaptive segmentation S by simply using the time
positions ri as segment boundaries, thus

Si = [ri, ri+1) ⊂ R. (4.1)

for i ∈ [1 : L− 1] ⊂ N. That way, we obtain a non-overlapping segmentation of the audio
stream, where each segment boundary coincides with some rhythmical event.
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Figure 4.1: (a)/(b) Chromagrams of the passage E1 of the Shostakovich Waltz. The boundaries
of the underlying segmentations are indicated above. The chromagram (a) has been obtained
via fixed-length segmentation with window length w = 0.2s whereas (b) was obtaind using an
adaptive segmentation constructed from PLP curve peaks. (c)/(d) Chromagrams of the measures
25-35 of the Shostakovich Waltz. The chromagram (c) was obtained using the same fixed-length
segmentation parameters as in (a). The adaptive segmentation underlying the chromagram in (d)
reflects the changes in the local predominant pulse of the musical piece.

We illustrate the effect of adaptive segmentation in Figure 4.1 by means of the two excerpts
from the Shostakovich Waltz we introduced in previous chapters. The normalized chroma
feature representation depicted in (a) corresponds to the passage E1 (see Figure 3.1(a)
for the score) and was derived using a fixed-length segmentation with a window length
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4.2. SEGMENTATION ALGORITHM

of 0.2 seconds and no overlap. The segment boundaries are indicated above the chroma-
gram. While the melody of the excerpt is relatively well visible in this chromagram, it
is difficult to see where the individual notes start and end because the note onsets and
offsets are blurred. In contrast, the chromagram depicted in (b), which corresponds to
the same passage, was obtained from an adaptive segmentation using the peaks of the
PLP curve shown in Figure 3.2(c) as segment boundaries. Even though the segments have
approximately the same length, they are accurately aligned with the note onsets in the
signal. This results in sharp and well developed peaks in the chromagram that facilitate
the identification of the individual notes. Thus, this representation better reflects the
musical content of the underlying signal even though it consists of less frames than the
fixed-length representation.

A different example is shown in Figure 4.1(c) and (d), see Figure 3.4(a) for the correspond-
ing score. Here, the chromagram depicted in (c) has again been derived from a fixed-length
segmentation using the same settings as in (a). The individual notes, especially the eighth
notes in the second part of the excerpt are indistinguishable from each other. This is
not the case for the chromagram visualized in (d). This chroma representation has been
computed using an adaptive segmentation constructed from the PLP curve shown in Fig-
ure 3.4(e). The segment lengths are appropriately adjusted according to the predominant
local pulse given by the PLP curve. Hence, the resulting chromagram clearly reflects the
rhythmical structure of the excerpt and reveals the eighth notes occurring in the signal.

It should be noted that adaptive segmentations can – in principle – be constructed arbi-
trarily. While a construction according to Equation 4.1 is suitable in most MIR scenarios,
it is also possible to create segmentations with, for example, overlapping segments. One
could also construct a segmentation with “gaps” to exclude unwanted or irrelevant parts of
the signal, which we elaborate in Section 4.3. In the end, the choice of a suitable adaptive
segmentation depends entirely on the respective application.

4.2 Segmentation Algorithm

The construction of the adaptive segmentation as given above is the central step to obtain
time-aware feature sequences. Given such a segmentation, the feature extraction steps
as described in Chapter 2 can be straightforwardly applied to yield time-aware features.
However, from a practical point of view, many applications often require a flexible and
computationally inexpensive procedure to adjust the time resolution of a feature sequence.
This is particularly relevant when conducting experiments for MIR research. The CENS
feature representation we introduced in Section 2.4 already provides a simple mechanism
to dynamically adjust the feature rate: Instead of re-computing the pitch representation,
which is by far the computationally most expensive step in the CENS derivation, the pitch
representation is first computed with a high temporal resolution and then smoothed and
downsampled to yield the desired feature rate. The pitch representation is saved and can
be reused if a different feature rate is required. However, as previously mentioned, this
mechanism only works for features derived from a fixed-length segmentation and is thus
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CHAPTER 4. ADAPTIVE SEGMENTATION

not applicable to time-aware features sequences.

To this end, we now introduce a novel method to transform an arbitrary feature sequence
X that has been created using a segmentation SX into a new feature sequence Y with
respect to a different segmentation SY . In the typical use case, SX denotes a fixed-length
segmentation with small window length and SY is an adaptive segmentation created from
rhythmical information. In general, the method works with arbitrary adaptive segmenta-
tions with the restriction that the input segmentation SX must be non-overlapping.

Figure 4.2: Illustration of our segmentation algorithm. The fixed-length input feature sequence X
is transformed into the time-aware output feature sequence Y .

Intuitively, our method works as follows. We construct the output feature sequence Y =
(y1, y2, ..., yM ) in a two-step process: Firstly, we identify for each output feature vector yi
a subsequence of input feature vectors in the input feature sequence X = (x1, x2, ..., xN ),
that temporally correspond to yi. Secondly, this sequence of input feature vectors is
aggregated to form one single output feature vector yi. Figure 4.2 illustrates the method
for the typical use case. Here, the input feature sequence X was derived using a fixed-
length segmentation and is to be transformed into a time-aware output feature sequence Y
on the basis of an adaptive segmentation. For illustration purposes, the individual feature
vectors have been color-coded where different colors indicate different values. The output
feature vector y1 is influenced by the input feature vectors x1, x2 and x3 which all have the
same ”value” yellow, thus y1 attains a yellow value as well. The second output frame y2
is roughly equally influenced by x3 and x4, which are yellow and red respectively. Hence,
the color orange, which is a composite color consisting in equal parts of yellow and red,
is assigned to y2. The general idea behind the computation of the output feature vectors
yi is that the contribution of each relevant input feature vector xj to the value of yi is
proportional to the overlap ratio between the two corresponding segments SYi and SXj .
We have already defined the overlap ratio for fixed-length segmentations in Section 2.1,
for adaptive segmentation however, a more general definition is required. Using our set
notation for segments, the overlap ratio o(Si, Sj) of two segments Si and Sj can simply be
defined as

o(Si, Sj) =
|Si ∩ Sj |
|Si|

. (4.2)

An alternative and more practical definition of the overlap ratio can be formulated, when
a segment S is regarded as a tuple S = (s, t) with s, t ∈ R being the start and end time of
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4.2. SEGMENTATION ALGORITHM

the segment. The overlap ratio can then be computed as

o(Si, Sj) =

{
0 if si ≥ tj ∨ sj ≥ ti
min(ti,tj)−max(si,sj)

ti−si otherwise
. (4.3)

To construct the output feature sequence Y , we can now use the overlap ratio to identify for
each yi those frames in X that contribute to the value of yi. More precisely, let yn denote
the output feature vector we want to compute. To this end, we determine the sequence
of feature indices Rn = (rn1 , r

n
2 , ..., r

n
L) with rni ∈ [1 : N ] that satisfies the following two

conditions.

