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Abstract

Chord recognition task is to split up a piece of music into sements and assign each of
them a chord label according to the analysis of the harmonic entent. Making the chord
recognition task process audio recordings automatically vil be of great help for music
information retrieval. Most of the existing chord recognition systems proceed as follows.
In the rst step, a given audio recording is converted into a £quence of chroma features. In
the second step, the feature sequence is passed into choraognition module in which the
features are assigned with chord labels. However, althougmuch research has been done,
there is little understanding of the e ect of the di erent proc essing stages and of the various
parameter settings on the nal recognition result. In this t hesis we analyze the di erent
stages of typical automated chord recognition systems. In articular, we consider several
types of chroma features as well as several chord recognitiomethods based on simple
templates and more statistical involved pattern matching. As the main contribution, we
conduct extensive experiments to evaluate the impact of di @ent modules. In particular,
we investigate the role of the parameters from both the featwe side and the recognizer
side systematically to reveal how they in uence the overallperformance. Our aim is to
better understand the e ect of di erent stages and their inter action as well as to indicate
directions towards potential improvements. Finally, we add some additional processing
techniques such as detuning compensation, harmonic-persgive source separation and
beat-synchronization, and brie y examine their in uence on chord recognition results.
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Chapter 1

Introduction

1.1 Music Background

A chord is de ned as the simultaneous sounding of two or more derent notes [21]. Nor-
mally the notes which form the chord are played together justlike a musician presses
the corresponding keys at the same time. In some special casethese notes are played
separately yet successively as a musician press the key ong bne. Such cases include
arpeggios and broken chords. Figurél1 illustrates a chordith the notes played simulta-
neously and Figure[1.1(b) illustrates the arpeggio, wherelte notes are played separately.
Chords themselves and their progression are very importanbecause they compose the
harmonic content of a music piece. The analysis of harmonicantent is essential in the
Western tonal music, thus chords as the fundamental compond play a crucial role for
the understanding of such music([29]. Furthermore, being a igher-level representation
of a music piece compared to the note-level representatiorchords bring more insight to
the analysis of the music structure and therefore assist manmusic information retrieval
applications such as cover song identi cation and music sagentation.
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Figure 1.1. (a) C major triad played simultaneously, (b) C major triad in arpeggio.
By looking at the number of distinct notes which compose a chord, we categorize the

chords as \triad", \seventh", \ninth", etc. Figure 1[2Z71llu strates a triad, seventh and
ninth chord based on the root note C. The most commonly used cbrds in music pieces

IHere, distinct notes means the notes which are in di erent pi tch classes. For the de nition of pitch
class, see chaptefP



2 CHAPTER 1. INTRODUCTION

are \triad" chords. The name \triad" indicates that such cho rd is composed by three
distinct notes. However, since notes which in di erent octawe yet in the same pitch class
may be considered as one note when people analyze the chord,d better to count the
number of distinct \pitch classes" or \chromas" instead of distinct notes. Figure [1.3
illustrates how notes are mapped to chrom3. To avoid confusion, in this thesis when we
mention a component note of a chord, we actually treat all thenotes in a pitch class as
one note disregarding their octave information.
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Figure 1.2. Three types of chords with di erent number of notes based on rotnote C. From left
to right: C major triad, C dominant seventh and C major ninth.
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Figure 1.3. (a) Chromatic circle. (b) Shepards helix of pitch perception [2].

The component notes of a chord are not randomly selected buthmsen according to the
musical interval. It is the musical distance between the pitches of simultaneusly sounding
notes. The chords can be classi ed in this way as \major”, \minor", \augmented", \di-
minished" indicating the component notes of these chords ha di erent intervals. Figure
[L.4 illustrate these four kind of chords with di erent interv als. Moreover, every compo-
nent note has its own name closely related to the intervals. &king the major triadd as
an example, the lowest note is calledoot note, and the musical intervals of all other com-
ponent notes are based on this note; the highest note is catle fth meaning it has a fth
interval from the root note; the middle note is called the third meaning it has a major
third interval from the root. For the case of a minor triad, th e lowest and highest note
are the same for the major triad, the only di erence lies in the middle note: this time it
is the note which has a minor third interval.

Another essential concept about chords is thénversions. The concept of a chord inversions
is introduced due to such cases that the root note of a chord isot at the lowest position,
but somewhere higher. Figurd_L.b shows the three variationsf C major triad, with the

2Figure (a) is reproduced from |http://en.wikipedia.org/wiki/Chromatic_circle
3Here we mean the major triad is in root position.
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Figure 1.4. Chords with di erent musical intervals based on the root note C. From left to right:
C major triad, C minor triad, C augmented triad and C diminished triad.

left one being the normal C major, the middle one the rst inversion and the right one
being the second inversion. The lowest note of a chord is nardeas bass note In the rst
inversion of C major, the bass note is the third (note E), and the fth(note G) and the
root(note C) are stacked above it. In this case, the root noteis shifted one octave higher.
In the second inversion, the bass is the fth(note G) with the root (note C) and the third
above it, and both of them are shifted one octave higher.
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Figure 1.5. C major triads in root-position and inversions. From left to right: ro ot-position, rst
inversion and second inversion.

As discussed above, the chords are classi ed by the number @omponent notes and also
by the musical intervals between the notes. Moreover, for eeh type of chord, we have 12
distinct instances because we have 12 pitch classes whichrche used as root note. For
example, for the case of a major triad, we have C major triad, € major triad, D major
triad, and so on. Figure[1.6 shows all 12 major triads with thered notes indicating the
respective root note. In this thesis, if not specially declaed, we will assume that all the
chords we consider are triad chords, and we notated them by idicating the root note and
type of intervals. For example, Cis the short form to denote the C major triad and Cnto
denote C minor triad.
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Figure 1.6. All 12 major triads, the note with red color indicates the respectiveroot note.
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1.2 Chord Recognition Task

In this thesis, chord recognition refers to the task of analyging the harmonic content of
music recording where the audio representation is rst spli up into segments and then
each segment is assigned a chord label. The segmentation spes the start time and
end time of a chord, and the chord label speci es which chords played during this time
periods.

The motivation to automate the process of chord recognitionconsists of three aspects.
Firstly, although the task is not di cult for trained musici ans, it is kind of time-consuming
and tedious repeated work. In the recent years, the music aud les are digitized and
millions of them are saved in the databases or on the internetit is impossible for musicians
to label the pieces one by one. Secondly, chord labels retsied from audio les as mid-level
feature representation will largely help the high level musc information retrieval tasks such
as music structure analysis or segmentation, cover song idé cation, genre classi cation
and other content-based retrieval tasks. Thirdly, an automated chord recognition system
can assist musicians to transcribe an audio le more quicklyand precisely. There is large
demand of chord transcription from music fans who want to reinterpreted pop music and
jazz music by guitar or piano, therefore making chord recogition automatic will be of
great help to both professional musicians and music fans.

1.3 System Framework

A typical chord recognition system consists of four stagesfeature extraction, pre- Itering,
pattern matching and post- Itering [4]] The last step is optional. The stage feature
extraction transforms an audio le into some musically meaningful repesentations. The
stage pre- ltering performs smoothing on features which blend a single featurgvith the
nearby context. The stage pattern matching proceeds in two steps. Firstly, one de nes
or learns the patterns of certain chords; such pattern can bea template of feature or a
statistical model. Secondly, by comparing similarity between a feature with all the pre-
de ned chord patterns, we select the pattern which t the feature the most to be the
predicted chord label. This label is the nal output. Altern atively, one can add a further
post-processingstage which smooth the predicted label candidates over time

In our implementation of the system, we merge the previous rierred feature extraction and
pre- ltering together as one stage, since our features alr@dy integrate internal parameters
which control the smoothing e ect. Also we treat pattern matching and post- Itering
together as one stage, which we called chord recognition sg@. We will discuss several
pattern matching methods, but only one of them is combined wih post- ltering. Figure
[L. 4 shows the general stages of our syst@.n

In the recent research, chord recognition system is desigdeto process both the real
digitized audio and its symbolic form such as MIDI. We mainly focus on real audio les
in this thesis. An example of chord recognition results is sbwn in Figure [L.8, and the

4The gure is reproduced from Thomas Pmratzlich's slides of C hord Recognition, seminar talk of Music
Processing 2010.
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Figure 1.7. Overview of our chord recognition system.

corresponding ground truth labels are shown in Table[I]. InFigure [1.8(b), we show
the output of a chord recognition system for the classical ptce of musicBach BWV846.
The results of four di erent versions are visualized in our Interpretation Switcher demo,
with the top one being the ground truth for MIDI version, and t he others being the
computed result for three di erent interpretations played b y various performers on di erent
instruments. Each colored interval represents a certain chrd and its length corresponds
to the duration of that chord. By comparing the dierence betw een any of the three
computed results with the ground truth, we can easily nd recognition errors such as the
2nd measure of the Koopman's interpretation, which wrongly recognize Dmrepresent by
pink color as F represent by green color.

start time (s) end time (s) [chord name|chord color
0.100 4.000 C yellow
4.100 8.000 Dm pink
8.100 12.000 G blue
12.100 16.000 C yellow
16.100 20.000 Am red
20.100 24.000 D cyan
24.100 28.000 G blue
28.100 32.000 C yellow
32.100 36.000 Am red
36.100 40.000 D cyan
40.100 44.000 G blue

Table 1.1. Ground truth chord labels of Bach BWV846.

It needs to be mentioned that the chord recognition task is smehow ill-de ned. Although
most of the chords in a piece of music can be uniquely determed, there are some cases
where even the chord labels written by musicians may di er fran each other. Such cases
include for example omitted notes of a chord or added notes wibh do not belong to the
chord, and ambiguous chords like C major seventh and E minor wh an added minor sixth.
All these cases will make the chord labeling process an amhigus task for musicians.

To avoid such diversity, we take the same dataset that many ober groups use, the 180
Beatles songs for which uniquely determined chord labels ést. The chords are written by

Christopher Harte [13]. Besides this, we also include fourlassical pieces { all the chords
are precisely labeled by a trained musician, Verena Konz.
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Figure 1.8. (a) Score ofBach BWV846. (b) corresponding Interpretation Switcher visualization
of chord recognition output for the rst 11 measures, with the top line being the ground truth,
and other three being the computed results.
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In order to make our results comparable to the results of othe people who research in
the same area, we take conventions of MIRER chord competition in the implementation
of our chord recognition system. Firstly, our evaluation uses the test data of 180 Beatles
songs, which is exactly the test data of MIREX. Secondly, thechords we try to recognize
are not the whole chord family but a subset consisting of 12 mgor triads and 12 minor

>The Music Information Retrieval Evaluation eXchange (MIRE X) is a community-based formal evalu-
ation framework where research groups can submit their system to join the competition in certain elds
such as chord recognition, beat tracking, and so on.
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triads, all other chords are forced to be mapped to one of thes24 triads. Thirdly, a strict
rule is de ned to describe how the original chord labels are mpped to one of the 24 triads.
Here, we use the interval comparison of the dyad which takesnto account only the rst
two intervals of each chord [16]. Thus, augmented and dimirshed chords are mapped
to major and minor, respectively. This is also one of the mapmng conventions used in
MIREX.

1.4 Mathematical Formulation

In this section, we give a formal de nition of the chord recogition problem.

De nition 1.1  Suppose a musicaudio le is represented asA with its duration repre-
sented asT (T > 0; T 2 R). Then mathematically the audio le is a function A : [0;T) !
R. [0;T) is called thetemporal domain or time line of A.

De nition 1.2  For a given time line [0; T), we associate a segmentation into frames as
follows. Given a frame length parameterd 2 R, we de ne f, :=[t, 1;ty) for n 2 Z. Then
the frames associate td0; T) are given by theF = ff,jn 2 [0:N]g, N := d%e.

De nition 1.3 We de ne a nite set referred to chord label set Furthermore, we
de ne that  consists of chord labels 2  that refer to the twelve major and minor
triads, i.e.,

= fgd;:::;BCm3m:::;Bny: (1.2)

De nition 1.4  For an arbitrary time frame f,, the chord recognition for a frame is to
assign a chord label s, 2  to frame f,. Furthermore, suppose the temporal domain of

for A consists in assigning to each framd,, a chord label ¢, 2

1.5 Contribution

The motivation of this thesis is not aimed at building up a perfect chord recognition
system but to analyze the e ect of di erent stages of the systemand their interactions.

In particular, the in uence of di erent parameter settings a re examined by the extensive
experiments which we conduct.

1.6 Organization of Thesis

Since the algorithm of our chord recognition procedure is dgigned in a modular fash-
ion, the structure of this thesis is also arranged correspaiing to system implementation.
Figure [L.9 shows the owchart. Our system starts from the vey left with audio le as

an input, following the successive steps of feature extragin, chord recognition and eval-
uation. Finally, we obtain some statistical results which re ect the performance of the
system.
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Figure 1.9. Module of thesis structure.

The colored boxes in Figure 1D correspond to the chapters ithis thesis, and the order
of boxes is exactly the same order of chapters. A very importat part lies in the chord
recognition module, another part of equal importance liesm the evaluation part, where
we analyze the recognition results and make the conclusionBased on the results. The
chord recognition stage involves two di erent methods, and @ch method also consists of
several variations. Therefore, we split the part of chord reognition into two chapters to
describe and emphasize di erent aspects.

In Chapter 2, we will describe how we implementfeature extraction, in other words,
how we transform a given audio le into some other representtion which carry the
music properties important for the chord recognition task and omit or suppress other
information which is not relevant for the task.

In Chapter 3, we discuss some methods demplate-based chord recognition These
recognition methods measure the distance or similarity beteen a feature vector and
each of the prede ned chord templates, and select the chord hose template yield
the minimum distance or maximum similarity.

In Chapter 4, we introduce some methods o$tatistical model-based chord recognition
The methods in this chapter involve a previous training stage to learn a statistical

model before the actual recognition, then in the recognition stage the parameters of
the model are passed to the pattern matching methods such as &halanobis distance
or Gaussian probability based methods. Finally, we examineall matches between
the chord patterns and the given feature, and select the chat who has the best
match as the determined chord for that feature.

In Chapter 5, we discuss how we conduct the extensivexperiments to inspect the
e ect of each stage of the chord recognition system. The paramters settings from
both the features and the recognizers are evaluated and imptant discussions are
presented. Furthermore, additional pre-processing techigues such as detuning com-
pensation, harmonic-percussive source separation and biesynchronization are add
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to our chord recognition system, we brie y examine their in uence by comparing
the results with and without such techniques..

At last in Chapter 6, we make conclusions about the whole thesis and discuss about
future work.
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Chapter 2

Feature Extraction

An audio le contains full of music information which consists of played notes, melody,
harmony, beat, tempo, timbre of di erent instruments, dynam ics of the sound, etc. For
a speci ¢ music processing task, only some of them is relevamnd useful. Therefore we
need to select the most important information related to the speci c task. Usually we
name this processing stage afeature extraction, being the procedure of transforming an
audio le into a musically meaningful representation which keeps the most task-related
musical properties while suppressing other unrelated infonation. At the same time, the
form of the representation should be appropriate for the nek processing stage.

As the aimed music processing task discussed in this thesis the chord recognition task,
we need to extract audio features which emphasize the musitg@roperties that refer to
the aspect of harmony. Such musical properties can be the che progression, the melody
and component notes of a chord and their harmonics. Furtherrore, a good feature should
not only be able to capture the music properties mentioned abve but also suppress or be
invariant to some unrelated properties such as timbre and tenpo.

As the chord itself is fully determined by its component notes, theoretically if the notes are
known, the chord could be identi ed. Thus the capture of notes plays a crucial role in the
feature extraction stage. Moreover, it is better to use pitd class?® instead of single note
to describe the form of the chord since human beings' percefmn of chords is irrelevant
to the octave information of a note. Therefore our designed datures should be able to
project the information for notes within the same pitch class and distinguish the notes in
di erent pitch classes.

The reason that the features which used in chord recognitiorbeing invariant for timbre
and tempo is obvious. For example, if two interpretations ofa music piece are played by
di erent instruments which yield di erent timbre, the underl ying notes are still the same
and therefore the chords formed by these notes are the same all; if two interpretations
are interpreted with di erent speed, the underlying notes are still the same just their

1A pitch class is introduced due to the fact that human's perce ption for pitch is periodic. According
to [23], a pitch can be separated into two components. One is referred to the tone height describing the
octave information, the other is the chroma or pitch class. T he pitches in the same pitch class sound to
have similar "quality" or "color". For example, the pitch cI ass C is a set contains note C0,C1,C2, and so
on.

11
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duration change, which means the chords remain the same.

In the following sections, we introduce several features wh all of them ful lling the
requirements mentioned above. In Section 2.1, we present fgh features which serve as
basis of the other features we use in our experiments. We dadge how an audio le is
decomposed into spectral bands and then transformed into pch features with the energy
of each band within a short time summing up together. Then bagd on pitch features,
we derive the following features which are in chroma representation in the subsequent
sections. First, in Section 2.2, we talk about the common choma features which summing
up the spectral coe cients of the corresponding pitch features in the same chroma class.
In Section 2.3 we modify the chroma features by performing Igarithm compression on
the spectral coe cients before summing up. Then, in Section2.4, adding a further degree
of abstraction by considering short-time statistics over eergy distributions within the
chroma bands, we obtain CENS (Chroma Energy Normalized Stastics) features, which
constitute a family of scalable and robust audio features. © boost the degree of timbre
invariance, a novel family of chroma-based CRP audio featugs has been introduced [25,
24]. We briey describe CRP features in Section 2.5. Finally CISP features from Dan
Ellis's group will be presented in Section 2.6.

Note that except CISP features, the implementations of MATLAB functions of all other
features, respectively thePitch , CR CLR CENSCRPwe mentioned in this thesis can be
found in the Chroma Toolbox, which can be obtained in [22].

2.1 Pitch Features

2.1.1 Pitch Decomposition

In a rst step, we decompose a given audio signal into 88 fregency bands corresponding
to 88 musical notes fromAO to C8 which are of equal-tempered scale. Here we introduce
some properties of a musical note. Firstly, a musical note aa be identi ed by its MIDI
pitch® p, e.g., the note A4 corresponds top = 69. Secondly, each note is associated with a
certain frequency range with xed center frequency, e.g., he note A4 has center frequency
440 Hz. Furthermore, for each of the notes, its MIDI pitch number is related to its center
frequency in some logarithm fashion:

Let p denote the pitch number,p 2 [1: 120] and let f, denote the center frequency of the
pitch, then we have the relation:

_ P69
fo=2" 440 (2.1)

If we plug in pitch number p = 57 which is note A3, we will get the center frequency
fs7 = 220 Hz, which is half of the center frequency of noteA4. From this we can see
that if the pitch of a note is one octave higher than the other rote, its center frequency
will be twice as the lower note's. Besides, Equation (2.1) ao implies that the higher the

2chroma has the same meaning as pitch class.
*\The property of a sound that correlates to the perceived fre quency is commonly referred to as the
pitch." [23]
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pitch is, the larger the frequency range it occupies. In our ase, the decomposition from
the audio signal to pitch subbands is realized by a multirate Iter bank which consists
of an array of suitable bandpass lters. As the pitch gets hider, the bandwidth of the
corresponding Iter gets wider. Figure 2.1 shows an illustation of the Iter bank with
di erent bandwiths.