(i) Monotonicity condition: rni < rni+1 for i ∈ [1 : L− 1]

(ii) Relevance condition: o(SYn , S
X
ri ) > 0 for i ∈ [1 : L]

The monotonicity condition (i) ensures, that the order of the feature vectors in the result-
ing subsequence X(Rn) = (xrn1 , xrn2 , ..., xrnL) is preserved. As indicated by the relevance
condition (ii), we only consider a feature vector xi to be relevant for computation of yn, if
the corresponding segments SXi and SYn have non-zero overlap.

To obtain the final value of yn, we aggregate the subsequence X(Rn) to form a single
feature vector. Generally speaking, the choice of a suitable aggregation method depends
on the nature of the feature space X . For the spectral features we introduced in Chapter 2,
we have X = Rd for some dimension d. To honor the influence of each input feature vectors
on yn, we first define a weight vector wn of length L as

wnl = o(SYn , S
X
l ) (4.4)

for l ∈ [1 : L]. The output feature vector yn is then computed as the weighted sum over
all X(Rn), thus

yn =
L∑
l=1

wnl xrnl . (4.5)

That way, each input feature vector xrni contributes only a fraction equal to the overlap
ratio of the corresponding segments to the value of yn. By computing yn for all n ∈ [1 : M ],
we obtain the final output feature sequence Y .

The proposed method constitutes a flexible and computationally inexpensive way to com-
pute time-aware feature sequences. Due to its ability to transform feature sequences
derived on the basis of fixed-length segmentation into time-aware representations, it can
be easily integrated into existing feature extractors. By choosing a suitable aggregation
method, it can be applied to feature sequences from arbitrary feature spaces. For ex-
ample, feature vectors from a discrete feature space could be aggregated with the help a
majority vote aggregation function. Furthermore, by appropriately modifying the weight
vector wl, it is possible to incorporate a window function, such as a Hann window, into
the aggregation process. Our MATLAB implementation of this algorithm is documented
in Appendix A.
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CHAPTER 4. ADAPTIVE SEGMENTATION

4.3 Noise Removal

As described in Section 3.1, the detection of musical accents is based on the observation,
that sounds with sharp attacks cause a broadband noise burst, especially for instruments
like the piano, guitar or percussion. This phenomenon is illustrated in Figure 4.3(a), which
shows a pitch decomposition of a chromatic scale played on a piano. The noise bursts are
clearly visible as vertical lines at the beginning of each note. On a side note, this figure
also reveals the fact, that striking a single key on the piano produces a complex sound
comprised of a mixture of different frequencies. Especially for lower pitches, most of the
energy is contained in the frequency bands corresponding to the higher harmonics of the
pitch.

While these noise bursts are useful for musical accent detection, they cause undesired
artifacts in spectral feature representations as they introduce spurious energy in a wide
range of frequency bands. However, we can identify the time positions of the noise bursts
by using the rhythmical analysis techniques we have introduced in Chapter 3. These time
positions can then be used as segment boundaries to construct an adaptive segmentation
of the signal that has “gaps” in the areas around the noise bursts, thereby excluding
them from further consideration. To facilitate the construction of such a segmentation,
we slightly modify our segmentation algorithm by introducing a parameter α ∈ [0, 1] ⊂ R.
This parameter has the effect, that we consider only the fraction α of the length of each
output segment SYi for the selection of relevant input feature vectors. More precisely, we
preprocess every output segment SYi = (si, ti) of length li = ti − si to yield a modified
segment S̄Yi of length l̄i = α ∗ li by setting

S̄Yi = (si +
1− α

2
∗ li, ti −

1− α
2
∗ li) . (4.6)

With this construction, the time positions corresponding to the center of the segments
are preserved. The segment boundaries are shifted by 1−α

2 ∗ li towards the center of the
segment to exclude the parts of the signal that are close to the noise bursts. The effect
of this method is illustrated in Figure 4.3(c). Here, the pitch representation of the signal
has been obtained using an adaptive segmentation constructed from PLP curve peaks and
α = 0.5. In contrast to the fixed-length feature shown in Figure 4.3(a), no noise bursts or
artifacts are visible. For comparison, the pitch representation depicted in Figure 4.3(b)
was computed with α = 1.0 and exhibits a large number of spurious artifacts.
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Figure 4.3: Various pitch representations of a chromatic scale played on a piano, showing the
pitches p ∈ [32 : 75]. (a) Fixed-length segmentation with window length w = 0.1s. (b) Adaptive
segmentation with α = 1.0. (c) Adaptive segmentation with α = 0.5.
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5
Evaluation

While we have seen how time-aware features can be obtained from an audio signal, it
remains yet to be determined whether adaptive segmentation can in fact improve the
quality of the resulting feature representations. To answer this question, we conducted an
extensive evaluation and present the results in this chapter.

The evaluation setup is detailed in Section 5.1, where we describe of the datasets and
spectral features used for the evaluation as well as the various adaptive segmentations
we constructed from rhythmical information. An application-independent analysis is pre-
sented in Section 5.2, where we employ an entropy measure that correlates to the presence
of noise in the feature sequence. To establish an understanding for the effect of time-aware
features on different music processing tasks, we compare the performance of two MIR al-
gorithms that are given both time-aware and fixed-length feature sequences as inputs. We
present results for a chord recognition task in Section 5.3 as well as an audio matching
problem in Section 5.4.

5.1 Evaluation Setup

To conduct our experiments, we use a diverse collection of real-world audio data, corre-
sponding to roughly 36.5 hours of audio in total. Our collection consists of five datasets
with beat annotations, see Table 5.1 for an overview.

Files [#] Length [sec] Beats [#] Mean Tempo [BPM] Std. Tempo [%]

BEATLES 179 28831 52729 116.7 3.3

MAZURKA 298 45177 85163 126.0 24.6

RWC-POP 100 24406 43659 111.7 1.1

RWC-JAZZ 50 13434 19021 89.7 4.5

RWC-CLASSIC 61 19741 32733 104.8 15.2

Table 5.1: The five beat-annotated datasets used in our experiments.
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The BEATLES datasets consists of 179 Beatles songs and can be generally classified as a
representative of the Pop music genre. The majority of the songs employs a standard
instrumentation composed of guitars, bass and drums as well as vocals and is stable
with respect to tempo and meter. We use the beat annotations created by Matthew
Davies [7]. The MAZURKA datasets contains piano recordings of five Mazurkas composed
by Frederik Chopin. Each Mazurka is interpreted by a multitude of different performers,
yielding a total of 298 audio files. The recorded performances, which clearly belong to the
Classical music genre, are very expressive and therefore exhibit significant differences in
tempo, articulation and note execution. The remaining datasets RWC-POP, RWC-JAZZ and
RWC-CLASSIC are taken from the RWC music database [15] and feature a representative
selection of pieces from the respective genres. The recordings of each datasets have varying
instrumentation and contain percussive as well as non-percussive passages, some with high
rhythmic complexity.

Our experiments rely on the spectral feature representations we have introduced in Chap-
ter 2. More precisely, we test the effect of adaptive segmentation with the help of the
pitch representation (Pitch) as introduced in Section 2.2 as well as Chroma-Pitch (CP)
and Chroma-Log-Pitch (CLP(C)) features with varying compression factors C, see Sec-
tion 2.3. Furthermore, we use CENS features and CRP(55) features in our experiments, as
described in Section 2.4 and Section 2.5 respectively.

The most attention in our evaluation is directed towards the segmentations we use to
derive the aforementioned spectral feature representations. To obtain comparative values,
we employ the standard fixed-length segmentation technique with varying window sizes
and no overlap. Fixed-length segmentation is denoted by FS(w) with w being the window
size in seconds, e.g. w = 0.1. To construct adaptive segmentations of the audio signals,
we use the time positions of various metrical pulses described in Chapter 3 as segment
boundaries. More precisely, we construct a beat segmentation of the signal, using the
reference beat annotations from our datasets. The symbol BS(α) is used to denote a
beat segmentation. To measure the effect of the α-parameter described in Section 4.3,
we construct our adaptive segmentations considering two different settings α = 1.0 and
α = 0.5. The beat segmentation consists of relatively large segments, typically around
0.5 seconds in length. A more fine-grained segmentation is obtained on the basis of the
predominant local periodicity, described in Section 3.2. This segmentation, which we
call pulse segmentation PS(α), is constructed using the peaks of a PLP curve as segment
boundaries. The PLP curve that serves as the basis for the pulse segmentation uses an
unconstrained set of tempo parameters, thus it always reflects the predominant local pulse
and may freely switch between semantic pulse levels. Hence, the resulting segmentation
exhibits large variations in segment length. The last adaptive segmentation we consider
is the constrained pulse segmentation CPS(α, τ). Here, we constrain the set of tempo
parameters used in the PLP computation to a tempo octave around a multiple τ of the
annotated tempo. Setting τ = 1 should yield a quarter note segmentation of the signal and
thus approximate the beat segmentation without relying on human reference annotations.
In our experiments, we use τ = 1 and τ = 2. The average segment lengths of all described
segmentations are shown in Table 5.2.
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BEATLES MAZURKA RWC-CLASSIC RWC-POP RWC-JAZZ Mean

FS(0.1) 0.100 0.100 0.100 0.100 0.100 0.100

FS(0.5) 0.500 0.500 0.500 0.500 0.500 0.500

FS(1.0) 1.000 1.000 1.000 1.000 1.000 1.000

BS(1.0) 0.514 0.477 0.572 0.537 0.669 0.553

BS(0.5) 0.257 0.238 0.286 0.268 0.334 0.276

PS(1.0) 0.227 0.237 0.237 0.201 0.202 0.220

PS(0.5) 0.113 0.118 0.118 0.100 0.101 0.110

CPS(1.0, 1) 0.367 0.383 0.543 0.423 0.522 0.447

CPS(0.5, 1) 0.183 0.191 0.271 0.211 0.261 0.223

CPS(1.0, 2) 0.245 0.239 0.295 0.259 0.287 0.265

CPS(0.5, 2) 0.122 0.119 0.147 0.129 0.143 0.132

Table 5.2: Mean segment lengths in seconds for all segmentations and datasets used in our evalu-
ation.

5.2 Entropy-Based Evaluation

The first part of our evaluation is devoted to analyzing the effect of using adaptive seg-
mentation for feature extraction in comparison to the classical fixed-length approach. In
general, we expect feature representations that have been obtained from adaptive seg-
mentations to be “cleaner” than their fixed-length counterparts in the sense that each
individual feature vector carries information about only one musical event. Contrary, fea-
ture sequences obtained via fixed-length segmentation suffer from the problem that each
feature vector may be influenced by two or more musical events, which results in a blurred
feature representation. This phenomenon has been demonstrated in Figure 1.1, Figure 4.1
and Figure 4.3. The cleaning effect of adaptive segmentation should be amplified by the
noise removal technique we have introduced in Section 4.3.