The decomposition from the original signal to 88 pitch related frequency subbands serves
as a prerequisite signal processing step. It provides meamiful information about the
signal both in the temporal and the frequency domain, indicaing at what time which
frequency component is present. However, the great contriltion of this step only works if
a pre-condition is ful lled: we assumed that the audio le needs to have correct tuning and
the instruments are tuned according to the equal-tempered &ale. In this way, tuning is a
crucial factor which the multirate lter bank is sensitive t 0. In this thesis, we previously
tuned all the audio les before conducting any experiments n order to make sure the
pitch features are correct. Besides this, strong onsets oitgng vibratos will lead to energy
spreading in a large frequency range, a ecting many subbandand therefore making the
decomposition problematic. Without prior detection and smoothing of these frequency
uctuations, one may have imperfect subbands signals whenwgch phenomena occur.

-20

-40

-60

Figure 2.1. A sample array of Iters with their respective magnitude responsesn dB. (reproduced
from [23])

2.1.2 Local Energy (STMSP)

The previous decomposition step allows us to identify the cotribution which a certain
pitch makes to the overall signal. However, the unit of meastement for the contribution of
each pitch is not clear so far [33]. Also, the temporal meas@ment about the appearance
of note is also unclear. To solve this problem, we compute thehort-time mean-square
power (i. e., the samples of each subband output are squaredjsing a rectangular window
of a xed length w. Denote a specic subband signal corresponding to pitchp as xp, k
as the index of the sample points inside the Window,n as the starting position of the
window on the signal, then the STMSP is de ned as k2[nm\,\,]jxp(k)jz. The window is
consistently shifted on the signal until the end with each time shifting it by a hop size

= 7, yielding 50% overlap between any of the two neighbor window. The size of the
window is usually chosen as a few milliseconds. Since the wdow size is closely related to
the hop size, and since the hop size is related with how frequéwe get a feature from the
signal, or in other words, how large the feature rate is, we aa directly deduct the feature
rate as% 1000 which in our case being% 1000(the multiplier 1000 is because that the
unit of hop size and window size is in millisecond, not second For example, a window
length corresponding to 200 milliseconds leads to a featureate of 10 Hz.



14 CHAPTER 2. FEATURE EXTRACTION

The result after this processing step is a sequence of feates which are referred to as
pitch features The pitch features measure the local energy content of eacpitch subband
and indicate the presence of certain musical notes within tle audio signal by selecting the
energy which exceed a certain threshold. See [23] for furtheletails. The implementation
of pitch features can be found in the MATLAB function audio_to_pitchSTMSP_via_FB.m
from the Chroma Toolbox[22].

As an example, we extracted pitch features from a synthesizeaudio le chordExamplel
The audio le consists of ve chords, its score representatn is shown in Figure 2.2(a).
Figure 2.2(b) shows the spectrogram of the original signal wh x-axis indicating the time
in seconds and y-axis indicating the frequency in a linear wg with the unit Hertz. Fig-
ure 2.2(c) shows the extracted pitch features with y-axis imicating the MIDI pitch number,
which associated with frequency in a logarithmic way. The ctored intensity represents
the STMSP value or local energy. Here, the played notes can belearly identi ed in the
lower part of Figure 2.2(c). However, as we can observe fromhe upper part, there are
comparably low intensities for some unplayed notes, which @ actually caused by the
harmonics of the played notes. This phenomenon implies a comon challenge in chord
recognition task: even with the synthesized example whichansists of only one instrument,
the presence of harmonics will a ect the identi cation of played notes. In our example,
the intensities of harmonics are weak, however in real audioles which involve several
instruments, the harmonics caused by di erent instruments will be blend together with
the real played notes. Sometimes the intensities of harmong are as large as some soft
played notes, which make the identi cation of real played ndes more di cult.

2.2 Chroma Features

As we discussed in the last section, the energy caused by a t&n played note is not only
present at the exact frequency that note covers but also at lgher frequencies where the
harmonics of the note are located. This makes not only the ideti cation of a musical note
di cult, but also the identi cation of component notes of a ¢ ertain chord di cult. In this
section, we introduce a new type of feature named ashroma features which can partly
solve this problem. Chroma-based audio features are a wedlstablished tool in processing
and analyzing music data [2, 9, 23], and the chroma featuresra particularly suitable for
chord recognition.

As we know that human's perception of musical notes has a cesin character: if a note
is one or more octave higher than another note, then the two ntes sound to have the
same \tone color" but di erent \tone height". This phenomeno n is referred to as octave
equivalence in music theory. Assuming the musical notes aref equal-tempered scale,

attributes as used in Western music notation. Note that in the equal-tempered scale,
di erent pitch spellings such as C! and D! refer to the same chroma.

Take MIDI notation for example, note A4 denotes the chroma asA and \tone height"
as the 4th octave. We can reduce the MIDI notes from 88 pitchedo 12 chroma classes
by ignoring the octave information of the notes and classifying via chroma information.
Chroma features are very suitable for the task of chord recagjtion. This is because when
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Figure 2.2. Score representation, spectrogram and pitch representationfahe synthesized music
audio ChordExamplel

analyzing a musical chord, we are much more interested in thehroma (or pitch class)
which the note belongs to other than the absolute pitch of tha note. For notes sharing
the same chroma but in di erent octaves, we treat them as idenical when considering a
component note of the chord. Furthermore, remember that di erent timbre of instruments
will yield di erent yet distinctive energy distribution at h armonics, and since the energy
of a chroma is merged from di erent pitches corresponding to his chroma together, the
di erence caused by timbre is well absorbed by chroma featurg, thus making them robust
to the variations of timbre.

where x(1) corresponds to chroma C,x(2) to chroma C!, and so on. Chroma-based fea-
tures represent the short-time energy of the signal in eachfathe 12 pitch classes. Often
these chroma features are computed by suitably pooling sp&@l coe cients obtained from

a short-time Fourier transform [2, 9]. Similarly, one can strt with the pitch representa-
tion introduced in Section 2.1. Then, by simply adding up the corresponding values that
belong to the same chroma, one obtains ahroma representation or chromagram Usually
we perform 2 normalization on the resulting vectors. For the case of neasilence or weak
noise, the sum of all entries of such chroma vector will be qte small. If the sum falls
below a certain threshold, we replace the original chroma w&or by the unit vector.
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In the following, the resulting features are referred to asChroma-Pitch and we denote
them by CP see [23] for more details. The MATLAB function of this part can be found
in pitchSTMSP_to_chroma.mfrom our toolbox.

Figure 2.3 illustrates the chromagram of featureCPextracted from the audio le ChordEx-

amplel The gure in the middle shows the features in the middle stepwhich is after spec-
tral pooling, the gure at bottom shows the nal chroma featu res generated by spectral
pooling with 2 normalization. In Figure 2.3(b), only the onset can be clealy seen in the
rst 0 :5 second of each chord, the intensity of the remaining duratn is not visible. In this

case we cannot distinguish between the real silence and themaining sound. However in
Figure 2.3(c), the silence can be clearly identi ed throughthe unit vector whose energy is
everywhere the same for all chromas. Besides, not only the set but also the remaining
duration can be easily seen, especially for the bass note o&aeh chord (red color in the

gure).

Note that CPfeatures still imperfect. For example, from 58 to 7.5 seconds in Figure 2.3(c),
the chroma G is much stronger than the other two component noes. As the bass note
and also the root note of theG its comparably large intensity makes sense. But it should
not be so strong that the intensity of other notes are nearly eased after normalization,
which make the identi cation of the other two notes problematic. This is also the case for
the chroma F from 5:8 to 7:5 seconds. This imperfection requires further processingep
to further balance the di erence of intensity.
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Figure 2.3. Score representation and chromagram o€Pextracted from ChordExamplel
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2.3 Chroma Features with Logarithmic Compression

To account for the logarithmic sensation of sound intensity [18, 36], one often applies a
logarithmic compression when computing audio features [15 Besides, this step also works
as adjusting the dynamic range of the original signal to enhace the clarity of weaker
transients, especially in the high-frequency regions [11] There are some weak chromas
whose intensities are very low. Such chromas are di cult to identify in the chromagram
of CR With the help of logarithmic compression, now it is easy to nd their existence.

The procedure of how we derived the chroma features with log&hmic compression is
presented as follows. Firstly, we compute pitch features fom the audio le as we described
in Section 2.1. Secondly, the pitch representation is logathmized by replacing each entry
e by the value log( e+ 1), where is a suitable positive constant. Thirdly, we convert
the logarithmic pitch features into the chroma representaion by spectral pooling and *?
normalization as we described in Section 2.2. The resultinfeatures are named a£hroma
Features with Logarithmic Compression and denoted asCLK ) where the parameter
speci es the extent of logarithmic compression. The role of , which is set to = 1000 in
most of our experiments, is evaluated in Section 5.3.3.
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Figure 2.4. CLPfeatures extracted from ChordExamplel

As an illustrative example, Figure 2.4 provides the chromagams of CLF ) with =
1;10; 100 1000 respectively. As we can see from the gure, as gets larger, the intensity
contrast between di erent chroma gets smaller. For example,for the period from 9.0
to 9:5 seconds, in Figure 2.4(a) the chroma C and A are almost invible. However in
Figure 2.4(d) they can be clearly seen. In particular, the clmoma C is more obvious. This
helps us to identify the underlying chord F for that period, because all three component
notes of F are present. This is much better than the situation where theintensity of only
one chroma can be observed while the intensity for other chmmas are too low to nd. In
this situation, it is too hard to decide the underlying chord.

One can observe in Figure 2.4 that the original pause perioduch as 15 to 1:9 seconds
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is disappearing as is increasing. This is a typical evidence that weak intensiy will be
enhanced by logarithmic compression. In contrast, the chrma C from 0.5 to 1:2 seconds
changing the color from red to yellow, which means that the irtensity gets less and less
as increases. This is evidence that the original strong intenisy will be suppressed to
a milder degree. In this way, the logarithmic compression isbalancing the di erence of
intensity, and the is the controlling parameter of such balance.

2.4 CENS Features

Generally speaking, theChroma-Pitch features have already achieved the goals of feature
design aimed for chord recognition since it is able to indicte the behavior of harmonic pro-
gression of a music piece. However, it can still be further iproved considering variations
of musical properties such as dynamics, timbre, articulatbn, execution of note groups,
and temporal micro-deviations. In order to be robust agains these variations, we add a
further degree of abstraction to Chroma-Pitch features by considering short-time statistics
over energy distributions within the chroma bands. The feaures we obtained are named
as CENS (Chroma Energy Normalized Statistics) features, ad they constitute a family
of scalable and robust audio features. CENS features, whichave rst been introduced
in [26], are strongly correlated to the short-time harmoniccontent of the underlying audio
signal while absorbing variations in other parameters. Futhermore, because of their low
temporal resolution, CENS features can be processed e cietly, see [26, 23] for details.

In computing CEN$eatures, we have ve stages with each designed for a di erenpurpose.
The computing pipeline is shown in the following:

1. Normalization. First, we “!-normalize the chroma features in order to absorb di er-
ences in the sound intensity or dynamics. For the case of verpw energy distribution
or silence, we replace the chroma vector by a uniformly disibuted vector if the norm
does not exceed certain threshold.

2. Quantization. The component of the normalized chroma vector are quantize based
on logarithmically chosen thresholds to simulate the humais's perception of loudness.
This introduces some kind of logarithmic compression simdr to the features CLP
The quantization function serves as a mapping function from[0; 1] to f0; 1, 2; 3; 4g.

3. Smoothing The quantized vectors from last step are now convolved witha Hann
window of xed length w, w 2 N. This step works as temporal smoothing to blend
in the context information and reduce the in uence of local eror.

4. Downsampling We downsample the resulting feature vectors by a speci c fator d
to increase the computation e ciency for the next processing module.

5. Normalization. Finally, we perform “2-normalization to the feature vectors.

In the following, we denote the resulting CENS features byCEN@&wv; d) with w indicating
the size of convolution window andd indicating the downsampling factor. The MAT-
LAB function of this part can be found in pitchSTMSP_to CENS.nfrom the Chroma
Toolbox [22].
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Figure 2.5. CENSeatures extracted from ChordExamplel

The main purpose of usingCENSeatures in our chord recognition system is to take advan-
tage of its internal e ect of smoothing at the feature side. This serves as the pre- ltering
before the chord recognition module. We also provide chordacognition methods perform-
ing smoothing on the recognizer side, which serves as the pge#iering of the nal chord
decisions. Figure 2.5 illustrate chromagrams with di erent smoothing window length of
CENSeatures. Having a feature rate of 50 Hz, each feature vectarontains music informa-
tion of 0:02 seconds for the non-smoothing version, which IEENEL; 1), sincew = 1 means
convolve with the current feature itself. By enlarging w to 21, each feature vector now
carries the music information of Q02 21 = 0:42 second. By comparing Figure 2.5(b) and
Figure 2.5(a) we nd that the unit vectors corresponding to silence period are smoothed
out by the neighbor C This means that chords tend to be continuous via smoothing.
Furthermore by enlarging w to 41, we nd that the edge of the chord gets more blurred.
For example, at around 75 second, the chroma G and D should stop. ITCEN@&L;1) it is
silence for all chromas at that time point which helps us to m&e exact decision about the
edge ofG However in CENE!1; 1) at that time point, due to the large smoothing window,
the presence of G and D coming from the left neighbor featuresand A, F, C coming from
the right neighbor features mix together. This might leads to errors in chord recognition,
and it is hard to decide the edge in the situation when a previas chord nishes or when
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a new chord starts.

2.5 CRP Features

To boost the degree of timbre invariance, a novel family of choma-based CRP audio fea-
tures has been introduced in [25, 24]. The general idea is toistard timbre-related infor-
mation similar to that expressed by certain mel-frequency epstral coe cients (MFCCSs).
Starting with the pitch representation as introduced in Sedion 2.1, one rst applies a
logarithmic compression and transforms the logarithmizedpitch representation using a
DCT. Note that the logarithmic compression parameter is set to = 1000 in our ex-
periments. Then one only keeps the upper coe cients of the resulting pitch-frequency
cepstral coe cients (PFCCs), applies an inverse DCT, and nally projects the resulting
pitch vectors onto 12-dimensional chroma vectors. These wtors are referred to as CRP
(Chroma DCT-Reduced log Pitch) features. The upper coe cients to be kept are speci ed
by a parametern 2 [1 : 120]. In our experiments, we us& = 55 if not speci ed otherwise.
While constructing CRP features, just as CENSeatures, we also have the smoothing step
which convolve one feature vector with neighbor feature veors. The window length of
the convolution is speci ed by w. Besides, the downsampling step is contained in CRP
features as well. The parameterd is responsible for this. Figure 2.6 shows the chroma-
gram of CRP features extracted from ChordExamplel with no smoothing e ect. Note
that di erent from other features, some of the computed intensities of CRP features are
negative values.

CRP features have three specialities. Firstly, as we mentined above they are designed to
be invariant with timbre. Secondly, they integrate logarit hmic compression in intensity
computing. Thirdly, they include the smoothing technique. All these specialities make
CRP features outstanding among all feature types. In the fdlowing, similar to CENS
features we denote CRP features bYCRIPw; d). The MATLAB function of how we derived
CRP features can be found inpitchSTMSP_to_CRP.nfrom the Chroma Toolbox[22].
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2.6 CISP Features

In this section, we adapt the chroma feature extraction acceding to Dan Ellis' s instan-
taneous frequency-based chromagram and we name this featlias CISP features. Using
CISP features, we can identify strong tonal components in tle spectrum and to get a
higher-resolution estimate of the underlying frequency [J. While generating chroma rep-
resentation features, using a coarse mapping of FFT bins tohe chroma classes which
the bins overlap will often yield blurry low frequencies. CISP take advantage of phase-
derivative (instantaneous frequency) within each FFT bin, and get a nely estimation of
frequency.

A further motivation of using instantaneous frequency liesin that sinusoidal components
of the audio signal contains the most relevant information dout the melody [6], which
is the tonal component of music. CISP is intended to remove notonal components and
improve frequency resolution beyond FFT bin level [7].

CISP features are constructed as follows. Firstly, a spectsgram is computed using a short
time fourier transform. Secondly, for each of the bins of thespectrogram (every bin bounds
a range of frequencies), the instantaneous frequency is d&imined. Thirdly, based on the

instantaneous frequency, a noise harmonic component separon is performed. Note that

the frequency of a bin is estimated by weighted sum of the fregencies inside the bin with
the weights being the corresponding magnitude of those fragencies. Finally, the estimated
frequencies are mapped into chroma representation by addgup the magnitude of bins
which belong to the same chroma.

CISP feature integrates an automatic tuning step. To avoid problems of tuning, the
mapping of frequencies to chroma bins is adjusted by up to 0:5 semitones to make the
single strongest frequency peak line up exactly with a chrora bin center [7].

Figure 2.7(a) indicates the color-coded instantaneous frguency values for each bin of a
spectrogram. The x-axis indicates the frame number and y-ais indicates the the number
of bins. See Figure 2.7(b) for the corresponding magnitudepectrogram. Here, a frequency
of zero value (the dark blue in Figure 2.7(a)) indicates thatthis bin was selected as noise
and Itered out. One can observe from the remaining horizontl structures, which are
actually the harmonic components. Figure 2.7(c) illustrates the chroma representation of
CISP features. We can observe that CISP features are very seitive to small magnitudes.
The computed intensity at B and D are much larger than other features. However, B
and D are only harmonics which have much smaller magnitudesampared to the other
component notes ofC In the other chromagrams which we presented previously, tey can
hardly be seen.

The MATLAB Function of CISP features can be found in the Intel ligent Sound Processing
Toolbox [5]. In the following passages, we denote CISP featas asCISP,
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Chapter 3

Template-based Chord
Recognition

After converting the audio le into musically meaningful au dio features, we now pass these
features into the chord recognition module which automatially classify the feature vectors

with respect to given chord labels. In other words, the chordrecognition module assigns
to each feature vector a chord label.

From this chapter on, we begin to discuss chord recognition rethods. In this chapter we
focus on template-based methods. In these methods, rstlysome pre-computed feature
templates are de ned and they served as chord patterns. Herethe templates can be
de ned from di erent point of views and therefore have many variations. Secondly, we
need to compare how similar a given feature vector is to eachfdhe templates. To this

end, we need to nd a similarity measure or distance measure &tween the feature and
a template. Thirdly, we assign the chord label by selecting he one which yields the
maximum similarity or minimum distance to the given feature.

The remainder of this chapter is organized as follows. We sta by introducing the general

procedure of template-based recognition methods in Sectin 3.1. Then three dierent

speci cations of template sets, namely the binary templates, the harmonically enriched
templates and the averaged templates, will be described in étion 3.2. After that we

present the setting of distance measure. In particular, thespeci cation of cosine distance
is introduced in Section 3.3. Finally, in Section 3.4, we sumarize the advantages and
disadvantages of using template-based methods.