In our first experiment, we aim at measuring this cleaning effect in an application-
independent fashion. We consider a spectral feature vector to be “clean”, if most of
the spectral energy is concentrated in a few components, while all other components have
energy values close to zero. This property holds for feature vectors that capture only one
musical event, whereas feature vectors influenced by several events exhibit a rather uni-
form energy distribution among their components. Given a single feature vector, the goal
is now to quantify to what degree the energy distribution in this vector deviates from the
uniform distribution. To this end, we use the Shannon entropy, an established measure
in the field of information theory, where it is used to quantify the uncertainty associated
with a random variable [42]. In our case, the entropy measure is used as follows. Given
a D-dimensional feature vector x = (x1, x2, ..., xD) with xi ∈ R≥0 for i ∈ [1 : D], we first
normalize x with respect to the `1-norm. Thereupon, it holds that xi ∈ [0, 1] ⊂ R and∑D

i=1 xi = 1, thus x can be interpreted as a discrete probability distribution. The entropy
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H(x) of the feature vector x is then defined as

H(x) = −
D∑
i=1

xi log2(xi) . (5.1)

Since the range of the entropy function H(x) varies for different D, we define the normal-
ized entropy H̄(x) as

H̄(x) =
H(x)

log2(D)
. (5.2)

The interpretation of H̄(x) for a feature vector x is as follows. If the spectral energy
within x is distributed uniformly among its components, then H(x) = 1. Contrary, if all
the energy is concentrated in one component, then H(x) = 0. Thus, the entropy value of
a “clean” feature vector is close to zero whereas the entropy value of an “unclean” feature
vector is close to one.

Our entropy-based evaluation was conducted using all five datasets described in Sec-
tion 5.1. The individual entropy values were averaged across all feature sequences com-
puted from all audio files in the entire collection. The final results are presented in Ta-
ble 5.3.

Pitch CP CLP(1) CENS

FS(0.1) 0.476 0.619 0.736 0.502

FS(0.5) 0.518 0.666 0.821 0.546

FS(1.0) 0.549 0.703 0.861 0.582

BS(1.0) 0.481 0.675 0.834 0.559

BS(0.5) 0.449 0.637 0.782 0.529

PS(1.0) 0.487 0.631 0.772 0.510

PS(0.5) 0.466 0.607 0.727 0.492

CPS(1.0, 1) 0.518 0.663 0.823 0.540

CPS(0.5, 1) 0.484 0.624 0.772 0.509

CPS(1.0, 2) 0.494 0.637 0.785 0.515

CPS(0.5, 2) 0.464 0.606 0.738 0.491

Table 5.3: Average normalized entropy values H̄(x) for various features and segmentations. The
best results for each spectral feature are indicated in bold face type.

The different spectral features used in this experiment have substantial influence on the
resulting entropy values, thus making them hardly comparable. The lowest and therefore
best entropy results, e.g. H̄(x) = 0.449, are produced by the Pitch feature. This is
due to the fact that the pitch feature vectors consist of many components (D = 120) of
which many have values close to zero, in particular the components that correspond to
low pitches. Also the CENS feature yields quite small entropy values, e.g. H̄(x) = 0.491,
which is a result of the quantization function that is applied to the CENS feature vectors.
Contrary, the entropy values produced by the CP and CLP(1) features are rather high.
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This is caused by small spurious energy values present in the pitch representation that
are amplified when summing up over the pitch bands in the chroma binning step. The
logarithmic compression performed in the CLP(1) computation further boosts these small
values, which results in the highest and therefore worst entropy scores. For this reason,
we did not include CLP(C) features with higher compression factors C in this experiment.

Looking at the various segmentations compared in this experiment, we can see that the
best entropy values are all produced by adaptive segmentations. We can also observe that
the entropy measure is very sensitive to the segment length, which is reflected by values
of the fixed-length segmentations FS(·). Here, the entropy values increase with increasing
segment lengths. However, when we compare fixed-length segmentations with adaptive
segmentations that have approximately the same segment length w, for example FS(0.1)
with w = 0.1s and PS(0.5) with average w = 0.11s, we can see that the entropy values
for the adaptive segmentations are consistently lower. This suggests that the feature
sequences obtained from adaptive segmentations are indeed “cleaner” than their fixed-
length counterparts.

5.3 Chord Recognition

The automatic extraction of chord labels from audio recordings, usually called chord recog-
nition, constitutes one of the central problems in music information retrieval. The multi-
tude of contributions, e.g. [3, 6, 14, 17, 22, 27, 31, 32, 43, 46] reflects the importance of
this task. Therefore, the second part of our evaluation is devoted to examining the effect
of adaptive segmentation on the chord recognition problem. Broadly speaking, most auto-
matic chord recognition procedures first convert a given audio signal into a chroma-based
feature representation and then apply pattern matching techniques to map the chroma
features to chord labels. In our experiments, we employ two different chord recognition
strategies that are based on template matching and on Hidden Markov Models.

We begin by summarizing the template matching strategy as described in [21]. The general
idea is to compute a set T ⊂ X of templates that correspond to the set of chord labels
L. Since this method uses a chroma-based feature representation of the input signal,
these templates can be though of as prototype chroma feature vectors where each vector
represents a specific chord. Furthermore, we define a distance function d : X × X → R
that measures the similarity between two chroma feature vectors. In our experiments,
we use the cosine measure for this purpose. The chord recognition is then performed in
a framewise fashion, that is each feature vector is assigned the chord label L ∈ L that
minimizes the distance to the corresponding template vector TL ∈ T . More precisely, let
x ∈ X be a given feature vector, then the corresponding chord label Lx is given by

Lx = argmin
L∈L

d(TL, x) . (5.3)

In our evaluation, we use a template set T that consists of 24 templates corresponding to
the 12 major and 12 minor chords.
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Our chord recognition experiments were conducted on the basis of the BEATLES dataset,
using the publicly available ground-truth chord annotations by Mauch et al. [26]. In the
first step, we reduce these annotations to the 24 chord labels represented by our template
set T by mapping augmented to major chords and diminished to minor chords. We then
quantize and segment the chord annotations to obtain a reference label for each feature
vector. The evaluation is then performed framewise using standard precision and recall
measures by comparing the computed labels with the reference labels. However, since we
compare different segmentations in this experiment, we need to fix a common segmentation
for the evaluation step in order to make the results comparable. To this end, we use a fixed-
length segmentation FS(0.1) with window length w = 0.1s as the reference segmentation.
The computed label sequences are re-segmented to this reference segmentation by means
of our segmentation algorithm described in Section 4.2 using a majority vote aggregation
function.

CP CLP(1) CLP(10) CLP(100) CLP(1000) CENS CRP(55)

FS(0.1) 0.443 0.488 0.523 0.533 0.524 0.324 0.509

FS(0.5) 0.495 0.573 0.584 0.572 0.547 0.386 0.545

FS(1.0) 0.505 0.580 0.579 0.560 0.527 0.403 0.536

BS(1.0) 0.506 0.586 0.596 0.584 0.559 0.398 0.555

BS(0.5) 0.482 0.549 0.578 0.578 0.564 0.363 0.551

PS(1.0) 0.467 0.526 0.553 0.553 0.538 0.351 0.527

PS(0.5) 0.451 0.498 0.534 0.546 0.539 0.331 0.522

CPS(1.0, 1) 0.506 0.583 0.595 0.584 0.557 0.396 0.552

CPS(0.5, 1) 0.478 0.543 0.572 0.574 0.561 0.358 0.547

CPS(1.0, 2) 0.472 0.534 0.559 0.557 0.540 0.356 0.530

CPS(0.5, 2) 0.454 0.505 0.540 0.551 0.544 0.333 0.527

Table 5.4: F-measure values for the chord recognition experiment using the template-based chord
recognition strategy. The best scores for each spectral feature are indicated in bold face type.

The results for the chord recognition experiment using the template matching strategy are
shown in Table 5.4. The presented numbers are F-measure values obtained by averaging
over all songs in the BEATLES dataset. Looking at the various spectral features used in this
experiment, we can see that the best result F = 0.596 is produced by the CLP(10) feature.
Overall, all CLP(C) features with varying compression factors C perform quite well, taking
the four top places in this experiment. They are followed by the CRP(55) (F = 0.555) and
CP (F = 0.506) features. The CENS features are far behind with an F-measure value of
0.403.

Regarding the different segmentations used in this experiment, we can observe a clear
trend in favor of the adaptive segmentation techniques. Except for CENS features, all of
the top scores are produced by adaptive segmentations, among which the beat segmenta-
tion BS(1.0) and the constrained pulse segmentation CPS(1.0, 1) yield the best results. In
fact, the F-measure values for BS(1.0) and CPS(1.0, 1) are almost identical, e.g. F = 0.596
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and F = 0.595 for the CLP(10) feature. This indicates that the CPS(1.0, 1) segmentation
very well approximates the annotation-based beat segmentation BS(1.0). Hence, we can
conclude that the constrained PLP curves successfully capture the tactus pulse of the Bea-
tles songs due to their stable tempo and the presence of percussive instruments. However,
the overall improvement of the adaptive segmentations compared with the fixed-length
segmentations is rather small. The largest increase can be observed for the CLP(1000)
feature, where the F-measure value improved from F = 0.547 for FS(0.5) to F = 0.564
for BS(0.5). Among the fixed-length approaches, FS(0.5) and FS(1.0) produce the best re-
sults. Surprisingly, the chord recognition procedure does not benefit from setting α = 0.5,
which should have a de-noising effect as described in Section 4.3. Only the CLP(1000)
feature profits from this parameter setting, whose scores improve slightly, yet consistently,
in comparison to the segmentations using α = 1.0.

Since the presented template-based chord recognizer is rather simple and only yields mod-
erate overall results, we use a more sophisticated procedure based on Hidden Markov
Models (HMMs) in the next experiment. The HMM-based approach, which was origi-
nally proposed by She and Ellis in [43], is conceptually state-of-the-art and today the
most widely used chord labeling technique. In contrast to the template-based approach,
the HMM chord recognizer also accounts for the temporal context of the chords in the
classification stage, which can be considered as a kind of context-aware filtering of the
predicted chord labels. In this approach, the hidden states of the HMM correspond to the
24 chord labels specified above. The observation probabilities are obtained by replacing
the chord templates by chord models, that are specified by a multivariate Gaussian distri-
bution in terms of a mean vector µ and a covariance matrix Σ. In our experiment, µ and
Σ are learned from a subset of the labeled BEATLES dataset. The transition matrix, which
encodes the likelihood of passing over from one chord to any other chord, is determined
from labeled training data as well. The final chord label sequence that jointly maximizes
observation and transition probabilities, is then obtained via Viterby decoding. We refer
to [3, 6, 27, 32, 43, 46] for details and various implementations of the HMM-based chord
recognition approach.

We present the results of our second chord recognition experiment using the HMM-based
approach in Table 5.5. The indicated F-values have been computed the same way as
in the previous experiment. At first glance, we can see that the overall results improved
significantly (best result F = 0.755) compared with the template matching technique (best
result F = 0.596). Looking at the spectral feature side, we observe that the ranking has
changed, as the CRP(55) features now yield the best score (F = 0.755). The previously
top ranked feature CLP(100) is now in the third place (F = 0.744), closely behind the
CLP(1000) feature with F = 0.745. The worst scores are again produced by the CENS and
CP features, with the CP now taking the last place with F = 0.572.

Regarding the different segmentations compared in this experiment, the trend in favor of
the adaptive segmentations is continuing. Again, all top scores are produced by adaptive
segmentations, however, the best overall F-measure is now given by the pulse segmenta-
tion PS(0.5) with F = 0.755 instead of the beat segmentation BS(1.0) as in the previous
experiment. In general, we can observe that shorter segments yield better results for the
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CP CLP(1) CLP(10) CLP(100) CLP(1000) CENS CRP(55)

FS(0.1) 0.530 0.646 0.702 0.727 0.735 0.589 0.727

FS(0.5) 0.566 0.685 0.689 0.676 0.669 0.609 0.695

FS(1.0) 0.541 0.633 0.619 0.602 0.593 0.579 0.624

BS(1.0) 0.572 0.716 0.731 0.729 0.714 0.621 0.708

BS(0.5) 0.551 0.694 0.725 0.731 0.734 0.604 0.729

PS(1.0) 0.563 0.694 0.725 0.725 0.720 0.621 0.733

PS(0.5) 0.558 0.676 0.725 0.738 0.739 0.611 0.755

CPS(1.0, 1) 0.572 0.710 0.719 0.708 0.698 0.621 0.710

CPS(0.5, 1) 0.555 0.694 0.725 0.721 0.717 0.605 0.736

CPS(1.0, 2) 0.569 0.704 0.730 0.732 0.730 0.623 0.732

CPS(0.5, 2) 0.559 0.684 0.732 0.744 0.745 0.614 0.753

Table 5.5: F-measure values for the chord recognition experiment using the HMM-based chord
recognition strategy. The best scores for each spectral feature are indicated in bold face type.