3.1 Template-based Chord Recognition

In the previous stage of feature extraction, we transform a @en audio recording into
a chroma-based feature sequencl := (X1;X2;::1:Xn), Xn 2 F = R¥, n 2 [1:N].
Here in the stage of chord recognition, we use template-baderecognizers to assign chord
labels to the feature sequence. In this section, we will desbe the general procedure of
template-based chord recognition. The procedure can be desbed as follows.

23
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Firstly, we de ne our set of templates. Given a chord label sé , the template set

T is a subset of the feature set-. T consists of 24 chroma-based chord patterns
corresponding to 12 major and 12 minor triads. The elements foT are indexed by
the element of chord label set . we denote a template as 2T ,( 2 ).

Secondly, in order to compute the distance between a featureector and a chord
template, we need a distance measure. Since a template is aafare vector with
special meaning, we x the distance measurel : F F ! R. This distance measures
how di erent a feature vector compared to a chord template.

Finally, for a given feature vector, we compute its distancewith each of the chord
templates. Now the template-based chord recognition proagures simply consists
in assigning the chord label that minimizes the distance beween the corresponding
template and the given feature vectorx = Xp:

x ;= argmin d(t ;x): (3.1)
2

Both the template set and the distance measure are not xed inthe procedure. In the
following passages, we complete the procedure with three teplate settings de ned from

di erent aspects of chords and use cosine distance as measurent. By changing the
templates or distance, one can check the di erent recognitia results and further inspect
whether a certain template setting is meaningful and whethe it is suitable for the given

type of features. Besides, the template-based methods worik a purely framewise fashion
and no temporal context is considered. We are not the rst oneto use template-based
methods as chord recognizers, similar previous work can bednd in [12, 17, 28].

3.2 Speci cation of Chord Template Sets

In this section, we consider three variations of template sking. Remember that the
template set T is a subset of the feature seF = R?, that is to say, a template is also a
feature vector. However, a template has a special meaning ogpared to the normal feature
vectors which extracted from audio les, because it descriles a certain chord pattern in
the representation of a feature vector. It can be set variouly from di erent point of views.
The three variations of template setting which we introduce in this section only dier in
how the weights are setted to the entries of the template veair. The weights can either
be manually set considering the theoretical characteristt of a chord, or they can be set
by learning their general characteristics from the real daa in practice.

Here are the three variation of templates:

Set of binary templates: T° with elements t°
Set of harmonically enriched templates: T" with elements t"

Set of average templates:T 2 with elementst?
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The details of how we set the templates will be described in tk following subsections.
There is an a general trick which is named as \cyclically shif’, and it is used in all the
template setting. We rst introduce it here.

3.2.1 Cyclically Shift

For each of the template sets, we only set two templates insted of setting all templates.
We set one forC and the other for Cmand denote them astc and tcy The templates
for other major triads are computed by cyclically shifting tc, and other minor triads are
computed by cyclically shifting tcm The reason of involving cyclically shift is to utilize the
characteristics of the chords. Since the musical interval btween the third and root, fth
and root are always xed for the same type of chord, one can deve the same type of the
chords by rst changing the root note and then make sure the third and fth note from
the musical interval. Therefore, we can derive the templats for the same type of chords
by cyclically shifting the position of the notes.

Thus for later usage, we de ne an operation that allows for cglically shifting the compo-

nents of a feature vectorx := (x(1);::::x(D))T 2 F . To this end, we introduce the shift
operator :F!F dened by
(x(@);:::;x(D)T) == (x(D);x():::;x(D 1) (3.2)

Iteratively applying the shift operator, one obtains
0= () (33)

fori 2 Z. Obviously, P = 0 is the identity on F. Therefore, in the following, we only
consider the shiftindexi moduloD. We extend the shift operator to the space of sequences
FN in a canonical way and denote the resulting operator again by : FN IF N:

(X) = (x1); (x2);::0; (Xn))s (3.4)

3.2.2 Binary Templates

The rst template setting introduced here is designed to be te simplest one among all
the settings. The motivation of introducing binary templat es is to simulate the fact that
a chord is formed by its component note$. For example, Cis composed by the note C, E
and G; Cmis composed by C,  and G. While designing the templates in this method,
for every given chord, we only consider the component notesfahord and totally discard

other non-component notes. Thus it is reasonable to involvea binary setting since a note
is either a component or a non-component one.

We set the binary templates as follows. Each template in the st T? is a 12-dimensional
binary vectors with three entries equal to one and other entres equal to zero. The three
non-zero entries correspond to the three component notes @ chord.

1Here the notes we mentioned are as chromas, which come from ditinctive pitch classes
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Figure 3.1. Binary templates for Cand Cm

For example, the binary template corresponding toC C= fC; E; Gg is given by
t2=(1;0;0;0;1;0;0;1;0;0;0;0)":

The binary template corresponding to Cm Crm f C; E[; Gg is given by
t2,= (1;0;0;1;0;0;0;1;0;0;0;0)":

Figure 3.1 illustrates the setting of binary templates for Cand Cm We denote a binary
template by tP. Note that we perform the “2-normalization on the values shown above in
order to t the features which are also with “?-normalization. The advantage of the binary
setting is its simplicity and e ciency. The same weights on the component notes is fair
to count the contribution from each of the component notes. h contrast, the simplicity
also leads to a limitation: it considers only the very ideal nstance of a chord which works
theoretically. However in practice, the intensity of the three component notes may not be
exactly the same but very di erent. Also, it ignores too much information, for instance,
it totally disregard the non-component notes, which may corribute to form the pattern
of a chord.

3.2.3 Harmonically Enriched Templates

For the recognition method using harmonically enriched tenplates, the weights for the
entries of a template considers not only the component note®f a chord but also their
harmonics. The motivation of this method is to simulate a phenomenon in practice that
when a single note is played on instrument, the sound is not aisiple pure tone with a well-
de ned frequency [23]. According to [23], \the sound of a mugal tone can be regarded as
a superposition of harmonics or overtones - whose frequemd di er by an integer multiple
from a certain fundamental frequency.". Here, the fundameral frequency is the frequency
of the lowest harmonics. If the fundamental frequency id , the harmonics have frequencies
2f, 3f, 4f , etc. For example, on piano, if one presses the key which hasé MIDI pitch
C4 one can only recognize the sound a€4by human's perception. However, actually the
sound the piano generates contains not on\C4 but also its harmonics. These harmonics
include C5which has double times of frequency o4 G5which has triple times, Céwhich
has four times, and so on.

The reason why humans can not perceive the harmonics lies irhe intensity or loudness of
the harmonics. Take piano for instance, the intensity of theharmonics are much smaller
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than the intensity of the note which has the fundamental frequency. Especially, the higher
the harmonics, the smaller the intensity. The note at fundamental frequency contributes
the most to the overall intensity. This is the usual case for pano, but not universal for

any of the instruments. For some instruments, it might be the case that the rst harmonic

contributes the most of intensity and what humans perceive $ the sound of 1st harmonic,
while the sound of fundamental frequency can hardly be perdeed.

In this thesis, we set up the simulation of harmonics in the wg that Emilia Gomez
suggested in [10]. She modeled the harmonics of notes usingnalating the spectral
envelope. To this end, we set the weights to the notes of a chdras follows. Firstly,
we assign the theoretical amplitude to all component notes ba chord. Secondly, for
each of the component notes, we consider its harmonics. Foaeh harmonic, we assign a
theoretical amplitude, and this amplitude is related to which overtone the harmonic is for
the component note. The value is assigned by an empirical deg factor s multiplied by
the amplitude of component notes. The decay factor is to modethe amplitude of di erent
harmonics such that the contribution decrease as the frequecy increase [29]. Gomez set
s as Q6.

The contribution for the rst 6 harmonics of a note is given in Table 3.1. In this way,
for each component note of a chord, its intensity contribution to the chord consists of the
intensity from the component note itself, and the intensity from all its harmonics. Since
the 1st harmonic is just the component note itself, the addedntensities are coming from
the other 5 higher harmonics. We include all these values in ur templates. In order to
avoid zero weight for any of the notes, we initially set the weéghts of all notes to a very
small value = 0:005 instead of zero.

Table 3.2 present the information about the frequency and iex of the harmonics and the
corresponding decayed factor for the component not€4 E4 and G4of chord C assuming
the notes are played in the fourth octave. The resulting harnonic template considers
all the contributions from the notes in these tables and progct these contributions into
12-dimensional chroma representation. The resulting temfate are as follows:

The harmonic template correspond toC C= fC; E; Gg with decay factor s = 0:6 is given
by

th = (0:254 0:005 0:061; 0:005; 0:272 0:005; 0:005; 0:315; 0:018 0:005; 0:005, 0:079)" :

The harmonic template correspond toCm Cm fC; E[; Gg with decay factor s = 0:6 is
given by

tl = (0:254 0:005 0:612 0:254 0:018 0:005; 0:005; 0:333 0:005 0:005 0:061; 0:018)" :

Figure 3.2 illustrates the nal harmonic templates for Cand Cm This is also the version
with ~2-normalization. We denote a harmonically enriched templae by t".

3.2.4 Averaged Templates

In this setting, the template vector is not composed of manudly set values anymore,
but values derived from averaging of practical training data. This also means that the
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index frequency factor
1

1 T

2 2f S
3 3f s2
4 4f s3
5 5f s4
6 6f s5

Table 3.1. Contributions for the rst six harmonics of a note.

index note frequency factor index note frequency factor index note frequency factor
1 C4 fca 1 1 E4 fea 1 1 G4 fca 1
2 C5 2fca S 2 E5 2f g4 S 2 G5 2f ca S
3 G5 3f c4 Sz 3 B5 3f E4 32 3 D6 3f G4 32
4 C6 A cy s8 4 E6 A g4 s8 4 G6 A G4 s8
5 E6 5fcs st 5 46 5fg st 5 B6 5fgs st
6 G6 6f ca s° 6 B6 6f 4 s® 6 D7 6f g4 s°

Table 3.2. Contributions for the rst six harmonics of component notes of C Assuming the
chords is played in the 4th octave. From left to right correspondingto the notes C4, E4 and G4.

¢ o o or E F R G G A A B

(@) t¢ (b) t&ny

Figure 3.2. Harmonically enriched templates forCand Cm

templates we describe in this set are not xed as the previoushinary or harmonically
enriched setting, but vary according to di erent training da tasets. These are the most
signi cant di erences compared to the previous two settings

Figure 3.3 illustrates the procedure of generating the aveaged templates. The typical
training data basically consists of some music audio les ad corresponding chord annota-
tion labels. We divide all the training data we have into seveal partitions, and call each
of the partition a training dataset. Since our system is evaluated in a framewise fashion,
we need to divide the training data into the form of frames, mening that we segment
the audio les into feature frames and parse the annotation les into label frames. The
audio les are transformed into the feature vectors in the stage of feature extraction, and
the chord annotation labels are parsed and aligned with the éature vectors in this stage.
For example, if the feature rate is 10Hz, and we have an annot&on of Cfrom 1:1 to 2:0
seconds, then there will be 10 feature vectors with each of #m occupying 01 second of
this period and labeled with C The number of label frames is exactly corresponding to
the number of feature frames. In case the annotation le is nd completely annotated, for
the intervals without annotation, we set it to \N" indicatin g non-annotation.

After that we have many feature vectors with the ground truth chord labels in hand.
Usually we do not know whether we could cover all chords in theraining data so that
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we have at least one instance for each of the chord. Even if weoald cover all the chords,
some chords might have too few instances. To avoid this prolkeim, we shift all feature
frames and their chord labels toCor Cm To achieve this, we perform cyclically shifting on
all non Glabeled or Crdabeled features. After that, all feature vectors are cydkly shifted
from di erent chords to Cor Cm This procedure works as follows.

1. First we need to compute how many semitones are needed to ifrom an arbitrary
chord with label 1 to the objective chord with label ». To achieve this, we de ne
the following two functions.

Suppose we have a mapping functioM : ! Z, which maps a chord to a positive
integer i, i 2 [1 : 24], starting from i = 1 indicating C i = 2 indicating G, i = 13
indicating Cmi = 14 indicating Gmand so on. Table 3.3 shows the mapping from
all major and minor triads to corresponding numbers. Furthermore we de ne the

function dchorg I Z to compute the semitone distance between the two
chords 1 and 5 :

Oehord( 15 2) = JM( 1) M( 2)j: (3.5)

2. Denote the feature frame corresponding to the label ; as x1, which is the one to
be shifted. Also denote the result feature framex, corresponding to the label ,,
which is the objective feature we want. Thenx, is computed as :

Xp = (dehord ( 15 2)) (Xl): (36)

Note that we shift major chords to Cand minor chords to Cm

Figure 3.3. Procedure of generating the averaged templatd 2.
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chord name| mapped value| chord name| mapped value]
C 1 Cm 13
d 2 dm 14
D 3 Dm 15
D 4 Om 16
E 5 Em 17
F 6 Fm 18
H 7 Hm 19
G 8 Gm 20
e 9 Gm 21
A 10 Am 22
A 11 Am 23
B 12 Bm 24

Table 3.3. Mapping function d¢horg for major and minor triads.

cyclically shiftitto C the semitone distancedchord( c; c)=M( ) M( ¢)j=8 1=
7, thus xg= (oo (65 c)(xgx) = 7(x@ = (( X(8);::::x(12); x(1);:::: x(7)).

After the step cyclically shifting, all features vectors are either Cor Cm The huge amount
of instances allows us to estimate the average value as tengie more convincible. It
should be much better than estimating the average value for &h chord while relying on
a small amount of instances, which is not capable to reveal ta real pattern of the chords.
Now we consider the averaged feature vector of as the template for C, and the averaged
feature vector of Cmas the template for Cm

Note that the binary templates or harmonically enriched templates are xed for all feature
types. However the averaged templates are varying not onlydr di erent feature types but
also for di erent training dataset. Figure 5.4 illustrate th e average templates ofC and
Cmfor di erent features using training dataset DBeales [ D Beatles e denote an average
template by t2.
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: )
° c c# ) D# E F Fit G G A o W E F Fit G GH A
(a) tg for CP (b) t&,for CP
: .
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Figure 3.4. Averaged templates of di erent features for chordCand Cm
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3.3 Speci cation of Distance Measures

Having the templates as the patterns of chords, in this sectth we compare how similar a
given feature vector is to these templates. To this end, we red to de ne the distance in
order to measure the extent of pattern matching.

If not speci ed otherwise, we use the cosine measure = dc de ned by

hjyi

de(x;y)=1 ——"F—; 3.7
ckiy)=1 S (3.7)

for x;y 2 F nf 0g. In the casex =0 or y =0, we setdc(x;y) = 1. Here, jj denotes the

Euclidean norm (also referred to as 2-norm). Note that for “2-normalized vectorsx;y,

one obtains

ix vi®.
5

de(x;y)=1 hxjyi = (3.8)

Remember from the last step of chord recognition procedurethe assigned chord label is
the one which minimizes the distance between the correspoiiray template and the given
feature vector x. Plug in the three di erent template sets in Equation (4.7), we derive
three template-based recognition methods as follows.

For binary templates we have:

« = argmin dc(t?;x): (3.9)
2 ;tbaTb

For harmonically enriched templates we have:

x = argmin  dc(t";x): (3.10)
2 ;thoth
For averaged templates we have:
x = argmin dc(t?;x): (3.12)
2 ;3272

3.4 Template Method Summary

All the template methods we discussed previously are straigt forward depictions of the

chord patterns. They di er mainly on the perspective of desciibing the chord. Figure 3.5

illustrate the set of all templates of the three di erent vari ations.The di erence of the

settings can be easily seen. The binary templates only give @ights to the component
notes. The harmonically enriched templates add the considation of overtones and give
the weights to both the component notes and their harmonics.The two set of templates
consist of manually set values, and they did not involve any mformation of the actual

data. The averaged templates comes to solve this problem. Téy are constructed using
all the audio les, therefore the averaged value is a pro le ¢ how the chord is expressed
in practice.
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It is hard to judge the quality of these methods by whether they are set with theoretically
values or practical values. Sometimes the recognition metbhd using simple binary tem-
plates performs the best, and the harmonically enriched terplates or averaged templates
can also win in some test experiments. However there is a préd&m with the averaged tem-
plates. They are heavily depending on the training data. If the training data contains too
many bad instances of chords, the templates we computed migtbe biased. For example
if a training dataset contains more C augmented triad than C since in our system the
augmented are mapped to major, the resulting template will Fave a higher weight both
to the note G and G!, which in theory G! should not occur, and of course such kind of
template is not the exact pattern of C
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Chapter 4

Statistical Model-based Chord
Recognition

The previously described template-based chord recognitio methods de ne chord patterns
in the form of feature vectors. They can be either manually sevalues for the case of
binary templates and harmonically enriched templates, or pactically learned values for
the case of averaged templates. In this chapter we introduceome statistical model-based
methods which de ne chord patterns not only considering eab chroma of feature vectors,
but also considering the mutual relation between these chrmas. Instead of using feature
templates as chord patterns as in the last chapter, we use mtivariate Gaussian models
to form the chord patterns in this chapter.

This chapter is structured as follows. In Section 4.1, we intoduce the multivariate Gaus-
sian model focus on the interpretation of the mean vector andhe covariance matrix. In
particular, we discuss the covariance matrix in detail. After that we present three chord
recognition methods which are based on the multivariate Gagsian model. All these meth-
ods consist of both the stage of training and testing. The traning stage is the same for
each of them. The idea of training is to use some training dataet to learn multivariate
Gaussian models as chord patterns, in other words, to estinta the model parameters:
mean vectors and the covariance matrices. We describe the spi cations of the training
process in Section 4.2. Then we describe the testing stage efch recognition method
in the following sections. Firstly, in Section 4.3 we introduce the \Mahalanobis distance"
based method. This method computes the Mahalanobis distare for a feature and a
chord pattern. Secondly, we talk about the \Gaussian probablity” in Section 4.4. This
method computes the Gaussian probability of a test feature oming from a chord model,
or in other words, how closely a test feature match a chord paern which expressed by
Gaussian model. Finally, the recognition method using Hideéen Markov Models will be
presented in Section 4.5. This method involves a further paameter, the transition matrix,
to work as post-smoothing with the consideration of neighbo chords.

35
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4.1 Multivariate Gaussian Distribution

The multivariate Gaussian distribution, or multivariate n ormal distribution, is one of the
most important multidimensional distributions. Itis very often to nd that the real world
data distributed at least approximately multivariate norm ally. In this thesis, we assume
that the feature vector is a 12-dimensional random vector wiich follows the multivariate
Gaussian distribution. In this way, a chord pattern can be described by the 12-dimensional
Gaussian distribution. This distribution can be completely determined by the mean vector
and the covariance matrix. Some of the content in this sectio is summarized from the
description in [32], [8] and [1].

4.1.1 Mean Vector

De nition 4.1 Let x 2 RP be a D-dimensional random vector and all its entries have
nite variance.

The mean vector of x is a vector consisting of the expectation of each element of,
concretely,

O ey’

- BEC@)E

E(x(p))

The mean vector describes the centroid of a distribution, ittells the center location where
the data is distributed in the coordinate system.