CLP(C) feature with C ∈ {10, 100, 1000} and the CRP(55) feature, which is clearly reflected
by the fixed-length segmentations. This observation is also supported by the F-measure
values produced by the PS(0.5) and CPS(0.5, 2) segmentations, which exhibit the short-
est segment lengths among the adaptive segmentations. Comparing the fixed-length and
adaptive segmentation scores, we can see a slightly larger improvement than in the pre-
vious experiment, e.g. for the CLP(10) feature, whose F-measure value increased from
F = 0.702 for FS(0.1) to F = 0.732 for CPS(0.5, 2).

5.4 Audio Matching

The identification and retrieval of semantically related music data is of major concern in
the field of music information retrieval. One typical instance of this problem is cover song
identification, where one tries to identify all performances of the same piece by different
artists in face of differences in instrumentation, articulation and tempo [41]. For the last
part of our evaluation, we use a similar yet more local scenario called audio matching. Here,
the goal is to automatically retrieve all passages from a set of audio files that musically
correspond to a given query excerpt. To this end, we use a matching procedure described
in [29], which we summarize in the following.

Let Q be a query excerpt and (D1, D2, ...DN ) a set of audio files. In the first step, all
audio files D1, D2, ...DN are concatenated to form single large audio file D, which we call
database document. The goal is now to identify all passages within D that are musically
similar to Q. To this end, we transform the query and database document into suitable
feature representations X = (x1, x2, ...xK) and Y = (y1, y2, ..., yL) with x, y ∈ X . We
then define a cost measure c : X × X → R to quantify the (dis-)similarity between two
feature vectors from X . In our experiments, we simply use the cosine measure for this
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purpose. To identify the relevant passages in the database document, we employ a distance
function ∆ that compares the query feature sequence X with subsequences of the database
feature sequence Y . To cope with possible variations in tempo, the distance function
is defined using dynamic time warping (DTW) that enables the matching procedure to
accurately align subsequences of different lengths. More precisely, the distance function
∆ : [1 : L]→ R ∪ {∞} between X and Y is given by

∆(l) =
1

K
min
a∈[1:l]

(DTW(X,Y (a : l))) (5.4)

where DTW(X,Y (a : l)) denotes the DTW distance between X and the subsequence
Y (a : l) with respect to the cost measure c. For details regarding DTW and the distance
function, we refer to [28].

The distance function ∆ can be interpreted as follows. A small value of ∆(l) for some
l ∈ [1 : L] indicates that the subsequence Y (al, l) starting at al and ending in l is similar
to the query X. Conversely, ∆(l) attains a large value if the subsequence ending in l
bears no resemblance to X. To determine the best match within Y , one simply identifies
the index l0 ∈ [1 : L] that minimizes ∆, yielding the subsequence Y (al0 : l0). The value
∆(l0) is also referred to as cost of the match. To find the second best match, we exclude
a neighborhood around l0 from further consideration to avoid large overlaps with the best
match. In our experiments, we use half the query length to the left and right of l0 to define
such a neighborhood. The ∆-values within this neighborhood are excluded by setting them
to ∞. Subsequent matches can then be obtained by repeating the above procedure.
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Figure 5.1: Distance function ∆ with respect to the query E3 using the Shostakovich Waltz as
database document. The semantically correct matches E1, E2, E3 and E4 are indicated by vertical
red lines. The excluded neighborhoods are shown in light red, the false alarm region consists of all
indices outside these areas. The various statistics underlying the quality measures are indicated
by the horizontal lines.

We illustrate the behavior of the distance function ∆ in Figure 5.1 by means of our
Shostakovich example. Here, we have transformed the query and database audio signals
into CRP feature representations. Using the passage E3 (trombone) as query excerpt, the
resulting distance function ∆ clearly reveals the ending positions of the passages E1, E2,
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E3 and E4 in form of four significant local minima. The light red regions around the four
matches denote the excluded neighborhoods.

In order to correctly identify relevant matches using the described procedure, it is impor-
tant that ∆ fulfills two conditions. First, the local minima of ∆ that correspond to true
matches should be close to zero to avoid false negatives. Second, in order to prevent false
positives, ∆ should attain values well above zero in the regions outside of the excluded
neighborhoods, which we refer to as false alarm region. In accordance with [29], we now
introduce several quality measures that aim to capture the degree of compliance to these
conditions for a given ∆. We begin by defining µXT and maxXT as the average respectively
maximum value of ∆ over all indices that correspond to the true matches for a given query
X. Analogously, µXF and minXF denote the average respectively minimum value of ∆ con-
sidering all indices within the false alarm region. These values are indicated in Figure 5.1
by horizontal lines. In order to distinguish between true matches and spurious ones, µXT
and maxXT should be small while µXF and minXF should be large. The quality measures
αX and γX express these properties as a single number and are defined as the quotients
αX = µXT /µ

X
F and γX = maxXT /minXF .

The interpretation of these quality measures is as follows. Small values for αX and γX

indicate, that ∆ allows for good separability of true and spurious matches. If γX < 1 then
all true matches appear as the top most matches whereas γX > 1 means that at least one
false positive match appears before all true matches are retrieved. The quality measure
γX is quite strict as one single outlier (either a true match with high cost or a spurious
match with low cost in the false alarm region) may completely degenerate the value of γX .
In contrast, the quality measure αX is quite lenient in the sense that it may still attain
a low value even if a large number of false positive matches is retrieved. As a tradeoff
between αX and γX , we introduce a third quality measure βX . To this end, we sort the
indices within the false alarm region by increasing cost and define µp%,XF as the average
value of ∆ over the lower p% of these indices. The quality measure βX is then defined as
βX = µXT /µ

p%,X
F . In our experiments, we use p = 20, thus only considering the lower 20%

of the indices within the false alarm region. Note that βX is more robust to outliers than
γX while being more sensitive to false positive matches than αX .