4.1.2 Covariance Matrix
De nition 4.2 Let x 2 RP be a D-dimensional random vector, and all of its elements

have nite variance, then the covariance matrix 2 RP P is the matrix with the value
at (i;j )th entry being the covariance:

j =cov(x(i);x()=E (x()  @NXG) ()
where:

(i) = E(x(1))
is the expected value of théth entry of the vector x.

The de nition above is can be rewrite into the matrix form:

= E[(x EKXDN(x EX)I
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This matrix form can be seen as a generalization from scalarariance (one-dimensional) to
higher dimensions. Remember that in the one-dimensional e the variance of a random
variable X1is 2= var(X)= E[(X )% where = E(X).

4.1.3 Interpretation of Covariance

Since the entries of the covariance matrix are composed by #covariance values, here we
discuss the meaning of covariance and which information it models.

As implied by its name, the covariance measures how strong th relationship is between
two random variables, sayX; and X». There are two extremes of the covariance. Firstly,
the two random variables are totally independent, given thevalue of the X, o ers no hint
about the value of X». In this case, there is no relationship betweerX ; and X,. Secondly,
the relationship is quite strong that one variable can diredly be determined by the other,
for example, X, = f (X;). Given the value of X, the value of X5, is also known without
any uncertainty. In practice, the relationship of two random variables is somewhere in
between: giving the value of X1 o0 ers some hints to the value of X, thus reduce the
uncertainty of the values X, would take.

Since the value of the covariance o ers the strength of relatbnship between two random
variables, it would be natural to consider the case when theyhave a strong link: no matter
X1 is positive or negative, it is very likely that X, has the same sign. 11X, is positive,
it is very likely that X, is positive as well. However, this idea describes the covamce
under the assumption that both of the random variables are catered at the mean value
0, in other words, the idea lacks the consideration of transdtion.

Here is a better description involved with the mean value: if(X1 1) is positive, itis very
likely that ( X, 2) is also positive, here 1 and , are the mean values ofX; and X,
respectively. So are the negative values. We depict this pmmena from another point of
view: (X1 1)(X2 2) is likely to be positive, because either both the quantities are
simultaneously positive or simultaneously negative.

Note here the scalar product X1  1)(X2 ) is also a variable which has random value,
since we want to have a xed number to measure the relationshp, we take the expectation
of (X1 1)(X2 2), and name it as covariance ofX 1 and X».

De nition 4.3  The covariance between two random variablesX; and X is:

Cov(X1;X2)= E[(X1 E[Xi)(X2 E[X2])]

Having introduced the formal de nition above, here we discuss some interpretations about
the value of the covariance:

1. Large positive value A large value indicates that (X1 1) and (X 2) do have
a strong relation between themselves, and it can be shown tharelation is then
necessarily linear. A positive value indicates that K 1 1) and (X2 u2) always

1In this thesis, we denote a random vector by x and a random variable by X .
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share the same sign, which means they are simultaneously ptige or simultaneously
negative.

2. Small positive value A small positive value generally gives very few hints abouthe
connection between the two variables. Which means, iK 1 takes a large value, there
is little certainty which value X, would take, in other words, X, can take any value.
This also means that, if X1 changes, it is not likely that X, also alters because of
X1.

3. Very low value (close to 0): In general, none of the interpretations can benferred
from this value. Either the very low value of covariance is irdeed a result of the weak
connection between the two variables, or the low value is caged by some nonlinear
relationship which the covariance cannot model, and it is the nature of that nonlinear
relationship makes the covariance low.

4. Negative value Similarly to the interpretation of positive value, but the negative
sign indicates that if (X1 1) takes a large positive value, then K, 2) is likely
to take large negative value. They change in the opposite dection.

5. Zero: If the two random variables are independent, then the covaiance is 0. But
the converse is not true: two variables can have zero covane, but they are not
independent. For example: X, is uniform distributed in the range of [ 1;1], and
Xo= X2

4.1.4 Diagonal Entries and O -diagonal Entries of the Covar iance Ma-
trix

Generally speaking, each entry in the covariance matrix is he covariance value of two
component variables of the random vector. Note that on the dagonal, the entries are
special because they are actually representing the variamcof certain component of the
random vector, which means that how large the dispersion of hiat variable is from its
mean. The other o -diagonal entries are the regular covariarte which measures the linear
coupling between the two di erent components of the random vetor. In the later chapter,
we conduct experiments on the diagonal entries and o -diagoal entries of the covariance
matrix, in order to inspect what the impacts they have on the Gaussian model and how
they further in uence the performance of the chord recogniion system.

415 Estimation of Covariance Matrix

Basically, there are two methods for estimating the covariamce matrix. The rst estimation
is an unbiased estimator of the covariance matrix, regardlss of the what distribution the
random variable X follows, provided that the theoretical mean and covarianceexist.

Given a set of data samples consisting oh independent observationsxy;  ;Xn, each of
the observation is a p-dimensional random vectorx 2 RP, an unbiased estimator of the
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(D D) covariance matrix = E[(x E[x])(x E[x])"]is the sample covariance matrix:

xi X X7 4.1)

unbiased _estimate —

n 1.

where x; is the ith observation, and X is the sample mean.

The reason for the divisor beingn 1 rather than n is the same as the unbiased estimator
of sample variance and sample covariance. It happenes bemduring the estimation, the
true mean of the distribution is unknown so that the sample meaan is used instead.

The second estimation is for the case which the estimation aabe derived on the basis
of distribution. When the random vector x 2 RP is normally distributed, the maximum
likelihood estimator is used to estimate the covariance maix. It turns out that the MLE
estimator is slightly di erent from the unbiased estimator w e mentioned above.

1 X 3 T
MLE _estimate = n xi X)X X) 4.2)
i=1

We can nd that the two estimations only di ers at the divisor. The unbiased estimator
is divided by (n 1) whereas the MLE estimator is divided by n. However, when the
amount of data samples gets larger, this di erence gets smadr. If the amount of samples
goes to in nite, then the di erence diminishes. In the traini ng stage which we describe
later, the covariance matrices of the Gaussian model which #trained are estimated using
the unbiased estimator as Equation 4.1.

4.2 Speci cation of the Chord Models

After introducing the theoretical knowledge, from this sedion on we discuss the practical
methods which use the multivariate Gaussian models as basisThe general idea of these
methods is, instead of using templates, one can take multivdate Gaussian models to
represent the chord patterns. All these methods involve badb the training stage and the
testing stage, and the computation of training is the same fo each of them.

The aim of the training is to estimate the following parameters from the training dataset:
the mean vectors and the covariance matrices of the 24 modelsorresponding to the
24 chords. The procedure of training is very similar to how wegenerate the averaged
templates in Section 3.2.4, except for the last step. Recalthe procedure in Figure 3.3,
after cyclically shifting all extracted features and chord labels to Cand Cmwe average all
the features for Cand Cnrespectively to get the averaged templates. Here in the traiing of
Gaussian models, we replace the last step by the estimatiorf snean vectors and covariance
matrices of Cand Cm The mean vector is actually equal to the averaged templatesand
the covariance matrix is estimated by the unbiased estimato as Equation 4.1.

We denote the estimated covariance matrix, mean vector andhe resulting Gaussian den-
sity functions for the chord pattern of Cas ¢ ¢ and f¢, respectively. Similarly, we
use the same denotation for the other chords. For each chordabel 2 , we represent
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the corresponding parameters as and f . Again as in Section 3.2.4, we compute
the Gaussian models for the other chords by cyclically shifhg back cand ¢ for major
chords. The minor chords are cyclically shifted from cpand cmas well.

Since we perform the same training algorithm for each of the dtasets, the di erences of
the estimated parameters are only due to the di erent training dataset we use. Among all
the data we have, we previously select some of the data as tmraing data and use them to
train the models. Furthermore, we split the training data into di erent sets and then use
any of them or any combination of them in the actual training step. This aims at reducing
the risk that one dataset might containing many outliers. We denote a training dataset as
S. For speci ¢ datasets which we use in our experiments, we namthem concretely such
as DlBeatIes, DzBeatles and Dgeatles 2_

Furthermore, we will denote the estimated multivariate distribution as N with the name
.. . eatles
of training data as superscript, such asN P

Since the multivariate Gaussian distribution is only determined by its mean vector and
covariance matrix, the model will keep both of them in order to indicate a distinct distri-

bution. In the following, we denote the estimated distribution with subscript indicating

the used training data and superscript indicating the chord of the distribution. Denoting

a multivariate Gaussin distribution as N, we de ne

NS )= NC5%5 9
For example, the Gaussian model ofCtrained on D£¢2€s can be represented as:

Beatles Beatles Beatles
D 1 D 1 . D 1

C (; )= N(¢ L C

In the end, by plugging in the the estimated and , the estimated Gaussian density
function which we used in the following methods is:

f(x)=(@2 ) P2det() *Pexp %(X ot ) (4.3)

wheref = fSwith = Sand = S.

4.3 Mahalanobis Distance based-Method

The rst method we introduce is based on the Mahalanobis Diseince’. According to [34],
\the Mahalanobis distance is a very useful way of determinirg the similarity of a set of
values from an unknown sample to a set of values measured froi collection of known
samples”. In our scenario, we treat a feature vector which neds to be assign chord label
as an unknown sample, and a trained chord distribution repreenting the the collection of
known samples. Since it takes into account the correlationr covariance of the known

2These datasets will be described in Section 5.1.1.
3The Mahalanobis Distance is rst introduced by by P. C. Mahal anobis in 1936.



4.3. MAHALANOBIS DISTANCE BASED-METHOD 41

distribution, it makes itself di erent from the Euclidean di stance which only considers
the mean value. Furthermore, Mahalanobis Distance is scal@variant [19] which means
it does not depend on the scale of measurement. This makes it one powerful while
analyzing multivariate data.

While applying the Mahalanobis Distance on the chord recogition task, we make two
assumptions: the rst one is that the distribution of our feature vectors should behave
as multivariate normal distribution of a random vector; the second one is that the dis-
tributions of the 24 chords should be distinct among each otler, otherwise it will yield
same distance and make the chord undeterminable. For the rsassumption, we check
the distribution of practical data and nd this assumption h olds. For the second assump-
tion, since we use the practical data to train the covariancematrix, and cyclically shift
the cand ¢cmto other major and minor chords, the covariance matrix of the 24 chords
are distinctive. Furthermore, the mean vector of each of allchords are di erent as well.
Therefore the second assumption can be ful lled.

4.3.1 Speci cation of Distance Measure

De nition 4.4  Let x be a feature vector,x 2 F nf 0g and D be the dimension offF, and
let 2 RP be the mean value and 2 RP P be the covariance matrix of a multivariate
normal distribution. Then, we de ne the Mahalanobis distane dy = d,j,ls F F! R
with respect to ; by

q
dv(x)= (x )T tx ) (4.4)

Typically, the matrix must be semi-positive de nite. Furt hermore, if the matrix S is
the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the

is diagonal, then the resulting distance measure reduces ¢ the normalized Euclidean
distance:

N
Xy ()2

d(x) = - ;
Ok

(4.5)

where (i) is the ith diagonal value of .

4.3.2 Algorithm Procedure

After de ning the trained models and distance measure, the bord recognition procedure
using Mahalanobis Distance can be described. Similar as iremplate-based methods, we

le in the following procedure.

Firstly, the previously trained models describing the distribution of 24 chords are
loaded. We take the mean vector and the covariance matrix frmm each of the chord
models. Here ignoring the concrete training dataset for simlicity, suppose the ar-
bitrary parameters which we load are S and S
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Secondly, we take the Mahalanobis distance as a measuremettt quantify the dis-
tance between a feature vector and a chord distribution. By pugging in S and S,
we can measure the distance betweex, and any of the chord distribution N S(; ).
We denote the distance bydy (NS(; ) ;Xn).

Finally, similar to template-based methods, we assign the lsord label that minimizes
the distance between the corresponding distribution and tke given feature vector
X = Xp:

X = dzM (NS(; ) ixn): (4.6)

4.4 Gaussian Probability based-Method

Instead of having similarity measured by distance function we de ne a similarity mea-
surement which allows the comparison of a feature with a Gausian distribution. The idea
is that given a distribution and a feature vector, we treat the feature vector as a sample
vector and measure how possible the sample comes from the ttibution. In other words,
we can measure how possible that a feature vector t the distibution of a chord pattern.
In this way, we can quantify the relationship between a featue vector and a distribution
by probability. In this section, we consider the case of mulivariate Gaussian distribution
and introduce the chord recognition method based on Gaussraprobability.

Recall Equation (4.3) that the density function of Gaussian distribution is:

(=@ ) °Pdet) Pexp Sx )T x )

For a given chord label 2 and a given training dataset S, we denote the density
function with f = S and the parametersas = Sand = S,

Based on the formula we see that Gaussian probability is justhe weighted exponential
form of the Mahalanobis Distance. One can even use the logdhm form so that it is
directly related with the Mahalanobis Distance. Both of the methods are based on rel-
ative comparison to select the maximum case (or minimum casé Mahalanobis) as the
recognition result.

4.4.1 Algorithm Procedure

The chord recognition procedure using Gaussian Probabilit is the same as the procedure
using the Mahalanobis Distance in the rst step, i.e., the step of loading the model param-
eters. We make changes in the following steps, which correspd to the similarity measure
and chord label assignment.

To calculate the similarity, we take the Gaussian Probabilty as a measurement to
quantify the possibility of a feature vector x,, coming from a chord distributions N S
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corresponding to the chord label and training data set S. By plugging in these
parameters into f S, we calculate all the probabilities for every 2 .

In the end, the chord label is assigned to the feature vectox = x, by selecting the
one whose model gets the maximum probability.

x, = argmin fS(xp): (4.7)
2

45 Hidden Markov Models-based Method

A Markov model is a stochastic model which ful lles the Markov property. According
to [14], in a hidden Markov model (short form for HMM), \the ou tput for each state
corresponds to an output probability distribution.” An HMM can be represented by
its initial probability, observation probability and tran sition probability. Adapting these
parameters to chord recognition, we consider a chords as adhiden state in HMM, and a
feature vector as an observation. The problem can be reformated as given the sequence
of observations of features, what are the underlying state®f chords which generate the
feature sequence. We use the Gaussian probability which weomputed in the last section
as observation probability, and train the transition probability from the training data.
The initial probability is set to 1 =24 indicating each of the chords has a fair chance.

The main idea of HMM-based chord recognition is to introducetemporal context into the
chord recognition process. This can be seen as a kind of addgubst- Itering after the
primary pattern matching step. The post- ltering serves as smoothing of the predicted
chord labels utilizing the context over time, in order to reduce wrong recognized frames
caused by noise or strong onsets, and also to smooth uctuatig frames inside a continued
chord duration [4].

4.5.1 Transition Probability

In order to consider the temporal context, one needs a transion probability matrix
A 2 R 1l I for a given chord label set . This matrix describes the rst- order tem-
poral relationships between the various chords. Each elenme of the matrix represents the
probability of a chord jumping to another. For example, A( 1; 2); 16 2 represents the
probability chord 1 jumpto o, andA( 1; 1) represents the probability of staying in the
same chord 1.

There are many ways to specify a transition probability matrix. Such a matrix may be
trained from a training dataset, we denote the matrix with subscript t representitis trained

Beatles

and superscript the training data set, for exampIeA{31 . For the matrix obtained from
training, we rst parse the original label le into framewis e labels with respect to the xed
feature rate of 10 Hz, i.e., 10 labels per second with each ohém indicating the chord
label for 100 millisecond. To solve the rounding problem ofime points which do not start
or end sharply at hundred milliseconds, we take the ceiling bthe time point when it is
the start of a label, while oor of the time point when it is the end of a label. Now we
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have the labels for the whole training set with the unit of eat hundred millisecond. In
the end, the values of the element in the transition matrix is assigned to:

|£( 1, 2)

C( 1)
2

Al 1; 2) = (4.8)

where C( 1; »2) counts the number of chords jumping where the current labelis ; and
next labelis ,,and C( 1; ) serves as a normalization which counts the jumping from
1 to all the labels including itself.

Another way of specifying the transition matrix is to set the value of its elements manually
using musical knowledge, we denote such a transition matrixas Ap,, with subscript m
indicating it is manually set. For example, Bello and Pickers designed a gure of doubly-
nested circle fth to model the chord transition [3].

4.5.2 Viterbi Decoding

The Viterbi algorithm is a dynamic programming algorithm to nd the most possible
sequence of underlying states of hidden Markov models givethe sequence of observed
events. We use it to decode the hidden states of chords giverh¢ sequence of observed
feature vectors. In the following, part of the content is summarized from [14] and [31].

The Gaussian probability-based chord recognition as desdred in Section 4.4 is worked as
the observation probability in HMM. The observation probability describes if the current
hidden state isi, how likely it will lead to the observed event j. In the discrete form of
HMM, the observation probability of the states is usually discrete and xed. However in
the implementation of our system, we need to adapt the HMM in its continuous form:
instead of using a xed value, the observation probability for a certain state is modeled
by a speci ¢ Gaussian density function. Furthermore, we treat any given feature vector
as observed event and plug this vector into the density funabn. By doing this, as dis-
cussed in Section 4.4, we calculate the probability of the v&or coming from a certain
chord distribution. This probability is then treated as the observation probability which
indicates the possibility that a chord state generates sucha feature vector as observed
event. Certainly, this will lead to di erent possibilities f or di erent feature vectors and
therefore make the observation probability un xed and vary.

The HMM work out the most possible hidden states by using the \iterbi algorithm. The
Viterbi algorithm combines both the observation probabilities and transition probabilities
to perform post- ltering, i.e., based on the primary patter n matching result of chord
label using Gaussian Probabilities, the Viterbi algorithm will determine the nal result
considering the context in uence speci ed by transition probabilities.

The idea of the Viterbi algorithm is a kind of dynamic programming which uses the states
at time t to deduct the optimal states at t + 1. It works recursively to nd the optimal
hidden states given the observation sequence and the paratees of HMM.

The algorithm runs in two stages. The rst stage calculate the objective probability for
any state at any time. Suppose we haveM hidden states and we denote each state as
Si,i 2 [1:M]. We denote the observed events a®;, t 2 [1 : T]. Then at an arbitrary
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time point t, for each of the statesS;, a partial probability {(S;) is de ned to indicate the
probability of the most probable path ending at the state S;, given the current observed
events Oq; 1O

t(Si):m?X(t 1(§)) A(S§;S)) P(GijS) (4.9)

Here, we assume that we already know the probability ; 1(Sj) for any of the previous
states §j attime t 1, and using the transition probability of A(Sj;S;) and multiplying
it by the current observation probability P (0:jS;). We then select the maximum (S;).

After having all the objective probabilities for each state at each time point, the algorithm
seeks from the very end backwards to the beginning to nd the nost probable path of
states for the given sequence of observation events.

(i) = argmax (¢ 1(S)) A(S;iS) (4.10)
J

where (i) indicates which state is the most optimal state at time t based on the proba-
bility computed in the rst stage.
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Chapter 5

Experiments

In this chapter we present the extensive experiments which & conducted to inspect the ef-
fect of di erent stages of our chord recognition system. We dpict the overall experimental
setup in Section 5.1. In particular, the dataset including audio les and chord annotations
will be described in detail and the evaluation methodology vill be introduced. In Sec-
tion 5.2 we discuss the evaluation measures based on precisiand recall. In Section 5.3,
we conduct experiments on extracted features. Here, the opnization techniques such as
logarithmic compression, smoothing, pitch range separatin will be extensively evaluated.
Besides, we discuss the results of experiments and analyzertain e ect. In Section 5.4,
we do experiments on chord recognizers. Here, the six di erdrchord recognizers as de-
scribed in Chapter 3 and 4 will be extensively evaluated. We Wi point out the advantage
and disadvantage of a certain recognition methods when conibg with di erent features.
From Section 5.5 to 5.8, experiments on other aspects will batroduced. We rst present
the e ect of tuning and using di erent training data. Then, the impact of combining our
existed chord recognition module with other techniques wil be analyzed. These aspects
include harmonic-percussive source separation and usingeht-wise features for evaluation
instead of frame-wise features.

5.1 Experiments Setup

5.1.1 Dataset

In this thesis, all the datasets we use consist of both audio les and corresponding chord
annotation les which contain ground truth chord labels.

We prepared three di erent kinds of music data for our experiments. Firstly, we take the
Beatles albums as representatives for pop music. We take all80 songs as a whole dataset,
and denote it as DBeales  \we further partition DBeatles jntg three subset, where all the
recordings are ordered alphabetically and we put the rst 60recordings into D$eas | the
second 60 recordings intoD5a%s and the last 60 recordings into D2 The chord
annotations for Beatles albums are written by Christopher Harte [13]. Secondly, we take
the four classical pieces as representatives for classicalusic. We put these four pieces

a7
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together in a dataset and name it asD*. See Table 5.1 for details. The chord annotations in
this dataset are precisely written by Verena Konz. Furthermore, we particularly choose 16
Beatles recordings and four classical pieces together as ambination of pop and classical
music. We name it asD?°. See Table 5.2 for detail.

File ID File name (rst 50 characters) Performer  Length

BachBWV846Fischer Bach_BWV846_Fischer_22050_mono Fischer 84
Beet5Bernstein Beethoven_op067_1_symphony_5_ bernstei n_22050_mono Bernstein 519
ChopMazurkaSmith pid9054b-21 Smith 91
SchumannKonz Schumann_Op068No4_Konz Konz 83

Table 5.1. Description of the dataset D*.

File ID File name (rst 50 characters) Performer Length

BeatlesAHardDaysNight Beatles_ AHardDaysNight_Beatles _1964-AHardDaysNigh Beatles 152
BeatlesAllMyLoving Beatles_AlIMyLoving_Beatles_1963- WithTheBeatles-0  Beatles 129
BeatlesAllYouNeedIsLove Beatles_AllYouNeedlIsLove_Bea tles_1967-MagicalMyst Beatles 228
BeatlesBoys Beatles_Boys_Beatles_1963-PleasePleaseMe -05 Beatles 147
BeatlesDoYouWantToKnowASecret Beatles_DoYouWantToKmn#\Secret_Beatles _1963-Pleas  Beatles 119
BeatlesEightDaysAWeek Beatles_EightDaysAWeek_Beatles _1964-BeatlesForSal  Beatles 165
BeatlesGotToGetYoulntoMyLife  Beatles_GotToGetYoulnto MyLife_Beatles_1966-Revolv Beatles 150
BeatlesHelp Beatles_Help_Beatles_1965-Help-01 Beatles 141
BeatlesHereComesTheSun Beatles_HereComesTheSun_Beatls_1969-AbbeyRoad-07 Beatles 185
BeatlesLetltBe Beatles_LetltBe_Beatles_1970-LetltBe- 06 Beatles 243
BeatlesLovelyRita Beatles_LovelyRita_Beatles_1967-Sg tPeppersLonelyH Beatles 162
BeatlesLoveMeDo Beatles_LoveMeDo_Beatles_1963-Please PleaseMe-08 Beatles 142
BeatlesTicketToRide Beatles_TicketToRide_Beatles_196 5-Help-07 Beatles 192
BeatlesTwistAndShout Beatles_TwistAndShout_Beatles_ 1 963-PleasePleaseMe Beatles 153
BeatlesWhatGoesOn Beatles_WhatGoesOn_Beatles_1965-RhbberSoul-08 Beatles 170
BeatlesYesterday Beatles_Yesterday Beatles_1965-Help ~ -13 Beatles 127
BachBWV846Fischer Bach_BWV846_Fischer_22050_mono Fischer 84
Beet5Bernstein Beethoven_op067_1_symphony_5_bernstei n_22050_mono Bernstein 519
ChopMazurkaSmith pid9054b-21 Smith 91
SchumannKonz Schumann_Op068No4_Konz Konz 83

Table 5.2. Description of the datasetD?°.

5.1.2 Annotation Convention

In order to have a universal format of chord annotations, a cetain rule is introduced by
Christoph Harte in [13]. For the four classical pieces whichwe used, Verena Konz followed
exactly the same rule when annotating the chords. Besides,he annotated chords are
forced to map into one of the 24 triads when we parse the annotons. Here, we only
consider the rst two intervals of each chord [16]. Thus, augnented chords are mapped
to major and diminished chords are mapped to minor, respectiely. In some cases, there
are regions where no chord exists. Such regions are annotat&vith \N" as annotation. In
our evaluation, we discard the regions where no chords existhat is to say, whatever the
computed result is in this region, it does not a ect the recogrition accuracy for the whole
piece.
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5.2 Evaluation via Precision and Recall

The evaluation measure of our chord recognition system is @ precision and recall. In
particular, we take F-measure, which is derived from preci®on and recall, as our recog-
nition accuracy. In the eld of information retrieval, prec ision and recall are de ned as
follows [20].

precision = jf relevant dgcumgntsg\f retrieved .documentsgj (5.1)
jf retrieved documentsyj

jf relevant documentg \ f retrieved documentgj

recall = . .
jf relevant documentgj

(5.2)

Adapt the concept into chord recognition, one can treat a chod label as a document.
Therefore an annotated chord label can be seen as a relevanbdument and a computed
chord label as a retrieved document. By plugging in both the dbel sequence of an audio
le into equation 5.1 and 5.2, one can calculate the F-measug as recognition accuracy [35]:

F=2 prec.ls.,lon recall (5.3)
precision + recall

Note that our chord recognition system is based orframewise evaluation. All the chord
annotations are segmented into frames with xed length. Theframe length depends on
the feature rate which is always 10 in our experimental seting. The number of segmented
annotation frames corresponds to the number of computed chd label frames, which
equals to the number of feature frames.

5.3 Experiments on Extracted Features

From this section on, we discuss the extensive experimentshich we conducted. In Chap-
ter 2 we have introduced several features which transform th original audio les into
musically meaningful representations, in particular, all of them are in the chroma repre-
sentation. These features are then passed into the chord regnition module which make
chord label decisions via classi cation based on some temgle methods or statistical mod-
els. To understand which in uence the features make to the wiole process, we conduct
series of experiments in this section that mainly focus on te feature side. We evaluate
the performance variations by using all the features with dierent setting of parameters,
so that we can explore the e ect of parameters. From the di ererce of the performance
results, we can clearly discover how these feature settingscrease or decrease the chord
recognition accuracies. Moreover, we can infer the advange and the disadvantage of
using a certain type of feature when combining it with di erent chord recognizers.

This section is structured as follows. Section 5.3.1 illugtates the overall performance of the
combinations of all features and recognizers. We provide to sets of results with di erent
training datasets so that we can deduct the feature performace more generally than
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using a single dataset. Section 5.3.3 illustrates the in uace of logarithmic compression
on the magnitude of loudness. With dierent extents of compression, we will see the
changes in the chromagram and changes in the recognition rel as well. By enlarging

the window size when computing theCENSand CRP we examine how smoothing a ects
the nal performance in the Section 5.3.4. Finally, Section5.3.5 discuss the pitch range
separation in order to observe the di erent behavior of featues extracted from only the

melody part or the bass part of a piece of music.

5.3.1 Overall Performance

As the rst introductive experiment, we provide the overall recognition accuracies of our
chord recognition system with all feature types and all chod recognition methods. The
parameters of the features are selected to be the optimal osen this overall illustration.
Here we useDBeales a5 the test dataset so that we can compare the performance ofuo
system to the ones in other groups. Note that recognition acgracies of the two recognition
methods T° and T" only depend on the test dataset while the recognition accuraies of
other other four methods depend on both the test dataset and le training dataset. In
order to alleviate the possible e ect of unfair training, we provide two tables of results
with each trained on di erent datasets respectively.

Table 5.3 shows the evaluation result of chord recognitiondr the ve feature types and
for six chord recognition methods with some of them previouly trained on the dataset
DBeales and all of them tested on DB The rows of the table change the chord
recognizer in turn and the columns change the features in tum. In order to have a better
visualization of the performance result, we provide the bar gure corresponding to the
values of Table 5.3 in Figure 5.1. From both the table and the gure we can nd that
CPperforms the worst with almost all chord recognizers exceptwith Th. This makes
sense sinceCPis the most basic chroma feature without any additional proessing such
as smoothing, or logarithmic compression. FeatureCLF1000) performs quite well and
can be considered as the second best feature. For all the clibrecognizers exceptMaha
feature CLF1000) wins the second place. (Here foHMMCLK1000) got 0:717 and CISP
got 0:714, we ignore this small di erence and consider both of them i the second place.)
Feature CISP behaves very strange: it performs excellent withHMMbut defective with
other chord recognizers. It got one time the worst feature wih Tb, three times the second
worst place with Th Ta GP This indicates that CISP depends very much on smoothing.
Furthermore, its bad performance with Thindicates that its magnitude computation is not
that emphasizing the component note of the chord but gives etxa weight to other notes.
Feature CENEL3; 1) can be considered as a fair feature and wins the middle placamong
the ve feature types. Note that it already contains quantiz ation on magnitude, which
works similar to logarithmic compression at the feature sigt. Additionally, smoothing is
also included when giving the window size 13 which in this cas equals to 13 seconds.
Although it includes both the optimization techniques, it i s still worse than CLF1000)
for most of the recognizers. This indicates that the magnitude computation of a single
feature is more important than smoothing with context. However, this does not mean that
smoothing is not important. Without smoothing, CENSehaves quite unsatis able. We
will discuss this in Section 5.3.4. At last comes the winnerdature CRIP13;1). It wins the
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rst place with all the chord recognizers. As we described inChapter 2, the CRPfeature

is designed to boost timbre invariance. Besides, it contais the logarithmic compression
as CLPand smoothing asCENSThe combination of these techniques makes it prominent
and outstanding among all features.

From Table 5.3 we can already tell the huge recognition di erance caused by feature side.
For all the chord recognizers, the best feature is always th€CRIP13;1) and the worst is
CPfor most of the time and CISP for one time. And for each of the recognizers, the
biggest increased recognition accuracy is 0.20, 0.31, 0,28.34, 0.26 and 0.21 respectively.
This implies the importance of computing audio features in asuitable way. Without good
features, one can not obtain satis able result even using tle complex chord recognizers.

CR CP CLEAO000) CISP CEN$3;1) CRFRL3;1)
T 0.460 0.541 0.429 0.551 0.620
1 0.342 0.590 0.467 0.530 0.653
T 0.422 0.601 0.481 0.566 0.675
Maha| 0.331 0.388 0.425 0.526 0.672
GP |0.429 0.611 0.504 0.581 0.683
HMM| 0.528 0.714 0.717 0.644 0.730

Table 5.3. Recognition accuracies of all features and all recognition methodsTrain: DFeates
Test: DBeatles

- CP
7 | I CLP(1000)
CJcisp
| | EEEcENs13,1)
I CRP(13,1)

™ T Ta Maha Gauss HMM

(a) Template-based methods (b) Statistical model-based methods

Figure 5.1. Bar visualization of Table 5.3. Result comparison from feature side.

Table 5.4 shows the evaluation result as well but using traiing dataset D5¢a!s, Since
T and T do not include training procedure, the results of the both mehods stays the
same as in Table 5.3. By comparing the two tables, we can nd tlat most of the values
which locate at the same position of the two tables have onlymall di erences below 0030,
except for the feature CLE1000) with Mahasurprisingly yield the biggest di erence 0:105,
and second biggest atCLF1000) with HMMield the di erence 0:035. The later value is
even being the highest recognition accuracies among the twiables. From this we conclude
that except feature CLF1000), all other features are not that sensitive to the varations of
training data, and the feature CLF1000) is comparably sensitive than the other features.
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CR | CP CL@O00) CISP CENS$3;1) CRPL3;1)
T 0460 0541 0429 0551 0.620
T 0342 0590 0467  0.530 0.653
T |0.419 0607 0484  0.568 0.670
Maha 0.387  0.493 0453  0.556 0.681
GP (0411 0621 0.496  0.562 0.660
HMM| 0525 0.749  0.717  0.639 0.710

Table 5.4. Recognition accuracies of all features with all recognition methods Train: D5eatles
Test: DBeatles

5.3.2 Feature Comparison

In this section, we compare features by visualizing all of tle features extracted from the
same audio le. We excerpt the rst ten seconds from the songBeatlesLetltBe for
illustration. Figure 5.2 shows the intensity di erence of chromagrams among ve di erent
features on the left side. Then for each of the feature type, @ pass the features to the
template baseline method and get the corresponding recogimn result. The visualization
of these results and the recognition accuracy are shown on #right side of Figure 5.2. The
image range of the chromagrams for featur€R, CLF1000), CISPand CEN@3; 1) are set to
[0; 1] for easy comparison, while for featureCRIPL3; 1) the range is [ 0:7;0:7] becauseCRP
features have negative intensity and the the range [0:7;0:7] yields a good visualization.
For the result visualizations, the four di erent colors have a speci ¢ meaning: green means
annotated ground truth chords, red means computed chords bunot coincide with ground
truth annotation, blue means computed chords and coincide vth ground truth annotation,
white means no annotations.

By comparing the color intensity of chromagrams, we can comare the magnitude or
energy of dierent feature types. We nd that CLK1000) and CISP share very similar
contrast in intensity, CPand CEN@3;1) are to some extent similar as well. Although
the intensity contrast of CRIP13; 1) is higher than other features, by careful observation
we nd the red highlight chromas and their time position are very close to the blue or
yellow highlight chromas in CLR Therefore we can roughly divide the ve feature types
into two groups by similarity of contrast: one is CLF1000),CISPand CRPL3; 1); the other
is CPand CEN@3; 1). Actually this similarity of contrast makes sense becaus it re ects

the dierent intensity computation of the chromagrams. On one hand, for feature CP
and CEN@3; 1), the intensity is in the form of energy, that is to say, the squared power
of amplitude of the original signal. Here squared power imgks that, the di erence of
intensity will be much enlarged after squaring the original value. On the other hand, for
CISP, the intensity is in the form of magnitude, which derived from fourier transformation,

and can be considered as the scaled amplitude of the originaignal. For CLF1000) and
CRPL3; 1), the intensity of the both features are in the manner of enegy, however they
perform logarithmic compression on the energy afterwards wile computing the intensity,

therefore the e ect of squared power is to some extent cancelud. This yields the intensity
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of chromagram in a manner between energy or magnitude. Thissialso the reason why
the chromagrams of CLE1000) and CRPL3; 1) have less contrast thanCPand CEN@3; 1).

The logarithmic compression in energy actually plays an imprtant role in the chord
recognition task. This is because when speaking of a singléard, we give all component
notes of this chord the same weight. Given the sheet music, wean decide the chords
without any magnitude information from the played notes. Therefore the information
of magnitude di erence of component notes is not that useful n chord recognition task.
For example, from 59 to 6:8 seconds oBeatlesLetltBe , the ground truth annotation is
\F:maj6" and after mapping to triad chord it becomes F. In Figure 5.2, only CLPand CRP
correctly recognize this period while the other features mke wrong decision to Dm From
musical point of view, the error makes sense because \F:maj&onsists of the component
notes F, A, C and D. They can either be mapped toF which is composed of F, A and
C; or be mapped to D which is composed of D, F and A. In Figure 5.2(b) and 5.2(h), we
can nd that CPand CENSwave a high weight for chroma D from 59 to 6:8 seconds, this
directly leads to the wrong recognition of Dminstead of the correctF.

Another important factor is the smoothing e ect. For the feat ures without temporal

smoothing, their behavior is comparably unstable than the £atures with smoothing. They
have such disadvantage in particular for the case when the dation of a chord last for

a long time. For example, from 47 to 4:9 seconds ofBeatlesLetltBe , feature CR CLP
and CISPall wrongly recognize the chord asC due to the presence of the additional note
G in the chord Am However with smoothing window length 13, feature CENSand CRP
successfully stay inAmbecause the contribution of note G is reduced when blending ith

the strong Amcontext. This is also the main advantage of features with smothing to gain

a higher recognition accuracy than those without smoothingespecially for long lasting
chords.

From the comparison among di erent features we conclude the psitive e ect of logarith-
mic compression and smoothing, however these two techniqgealso have limitations and
sometimes yield negative e ects. We will analyze this in detd in the following sections.
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(a) Score of the rst 10 seconds (corresponding to the rst th ree
measures) ofBeatlesLetltBe
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(b) CP (c) Recognition accuracy 0.820

o 1 2 3 4 5 & 7 B 9

(d) CLR1000) (e) Recognition accuracy 0.870

o 1 2 3 4 5 & 7 B 9

(f)y CISP (g) Recognition accuracy 0.770

o 1 2 3 4 5 & 7 B 9

(h) CENE&3;1) (i) Recognition accuracy 0.850

o 1 2 3 4 5 6 7 8 9

() CRIPL3;1) (k) Recognition accuracy 0.890

Figure 5.2. Comparisons of features and their recognition accuracies using ohd recognizerT,.
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5.3.3 E ect of Logarithmic Compression

As we mentioned in Section 2.3, we apply logarithmic compreson to the original pitch
features in order to simulate humans' sensation of sound ir@nsity. Besides, this step
also works as adjusting the dynamic range of the original sigal to enhance the clarity of
weaker transients, especially in the high-frequency regits [11]. To this end, we replace
each intensity e of pitch features by the value log( e+ 1), where in our experiments
are set as 1,10,100,1000 and 10000. By changing the value ofh our experiments, we can
easily see the in uence of logarithmic compression on chordecognition.

Table 5.5 shows the evaluation result using four chord recagtion methods and features
with and without logarithmic compression. Here, CPdenotes the original pitch features
without logarithmic compression. Other features areCLPwith di erent extent of compres-
sion specied by . Besides, Figure 5.3 is generated by using the numbers of Téb 5.5
and o ers a better visualization.

CR| CP CL@) CLR10) CLR100) CLR1000) CLR10000)
T |0.460 0508 0.544 0.553 0.541 0.521
T |0.422 0513 0577 0.607 0.601 0.577
GP | 0429 0525 0584 0608 0.611 0.606
HMMO0.528 0.640 0.693  0.712 0.714 0.563

Table 5.5. Recognition di erences of features with various logarithmic compression parameter.
Train: DBeatles = Tegt: pBeatles

0.75

0.7 * B

I I I I
1 10 100 1000 10000

Figure 5.3. Visualization of Table 5.5. E ect of logarithmic compression.