In the following, we present the results of the experiments we conducted to evaluate the
effect of adaptive segmentation for the audio matching task. More precisely, the main
objective of the experiment is to assess the discriminative power of various time-aware
features in comparison to fixed-length features. The experiments were performed using
the MAZURKA dataset, which consists of five Mazurkas in many different interpretations.
Therefore, it offers a multitude of semantically related music material, which is perfectly
suited for the audio matching scenario. We carefully selected five query excerpts from each
of the Mazurkas with an average length of 20 seconds, yielding a total of 25 queries. For
each query X, we computed the quality measures αX , βX and γX for various features and
segmentations using the entire MAZURKA dataset as database documents. By averaging the
over all 25 queries, we obtain the numbers for α, β and γ that are shown in Table 5.6.

Looking at the spectral features used in this experiment, we can see that CRP(55) fea-
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CLP(100) CENS CRP(55)

α β γ α β γ α β γ

FS(0.1) 0.278 0.363 0.929 0.305 0.390 0.941 0.236 0.309 0.772

FS(0.5) 0.296 0.408 1.209 0.371 0.480 1.190 0.237 0.322 0.862

FS(1.0) 0.348 0.489 1.473 0.468 0.611 1.437 0.276 0.384 1.020

BS(1.0) 0.265 0.382 1.786 0.354 0.472 1.932 0.216 0.300 1.316

BS(0.5) 0.257 0.361 1.588 0.299 0.402 1.546 0.225 0.309 1.095

PS(1.0) 0.356 0.467 1.691 0.396 0.504 1.634 0.304 0.397 1.568

PS(0.5) 0.358 0.463 1.632 0.376 0.477 1.587 0.320 0.414 1.563

CPS(1.0, 1) 0.294 0.398 1.115 0.374 0.481 1.178 0.235 0.322 0.798

CPS(0.5, 1) 0.284 0.383 1.033 0.328 0.426 1.071 0.240 0.325 0.820

CPS(1.0, 2) 0.279 0.372 1.028 0.329 0.424 1.091 0.228 0.307 0.798

CPS(0.5, 2) 0.282 0.371 0.942 0.308 0.397 0.984 0.243 0.321 0.799

Table 5.6: Results of the audio matching evaluation for various features and segmentations. The
best scores for each quality measure are indicated in bold face type.

tures clearly yield the best scores for all quality measures, e.g. α = 0.216. We conjecture
that this is due to the fact that CRP(55) features have been designed and optimized for
matching and retrieval scenarios and therefore exhibit the best discriminative power. The
rather general-purpose CLP(100) features hold the second place among the spectral fea-
tures, closely followed by the CENS features.

Unfortunately, the results of this experiment do not allow for a clear statement regarding
the benefit of adaptive segmentation for audio matching. Especially in terms of the quality
measure γ, the classical fixed-length segmentation approach FS(0.1) with window length
w = 0.1s outperforms all other segmentation techniques. Even though the beat segmen-
tations BS(1.0) and BS(0.5) yield the best scores for α and β for CLP(100) and CRP(55)
features, the improvement over FS(0.1) is rather small. Furthermore, BS(1.0) produces by
far the worst γ values. Also far behind with respect to all of the quality measures are the
unconstrained pulse segmentations PS(1.0) and PS(0.5). This results from the fact that
the recorded Mazurka performances are very expressive and therefore exhibit large devia-
tions in local tempo and articulation. For this reason, the PLP curves used to construct
the pulse segmentations fail to capture the strongly distorted local pulse. This causes the
various Mazurka versions to be segmented very differently, which makes it hard, if not
impossible, for the DTW algorithm to correctly align semantically equivalent passages.
This problem is mitigated by constraining the tempo parameters of the PLP curve which
is reflected in the scores of the various constrained pulse segmentations CPS(·, ·). Their γ
values are even quite close to the scores produced by FS(0.1). Finally, we observe that the
α and β values of the CRP(55) feature are better for BS(1.0) (α = 0.216) than for BS(0.5)
(α = 0.225). This suggests that CRP(55) features already have a de-noising effect and thus
do not benefit from the noise removal technique described in Section 4.3.

In view of the strong temporal deviations between different recordings of the same
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Mazurka, we slightly modify the matching procedure for the last experiment of our evalu-
ation. So far, the distance function ∆ has been computed using DTW to align the query
feature sequence to corresponding subsequences in the database document. The use of
DTW is necessary because two musically equivalent feature sequences can differ in length
due to the variations in tempo introduced by the different playing styles of the perform-
ers. However, assuming that the rhythmical analysis we perform to construct the adaptive
segmentations correctly reveals the time positions of the musical events that make up the
piece, all musically equivalent time-aware feature sequences should have equal length. In
other words, a rhythmically correct adaptive segmentation compensates for the temporal
deviations between two different interpretations of the same piece. This property makes
the DTW step in the audio matching procedure obsolete. We therefore disable DTW in
this last experiment, thereby forcing the matching procedure to align the feature sequences
in a one-to-one fashion. The results are shown in Table 5.7.

CLP(100) CENS CRP(55)

α β γ α β γ α β γ

FS(0.1) 0.676 0.806 1.779 0.675 0.777 1.623 0.643 0.735 1.583

FS(0.5) 0.615 0.789 2.085 0.644 0.776 1.708 0.573 0.683 1.732

FS(1.0) 0.569 0.764 2.221 0.644 0.800 1.809 0.523 0.654 1.740

BS(1.0) 0.196 0.253 0.738 0.269 0.329 0.819 0.155 0.185 0.504

BS(0.5) 0.188 0.234 0.666 0.222 0.266 0.721 0.161 0.189 0.495

PS(1.0) 0.674 0.823 1.880 0.687 0.804 1.660 0.648 0.751 1.630

PS(0.5) 0.693 0.823 1.745 0.692 0.797 1.605 0.670 0.768 1.570

CPS(1.0, 1) 0.525 0.655 1.732 0.558 0.667 1.550 0.477 0.570 1.538

CPS(0.5, 1) 0.545 0.664 1.673 0.558 0.656 1.540 0.510 0.598 1.527

CPS(1.0, 2) 0.560 0.678 1.607 0.574 0.671 1.464 0.519 0.603 1.457

CPS(0.5, 2) 0.585 0.693 1.545 0.583 0.673 1.425 0.550 0.631 1.424

Table 5.7: Results of the audio matching evaluation without using DTW for various features and
segmentations. The best scores for each quality measure are indicated in bold face type.