Overall, enlarging the logarithmic compression until = 1000 improves performance over
the original pitch features by 18% using most of the chord reognizers except for using
T° which get only 9% increase. From the chord recognizer point foview, the trend of
having logarithmic compression behaves very similar among?®, GPand HMMThe e ect of
increasing recognition accuracies is less obvious when ngiT?. Note that for the recognizer
HMMhe smoothing e ect is already internally incorporated. This is why the performance
of all features with HMMs better than the ones with other recognizers untii = 1000.
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However, it seems that just due to this smoothing e ect, when = 10000 the HMNhas a
sharper decrease than other recognizers.

The best compression parameters for template-based methed = 100) and for statistical-
model-based methods ( = 1000) are not the same. However, the result di erence of usig

= 100 or = 1000 is quite small, which is less than 1%. Enlarging the logrithmic
compression to 10000, the recognition accuracies of all thehord recognizers decrease.
This indicates the optimal compression parameter lies in tle range [1001000].

In order to further inspect the e ect of logarithmic compression on features, the chroma-
grams of features with or without di erent logarithmic param eters are shown in Figure 5.4.
From O to 1:8 seconds, the chroma G gets much more obvious as the enlargithe com-
pression parameter, while at the same time the chroma C getseks obvious yet still clearly
visible. This assists the chord recognizers to determine th correct chordCsince the weights
of both the components notes are the same . However, for some cases, logarithmic
compression also brings a negative e ect. For example, at atmd 3:4 to 3:5 second, the
chord changes fromGto Am In the chromagrams of featureCPand CLK1), the intensity
of chroma G is very weak, and the chroma A, E and C are strong in entrast to G. The
chord edge is sharp and clear so that the following recognizg will make correct decisions
about the time point when chord changes. But in the chromagrans of feature CLF1000),
the chroma G and chroma A nearly have the same intensity. Withthe presence chroma of
C and E, it is hard for the following chord recognizers to deaile whether the correct chord
should be Cwhich consists of C,E and G, or should beAmwhich consists of A, C and E.
In other words, the edge of chord changes are blurred in this ay. This is also the reason
that CLF1000) is wrong at this time position but CPavoids this error in Figure 5.2.

(a) CP (b) CLR1) (c) CLR10)

(d) CLR100) (e) CLR1000) () CL‘F{10000)

Figure 5.4. Comparisons of di erent logarithmic compression on chroma featues.
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5.3.4 E ect of Smoothing

In this section we evaluate the impact of the smoothing at thefeature side on the chord
recognition performance. Among all the feature types, we oly integrated smoothing
parameter in CENSand CRP As we described in Section 2.4 and 2.5, we convolve each
single feature vectorx with the neighbor feature vectors which are within a Hann window
of xed length w centered onx. Here w speci es the number of the neighbor feature
vectors and therefore control the size of smoothing. For thechord recognition methods
which require training, the models are retrained using featires with the speci ed smoothing
window length w as in the evaluation.

The evaluation results of smoothing usingCENSeatures are shown in Figure 5.5. Recall
that for CENSeatures, CENGy d) means we use the smoothing window sizer and down-
sampling factor d. Here we have no down-sampling at all therefore setl = 1 in all the
experiments. On the contrary, w is enlarging so that the extent of smoothing is rising.
Note that by setting w =1, CENEL; 1) simply means no smoothing.

In general, the best smoothing result of CENGy, 1) feature improves performance over the
non smoothing CENEL; 1) by 22%, 16%, 15% and 3% for chord recognizeTb, T2, GPand
HMMespectively. The best results come from thew = 25 for all recognizers except for
HMMherew = 15. Furthermore, from Figure 5.5 we can see that the overalltrend of all
recognizers exceptHMMre quite similar as well. Asw is getting larger, the recognition
accuracies of all chord recognizers get higher. In particalr, increasingw from 1 to 3 gets
the most rapid increase in accuracies. FoHMMhe reason that it behaves di erently from
other recognizers is thatHMMlIready integrated post-smoothing due to its internal viterbi
decoding algorithm which emphasizes the situation of a chat staying in itself. Therefore,
in this experiment it actually contains two stages of smoothng: both on the feature side
and on the recognizer side. This makegiMMistinct from other recognizers.

Similar to CENSeatures, we test the smoothing e ect onCRFfeatures as well. Figure 5.6
illustrates the results. The smoothing also improves the reognition accuracies as we
increase the window length. However, the extent of increasés not as large as onCENS
features. CRReaches the optimum withw = 21 which is smaller than the w = 25 for CENS
and the increase is 10%, 10%, 11% for the rst three recognizs. To our surprise, there is
nearly no improvement of usingHMMwhere the di erence between the optimal CRIPL3; 1)
and CRIL; 1) is only 0:2%.

Figure 5.7 shows the chromagrams ofCEN@w 1) with dierent settings of w and the
corresponding chord recognition visualization for the rst 10 seconds oBeatlesLetltBe

By comparing the recognition accuracy, we nd that smoothing works as double-edged
sword: on one hand, it smoothes out the error and thus increass the accuracy, on the
other hand, it also smoothes out the correct answer and deceses the accuracy. Figure 5.7
re ects this phenomenon obviously: from 48 to 5.0 seconds the error occurs foCENEL; 1)
but is smoothed out for CENE; 1). This is because that at the time point of 4:8 second
in CEN@&,; 1), the chroma A has nearly zero intensity in CEN@L; 1), and the chroma G has
low intensity yet it is larger then zero. In CENE; 1) with the smoothing e ect, at that
time point since A gets larger intensity while G gets smallersince its neighbor features
contain no intensity of G. However, from 51 to 5:6 seconds, some correct recognizeld
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Figure 5.5. Recognition accuracies of using di erent smoothing window length inCENSeatures.
Train: DBeatles = Test: pgeatles
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Recognition accuracies of using di erent smoothing window length inCRPfeatures.
Train: DBeates = Test: pgeatles

was smoothed out to the wrong chordAm This is because inCEN@,; 1), at that short
time, chroma F is originally stronger than A which yields the correct chord F. But after
smoothing with the neighbors, chroma F gets weaker than A, beause in the neighbor

features the intensity of F is less than A.

When w is increased to 21, which means each feature is blend with:2 seconds of the
original audio le, we nd that the error which occurs in all o ther CENSeatures with
smaller w from 6 to 7 second totally disappears inCEN@1;1). But such large w also
blurs the edge of the chord transition. We nd that nearly all the start and end of the
chord transition is wrong in CEN&1; 1). However whenw is less than 9, the edge can be
perfectly recognized.
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(a) Score of the rst 10 seconds (corresponding to the rst th ree
measures) ofBeatlesLetltBe

Grnn

&b
DDDDD

(b) CEN&;1) (c) Recognition accuracy 0.850

(d) CENG; 1) (e) Recognition accuracy 0.820

(f) CEN®; 1) (g9) Recognition accuracy 0.850

£
o)

ccccc

(h) CEN@3;1)

(i) CEN@A7;1) (k) Recognition accuracy 0.870

() CENR1;1) (m) Recognition accuracy 0.900

Figure 5.7. Comparisons of di erent window lengths of smoothing on CENSeatures. Test on
recognizerT® and test data : the rst 10 seconds ofBeatlesLetltBe
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The next question is what the optimal value for w is. Although CEN&1;1) yields the
highest recognition accuracy of 0.90 among all the settingsdoes it really make sense to
have such a large smoothing window which blend in the originasignal more than two
seconds? The answer to that question is, that there is no unersal optimal value since the
durations of the chord di er for each song. For some of the musi pieces which contain
Arpeggio such asBach BWV846, it would be good to have a large window than the
common pieces of music since the notes of the chords are segtly played. While for
some of the pop music in which the duration of chords are shoraind the chords rapidly
change, it would be good to have a small window. However, in geeral, we consider that
the window size corresponding to € second does make sense, since most of the chords
last at least 0:5 second.

5.3.5 E ect of Pitch Range Separation

In this section we evaluate the e ect of pitch range separatio by dividing the whole pitch
rangep 2 [1 : 120] to some smaller range mainly representing melody anbass. We use
two types of features in our evaluation. One isCISP, the other is CRP

Pitch Range Separation for CLP

In CISPfeatures, the melody part is restricted top 2 [43 : 92] covering musical notes from
G2 to G6, and the bass part is inp 2 [21 : 68] covering notes fromAO to A4. Note there

is an overlap range in the two parts. Furthermore, in order to test the e ect of using

more dimensions other than 12 to represent the chromas, herale combine both the 12
dimensional melody range features and the 12 dimensional 8a range features vertically
to form 24 dimensional features.

Table 5.6 shows the evaluation results of usingCISP features. The rst column which
is named \12dim all" is the normal CISPwe used in other experiments. From the table
we see that the general performance of using melody range teaes is very close to the
performance of using whole range features. The biggest regoition di erence between the
two types of features is only 15% at recognizerT’. However, using bass range features
dramatically decreases the performance. The recognition etreases from 7% to 15% com-
pared to the features using the whole range. The biggest di eence comes fronT® as well.
This implies that the melody pitch range is more or less able ® cover the pitch of most
played notes in the dataset, while the bass pitch range captes only several played notes
and misses most notes who have higher pitches.

For the comparison of dimensions of features, we nd that theresults of using 24 dimen-
sions and using 12 dimensions are very close to each other agllv For T° and GP the
24 dimensional features increase the accuracy about 1%. F@® and HMMhe accuracy is
decreased, but only less than 1%.

Pitch Range Separation for CLP

Table 5.7 shows the pitch range separation results using@LPfeatures. First we focus on
the 12 dimensional features which are in the rst three columms. Di erent from using CISP
features, the recognition accuracy of the melody range feates is 5% to 7% less than the
normal whole range features for all theCLPwith TP. For other recognitions, the di erence
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CR | 12dim all 12dim melody 12dim bass 24dim all
TP 0.429 0.414 0.279 0.441
T2 0.481 0.472 0.406 0.475
GP 0.504 0.495 0.399 0.514
HMM 0.717 0.703 0.642 0.715

Table 5.6. Recognition di erences of pitch range separation ofCISP. Train: Dfeaes = Test:
DBeatIes .

between them is also larger than those tested ol€ISPfeatures. A common phenomenon
occurs in both CLPand sCISPis the bad performance of using bass range features. Again
we get about 7% to 20% decrease.

For the dimension comparison ofCLP the result varies with di erent compression param-
eters. For CLR1), the \24dim all" features improves recognition at most 5% and at least
2%. However, this improvement becomes less and less as thg loompression parameter

gets larger. Until =100 it still improves the result. But to our surprise, when = 100,

it decreases the result ofGPby 30% and HMNdy 35%, while it stays nearly the same forT?
and T2. This is because for large compression parameters, the imsity di erence between
chromas is already quite small and hard to distinguish, now pitting such undistinguished
chroma features into a complex model, the model pattern we rned will be even more
undistinguished among each of the chords. That is why for thetemplate method the
performance is still ok but for complex methods it totally fails.

CR |12dim 12dim 12dim |24dim CR |12dim 12dim 12dim |24dim
all  melody bass all all  melody bass all
T [0.508 0.455 0.397 0.551 T |0.544 0.487 0.396] 0.572
T | 0.513 0.475 0.353 0.545 T | 0577 0.535 0.382 0.585
GP | 0.541 0.490 0.508 0.582 GP | 0.601 0.552 0.535 0.632
HMMO0.665 0.623 0.599 0.686 HMMO0.710 0.675 0.631] 0.727
CR |12dim 12dim 12dim |24dim CR [12dim 12dim 12dim |24dim
all  melody bass all all  melody bass all
T 0553 0.492 0.376/ 0.569 T [ 0541 0.474 0.345 0.553
T | 0.607 0.560 0.391 0.599 T | 0.601 0.547 0.362 0.590
GP | 0.622 0.575 0.519 0.642 GP | 0.611 0.545 0.478 0.329
HMMO0.694 0.672 0.598 0.722 HMMO0.714 0.655 0.572 0.347

Table 5.7. Recognition di erences of pitch range separation ofCLP Upper Left: CLK1), Upper
Right: CLR10). Lower Left: CLR100). Lower Right: CLR1000). Train: DBeates = Test: pBeatles
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5.4 Experiments on Chord Recognition Methods

As we described previously, after converting a audio le inb audio features, we pass the
sequence of features into the chord recognition module, antthe chord recognition method
will classify each of the features to one of the chord classaesa pattern matching between
the feature and prede ned chord patterns. We have introducel three di erent template
based methods in Chapter 3 and three statistical model basednethods in Chapter 4.
In this section, we conduct several experiments to evaluatehe performance of all these
methods.

The structure of this section is listed as follows. In Sectio 5.4.1 we illustrate the overall
performance of all features and recognizers. In order to tésout the real e ect of the
recognizers, we adapt the optimal parameter setting to the ormal setting on the feature
side so that the increased recognition accuracy caused by dtire is removed. In Sec-
tion 5.4.2 we compare all the recognizers and analyze the rek and trend of the errors.
Since the behavior of the Gaussian probability based methoénd the HMM based method
depends much on the covariance matrix, we analyze the e ect othe covariance matrix
by changing the diagonal value and o -diagonal value and testtheir ability of modeling
a chord pattern by observing the di erence in recognition acairacies. We describe this in
Section 5.4.3. Among all the recognition methods, HMM is theonly one which integrated
post-smoothing after classi cation. The e ect of such postsmoothing is controlled by
the transition matrix. Therefore we conduct several experments which mainly focus on
the self-transition to test how the smoothing works and what e ect it has on the nal
recognition result.

5.4.1 Overall Performance

CR | CP CL@O00) CISP CENS$;1) CRPL; 1)
T |0.460 0541 0429  0.458 0.528
™ |0.342 0590 0.467  0.374 0.563
T |0421 0601 0481  0.423 0.583
Mahg 0.331  0.388  0.425  0.374 0.577
GP [0429 0611 0504  0.441 0.588
HMM|0.528  0.714 0717 0587 0.723

Table 5.8. Recognition di erences between various recognizers, using feates without smoothing.
Train: DPeates | Test: DBeatles

In this section we discuss the overall performance of our syasm focusing on the recognizer
side. Table 5.8 shows the recognition accuracies with all sirecognizers and ve feature
types. Figure 5.8 is the corresponding visualization. The prameters of the CEN&nd CRP
are set to the initial value without any smoothing. In this way, we discard the optimization
techniques on the feature side so that the real capability othe recognizers can be tested
out.
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Figure 5.8. Visualization of Table 5.8. Overall performance of the recognizers.

From Figure 5.8 we can see that the overall trends of®, T", T2 and GPare very similar, while

Mahaand HMNbehave di erently. In comparison to the three template-basel recognizers,
we previously expected thatT" should be better than T° since it considers the contribution

of harmonics, which make its template more close to the real gttern of features than the

templates of T°. However, this expectation is not ful lled by CPand CENSThis is because
for these two features the computed intensity is in the form d energy, which is the squared
magnitude; while for the other features they are in the form d magnitude. This implies

that template based methods are not suitable for features wvth a squared magnitude which
make the di erence of magnitudes larger than their original di erences. T2 is in a similar

situation. It learns the pattern of features from training d ata and therefore should have a
better t with features compared to T°, but CPand CENiolate the expectation as well.

For other features, usingT" generally increase the accuracy by 4% or 5% compared &,

and T2, which is the best among all template based methods, can hava further increase
of 1% or 2% compared toT".

The behavior of three statistical model based methods are tally dierent. So far we
cannot interpret the performance of Maha For GR previously we supposed it should be
much better than T2, becauseGPconsiders both the average value of the feature vectors and
the correlation between di erent chromas of the features, wlile T2 takes only the average
value. In the table we can see that for all the features there ge increases usingsPcompared
to using T®. However such increases are not that large. The largest inease happens at
feature CISP, which gets Q481 at T® and 0:504 at GPand yields the increase of 3%.
Finally, HMNderforms best among all recognizers due to its internal smdhing around the
context, and the general increase is 10% to 20%. This again riees the importance of
smoothing. Recall that in Table 5.3, incorporated the smoohing in CENSnd CRPfrom
the feature side as well as the smoothing irHMMrom recognizer side, we got recognition
accuracy 0644 and 0730 for the two features respectively. And without smoothirg on the
feature side, in Table 5.8 we got corresponding:887 and 0723, which are 57 and Q7 less
than the previous result. This illustrates the di erence between performing smoothing on
both feature and recognizer sides and performing only on thé&ature side. We con rm that
each of them can bring huge improvement to a chord recognitio system, but when they
are combined together, the contribution will largely deperd on the quality of the feature.
As in our result from both tables, CEN®ene ts a lot from the combined smoothing but
CRRdoes not.
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5.4.2 Error Analysis
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Figure 5.9. Error analysis of chord recognizers. Upper: major chord. Lowerminor chords. Left:
on template based methods. Right: on statistical model based méiods.

After the analysis of the overall performance of recognizes, in this section we present in
which situations the recognizers fail to recognize the chals, that is to say, the analysis
of errors. Figure 5.9 illustrates the distribution of errors with the x-axis indicating the

chord label, and the y-axis indicating the normalized errorratio. The gure is generated

by collecting the wrongly recognized chords of each recogimn methods with feature

CLHK1000) using the same data as in Table 5.8. For convenience wisualizing the errors,
all chords with ground truth major are circle shifted to Cand all chords with ground truth

minor are shifted to Cm

In Figure 5.18(a), the ground truth is C and we visualize the error distribution of three
template based chord recognizers. We see that there are higérror distributions at Cm
Emand Am This is due to the musical reasons that all these chords shartwo components
with C What is interesting is the errors at F and Gtotally re ect the characteristic of the

templates. At G T° makes more errors thanT". This is because the feature ofC generally
contains high intensity at chroma C, E, G, D and B, and the last three notes form G
which make T° confuse between theCand G However, T" formulates the Gconsidering its
other two harmonics which do not coincide with the notes or hamonics in C Therefore
Th successfully beatsT? at the possible chord confusion betweerC and G However on
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the contrary, at F, just becauseT" considers the harmonics which are coincide with the
components ofG it was beaten by T°.

In Figure 5.18(b), the ground truth is still Cbut we visualize the error of three statistical
model based recognizers. The general error distributionsfdGPand HMMre very similar.
At F and G HMNinakes more errors than all other recognizers. This is againuk to its
internal smoothing e ect. Because F and G are subdominant and dominant chords ofC
and they are very probably to be the previous or next neighborof Cin the progression of
chords. With temporal smoothing, HMNhay make errors at the edge between two chords
which mistakes the currentCto G

From Figure 5.18(b) and 5.18(f) we see that,GPand HMMend to classify the features
to major chords no matter the ground truth is major or minor. O n the contrary, Maha
tends to classify features to minor chords. However, we did ot nd such preferences
of templates in Figure 5.18(a) and 5.18(c). Therefore the rason lies in the covariance
matrix of the statistical models, which controls the variance of each chroma and also the
correlation between di erent chromas.

Actually, the data ratio of major chords and minor chords is 80% and 20%. Thus the
performance of our system is related to the errors coming firm major chords. This is why
although GPand HMNhake more errors in Figure 5.18(f) which is much higher than bhe
error rate of major chords in Figure 5.18(b), they still perform quite well in the overall
performance.

5.4.3 E ect of Covariance Matrix

Since the behavior of the Gaussian Probability method and te HMM method depends
much on the covariance matrix, we analyze the e ect of covarimce matrix by changing the
diagonal value and o -diagonal value and test their ability of modeling a chord pattern
by observing the di erence in recognition accuracies.

5.4.3.1 Trained Covariance Matrix

ssssssssss

Figure 5.10. Comparisons of having di erent suppression parameter ono -diagonal values in
trained covariance matrix.

O -diagonal values. First we explore the contributions of the o -diagonal values. To
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this end, we rst train the covariance matrix using D$1es and then suppress the o -
diagonal values by multiplying a scale factors while at the same time keep the diagonal
values unchanged. Figure 5.10(a) illustrates the result ofusing recognizerGR with s
varying at the x-axis, and the y-axis showing the corresponihg recognition accuracies.
The three lines represent three di erent feature types. By olserving the gure, we can
hardly nd any signi cant decrease or increase of the recogition accuracy. In fact, the
di erence between the highest and lowest accuracy is very snila for CLH10) being 26%,
for CEN@; 1) being 08% and for CISP being 0:3%. Besides, the highest accuracy comes
from s = 0:6, and the lowest comes froms = 0:02 for all three feature types. Similarly,
Figure 5.10(b) illustrates the result using the HMMecognizer. And the biggest di erence lies
in CENE,; 1) which is 29%. We can see thatHMNs not much a ected by the suppression
of the o -diagonal value as well.

From the observation of the two gures we conclude that usinga full covariance matrix is

indeed slightly better than using a diagonal covariance matix, however such improvement
is very small and for some of the features it can be negligibleTherefore, one can generally
focus on the diagonal value when analyzing the performance a chord recognition system,
which controls the variance of each chroma, other than the o diagonal value, which

controls the correlation between two chromas.

Diagonal values. After the discussion about o -diagonal values, we examine tle con-
tributions of diagonal values in Figure 5.11. This time the impact of changing the scale
parameter is huge. In Figure 5.11(a) the di erence between tle highest and lowest recogni-
tion accuracies are 48%, 63% and 50% for CLF10), CISPand CENSespectively. Besides,
the overall trend of CENSs di erent from the other two features. CEN%eeps ascending as
we increase the scale while the other two features reach thedhest at s = 3 and is nearly
unchanged fors=4 or s=5.

The behavior of HMMs quite di erent from GPwhen testing the diagonal values. Fig-
ure 5.11(b) shows that the original covariance matrix fors = 1 performs the worst among

all results. Then there is a huge improvement, which is neayt 10% of increase, when
setting s = 2 for all features. Note that CLR10) and CISPeven get the highest recognition
accuracy ats = 2, then the accuracies get around 2% to 3% of decrease as wecheases

every time by one.

The above discussion indicates that the diagonal values ofhie covariance matrix are of
great importance to the performance ofGPand HMMEnlarging the scale factor actually
means we enlarge the variance of each chroma. Recall the Gaisn density function we
derived that such an enlarging e ect is exponential with s, thus the original a large variance
will become even larger, in other words, less strict with fetures at outliers. Therefore, the
chromas with large variance gets more tolerable for the intasity change than those with
a small variance. And now the experiments results show that @ enlarging the variance
the performance will be improved.

Covariance of component notes. Suppressing all the o -diagonal values as a whole
might be too strict in the previous experiment. Since the coariance of the component
notes might have impact on the results of experiment, here iatead of suppressing all
o -diagonal values, we rst keep the covariance of the compoment notes and diagonal
values, then change them by multiplying the scale factor. Suah covariance entries we
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—5— CLP10 + GP + diagOnly. —— CLP10 + HMM + diagOnly
—e—CENS ——CENS
—e—cisp —+—cisP

(a) (b)

Figure 5.11. Comparisons of having di erent scale ondiagonal valuesin trained covariance
matrix.

—5—CLP10 + GP + diag&comp. —— CLP10 + HMM + diag&comp.
—e—CENS ——CENS
—e—cisp —+—cisp

(a) (b)

Figure 5.12. Comparisons of having di erent scale onall the diagonal values and o -diagonal at
component notesin trained covariance matrix.

keep include the covariance of CE,C; G and E; G for chord C In Figure 5.14, we present
the result. In comparison to Figure 5.11, we nd that the result involving with such
covariance of component notes nearly has no di erence with tB uninvolved result. The
largest recognition di erence among them is less than 1%.

Conclusion. From all the above discussions we conclude that, for a traing covariance
matrix, one can generally focus on the diagonal values whichepresents the variance of
each chroma, and pay attention to the scale of these values;nd the o -diagonal values

have only little in uence on the nal performance.

5.4.3.2 Manually Set Covariance Matrix

In the previous subsection, we trained the covariance mats and inspected the impact of
diagonal values and o -diagonal values. Here in this subsean, we take the manually set
covariance matrix which inspired by musical knowledge. We dapt the setting according
to [3], where Bello and Pickens set the values as visualizeadh iFigure 5.14(d). Then we
replace the trained covariance matrix with the manually set matrix and circle shift them
from Cor Cnto the corresponding chord.

Similar to the previous experiments, we test on the performace by varying the scaling fac-
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—— ——
—e—cisp —*—cisp

—&— CLP10 + GP + BelloCov] —— CLP10 + HMM + BelloCov]
CENS CENS

Figure 5.13. Comparisons of having di erent scale onall the diagonal values and o -diagonal at
component notesin manually set covariance matrix.
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Figure 5.14. Trained covariance matrix of corresponding feature types and maually set covari-
ance matrix for C

tor on diagonal variances and o -diagonal covariance of compnent notes. Figure 5.13(a)
shows the results forGPand Figure 5.13(b) shows the results foHMMWe nd that GPis
invariant with the scaling factor, but HMMas signi cant changes with the scaling factor.

Actually the chord labels computed by GPwith di erent scaling factor are not exactly

the same. After replacing the covariance matrix, although & the computed Gaussian
probabilities change, there are only small changes in the @rds whose pattern yields
maximum probability. The number of such chord dierences are so small that using
evaluation with precision 0:001 is not enough to nd the di erences.
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However, inHMMe are not selecting the maximum, and the value of Gaussian babilities

severely a ects the nal performance. This is because the Vierbi algorithm takes both

the covariance matrix and transition matrix and then computes the forward probability

in an accumulated multiplication manner. In this way, any ti ny di erence even as small
as Q001 will be exaggerated largely after several times of mulgilication. Therefore, if one
wants to use the manually set covariance matrix inHMMbne needs to be very carefully to
scale the values to t the intensity of the features. Figure 514(a), 5.14(b) and 5.14(c)
show the example of covariance feature setting of three feates. We can see that the
precision of the color bars ofCISPand CLF10) is at 10 3 but CENSs at 10 2. This is

the reason why the trends of CISPand CLR10) are close to each other but di erent with

CENSn Figure 5.13(b). Furthermore, by this experiment, we see hat using the manually

set covariance matrix can also yield a good recognition resuas long as the scale of the
values are appropriately set.

5.4.4 E ect of Transition Matrix

Qopmg

—————— ——

s N - P P

(@) (b)

Figure 5.16. Comparisons of di erent suppression parameters on diagonal vaks of a transition
matrix.

In this subsection, we inspect the diagonal entries of trangion matrix. Figure 5.15 shows
the transition matrix trained on D5¢a%s Al the diagonal values are above @5. They are
much larger than other o -diagonal values, and most of them ae below 0001. A diagonal
entry represents the self transition of a chord, and an o -diagonal entry represents the
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transition from one chord to another. This is because that weparse the original chord
annotations into small frames and we train the transition matrix by absolute counting of
the bi-grams. Therefore the transition between the chords Wl be count once while the
self transition which corresponding to long lasting chord wil be count many times.

Figure 5.16 shows the e ect of changing diagonal entries of tl transition matrix. Here we
keep all the o -diagonal values unchanged and add an additioal value to all the diagonal
values. See Equation (5.4). The x-axis of Figure 5.16 indidas the value ofa.

oy AG]) if i 6]
A= AGi)+a  ifi=] (5.4)
As we can see from Figure 5.16(b), the value of diagonal en&s have a large impact on the
recognition accuracies. This impact are the same for all thehree features we test in this
experiment. Since any of the original diagonal entries is abve 090, after adda= 0:85,
the diagonal values becomes at least:05. Such value is still about 50 times larger than
most of the o -diagonal entries. With recognition accuracy 0.67, we consider this does
not a ect much of the system performance. However when we enfge the absolute value
of a, in particular when a is beyond 0:90, the recognition accuracy decrease rapidly. In
Figure 5.16(b), we seta much larger than the original o -diagonal values, the recogrition
accuracy is higher than in Figure 5.16(a) but changinga has nearly no in uence. Both
gure together indicate that as long as we emphasize the selfransition in a proper range,
the performance of the system remains the same. However oneg are out of this rage,
the system is totally violated.
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From now on, we discuss some special aspects of our experingbesides the parameter of
feature or chord recognition methods described in the prewus sections. We rst present
the e ect of the tuning in section 5.5. We will see the di erence of recognition accuracies
with and without the tuning of the original audio le. In sect ion 5.6, we conduct our
experiments using di erent training data to observe the in u ence of the training data on
the performance of our system. In section 5.7, we add an optiimation technique which
called Harmonic Percussive Source Separation to our systenAnd we discuss how it a ects
the performance of chord recognition by analyzing the incrased and decreased recognition
accuracies of having this technique. In section 5.8 we dises the behavior of using the
beat-synchronized features instead of using the frame-wésfeatures. Finally in Section 5.9,
we brie y examine the chord recognition on classical datase

5.5 E ect of Tuning

CR |tuned| CP CLAO000) CENQ;1) CRPRL;1)
™ 0.445 0.520 0.445 0.505
™ + 0.460 0.541 0.458 0.528
™ 0.332 0.568 0.365 0.538
™ + 0.342 0.590 0.375 0.563
T 0.411 0.590 0.419 0.558
T + 0.419 0.607 0.431 0.581
Maha 0.378 0.470 0.402 0.566
Maha + 0.387 0.493 0.411 0.592
GP 0.392 0.602 0.400 0.546
GP + 0.412 0.621 0.415 0.573
HMM 0.512 0.721 0.563 0.689
HMM| + 0.525 0.749 0.583 0.709

Table 5.9. Recognition di erences between features with tuning and without tuning. Train:
DZBeatIes_ Test: DBeatIes .

2| 2|
10 II 10 .

o o

22 01 05 06 Ba 08 0 06

(a) CLR1000) (b) CRRL; 1) (c) CENG; 1)

Figure 5.17. Histogram of recognition with tuning and without tuning, using recognizer T°.

Although it is asserted by people that the audio les which prepared for chord recognition
are in standard tuning, which means for example in a concerthe note A4 should be exactly
440 Hz, the actual tuning of the music recordings sometimes a@lviate from the standard
tuning. In this section, we check the in uence of tuning on the chord recognition. To this
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end, we replace the original Iter banks which we used to extact pitch features with the

six di erent Iter banks which consider tuning deviation fro m 0, 0:25, 033, 05, 0:67, 075
of the semitones. We select the pitches in a certain range aepresentative pitches and
apply the six Iter banks on them and get six versions of the sib bands. Then for each
version, we add up the energy of all these sub bands. Finally e/select the version which
yields maximum energy as the tuning.

Note that such tuning method can not handle the deviation beyond one semitone. There-
fore in order to make sure we have the exact tuning, we performour chord recognition
with each time circular shift the features down by one semitme, and with the help of
the ground truth chord annotation, we record the number of circular shift with which the
chord recognition yields the best recognition accuracies.

Table 5.9 shows the result of recognition accuracies with ah without tuning. The plus
sign means we integrated tuning while the minus sign means wiout tuning. We nd that
most of the integrated recognition rates increase about 1%d 3% compared to the result
without tuning, regardless of the feature types and recogréers. Further investigation
shows that 50% of the pieces in theDBeales dataset are not exactly tuned, and 10% of
the pieces even have deviation beyond one semitone. For most the untuned pieces, the
recognition accuracy in average increased by about 7%. We ka even seen an extreme
case that with tuning the recognition increased by 57% for the songBeatlesLovelyRita
This shows that tuning is a very important pre-processing technique which will largely
improve the chord recognition accuracy.

Note that tuning is not always correct and sometimes might derease the recognition
accuracies. Figure 5.17 shows the histogram statistics ohe recognition di erence between
using and not using tuning. In Figure 5.17(c) we nd that CEN$ave more decrease than
CLR1000) or CRP This is an aspect which is worth future inspection.

5.6 E ect of Using Di erent Training Datasets

In order to totally examine the in uence of using di erent tra ining data, we test out all

potential training dataset which we use in this thesis and ewluate the performance. Ta-
ble 5.10 shows the recognition of using four di erent training datasets, with each table
evaluated on di erent features. From the table we nd that the various datasets do have
in uence on the chord recognition result, for example in Tabe 5.6, evaluated with rec-
ognizer GPand CENSwe got 0441 when trained onDF¢a€s  put the results decrease to
0:415 when trained onD5eaes However, evaluated with HMMhe decrease from (87 to

0:583 is negligible. This shows that the in uence of training data also varies on the rec-
ognizers. Furthermore, evaluated with HMMnd CRPagain we nd the di erence between

using DEeales and DBeales gets 14%, which can not be neglected. This implies that we
also need to consider the in uence of training data togetherwith the feature types.
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D Beatles D lBeatles D ZBeatIes Dgeatles
T2 0.421 0.422 0.419 0.414
GP | 0.426 0.429 0.412 0.410
HMM 0.529 0.528 0.525 0.523

D Beatles D lBeatles D 2Beatles Dgeatles
T2 0.431 0.424 0.431 0.431
GP | 0.439 0.441 0.415 0.411
HMM 0.586 0.587 0.583 0.587

D Beatles D :I?eatles D 2Beatles DgBeatIes
T8 | 0582 0583 0.581 0.583
GP | 0.583 0.588 0.573 0.578
HMM 0.718 0.723 0.709 0.721

73

Table 5.10. Recognition accuracies using di erent training datasets. Result test on DBeatles
(a)using feature CP (b) CENQ;1). (c)CRPL;1).

CR |HPSS| CP CL@) CLR10) CLR100) CLR1000) CEN@;1) CRPL;1)

™ + |0473 0521 0557 0571 0.565 0.466 0.543
™ 0.460 0508 0544  0.553 0.541 0.458 0.528
™ + |0343 0519 0587 0616 0.619 0.374 0.590
™ 0.342 0497 0568  0.592 0.590 0.374 0.563
T + |0427 0526 0592  0.624 0.624 0.444 0.608
T 0.419 0508 0577  0.610 0.607 0.431 0.581
Maha + [0.402 0488 0538  0.561 0.568 0.428 0.614
Maha 0.387 0451 0.488  0.495 0.493 0.411 0.592
GP | + |0417 0531 0603  0.635 0.627 0.429 0.603
GP 0.412 0516 0586  0.619 0.621 0.415 0.573
HMM| + [0528 0656 0722 0754 0.757 0.579 0.724

HMM 0525 0.645 0.706  0.736 0.749 0.583 0.709

Table 5.11. Recognition di erences between features with and without HPSS. Tain: D5eates

Test; DBeatles

5.7 Harmonic Percussive Source Separation

In this experiment, we add the harmonic percussive source paration (HPSS for short)
as a pre-processing step for our chord recognition system. his technique is introduced
by Ono and Sagayama in [27]. The general idea is to remove theepcussive component
from the original audio le and to perform a more robust chord recognition on the re-
maining harmonic component. We recomputed the features frm the separated harmonic
component of each audio le and then evaluated the recognittn accuracies using the same
recognizers as before.
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CR | CP CL@) CLR10) CLR100) CLR1000) CEN@;1) CRPL;1)

™ [0.039 0048 0.060  0.099 0.111 0.044 0.078
™ (0042 0140 0079  0.091 0.107 0.036 0.098
™ (0037 0083 0092  0.074 0.090 0.088 0.105
Mahd 0.055 0.128 0.120  0.144 0.142 0.047 0.124
GP |0027 0075 0126  0.134 0.157 0.048 0.127
HMM| 0.060 0.160 0.228  0.244  0.246 0.090 0.145

Table 5.12. Maximum increased recognition di erence with and without HPSS.

CR | CP CL@) CLR10) CLR100) CLR1000) CENE;1) CRPL;1)
T™ |-0031 -0.022 -0.045  -0.057 -0.080 -0.034  -0.096
™ |.0.030 -0.017 -0.012  -0.043 -0.067 -0.029  -0.103
T |-0026 -0034 -0.036 -0.035 -0.048 -0.038  -0.068
Mahal -0.017 -0.038 -0.027  -0.040 -0.045 -0.027  -0.078
GP |-0.013 -0.053 -0.055  -0.053 -0.053 0.022  -0.079
HMM|-0.050 -0.092 -0.107  -0.091 -0.109 -0.045 -0.111

Table 5.13. Maximum decreased recognition di erence with and without HPSS.

recognizerT"sfeaureCLP(L000) recognizerT*sfeaureCLP(1000)

(d) Maha (e) GP (f) HMM

Figure 5.18. Histogram of recognition di erence with HPSS, using feature CLF1000).

Table 5.11 shows the result with plus and minus sign indicatig the system with or without
HPSS respectively. We can see that with the help of HPSS, alnst all the recognition
accuracies increase about 1% to 3% for the overall result egpt CENQ,; 1) with HMMas
a slight decrease of @1%. Although the averaged increase is not so large, the maxiom
increase is indeed signi cant. Table 5.12 shows the maximunincreased accuracies and
Table 5.13 shows the maximum decreased accuracies. By compgy the two tables we
nd that using HPSS does help to improve the chord recognitian, especially the maximum
increase of 246% is much larger than the maximum decrease of 11:1%. This indicates
that the general trend of adding HPSS on chord recognition wi yield better result than the
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original, however the ability of HPSS is limited, which somdimes appropriately removes
the percussive information and keeps a good harmonic compent; and sometimes wrongly
separated part of the harmonic component into the percussig component and therefore
throws the necessary harmony information away and leads to &ad chord recognition
result. In particular, the human voice includes both the harmonic component such as
vowels and the percussive component such as consonants. Thfor audio les with human
voice it is even harder for HPSS to appropriately separate tle two components.

For a better understanding of how HPSS increases or decreaséhe recognition accuracies,
we prepare the histogram statistics in Figure 5.18. The x-ais indicates the extent of
increase or decrease, and the y-axis indicates the amount ebngs which has that increase
or decrease. We can see that for all recognizers exceptaha the most increased extent
is 0:02 or 003. Compared to the statistical model based recognizers, thtemplate based
recognizers tend to have less amount of decreases. An intstang fact is that Mahawas
signi cantly improved when integrated with HPSS, only two songs are decreased. Also in
HMMthere are more songs with increase:05, while the other recognizers did not reach
that much. Based on all these interesting facts that we obsered, we consider that HPSS
is worth further inspection and by setting up the separation parameter appropriately in
HPSS, it may largely improve the performance of a chord recagtion system.