In comparison to the previous experiment, there is no change regarding the performance
of the different spectral features, CRP(55) still yields the best values for all of the quality
measures. However, the scores produced by the beat segmentations BS(1.0) and BS(0.5)
drastically improve, compare e.g. γ = 0.666 versus γ = 1.588 for CLP(100). In fact,
not only do they clearly outperform all other segmentation techniques but also yield sig-
nificantly better scores than any approach achieved in the previous experiment. This
indicates that DTW effectively degrades the performance of the beat segmentation for
the audio matching task. The scores produced by the fixed-length segmentations show a
clear decline, which is not surprising as they rely on DTW for the alignment of the feature
sequences. Also, the performance of the pulse segmentations is rather poor, for the same
reasons as in the previous experiment. Finally, it should be noted that this comparison is
somewhat unfair as the beat segmentation was constructed using human reference annota-
tions. Yet, this experiment conclusively demonstrates the power of adaptive segmentation.
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6
Summary

In this thesis, we presented an in-depth analysis of various segmentation techniques for
musical audio signals for the purpose of feature extraction. Our main focus was directed
towards adaptive segmentation, which makes use of rhythmical information to define mu-
sically meaningful segment boundaries. We compared this approach with traditional fixed-
length segmentation procedures that rely on predefined parameters to partition the audio
signal.

To this end, we first reduced the complex music phenomenon to its two main dimensions,
which were then separately examined. The spectral dimension was explored in Chapter 2,
where we introduced a variety of feature representations that characterize a music signal
by its spectral content. Starting with a simple pitch decomposition of the audio signal, we
successively refined this approach to obtain representations that capture relevant harmonic
aspects while being robust to noise and variations in instrumentation and timbre.

Chapter 3 was devoted to the temporal dimension of music. Here, we gave an overview of
several techniques for the analysis of the rhythmical structure of musical audio signals. In
particular, we focused on the extraction of the periodic pulses that constitute the basis of
rhythm.

In Chapter 4, both musical dimensions were combined in the adaptive segmentation proce-
dure. We described how to construct rhythmically meaningful segmentations of the music
signal which then served as the basis for computing spectral feature representations. Fur-
thermore, we presented a flexible and extensible segmentation algorithm and introduced
a method to remove noisy parts from the audio signal.

Finally, we conducted a comprehensive evaluation of our adaptive segmentation technique,
which was presented in Chapter 5. Using a multitude of spectral features, we compared
adaptive segmentations constructed from different metrical pulses and fixed-length seg-
mentations with varying window lengths. We found that the rhythmical information used
to construct the adaptive segmentations significantly influences the resulting feature se-
quences. Furthermore, we observed that the time-aware feature representations generally
exhibit sharper feature differences than their fixed-length counterparts and show a high
degree of tempo-invariance. Based on these results, we conclude that adaptive segmenta-
tion is indeed well-suited for segmenting musical audio signals and is clearly superior to
the traditional fixed-length approach.
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Source Code

In this chapter, the headers of selected MATLAB functions created during the writing
of this thesis are reproduced. The headers contain information about the name of the
described function and its input/output behavior.

Segmentation Algorithm

The resample adaptive function implements the segmentation algorithm we described
in Section 4.2.

Sample usage:
[out,T_out] = resample_adaptive(f_chroma, 50, beat_segmentation);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Name: resample_adaptive

% Version: 1.0

% Date: 21.03.2011

% Programmer: Philipp von Styp-Rekowsky

%

% Description:

% Segments a feature sequence according to a given adaptive

% segmentation.

%

% Input:

% - feature: Feature sequence to be segmented, specified as n-by-d matrix

% with time progressing within rows.

% - T_in: Either a scalar denoting the feature rate of the feature sequence

% or a segmentation. A segmentation is specified as a n-by-2 matrix where

% each row corresponds to a segment with the start time [sec] given in

% the first column and the end time [sec] in the 2. column. Must be

% sorted increasing order of the start times.

% - T_out: Either a scalar denoting the desired feature rate or the desired

% segmentation.

% - parameter
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% .alpha: Ratio of output segment length to consider in the

% segmentation process (0 <= alpha <= 1; Default: 1)

% .aggregation_strategy: Strategy used to reduce a feature

% sequence to a single vector (Possible values: ’sum’,

% ’weighted_sum’, ’majority_vote’; Default: ’weighted_sum’)

% .default_sample: Default value to assume for possible gaps in

% the feature sequence (Default: 0)

% .window_func: Function handle for an additional window for the

% aggregation step. The function must accept a single

% scalar specifying the desired window size (in samples). Only

% active in combination with the aggregation strategies ’sum’

% and ’weighted_sum’. (Default: @rectwin)

%

% Output:

% - out: Segmented feature sequence

% - T_out: Resulting segmentation of the feature sequence

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Audio Player

We implemented a simple audio player since MATLAB lacks any reasonable audio playback
functionality. It offers a simple GUI to play, pause and stop the playback as well as to
jump to any desired time position in the signal. The signal can either be passed as a
variable or loaded from a specified file. The functionality of the player can be extended
by suitable plugins. Use the player function to start the audio player.

Sample usage:

player();

% Load audio signal from MATLAB workspace

player(f_audio,fs);

% Load audio file

player(filename);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Name: player

% Version: 1.0

% Date: 21.03.2011

% Programmer: Philipp von Styp-Rekowsky

%

% Description:

% Starts the Audio Player.

%

% Input:

% The player accepts the following types of inputs:

% - None
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% - Audio signal:

% - f_audio: Mono or stereo audio signal specified as n-by-m matrix

% with time progressing within rows.

% - fs: Sampling rate (Optional; Default: 22050)

% - File name:

% - filename: Path to an audio file

%

% Output:

% - handle: Handle to the audio player instance

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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