5.8 E ect of Using Beat Synchronized Feature

BS CP CLE) CLR10) CLR100) CLR1000) CEN@;1) CRPL;1)
fw.100|0.530 0.646 0702  0.727 0.735 0.589 0.727
fw.500|0.566 0.685 0.689  0.676 0.669 0.609 0.695
bw1:0 |0.572 0716 0.731  0.729 0.714 0.621 0.708

Table 5.14. Recognition accuracies using features with and without beat synafonization, tested
with HMMTrain: Dfeales [p Beatles —Tegt: pBeatles

BS CP CLE) CLR10) CLR100) CLR1000) CEN@;1) CRPL;1)
fw.100|0.443 0.488 0523  0.533 0.524 0.324 0.509
fw.500|0.495 0573 0584  0.572 0.547 0.386 0.545
bwi10 | 0506 0586 0596  0.584 0.559 0.398 0.555

Table 5.15. Recognition accuracies using features with and without beat synatonization , tested
with T°. Train: Dfeates [p Beatles —Teggt: pBeatles

There are many suggestions of integrating beat synchronizkfeatures to chord recognition
systems in the previous research, for example Papadopoul@nd Peeters implemented a
system considering beat-chromagrams or Tactus-chromagnas in [30].

In this experiment, we briey examine the e ect of using beat-synchronized features.
To this end, rstly we replace the framewise features with the features condensed at
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beats. Secondly, the chord labels are computed for each of ¢hbeat-synchronized features.
Thirdly, in order to have make the result comparable to the previous statistics, at the
evaluation step we keep the framewise evaluation by resamiplg the computed chord labels
into frames. Finally, the framewise comparison between coputed labels and ground truth
labels are performed and the recognition accuracies are callated.

Table 5.14 shows the result tested with recognizeHMMnd Table 5.15 shows the result
with T°. The rows change the strategy of features in turn. fw_100 indicates that each
feature is computed using a xed window with length 100 milliseconds, which is the same
as our previous setting where feature rate is 10 Hzfw_500 means that the window length
is set to 500 milliseconds. Usually the duration of a beat is 80 milliseconds as well.ow.1:0
means that we take the ground truth beat labels to form the bea windows, and averaging
the framewise features inside each beat window to generatéé beat-synchronized features.
From the tables we can nd that using recognizerT?, for all the features, fw_500 performs
better than fw_100, and bw 1:0 gets the best result. However using recognizeHHMMthe
results varies with the feature types. For example,CP CLKH1) and CLFK10) get the best
result with the beat-synchronized features. But for CLF1000) andCRPPL; 1), the best result
come from the features with xed window length 100. We consier that such unstable
behavior is due to the combination of beat-synchronized feres with the post-smoothing
e ect of HMM. Averaging the original framewise features inside a beat window can be
considered as a kind of smoothing as well. In this case, the salts might be over smoothed
and therefore we observe a decrease in recognition accuracgmpared to the result using
framewise features.

5.9 Experiments on Classical Dataset

File ID CP CLA@) CLR10) CLR100) CLR1000) CISP CEN$;1) CRPL;1)

BachBWV846Fischef0.613 0.637  0.657  0.680 0.683  0.602  0.558 0.653
Beet5Bernstein 0.648 0.658 0.679  0.700 0.687 0564  0.653 0.648
ChopMazurkaSmith | 0.761 0.773  0.795  0.788 0.773 0746  0.596 0.717
SchumannKonz 0.750 0.746 0766  0.811 0.834 0814  0.757 0.825

Table 5.16. Recognition accuracies of classical dataset using’. Test: D*.

File ID CP CL@) CLR10) CLR100) CLR1000) CISP CENS$;1) CRPL;1)
BachBWV846Fischef 0.508 0.578  0.624  0.646 0.653  0.694  0.596 0.738
Beet5Bernstein 0572 0585 0.674  0.729 0.759 0740  0.700 0.849
ChopMazurkaSmith | 0.578 0.728  0.712  0.739 0.775 0811  0.700 0.808
SchumannKonz 0556 0.553 0.562  0.652 0.722 0846  0.776 0.854

Table 5.17. Recognition accuracies of classical dataset usingMMTrain: D$eales | Test: D4

All the datset we used before are from Beatles Album which iste instance of pop music.
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In this section, as an additional experiment, we test the chod recognition on the classical
dataset D*.

Table 5.16 shows the recognition accuracies of each of the g piece using recognizef®.
We nd that the chords of all these four classical pieces are @cognized for at least 0613,
which can be considered as a good result. Table 5.17 shows tlhecognition accuracies
using HMMBY comparison of the two tables, we nd that generally T° gets better result
than HMMor the feature type CPand CLP In contrast, for feature CISP, CENSnd CRP

HMNMets better result than T°. This is an interesting phenomenon which needs further
inspection.

We previously assume that the result of usingHMNmight not be satis ed. Because the
parameters of HMMire trained on the pop music, which may not t for classical music.

However, according to the recognition accuracies of the faupieces, we can consider that
the model still work for classical music. In particular, for CRPthe result using HMN& much

larger than using T? for the rst three pieces.
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Chapter 6

Summary

In this thesis, we introduced an automatic chord recognition system and performed sys-
tematic evaluations at di erent stages with a focus on the e ed of di erent parameter
settings and their interaction. To this end, we rst transfo rmed the audio data to sev-
eral types of feature representations which captured the hanony-related music content.
Then, the feature sequences were passed to the chord recopgi module where several
chord recognition methods existed. In template based methds, we previously de ned or
learned a set of feature templates, and performed pattern mzhing with cosine distance
measure. In statistical model based methods, we learned miidariate Gaussian models to
represent the chord patterns and then used these models to perm pattern matching in
several methods such as Mahalanobis distance based methodaussian probability based
method and HMM based method.

Our main contributions can be summarized as follows. Firsty, we developed a modular
chord recognition system with various types of features andseveral chord recognizers.
Secondly, we conducted extensive experiments which exaned certain parameter settings
and their impacts on chord recognition accuracies, and we @sent detailed analysis and
conclusions.

By testing chord recognition performance using various types of features we gained insight
of the characteristics of each type of features. We found thiafactors such as logarithmic
compression and smoothing in features had signi cant impaton recognition accuracies.
Instead of 12 dimension, using 24 dimension features also proved the results but such
improvement varied with feature types and recognizers. In he recognizer side, we found
that the suitability of chord recognizers and features had arge impact on recognition ac-
curacies. One needed to consider whether the intensity comyation of features such as
magnitude or energy, was appropriate for certain recognizs. In the statistical model
based recognizers. We found that the main contribution of ceariance matrix came from
the diagonal values. One can disregard the o -diagonal valug for convenience of analysis
yet keep nearly the same recognition accuracies by scalindh¢ diagonal values. Instead
of using trained covariance matrices, manually set covariace matrices worked e ectively
as well. However one needs to adjust the scale to t dierent types of features. Finally,
the post-smoothing introduced by HMM brought a large improvement to recognition ac-
curacies. A crucial factor which made it work was the emphadging of the self-transition

79
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probability. Furthermore, the performance of HMM depended much on the corporation
of covariance matrix and transition matrix. It was very sensitive to the values of the
entries of these matrices, and any small di erence in value 4éng might totally destroy
the performance.

As future work, one could extend the experiments which we be y discussed such as using
harmonic-percussive source separation as pre-processisigp and using beat synchronized
features instead of framewise features. Furthermore, an Bight gained from all these
experiments is that if we could compute a type of feature whib successfully emphasize
harmony-related content of the music audio while suppresshe unnecessary noise, even
the simplest recognizer such as binary template-based metid will yields a good result.
Usually the complex recognizers with many parameters only Ightly improve the recogni-
tion and the computation e ciency is far less than simple recognizers such as all template
based methods. Therefore in the future, it is worth to try to enhance our features. One
possibility is to integrate more information such as the bas note of the chord and the key
information in the features.



Appendix A

Source Code

In this chapter, the headers of selected MATLAB functions created during the writing
of this thesis are reproduced. The headers contain inform@n about the name of the
described function and its input/output behavior.

General Routine of Chord Recognition

Here we provide the general routine of chord recognition syem. Firstly, the audio le
is converted to features. Secondly, the chord labels are cqmted by one of the chord
recognizers. Thirdly, the ground truth labels are prepared Finally, the computed and
ground truth labels are compared to express the recognitioraccuracy via precision and
recall.

% %
%step 1. Load or compute features for the audio file.

% The file name and parameter of features are passed as argume nts.
[song_features] = audiofile_to_features(filename,para meterFeature);

%step 2. Compute chord labels by one of the chord recognizers

% Case 1 corresponds to the template-based method which is in troduced in Chapter 3
% The other cases correspond to the statistical model-based methods which is introduced in Chapter 4
switch chord_recognizer
case 1
[computed_chords] = template_based_method(song_featur es,parameterTemplate);
case 2
[computed_chords] = Mahalanobis_distance_based_method (song_features,parameterMaha);
case 3
[computed_chords] = Gaussian_probability_based_method (song_features,parameterGP);
case 4

[computed_chords] = HMM_based_method(song_features,pa rameterHMM);

end

%step 3. Prepare the annotated ground truth
annotated_chords = parse_annotation_file(filename,par ameterAnno);

%step 4. Evaluate recognition accuracy by comparing the com  puted and ground truth labels.
The method of evaluation is introduced in Chapter 5.

[precision,recall,f_measure] = evaluate_result(comput ed_chords,annotated_chords,parameter);

% %
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Procedure of Training the Chord Models and Transition

There are three parameters in the recognizers which needea tbe previous trained: The
mean vector and the covariance matrix of a Gaussian model wbh represents a chord
pattern, and the transition matrix which describing the chord transitions. The mean
vector can be also considered as the averaged templates of laocd pattern. The function

procedure _training  rst takes a trainining dataset as input and extract all the f eatures
and corresponding labels, then compute all these parameterand nally save them in a
le.

Sample usage:

[chord_models,transition_matrix] = procedure_training (trainDataset);
% %
%step 1. extract all the features and corresponding labels f rom the training dataset

for n=1:size(trainDataset)
filename = strcat(trainDataset{n});

%load or compute features for the audio file
[f_features] = audiofile_to_features(filename,paramet erFeature);

%prepare the annotated ground truth
[chord_labels] = parse_annotation_file(filename,param eterAnno);

%Accumulating all features
[all_features]=[all_features,f_features]; % combine fe atures;

%Accumulating all labels
[all_labels] = [all_labels ; chord_labels];

end
%step 2. train the mean vector and covariance matrix for each of the Gaussian model which
% represent the chord pattern. Note that the mean vector can b e used as averaged templates.

[chord_models] = train_MeanVectorAndCovMatrix(all_fea tures,all_labels);

%train the transition matrix which save the transition prob abilities between chords
[transition_matrix] = train_TransitionMatrix(L_CP);

%step 3. save all these parameters in a file

save_transition_model(transition_matrix);

save_chord_models(chord_models);

% %

Feature Extraction

The audiofile _to features function is a wrapper to several feature extraction functins
in the Chroma Tool Box [22]. Here we compute a certain type of éatures, with the type
information speci ed in the parameter.

Sample usage:
[f_features] = audiofile_to_features(filename,paramet er);

9%%%69%6% % %% %% %% %% %% %% % %% %% % %% % %% %0
% Name: audiofile_to_features

% Date of Revision: 19.01.2011

% Programmer: Nanzhu Jiang

%%%%%%%
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%

% Description:

b extract audio features from the given audio file.
%

% Input:

% filename;

% parameter.featureRate;

% parameter.featureType; %1 : CP
% %2 : CLP

% %3 : CENS

% %4 : CRP

% %5 : CISP

% Output:

% f_features;

%9%0%%%% %% %% % %% % %% %% % %% %% %% %% %% %09

XX

RB884006%000800088840004008800088%08064080880%%%% %% %

Template-based Chord Recognizer

The template _based_method function takes audio features as input and computes chord
labels for these features by comparing the each of them withhte prede ned or trained
template chord patterns.

Sample usage:
[computed_chords] = template_based_method(f_features, parameter);

9%%%9%6% % %% %% % %% %% % %% %% % %% %% %% %% % %48

% Name: template_based_method

% Date of Revision: 19.01.2011

% Programmer: Nanzhu Jiang

%

% Description:

% Assign chord labels to features via template-based method

%

% First, load the previous defined or trained templates acco rding to
% templateType. Then, for each of the feature, compute cosin e distance
% between the feature and templates. The computed chord for t hat features
% is the one whose template yields the minimum distance.

%

%%%%%%%

% Input:

% f_features

% parameter.numChroma = 12;
% parameter.numChords = 24;

% Optional parameter:

% parameter.templateType; % 1: binary templates

% % 2: harmonically enriched templates
% % 3. averaged templates

% parameter.model; % the model where averaged templates sav ed
%

% Output:

% computed_chords

%%%%%%%%%%% %% %% %% % % %% %% %% %% %% % %88

%%%%%%%

Mahalanobis Distance-based Chord Recognizer

The Mahalanobis _distance _based_methodfunction assigns chord labels to the input fea-
tures via selecting the minimum Mahalanobis distance betwen the features and the loaded
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chord patterns.

Sample usage:
[computed_chords] = Mahalanobis_distance_based_method (f_features,parameter);

9%%%%6% % %% %% % %% %% %% %% %% %% % % %% %% %0 %Re4BRA4EHBLELEHBRELEBREHB2BR00B2046 B
% Name: Mahalanobis_distance_based_method

% Date of Revision: 19.01.2011

% Programmer: Nanzhu Jiang

%

% Description:

% Assign chord labels to features via Mahalanobis distance- based method.

%

% First, for each of the chord, load the mean vector and covari ance matrix

% from the Gaussian model which described the chod pattern. T  hen, compute the

% Mabhalanobis Distance for each of the feature and the chord p  aftterns. The computed

©%%%%%%%

% chord for that features is the one whose pattern yields the m inimum distance.

%

% Input:

% f_features;

% parameter.model; %Gaussian models which specify chord pa tterns

% %For each model, we load the mean vector and the covariance
% matrix which determined the model.

%

% Output:

% computed_chords;

%%%%%%%%%%% %% %% % %% %% %% % %% %% %% % %848 %%%%%%%

Gaussian Probability-based Chord Recognizer

The Gaussian_probability _based.method function represents chord patterns by Gaus-
sian models. Here, the Gaussian probability describes thegssibility that a feature belongs
to a certain chord distribution. The assigned chord for the fature is determined by se-
lecting the chord pattern whose model gets the maximum Gausan probability.

Sample usage:
[computed_chords] = Gaussian_probability_based_method (f_features,parameter);

%%%%%% % %% %% %% % %% %% %% % %% %% %% %% %0 %8
% Name: Gaussian_probability_based_method

% Date of Revision: 19.01.2011

% Programmer: Nanzhu Jiang

%

% Description:

%%%%%%%

% Assign chord labels to features via Gaussian probability- based method.

%

% First, for each of the chord, load the mean vector and covari ance matrix

% from the Gaussian model which described the chod pattern. T  hen, compute the

% Gaussian probability for each of the feature and the chord p atterns. The computed
% chord for that features is the one whose pattern yields the m aximum probability.
%

% Input:

% f_features;

% parameter.model; %Gaussian models which specify chord pa tterns

% %For each model, we load the mean vector and the covariance
% matrix which determined the model.

%

% Output:

% computed_chords;

%%%%%%%%% %% %% %% %% %% %% %% %% %% % % % %6

%%%%%%%
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HMM-based Chord Recognizer

The HMMbased_-methodfunction rst computes the Gaussian probabilities for each of the
feature, then treat these probabilities as observation praabilities of the Viterbi algorithm.

By plug in the observation and transition probabilities as parameters, the Viterbi algorithm
computes the chord labels with smoothing of temporal contek The output of Viterbi

algorithm is the sequence of nal chord labels.

Sample usage:
[computed_chords] = HMM_based_method(f_features,param eter);

%%%%%% % %% %% %% %% %% %% %% %% %% %% %% %Y
% Name: HMM_based_method

% Date of Revision: 19.01.2011

% Programmer: Nanzhu Jiang

%

% Description:

% Assign chord labels to features via HMM-based method.

%

% Firstly, for each of the chord, load the mean vector and cova riance matrix
% from the Gaussian model which described the chod pattern. L  oad the transition
% matrix which describe the chord transition probabilities

%

% Secondly, compute the Gaussian probability for each of the feature and the
% chord patterns.

%

RB884006%0008000888400040008800088%0806490880%%%% %% %

% Thirdly, the Gaussian probability is treated as observati on probability,

% and the transition matrix is treated transition probabili ty. The chord labels

% are computed via Viterbi algorithm, in which the both proba bility are plugged in

% as parameter.

%

% Input:

% f_features;

% parameter.model; %Gaussian models which specify chord pa tterns

% %For each model, we load the mean vector and the covariance
% matrix which determined the model.

%

% parameter.transition_matrix; %24*24 square matrix whic h saved the transition
% probabilities of the chords.

%

% Output:

% computed_chords;

%%%%%%%%%%%% %% %% %% %% %% % %% %% %% % %888t80808080860808080808084680808646 8090%%%%%%

Parse Chord Annotations

The parse _annotation _file function reads chord annotations from the speci ed le and
map the original chords to one of the 24 triads. The triad chods are further mapped to
integers for the convenience of the next evaluation step.

Sample usage:
[annotated_chords] = parse_annotation_file(filename,p arameter);

9%%%69%6% % %% %% %% %% %% %% % %% %% % %% % %% %0
% Name: parse_annotation_file

% Date of Revision: 19.01.2011

% Programmer: Meinard Mueller, Verena Konz, Nanzhu Jiang

%%%%%%%
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% Description:

% parse annotation file, extract chord annotation and segme nt them into
% frames. The number of annotation frames are equal to the num ber of
% feature frames specified in the parameter.

% Input:

% filename;

% parameter.featureFrames;
% parameter.featureRate;

%

% Output:

% annotated_chords;

%%%%%%%%%%%% %% %% %% %% %% % %% %% %% % %888t808080808060808080808086080808646 ©%%%%%%%

Result Evaluation

The evaluate _result function compare the compare the computed chords with the an
notated chords, and evaluate correctness via precision ancecall. The f-measure is taken
as the nal recognition accuracy.

Sample usage:
[precision,recall,f_measure] = evaluate_result(comput ed_chords,annotated_chords,parameter);

%%%%%%0%% %% % %% %% % %% %% % %% %% % %% %% %
% Name: evaluate_result

% Date of Revision: 19.01.2011

% Programmer: Meinard Mueller, Verena Konz, Nanzhu Jiang

%

% Description:

% Result evaluation via precision and recall. Take f-measur e as chord recognition
% accuracy.

%

%%%%%%%

% Input:

% computed_chords;
% annotated_chords;
% parameter;

%

% Optional:

% parameter.neglectNotAnnotatedChords;
%

% Output:

% precision;

% recall;

% f_measure;

%%%%%%%%% %% %% %% %% % %% %% % %% %% %% % %488e4e50068606000808080808400006064¢ ©%%%%% %%
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